Learning Node.js
Development

Learn the fundamentals of Node.js, and deploy and test
Node.js applications on the web

LI Pack

Learning Node.js Development

Learn the fundamentals of Node.js, and deploy and test
Node.js applications on the web

Andrew Mead

Packh

BIRMINGHAM - MUMBAI

Learning Node.js Development

Copyright © 2018 Packt Publishing

All rights reserved. No part of this book may be reproduced, stored in a retrieval system, or transmitted in any form
or by any means, without the prior written permission of the publisher, except in the case of brief quotations
embedded in critical articles or reviews.

Every effort has been made in the preparation of this book to ensure the accuracy of the information presented.
However, the information contained in this book is sold without warranty, either express or implied. Neither the
author, nor Packt Publishing or its dealers and distributors, will be held liable for any damages caused or alleged to
have been caused directly or indirectly by this book.

Packt Publishing has endeavored to provide trademark information about all of the companies and products
mentioned in this book by the appropriate use of capitals. However, Packt Publishing cannot guarantee the accuracy
of this information.

Acquisition Editor: Ben Renow-Clarke

Content Development Editor: Monika Sangwan
Technical Editors: Anupam Tiwari, Gaurav Gavas
Copy Editors: Safis Editing, Tom Jacob

Project Editor: Suzanne Coutinho

Proofreader: Safis Editing

Indexer: Pratik Shirodkar

Production Coordinator: Nilesh Mohite

First published: January 2018
Production reference: 1300118
Published by Packt Publishing Ltd.
Livery Place

35 Livery Street

Birmingham

B3 2PB, UK.

ISBN 978-1-78839-554-0

www.packtpub.com

» Mapt

mapt.io
Mapt is an online digital library that gives you full access to over 5,000 books and videos, as

well as industry leading tools to help you plan your personal development and advance
your career. For more information, please visit our website.

Why subscribe?

¢ Spend less time learning and more time coding with practical eBooks and Videos
from over 4,000 industry professionals

e Improve your learning with Skill Plans built especially for you

Get a free eBook or video every month

Mapt is fully searchable

Copy and paste, print, and bookmark content

PacktPub.com

Did you know that Packt offers eBook versions of every book published, with PDF and
ePub files available? You can upgrade to the eBook version at www.PacktPub.comand as a
print book customer, you are entitled to a discount on the eBook copy. Get in touch with us
at service@packtpub.com for more details.

At www.PacktPub.com, you can also read a collection of free technical articles, sign up for a
range of free newsletters, and receive exclusive discounts and offers on Packt books and
eBooks.

Contributor

About the author

Andrew Mead is a full-stack developer living in beautiful Philadelphia! He launched his
first Udemy course in 2014 and had a blast teaching and helping others. Since then, he has
launched 3 courses with over 21,000 students and over 1,900 5-star reviews.

Andrew currently teaches Node, Gulp, and React. Before he started teaching, he created a
web app development company. He has helped companies of all sizes launch production
web applications to their customers. He has had the honor of working with awesome
companies such as Siemens, Mixergy, and Parkloco. He has a Computer Science degree
from Temple University, and he has been programming for just over a decade. He loves
creating, programming, launching, learning, teaching, and biking.

Packt is searching for authors like you

If you're interested in becoming an author for Packt, please visit authors.packtpub.com and
apply today. We have worked with thousands of developers and tech professionals, just
like you, to help them share their insight with the global tech community. You can make a
general application, apply for a specific hot topic that we are recruiting an author for, or
submit your own idea.

Table of Contents

Preface 1
Chapter 1: Getting Set Up 7
Node.js installation 7
Node.js version confirmation 9
Installing Node 11
Verifying installation 12

What is Node? 15
Differences between JavaScript coding using Node and in the browser 22
Why use Node 32
Blocking and non-blocking software development 34
The working of blocking 1/0 36

The working non-blocking I/O 39
Blocking and non-blocking examples using Terminal 45
Node community — problem solving open source libraries 50
Different text editors for node applications 54
Hello World - creating and running the first Node app 55
Creating the Node application 55
Running the Node application 58
Summary 62
Chapter 2: Node Fundamentals — Part 1 63
Module basics 64
Using case for require() 65
Initialization of an application 65

The built-in module to use require() 68
Creating and appending files in the File System module 69

The OS module in require() 75
Concatenating user.username 80

Using template strings 81

Require own files 83
Making a new file to load other files 84
Exporting files from note.js to use in app.js 87

A simple example of the working of the exports object 88
Exporting the functions 90
Exercise — adding a new function to the export object 93

Solution to the exercise 94

Third-party modules 97

Table of Contents

Creating projects using npm modules 97
Installing the lodash module in our app 103
Installation of lodash 104

Using the utilities of lodash 106

Using the _.isString utility 109

Using _.uniq 111

The node_modules folder 114
Global modules 115
Installing the nodemon module 115
Executing nodemon 118
Getting input 121
Getting input from the user inside the command line 121
Accessing the command-line argument for the notes application 125

Adding if/else statements 125

Exercise — adding two else if clauses to an if block 128

Solution to the exercise 129

Getting the specific note information 132
Summary 136
Chapter 3: Node Fundamentals — Part 2 137
yargs 137
Installing yargs 138
Running yargs 139
Working with the add command 145

Working with the list command 148

The read command 151

Dealing with the errors in parsing commands 153

The remove command 155

Fetching command 157

JSON 159
Converting objects into strings 160
Defining a string and using in app as an object 163
Converting a string back to an object 163
Storing the string in a file 165
Writing the file in the playground folder 165
Reading out the content in the file 166
Adding and saving notes 170
Adding notes 170
Adding notes to the notes array 171
Fetching new notes 174

Trying and catching code block 176
Making the title unique 179
Refactoring 185

[ii]

Table of Contents

Moving functionality into individual functions 186
Working with fetchNotes 186
Working with saveNotes 188
Testing the functionality 189
Summary 195
Chapter 4: Node Fundamentals — Part 3 196
Removing a note 196

Using the removeNote function 196

Printing a message of removing notes 200

Reading note 204

Using the getNote function 205
Running the getNote function 208

The DRY principle 209
Using the logNote function 210

Debugging 213

Executing a program in debug mode 214

Working with debugging 218

Using debugger inside the notes application 222

Listing notes 225

Using the getAll function 225

Advanced yargs 230

Using chaining syntax on yargs 232
Calling the .help command 233
Adding the options object 234

Adding the title 235
Adding the body 237

Adding support to the read and remove commands 240
Adding the titleOption and bodyOption variables 241
Testing the remove command 242

Arrow functions 245

Using the arrow function 246

Exploring the difference between regular and arrow functions 249
Exploring the arguments array 252

Summary 254
Chapter 5: Basics of Asynchronous Programming in Node.js 256
The basic concept of asynchronous program 257
lllustrating the async programming model 258

Call stack and event loop 262

A synchronous program example 263
The call stack 263

[iii]

Table of Contents

Running the synchronous program 264

A complex synchronous program example 266

An async program example 270
The Node API in async programming 272

The callback queue in async programming 273

The event loop 274
Running the async code 275
Callback functions and APIs 280
The callback function 280
Creating the callback function 280

Running the callback function 284

Simulating delay using setTimeout 284
Making request to Geolocation API 285
Using Google Maps API data in our code 287
Installing the request package 288

Using request as a function 290

Running the request 292

Pretty printing objects 293
Using the body argument 294
Making up of the HTTPS requests 297
The response object 298
The error argument 303
Printing data from the body object 305
Printing the formatted address 305

Printing latitude and longitude 306
Summary 308
Chapter 6: Callbacks in Asynchronous Programming 309
Encoding user input 310
Installing yargs 310
Configuring yargs 312
Printing the address to screen 315
Encoding and decoding the strings 316
Encoding URI component 316
Decoding URI component 317

Pulling the address out of argv 317
Callback errors 320
Checking error in Google API request 321
Adding the if statement for callback errors 323

Adding if else statement to check body status property 324

Testing the body status property 325
Abstracting callbacks 327
Refactoring app.js and code into geocode.js file 328

[iv]

Table of Contents

Working on request statement 328
Creating geocode file 330
Adding callback function to geocodeAddress 333
Setting up the function in geocodeAddress function in app.js 333
Implementing the callback function in geocode.js file 334

Testing the callback function in geocode.js file 337
Wiring up weather search 338
Exploring working of API in the browser 338
Exploring the actual URL for code 343
Making a request for the weather app using the static URL 345
Error handling in the the callback function 347
Another way of error handling 349

Testing the error handling in callback 350
Chaining callbacks together 351
Refactoring our request call in weather.js file 352
Defining the new function getWeather in weather file 352
Providing weather directory in app.js 353

Passing the arguments in the getWeather function 354

Printing errorMessage in the getWeather function 355
Implementing getWeather callback inside weather.js file 356

Adding dynamic latitude and longitude 356

Changing console.log calls into callback calls 357

Chaining the geocodeAddress and getWeather callbacks together 359
Moving getWeather call into geocodeAddress function 360
Replacing static coordinates with dynamic coordinates 361

Testing the chaining of callbacks 362
Summary 363
Chapter 7: Promises in Asynchronous Programming 364
Introduction to ES6 promises 364
Creating an example promise 366
Calling the promise method then 368
Running the promise example in Terminal 369
Error handling in promises 370
Merits of promises 372
Advanced promises 374
Providing input to promises 374
Returning the promises 376
Promise chaining 378
Error handling in promises chaining 379

The catch method 381

The request library in promises 381
Testing the request library 385

[v]

Table of Contents

Weather app with promises 387
Fetching weather app code from the app.js file 387
Axios documentations 389
Installing axios 391
Making calls in the app-promise file 391

Making axios request 392

Error handling in axios request 394

Error handling with ZERO_RESULT body status 397

Generating the weather URL 399

Chaining the promise calls 400

Summary 403
Chapter 8: Web Servers in Node 404

Introducing Express 404

Configuring Express 405
Express docs website 407
Installing Express 408

Creating an app 410
Exploring the developer tools in the browser for the app request 413
Passing HTML to res.send 415

Sending JSON data back 416
Error handling in the JSON request 420

The static server 422

Making an HTML page 423
The head tag 424
The body tag 424

Serving the HTML page in the Express app 425
The call to app.listen 427

Rendering templates 428
Installing the hbs module 429
Configuring handlebars 430
Our first template 430

Getting the static page for rendering 431
Injecting data inside of templates 433
Rendering the template for the root of the website 436

Advanced templates 439

Adding partials 439
Working of partial 441
The Header partial 444

The Handlebars helper 448
Arguments in Helper 451

Express Middleware 453

[vil

Table of Contents

Exploring middleware 454
Creating a logger 456

Printing message to file 460

The maintenance middleware without the next object 463
Testing the maintenance middleware 465
Summary 469
Chapter 9: Deploying Applications to Web 470
Adding version control 471
Installing Git 471

Git on macOS 475

Git on Windows 476

Testing the installation 476
Turning the node-web-server directory into a Git repository 477
Using Git 478
Adding untracked files to commit 480

Making a commit 486
Setting up GitHub and SSH keys 487
Setting up SSH keys 487
SSH keys documentations 488

Working on commands 489
Generating a key 489

Starting up the SSH agent 491
Configuring GitHub 493
Testing the configuration 498
Creating a new repository 499
Setting up the repository 502
Deploying the node app to the Web 505
Installing Heroku command-line tools 506
Log in to Heroku account locally 509

Getting SSH key to Heroku 511
Setting up in the application code for Heroku 515
Changes in the server.js file 515
Changes in the package.json file 517
Making a commit in Heroku 520
Running the Heroku create command 522
Summary 528
Chapter 10: Testing the Node Applications — Part 1 529
Basic testing 530
Installing the testing module 530
Testing a Node project 531
Mocha — the testing framework 533

[vii]

Table of Contents

Creating a test file for the add function 536
Creating the if condition for the test 539

Testing the squaring a number function 541
Autorestarting the tests 544
Using assertion libraries in testing Node modules 547
Exploring assertion libraries 549
Chaining multiple assertions 554
Multiple assertions for the square function 556
Exploring usage of expect with bogus test 558
Using toBe and toNotBe to compare array/objects 559

Using the toEqual and toNotEqual assertions 560

Using tolnclude and toExclude 562
Testing the setName method 566
The asynchronous testing 571
Creating the asyncAdd function using the setTimeout object 572
Writing the test for the asyncAdd function 573
Making assertion for the asyncAdd function 574

Adding the done argument 575

The asynchronous testing for the square function 578
Creating the async square function 578

Writing test for asyncSquare 579

Making assertions for the asyncSquare function 580

Summary 581
Chapter 11: Testing the Node Applications — Part 2 582
Testing the Express application 582
Setting up testing for the Express app 583
Testing the Express app using SuperTest 585
The SuperTest documentation 586
Creating a test for the Express app 587

Writing the test for the Express app 589

Testing our first API request 590

Setting up custom status 593

Adding flexibility to SuperTest 596

Creating an express route 598
Writing the test for the express route 600
Organizing test with describe() 604
Adding describe() for individual methods 606
Adding the route describe block for the server.test.js file 608
Test spies 610
Creating a test file for spies 613
Creating a spy 614
Setting up spies assertions 615

[viii]

Table of Contents

More details out of spy assertion 617

Swapping of the function with spy 619

Installing and setting up the rewire function 619

Replacing db with the spy 620

Writing a test to verify swapping of the function 621

Summary 624
Conclusion 624
Another Book You May Enjoy 625
Leave areview - let other readers know what you think 626

Index 627

[ix]

Preface

Welcome to Learning Node.js Development. This book is packed with a ton of content,
projects, challenges and real-world examples, all designed to teach you Node by doing. This
means you'll be getting your hands dirty early on in the upcoming chapters writing some
code, and you'll be writing code for every project. You will be writing every line of code
that powers our applications. Now, we would require a text editor for this book. We have
various text editor options that you can use. I always recommend using Atom, which you
can find at atom. io. It's free, open-source, and it's available for all operating systems,
namely Linux, macOS, and Windows. It's created by the folks behind GitHub.

All the projects in the book are fun to build and they were designed to teach you everything
required to launch your own Node app, from planning to development and testing to
deploying. Now, as you launch these different Node applications and move through the
book, you will run into errors, which is bound to happen. Maybe something doesn't get
installed as expected, or maybe you try to run an app and instead of getting the expected
output, you get a really long obscure error message. Don't worry, I am there to help. I'll
show you tips and tricks to get pass through those errors in the chapters. Let's go ahead and
get to it.

Who this book is for

This book targets anyone looking to launch their own Node applications, switch careers, or
freelance as a Node developer. You should have a basic understanding of JavaScript in
order to follow this book.

What this book covers

Chapter 1, Getting Set Up, talks about what Node is and why you want to use it. In this
chapter, you'll learn Node installation and by the end of the chapter, you'll be able to run
your first Node application.

Chapter 2, Node Fundamentals - Part 1, talks about building Node applications. The Node
Fundamentals topic has been divided into 3 parts. Part 1 of this topic includes module basics,
requiring own files, and third-party NPM modules.

Preface

Chapter 3, Node Fundamentals - Part 2, continues our discussion on some more Node
fundamentals. This chapter explores yargs, JSON, the addNote function, and refactor,
moving functionality into individual functions and testing the functionality.

Chapter 4, Node Fundamentals - Part 3, includes things such as read and write from the file
system. We'll look into advanced yargs configuration, debugging broken apps, and some
new ES6 functions.

Chapter 5, Basics of Asynchronous Programming in Node.js, covers basic concepts, terms, and
technologies related to the async programming, making it super-practical and using it in
our weather application.

Chapter 6, Callbacks in Asynchronous Programming, is the second part of async programming
in Node. We'll look into callbacks, HTTPS requests, and error handling inside of our
callback functions. We'll also look into the forecast API and fetching real-time weather data
for our address.

Chapter 7, Promises in Asynchronous Programming, is the third and last part of async
programming in Node. This chapter focuses on Promises, how it works, why they are
useful, and so on. At the end of this chapter, we'll use Promises in our weather app.

Chapter 8, Web Servers in Node, talks about Node web servers and integrating version
control into Node applications. We'll also introduce a framework called Express, one of the
most important NPM libraries.

Chapter 9, Deploying Applications to Web, talks about deploying the applications to the Web.
We'll be using Git, GitHub, and deploy our live app to the Web using these two services.

Chapter 10, Testing the Node Applications- Part 1, talks about how we can test our code to
make sure it is working as expected. We'll work on setting up for testing and then writing
our test cases. We'll look into the basic testing framework and asynchronous testing.

Chapter 11, Testing the Node Application - Part 2, continues our journey of testing Node
applications. In this chapter, we'll work on testing the Express applications and look into
some advanced methods of testing.

[2]

Preface

To get the most out of this book

A web browser, we'll be using Chrome throughout the course book but any browser will
do, and Terminal, sometimes known as the command line on Linux or the Command
Prompt on Windows. Atom as the text editor. The following list of modules will be used
throughout the course of this book:

¢ lodash

¢ nodemon
e yargs

® request

® axios

® express
hbs
heroku

e rewire

Download the example code files

You can download the example code files for this book from your account at
www . packtpub . com. If you purchased this book elsewhere, you can visit
www . packtpub.com/support and register to have the files emailed directly to you.

You can download the code files by following these steps:

Log in or register at www.packtpub.com.
Select the SUPPORT tab.
Click on Code Downloads & Errata.

Enter the name of the book in the Search box and follow the onscreen
instructions.

L e

Once the file is downloaded, please make sure that you unzip or extract the folder using the
latest version of:

e WinRAR/7-Zip for Windows
e Zipeg/iZip/UnRarX for Mac
e 7-Zip/PeaZip for Linux

[3]

Preface

The code bundle for the book is also hosted on GitHub at
https://github.com/PacktPublishing/Learning-Node.js-Development. We also have
other code bundles from our rich catalog of books and videos available at https://github.
com/PacktPublishing/. Check them out!

Conventions used

There are a number of text conventions used throughout this book.

CodeInText: Indicates code words in text, database table names, folder names, filenames,
file extensions, pathnames, dummy URLSs, user input, and Twitter handles. Here is an
example: "Mount the downloaded WebStorm-10*.dmg disk image file as another disk in
your system."

A block of code is set as follows:

console.log('Starting app.js');

const fs = require('fs');
const _ = require('lodash');
const yargs = require('yargs');

When we wish to draw your attention to a particular part of a code block, the relevant lines
or items are set in bold:

const argv = yargs.argv;

var command = process.argv([2];
console.log('Command: "', command);
console.log('Process', process.argv);
console.log('Yargs', argv);

Any command-line input or output is written as follows:

cd hello-world
node app.]js

[4]

Preface

Bold: Indicates a new term, an important word, or words that you see onscreen. For
example, words in menus or dialog boxes appear in the text like this. Here is an example:
"Select System info from the Administration panel."

Warnings or important notes appear like this.

Tips and tricks appear like this.

Get in touch

Feedback from our readers is always welcome.

General feedback: Email feedback@packtpub.com and mention the book title in the
subject of your message. If you have questions about any aspect of this book, please email
us at questions@packtpub.comn.

Errata: Although we have taken every care to ensure the accuracy of our content, mistakes
do happen. If you have found a mistake in this book, we would be grateful if you would
report this to us. Please visit www.packtpub.com/submit-errata, selecting your book,
clicking on the Errata Submission Form link, and entering the details.

Piracy: If you come across any illegal copies of our works in any form on the Internet, we
would be grateful if you would provide us with the location address or website name.
Please contact us at copyright@packtpub.com with a link to the material.

If you are interested in becoming an author: If there is a topic that you have expertise in
and you are interested in either writing or contributing to a book, please visit
authors.packtpub.com.

[5]

Preface

Reviews

Please leave a review. Once you have read and used this book, why not leave a review on
the site that you purchased it from? Potential readers can then see and use your unbiased
opinion to make purchase decisions, we at Packt can understand what you think about our
products, and our authors can see your feedback on their book. Thank you!

For more information about Packt, please visit packtpub. com.

[6]

Getting Set Up

In this chapter, you'll get your local environment set up for the rest of the book. Whether
you're on macOS, Linux, or Windows, we'll install Node and look at exactly how we can
run Node applications.

We'll talk about what Node is, why you would ever want to use it, and why you would
want to use Node as opposed to something like Rails, C++, Java, or any other language that
can accomplish similar tasks. By the end of this chapter, you will be running your very first
Node application. It's going to be simple, but it is going to get us to the path to creating real-
world production Node apps, which is the goal of this book.

More specifically, we'll cover the following topics:

¢ Node,js installation
What Node is

Why use Node
Atom

Hello World

Node.js installation

Before we start talking about what Node is and why it's useful, you need to first install
Node on your machine, because in the next couple of sections, we'll want to run a little bit
of Node code.

Now, to get started, we just need two programs—a browser, I'll be using Chrome
throughout the book, but any browser will do, and Terminal. I'll use Spotlight to open up
Terminal, which is what it's known as on my operating system.

Getting Set Up Chapter 1

If you're on Windows, look for the Command Prompt, you can search using the Windows
key and then by typing command prompt, and on Linux, you're looking for the command
line, although depending on your distribution it might be called Terminal or Command
Prompt.

Now, once you have that program open, you'll see a screen, as shown in the following
screenshot:

[] & & Gary — _bash — 108x29

Last login: Wed Jan 18 18:84:81 on ttyseee
Gary:~ Gary$ I

Essentially, it's waiting for you to run a command. We'll run quite a few commands from
Terminal throughout the book. I'll discuss it in a few sections later, so if you've never used
this before, you can start navigating comfortably.

[8]

Getting Set Up Chapter 1

Node.js version confirmation

In the browser, we can head over to nodejs.org to grab the installer for the latest version of
Node(as shown here). In this book, we'll use the most recent version, version 9.3.0:

L L i Nodes *®
- C @ Secure | hitps://nodejs.org/en/

nede

HOME ABOUT DOCS GET INVOLVED SECURITY NEWS FOUNDATION

Node.js® is a JavaScript runtime built on Chrome's V8 JavaScript engine. Node.js uses an
event-driven, non-blocking 1/0 model that makes it lightweight and efficient. Node.js'
package ecosystem, npm, is the largest ecosystem of open source libraries in the world.

Spectre and Meltdown in the context of Node.js.

Download for macQOS (x64)

8.9.4 LTS 9.3.0 Current
Recommended For Most Users Latest Features
Other Downloads | Changelog | APIDocs Other Downloads | Changelog | API Docs

Or have a lock at the LTS schedule.

Sign up for Node.js Everywhere, the official Node.js Weekly Newsletter.

It is important that you install a V8 version of Node.js. It doesn't have to be
4.0, it could be 1.0, but it is important it's on that V8 branch, because there
is a ton of new features that come along with V8, including all of the
features you might have come to love in the browser using ES6.

[9]

Getting Set Up Chapter 1

ES6 is the next version of JavaScript and it comes with a lot of great enhancements we'll be
using throughout the book. If you look at the following image, Node.js Long Term Support
Release Schedule (https://github.com/nodejs/LTS), you can see that the current Node
version is V8, out in April 2017:

Node.js Long Term Support (LTS) Release Schedule

CURRENT -
CURRENT | |

OPYRIGHT © 2017 NODESOURCE, LICENSED UNDER CC-BY 4.0

Before going further, I would like to talk about the Node release cycle. What I have in the
preceding image is the official release cycle, this is released by Node. You'll notice that only
next to the even Node numbers do you find the active LTS, the blue bar, and the
maintenance bar. Now, LTS stands for long-term support, and this is the version that's
recommended for most users. I'd recommend that you stick with the currently offered LTS
option (Node v 8.9.4 LTS), though anything on the left-hand side will do, this is shown as
the two green buttons on nodejs.org.

Now, as you can see, the major version numbers, bump every six months. Regardless of any
sort of big overarching change, this happens like clockwork even if nothing drastic has
changed. It's not like Angular where jumping from 1.0 to 2.0 was almost like using a
completely different library. This is just not the case with Node, what you're getting from
this book is the latest and greatest Node has to offer.

[10]

Getting Set Up Chapter 1

Installing Node

Once the version is confirmed and selected, all we have to do is to click the required version
button on the Node website (nodejs.org) and download the installer. The installer is one of
those basic click Next a few times and you 're done type of installers, there's no need to run any
fancy commands. I'll start the installer. As shown in the following screenshot, it'll just ask a
few questions, then let's click on Next or Continue through all of them:

@ & Install Node.js s}

Welcome to the Node.js Installer

This package will install:
» Introduction
Node.js v9.3.0 to /usr/local/bin/node

Li ;
g * npmv5.5.1to fusr/local/bin/npm
Destination Select

Installation Type
Installation

Summary

n .
o@d o

Continue

You might want to specify a custom destination, but if you don't know what that means,
and you don't usually do it when installing programs, skip that step too. Here, in the next
screenshot, you can see that I'm using just 58.6 MB, no problem.

[11]

Getting Set Up Chapter 1

I'll run the installer by entering my password. And once I enter my password, it should
really only take a couple of seconds to get Node installed:

® w Install Node.js =

Standard Install on "Mac®

This will take 58.6 MB of space on your computer.

Introduction

License Click Install to perform a standard installation of this software
on the disk “Mac".

Destination Select

® Installation Type
Installation

Summary

" .
o@dc

Change Install Localion...

Customize Go Back Install

As shown in the following screenshot, we have a message that says The installation was
completed successfully, which means we are good to go:

® w Install Node.js =}

The installation was completed st y

This package has installed:
Intraduction

Node.js v8.3.0 to /usr/local/bin/node

LLCEnes npm v5.5.1 10 /fusr/local/bin/npm

Destination Select
Installation Type Make sure that /usr/local/bin is in your $PATH.
Installation

» Summary

“ .
o@dc

Close

[12]

Getting Set Up Chapter 1

Verifying installation

Now that Node has been installed successfully, we can go ahead and verify that by running
Node from Terminal. Inside Terminal, I'll shut it down by going to Quit Terminal and open
it up again:

@ BCEGOLEIN Shell Edit View Window Help S
[] About Terminal 2y Gary — -bash — 108x29
on ttys@ee

Preferences... 3,
Secure Keyboard Entry

Services

Hide Terminal
Hide Others
Show All

Quit Terminal

The reason I'm opening it up is because we've installed a new command,
and some Terminals require a restart before they will be able to run that
new command.

In our case, we restarted things and we can run our brand new command so, we'll type it:

node -v

[13]

Getting Set Up Chapter 1

What we're doing in this command is we're running the Node command, and we're passing
in what's called a flag, a hyphen sign followed by a letter. It could be g, it could be j, or in
our case it's v. This command will print the version of Node currently installed.

We might get an error like this:

[NON & Gary — -bash — 108x29

Gary:~ Gary$ nodeasdf
-bash: nodeasdf: command not found
Gary:~ Gary$ |:|

If you try to run a command that doesn't exist, such as nodeasdf, you'll see command not
found. If you see this, it usually means the Node installer didn't work correctly, or you
haven't run it in the first place.

In our case though, running Node with the v flag should result in a number. In our case, it's
version 9.3.0. If you do have Node installed, and you see something like the following
screenshot, then you are done. In the next section, we'll start exploring exactly what Node
is.

[14]

Getting Set Up Chapter 1

[] [] & Gary — -bash —108x29

Gary:~ Gary$ nodeasdf

-bash: nodeasdf: command not found
Gary:~ Gary$ node -v

v9.3.0

Gary:~ Gary$ |:|

What is Node?

Node came about when the original developers took JavaScript, something you could
usually only run inside the browser, and they let it run on your machine as a standalone
process. This means that we could create applications using JavaScript outside the context
of the browser.

Now, JavaScript previously had a limited feature set. When I used it in the browser, I could
do things such as update the URL and remove the Node logo, adding click events or
anything else, but I couldn't really do much more.

[15]

Getting Set Up Chapter 1

With Node, we now have a feature set that looks much more similar to other languages,
such as Java, Python, or PHP. Some of these are as follows:

e We can write Node applications using the JavaScript syntax

* You can manipulate your filesystem, creating and removing folders
* You can create query databases directly

* You can even create web servers using Node

These were things that were not possible in the past, and they are because of Node.

Now, both Node and the JavaScript that gets executed inside of your browser, they're both
running on the exact same engine. It's called the V8 JavaScript runtime engine. It's an open
source engine that takes JavaScript code and compiles it into much faster machine code.
And that's a big part of what makes Node.js so fast.

Machine code is low-level code that your computer can run directly without needing to
interpret it. Your machine only knows how to run certain types of code, for example, your
machine can't run JavaScript code or PHP code directly without first converting it into low-
level code.

Using this V8 engine, we can take our JavaScript code, compile it to much quicker machine
code, and execute that. This is where all those new features come in. The V8 engine is
written in a language called C++. So if you want to extend the Node language, you don't
write Node code, you write C++ code that builds off of what V8 already has in place.

Now, we'll not be writing any C++ code in this book. This book is not
about adding onto Node, it is about using Node. So, we will only be
writing JavaScript code.

Speaking of JavaScript code, let's start writing some inside Terminal. Now, throughout the
book, we'll be creating files and executing those files, but we can actually create a brand
new Node process by running the node command.

[16]

Getting Set Up Chapter 1

Referring to the following screenshot, I have a little right caret, which is waiting for
JavaScript Node code, not a new command-prompt command:

[NN) Gary — node — 108x29

Gary:~ Gary$ node -v
v9.3.8

Gary:~ Gary$ node

>

This means that I can run something like console. log, which, as you probably already
know, logs a message to the screen. 1og is a function, so I'll call it as such, opening and
closing my parentheses, and passing in a string inside two single quotes, a message Hello
world!, as shown in the following command line:

console.log('Hello world!');

[17]

Getting Set Up Chapter 1

This will print Hello world to the screen. If I hit enter, Hello world! prints just like you'd
expect, as shown in the following code output:

[NON Gary — node — 108x29

Gary:~ Gary$ node -v

v9.3.8

Gary:~ Gary$ node

> console.log('Hello world!');
Hello world!

> []

Now, what actually happened behind the scenes? Well, this is what Node does. It takes
your JavaScript code, it compiles it into machine code, and executes it. In the preceding
code, you can see it executed our code, printing out Hello world!. Now, the V8 engine is
running behind the scenes when we execute this command, and it's also running inside the
Chrome browser.

[18]

Getting Set Up Chapter 1

If I open up the developer tools in Chrome by going to Settings | More Tools | Developer
Tools:

@ 0@ @ nodejs x (=]
= C | @ Secure | https://nodejs.org/en/ |
=T
wN
OXN
| 3
o S 5 e [= : onl
HOME ABOUT DC =3 VO) L ! N U »
7
Print... HP
Node.js® is a JavaScript runtime built on Chrome's V& JavaScript engine. Node.js usesa Cast-
3 % A i Find... HF
event-driven, non-blocking /0 model that makes it lightwei save page As... s
package ecosystem, npm, is the largest ecosystem of 0pen s¢ clear Browsing Data_. 0%@ Eait Cut | Copy | Paste
Extensions
Task Manager Settings
Help L3

Spectre and Meltdown in the contextmrrrrarrET

Download for macQS (x64)
8.9.4LTS 9.3.0 Current

Recommended For Most Users Latest Features

Other Downloads | Changelog | APIDocs Other Downloads | Changelog | AP Docs
Or have a look at the LTS schedule.

Sign up for Node.js Everywhere, the official Node.js Weekly Newsletter.

[19]

Getting Set Up

Chapter 1

I can ignore most of the things. I'm just looking for the Console tab, as shown in the

following screenshot:

& Secure | https://nodeje.org/en

ABOUT DOWNLOADS DoCs GETINVOLVED | SECURITY

n de

NEWS FOUNDATION

Node.js® is a JavaScript runtime built on Chrome's V8 JavaScript engine. Node.js uses an
event-driven, non-blocking 1/0 model that makes it lightweight and efficient. Node.js'
package ecosystem, npm, is the largest ecosystem of open source libraries in the world.

Perlormance Memory Application Security Aucins

Spectre and Meltdown in the context of Node.js.

x

Defaun levels ¥

[20]

Getting Set Up Chapter 1

The preceding screenshot showing the console is a place where we can run some JavaScript
code. I can type the exact same command, console.log('Hello world!'"); and runit:

® 08 @ Nodejs ¥ a

beg

&« C | @ Secure | https://nodejs.org/en

nede

HOME ABOUT DOWNLOADS DOCS GETINVOLVED | SECURITY NEWS FOUNDATION

Node.js® is a JavaScript runtime built on Chrome's V8 JavaScript engine. Node.js uses an
event-driven, non-blocking I/0 model that makes it lightweight and efficient. Node.js'
package ecosystem, npm, is the largest ecosystem of open source libraries in the world.

Spectre and Meltdown in the context of Node.js.
= al Elemants Consols Sources Network Parlormance Memory Applicasion Sacurity Audins H
S | o ¥ | Fitter Detaut levels ¥]
consale. lagl "Hells werid!*);

Hello werld! yHia2:]

As you can see in the preceding screenshot, Hello world! prints to the screen, which is the
exact same result we got when we ran it up earlier using Terminal. In both cases, we're
running it through the V8 engine, and in both cases the output is the same.

Now, we already know that the two are different. Node has features such as filesystem
manipulation, and the browser has features such as manipulating what's shown inside the
window. Let's take a quick moment to explore their differences.

[21]

Getting Set Up Chapter 1

Differences between JavaScript coding using
Node and in the browser

Inside the browser, you've probably used window if you've done any JavaScript

development:

® 08 @ Nodejs ®
tr

&« C | @ Secure | hitps://nodejs.ong/en,

nede

HOME ABOUT DOWNLOADS GET INVOLVED SECURITY NEWS FOUNDATION

MNode.js® is a JavaScript runtime built on Chrome's V8 JavaScript engine. Node.js uses an
event-driven, non-blocking /0 model that makes it lightweight and efficient. Node.js'
package ecosystem, npm, is the largest ecosystem of open source libraries in the world.

Spectre and Meltdown in the context of Node.js.

Norwork Periormance Momory Application Ssourity Audits x
&

=] FElemens Consoie Sources
Defau jevels v
{umknenn)

=
S | weo *

Hella world!

window

® Windew {postMessage: f, blur: f, focus: f, close: f, frames: Window, -}

H

[22]

Getting Set Up Chapter 1

Window is the global object, it stores basically everything you have access to. In the
following screenshot, you can see things such as array, we have all sorts of CSS
manipulation and Google Analytics keywords; essentially every variable you create lives
inside Window:

® 08 @ Nodejs x (-}

« C | @ Secure | https://nodejs.org/en

pes

n de

HOME ABOUT DOWNLOADS DOCs GETINVOLVED | SECURITY NEWS FOUNDATION

Node.js® is a JavaScript runtime built on Chrome's V8 JavaScript engine. Node.js uses an
event-driven, non-blocking 1/0 model that makes it lightweight and efficient. Node.js'
package ecosystem, npm, is the largest ecosystem of open source libraries in the world.

Spectre and Meltdown in the context of Node.js.

x

= 0 Elements Console Sources Network Performance Memory Application Securlly Audis

S | tp ¥ | |Fittor Default levels * -]

Hello world! {unknown)

windew

. focus: fy close: f, frames: Window, -}

{status: 8, onchecking: null, onerror: null, ennoupdate: null, ondownloading: null, -}

[23]

Getting Set Up Chapter 1

We have something similar inside Node called global, as shown here:

[NN) Gary — node — 108x29

Gary:~ Gary$ node -v

v9.3.8

Gary:~ Gary$ node

> console.log('Hello world!');
Hello world!

> globa 1|:|

[24]

Getting Set Up Chapter 1

It's not called window because there is no browser window in Node, thus it is called
global. The global object stores a lot of the same things as window. In the following

screenshot, you can see methods that might be familiar, such as setTimeout and
setInterval:

[NN) Gary — node — 108x29
clearImmediate: [F]
clearInterval:
clearTimeout: C i
setImmediate: { [Function: setImmediate] [

setInterval: Fion],
setTimeout: { [Function: setTimeout] [=
module:
Module {

id: a
exports: {},
parent:
filename: null,
loaded: false,
children: [],
paths:

[

require:
{ [Function: requirel
resolve: { [Function: resolve] paths:
L ES o
extensions: {
cache: {} } }

[25]

Getting Set Up Chapter 1

If we look at this code screenshot, we have most of the things that are defined inside the
window, with some exceptions, as shown in the following screenshot:

[NN) Gary — node — 108x29

> global
{ console: ar],
DTRACE_NET_SERVER_CONNECTION:
DTRACE_NET_STREAM_END:
DTRACE_HTTP_SERVER_REQUEST :
DTRACE_HTTP_SERVER_RESPONSE:
DTRACE_HTTP_CLIENT_REQUEST:
DTRACE_HTTP_CLIENT_RESPONSE:
global: [Circular],
process!
process {
title: a
version:
moduleloadList:

[

[26]

Getting Set Up Chapter 1

Now, inside the Chrome browser, I also have access to document:

® 08 @ Nodejs x (-}

« C | @ Secure | https://nodejs.org/en

pes

n de

HOME ABOUT DOWNLOADS DOCs GETINVOLVED | SECURITY NEWS FOUNDATION

Node.js® is a JavaScript runtime built on Chrome's V8 JavaScript engine. Node.js uses an
event-driven, non-blocking 1/0 model that makes it lightweight and efficient. Node.js'
package ecosystem, npm, is the largest ecosystem of open source libraries in the world.

Spectre and Meltdown in the context of Node.s.

= @ Elements Consdle Sources Network Perormance Memory Application Security Audins

® o L

dacument

x

Detautt leveis ¥ -]

¥ Fdocurent

htal 1
*
¥ b

[
[
[
b <footer class-"no-nargin-top
Link rel="stylesheet” hret 3" medias="all
sceript async sro"/fwew.aougle-analytics. con/analytics, {37 ~</script
BasCript typesText/{avascripts_«/seript
b eseript=as/acript
script sres“fetaticsissant helper.js"=</fscript

[27]

Getting Set Up Chapter 1

The document object stores a reference to the Document Object Model (DOM) in the Node
website. The document object shows exactly what I have inside the browser's viewport, as
shown in the following screenshot:

00 @ /g nosess * \@ (=]

<« C | @ Secure | https://nodejs.org/en/

[;‘.ﬂ Elemonts Console Sources Metwork Porormance Memory Applicntion Ssourty Auis
@ e * | [Finer Defaun levels ¥

& x

Funescape: f unescaped)

»webkitMediastrean: f MedisStreas)

B webk AT tions f foni)
» webkitSpeechGrarrar § Speechransar()

B webkitSpeechfrannarlist: f SpeechGramasrtist()

- q !]
B webkitSpeechAecognitiont rrar: f SpeechRecognitianErrar()
BurhkitipeechAscagait lankvent s f SpaechRecogni tianfveat()
wurhkitUAL: f URL(D
P _oroto__: Window

» docurent

< miidocument

> 1

[28]

Getting Set Up Chapter 1

I can make changes to the document to update what gets shown up on the browser's
viewport. Now, obviously we don't have this HTML document inside Node, but we do
have something similar, which is called process. You can view it by running process from
Node, and in the following screenshot, we have a lot of information about the specific Node
process that's being executed:

[NON Gary — node — 108x29

> process
process {
title: a
version:
moduleLoadList:

[

There's also methods available here to shut down the current Node process. What I'd like
you to do is run the process.exit command, passing in as an argument the number zero,
to say that things exited without error:

process.exit (0) ;

[29]

Getting Set Up Chapter 1

When I run this command, you can see I'm now back at the command prompt, as shown in
the following screenshot:

[] [] & Gary — -bash —108x29

target_arch: a
uv_parent_path:
uv_use_dtrace: true,
v8_enable_gdbjit: @,
v8_enable_il8n_support: 1,
v8_enable_inspector: 1,
v8_no_strict_aliasing: 1,
v8_optimized_debug: @,
vB_promise_internal_field_count:
vB_random_seed: 8,
v8_trace_maps: @,
v8_use_snapshot: true,
want_separate_host_toolset: 8,
xcode_version: &
setUncaughtExceptionCaptureCallback:

hasUncaughtExceptionCaptureCallback:
emitWarning: [Functsi

nextTick: [FL

_tickCallback:

stdout: [Get

stderr
stdin:
openStdin
exit:
kill: ion],
_immediateCallback: [Function: p
argve: }
> process.exit(@);
Gary:~ Gary$ D

I've left Node, and I'm at a place where I can run any regular command prompt command,
such as checking my Node version. I can always get back into Node by running node, and I
can leave it without using the process.exit command by using control + C twice.

[30]

Getting Set Up Chapter 1

[] [] & Gary — -bash —108x29

v8_no_strict_aliasing: 1,
v8_optimized_debug: 8,
v8_promise_internal_field_count: 1,
vB_random_seed: 8,
vB_trace_maps: @,
v8_use_snapshot: true,
want_separate_host_toolset: 8,
xcode_version:)
setUncaughtExceptionCaptureCallback: [F
hasUncaughtExceptionCaptureCallback: [Function]
emitWarning: [F on]
nextTick:
_tickCallbac
stdout: [Get
stderr:

stdin:

openStdi
exit: [Fur
kill: [Fu 1.
_immediateCallback:
argve: }
> process.exit(@);
Gary:~ Gary$ node -v
v9.3.0
Gary:~ Gary$ node
>
(To exit, press ~C again or type .exit)
>
Gary:~ Gary$ D

Now, I'm back at my regular command prompt. So, these are the notable differences,
obviously inside the browser you have the viewable area, window gets changed to global,
and a document basically becomes process. Now, obviously that's a generalization, but
those are some of the big picture changes. We'll be exploring all the minutiae throughout
the book.

Now, when someone asks you what is Node? You can say Node’s a JavaScript runtime that
uses the V8 engine. When they ask you what the V8 engine is, you can say the V8 engine is an
open source JavaScript engine written in C++ that takes JavaScript code and compiles it to machine
code. It's used inside Node.js and it’s used in the Chrome browser.

[31]

Getting Set Up Chapter 1

Why use Node

In this section, we'll cover the why behind Node.js. Why is it so good at creating backend
apps? And why is it becoming so popular with companies such as Netflix, Uber and
Walmart, who are all using Node.js in production?

As you might have noticed since you're taking this course, when people want to learn a new
backend language, more and more they're turning to Node as the language they want to
learn. The Node skillset is in hot demand, for both frontend developers who need to use
Node day to day to do things such as compile their applications, to engineers who are
creating applications and utilities using Node.js. All of this has made Node the backend
language of choice.

Now, if we look at the homepage of Node, we have three sentences, as shown in the
following screenshot:

® 00 @ Hodejs ® e

€« 3 | @ Secure | hitps://node]s.ong/en, 1

nede

HOME ABOUT DOWNLOADS DoOCcs GET INVOLVED SECURITY NEWS FOUNDATION

Node.js® is a JavaScript runtime built on Chrome's V8 JavaScript engine. Node.js uses an
event-driven, non-blocking I/0 model that makes it lightweight and efficient. Node.js'
package ecosystem, npm, is the largest ecosystem of open source libraries in the world.

Spectre and Meltdown in the context of Node.js.
Download for macQOS (x64)

8.9.4 LTS 9.3.0 Current
Recommended For Mast Uizers Latest Features

Othar Downloads | Changslog | APIDocs Other Downloads | Changelog | API Docs

Or have a look at the LTS schedule.

[32]

Getting Set Up Chapter 1

In the previous section, we addressed the first sentence. We took a look at what Node.js is.
There's only three sentences in the image, so in this section, we'll take a look at the second
two sentences. We'll read them now, then we'll break it down, learning exactly why Node is
so great.

The first sentence, Node.js uses an event-driven, non-blocking I/O model that makes it
lightweight and efficient; we'll explore all of this now. The second sentence we'll explore at
the end of the section—Node.js' packaged ecosystem, npm, is the largest ecosystem of
open source libraries in the world. Now, these two sentences have a ton of information
packed into them.

We'll go over a few code examples, we'll dive into some charts and graphs, and we'll
explore what makes Node different and what makes it so great.

Node is an event-driven, non-blocking language. Now, what is I/O? I/O is something that
your application does all of the time. When you're reading or writing to a database, that is
I/O, which is short form for input/output.

This is the communication from your Node application to other things inside of the Internet
of Things. This could be a database read and write request, you may be changing some files
on your filesystem, or you may be making an HTTP request to a separate web server, such
as a Google API for fetching a map for the user's current location. All of these use I/O, and
I/O takes time.

Now, the non-blocking I/O is great. That means while one user is requesting a URL from
Google, other users can be requesting a database file read and write access, they can be
requesting all sorts of things without preventing anyone else from getting some work done.

[33]

Getting Set Up Chapter 1

Blocking and non-blocking software development

Let's go ahead and take a look at the differences between blocking and non blocking
software development:

(Blocking /- Nown-blocking

1 wvar getUserSync require(t ¥ LI 1 var getUser = require(t LH

1 = gatlserSync() getlser(. function [userl) {
logl rl', userl); <log('userl’, userl);

var userz = getUsersync(IH
log(r2*, userl); getUser(s Tunction (user2) {
logl » user);
var sum = 1 + 2; Hi
e.logl + sum);

In the preceding screenshot, I have two files that we'll be executing. But before going to
that, first let's explore how each of these files operates, the steps that are required in order to
finish the program.

This will help us understand the big differences between blocking, which I have on the left
side of the image, which is not what Node uses, and non-blocking is on the right side,
which is exactly how all of our Node applications in the book are going to operate.

You don't have to understand the individual details, such as what require is, in order to
understand what's going on in this code example. We'll be breaking things down in a very
general sense. The first line on each code is responsible for fetching a function that gets
called. This function will be our simulated I/O function that is going to a database, fetching
some user data and printing it to the screen.

[34]

Getting Set Up Chapter 1

Refer to the preceding code image. After we load in the function, both files try to fetch a
user with an ID of 123. When it gets that user, it prints it to the screen with the user1 string
first, and then it goes on and it fetches the user with 321 as the ID. And it prints that to the
screen. And finally both files add up 1 + 2, storing the result, which is 3, in the sum
variable and print it to the screen.

Now, while they all do the same thing, they do it in very different ways. Let's break down
the individual steps. In the following code image, we'll go over what Node executes and
how long it takes:

* ’
Blocking / Nown-blocking
ere R :
1 var getuserSync = require(‘./getusersync’); 1 var getUser = require{'./getUser’);
var userl = -.I'--Jg""-\- el '123°); getUser('123°, function (userl) {
legl userl}; le.logl ‘userl’, userl);
i
ynel '321°);
Ingl'user2', user?); getlser('321', function (user2) {
or -logl "user2’, user2);
var sum H
e.lo0g('The sum 1 + sum);
var 1+
log('T sum)

You can consider the seconds shown in the preceding screenshot; it doesn't really matter,
it's just to show the relative operating speed between the two files.

[35]

Getting Set Up Chapter 1

The working of blocking I/O

The blocking example can be illustrated as follows:

Blocking Now-blocking

LR ® bilocking.js — [UsersjAndrew/Desktop/olocking
baocking s man-Hiocking.Js
1 var gewUsersync = require(’./getusersync’); 1 var getUser = require('./getuser');
var userl = getUserSync('123°); getUser{'123', function (userl) {
onsole. logl 'userl’, userl); console. logl ‘userl’, userl):
Hi

var user2 = getlserSync{'321');
ronsnle. logl 'user?’, user?): getllser('321', function (user2) {

console, logl "user?’, userz):
var sum =1+ 2; Hi
console.logl'The sum is ' + sum};
var sum = 1 + 2;
console. log(“The sum 15 * + sum);

T e | stoino oigrfor e

l Printing userd
I Printing userz

l Printing sum

blockingjs 11 LF UTPs JeveScript (3 1 upiate

The first thing that happens inside our blocking example, as shown in the preceding
screenshot, is that we fetch the user on line 3 in the code:

var userl = getUserSync('123'");

Now, this request requires us to go to a database, which is an I/O operation to fetch that
user by ID. This takes a little bit of time. In our case, we'll say it takes three seconds.

[36]

Getting Set Up Chapter 1

Next, on line 4 in the code, we print the user to the screen, which is not an I/O operation and
it runs right away, printing user1 to the screen, as shown in the following code:

console.log('userl', userl);

As you can see in the following screenshot, it takes almost no time at all:

Blocking [Now-blocking

LR = blocking.js — no
blocking ju mon-blssking ju
1 var getUserSync = require(’./getUserSync'); 1 war getUser = require('./getUser');
var userl qr‘i]u‘rq\.’nr[".."'-.): getUser('123', function (userl) {
sole.logl'uSerl’, userl): console. logl 'userl’, userl);
H:
var userl = getusersync(‘'3zl'):
console. logl ‘user2’, user2); getUser(*321°, function (user2) {
console. logl ‘user2®, user2);

=1+ 2 M

'The sum is ' + sum);

var sum = 1 + 3
consale. log('The sum is * + sum):

blockings 11 LF UTF-0 JeveScript (9 1 update

[371]

Getting Set Up Chapter 1

Next up, we wait on the fetching of user2:

var user2 = getUserSync('321'");

Blocking [Nown-blocking

LR] ™ Dlocking. s — [Users). L]
hlaking o ern-blacking ju ‘E
1 var getUserSync = require('./getUserSync'); 1 var getUser = require('./getUser');
var userl = getliserSync('123'); getlser('123', function (userl) {
console. log(‘userl’, userl); console. log(‘userl’, userl);
Hi

var user? = getUserSync{'321');
::nr.".f.-.log['.sf:-'.‘ » userl); getUser('321', function (user2) {
console, logl 'user?’, user?):
var sum =1 + I3 H:
console. logl'The sum is * + sum);
ver sum = 1 + 2;
console.logl'The sum is ' + sum);

I Printing usert

I Prinking usera

biocxing s 11 LF UTF-8 Javascripn (19 1 uposse

When user2 comes back, as you might expect, we print it to the screen, which is exactly
what happens on line 7:

console.log('user2', user2);

Finally, we add up our numbers and we print it to the screen:

var sum = 1 + 2;
console.log('The sum is ' + sum);

None of this is I/O, so right here we have our sum printing to the screen in barely any time.

[381]

Getting Set Up Chapter 1

This is how blocking works. It's called blocking because while we're fetching from the
database, which is an I/O operation, our application cannot do anything else. This means
our machine sits around idle waiting for the database to respond, and can't even do
something simple like adding two numbers and printing them to the screen. It's just not
possible in a blocking system.

The working non-blocking I/O
In our non-blocking example, this is how we'll be building our Node applications.
Let's break this code example down line by line. First up, things start much the same way as

we discussed in the blocking example. We'll start the getUser function for user1, which is
exactly what we did earlier:

’ ’
Blocking /- Nown-blocking
L N] W hlocking js — i
1 wvar getUserSync = require('./getUserSync'); 1 wvar getUser = require('./getUser');
1)y getUser('123", function (userl) {
e, log(erl', userl);
i
var 1')s
getUser('321', function (user2) {
or « logl r2', user?);
var sum = 1 + 2; Hi
ogl sum}
vor sum = 1 + 2;
les Log(" The um is ' + sum);
_ vwaiting on wsers I Starting g:ll&k’,tr for users
I Primtin £ ngerd

I Frinting wserz

I Privting cum

But we're not waiting, we're simply kicking off that event. This is all part of the event loop
inside Node.js, which is something we'll be exploring in detail.

[39]

Getting Set Up Chapter 1

Notice it takes a little bit of time; we're just starting the request, we're not waiting for that
data. The next thing we do might surprise you. We're not printing user1 to the screen
because we're still waiting for that request to come back, instead we start the process of
fetching our user2 with the ID of 321:

(Blocking [Now-blocking

[i,
1 var getUserSync = require(’./getUserSync'); 1 var getUser = require('./getUser');
var userl = getUserSync('123°); getUser('123', function (userl) {
le.log('userl’, userl); nsole.logl ‘userl’, userl);

W
var user2 = getUserSync('321');
console.logl 'user2', user2); qc'.dscrthjj". ¢ function (user2) {
consoles logl 'user2’, user2);
var sum = 1+ 2; i
consoleslog{'The sum is ' « sum);
var sum = 1 + 2;

console.log('The sum is * + sum);
_ WA o nserd I Starting getuiser for usert
I Printing ucert I Stavting getlicer for ucers
I Printing userz
I Primting sum
blocking s %1 LF UTE-8 JewaScript [1 updan

In this part of the code, we're kicking off another event, which takes just a little bit of time to
do-it is not an I/O operation. Now, behind the scenes, the fetching of the database is I/O, but
starting the event, calling this function is not, so it happens really quickly.

[40]

Getting Set Up

Chapter 1

Next up, we print the sum. The sum doesn't care about either of the two user objects.
They're basically unrelated, so there's no need to wait for the users to come back before I
print that sum variable, as shown in the following screenshot:

Blocking

Nown-blocking

hincking s

1 var getUserSync = require('./getUserSync');

var userl = getUserSync('123');

console.logl 'userl’, userl);

var userz = getUsersync{'321');
console.log(user2’, user?);

var sum = 1 + 2;

console.log('The sum is ' + sum);

I Frinting userl

I Trinting userz

I Printing sum

blocking js 111

[41]

1 wvar getUser = require('./getUser');
getlisar('123', function (userl) {
ronsole. logl‘userl’, userl);

I H
getUser('321°, function (user2) {
console. logl ‘user2’, user2);

i

var sua =1 + 2;
console. logl(" The !L_ 15

" 4+ suml:
I Starting getiiser for userd

I Starting getuser for userz

I Printing cum

LE UTES Jevaberigt (10 1 update

Getting Set Up Chapter 1

What happens after we print the sum? Well, we have the dotted box, as shown in the
following screenshot:

Blocking [Nown-blocking

e e ® blocking.js — mo
Bhething ja non blackeg js
1 var getuserSync = require(’./getusersync’); 1 var getUser = require{'./getUser');
var userl = getUserSync{‘123‘); getUser(123", function (userl) {
consule. log("userl’, userl}; console. log(‘userl®, userl);
i
var user2 = getUserSyncl'321');
console.logl'user2’, user2); getUser('321°, function (user2) {
console. log('user2’, user);
var sum =1+ 2; I H

console.log('The sum is ' + sum);
var sum =1+ 2
console.log('The sum is ' + sum);

_ wiiting on ucert I Starvting getuacer for userd

I Prinking userd l Starting getiiser for usera

[[T P

I Printing ustrz I Printing userd

I Printing sume

bhkingjy 11 P uUTP-8 JevaScript (1 1 upniete

[42]

Getting Set Up

Chapter 1

This box signifies the simulated time it takes for our event to get responded to. Now, this
box is the exact same width as the box in the first part of the blocking example (waiting on

userl), as shown here:

Blocking

sre hiociing js —

[NDW—bLOGRI’-WQ

biocking s

1 wvar getUserSync = require('./getUserSync');

var userl = getUserSync('123');
console. log{ 'userl’, userl);

var user2 = getUserSync{'321');
console. log(‘user2’, userl);

var sum = 1 + 2;
console. log('The sum is ' + sum};

I o

I Primting wserd

I Frinting wserz

blockingjs 11

I Printing cum

non-glacking s E

1 var getUser = require('./getUser');

getUser({'123', function (userl) {

console, log('userl', userl);
B3

getUser('321', function (user2) {
console. log(‘user2', user2);
Hi

var sum = 1 + 2;
console.logl'The sum is

'+ sum);
I Starting getiser for userd
I Starting aetucer for ucer
I }'r;nxin.a s

! I Printing userd

LF UTE-8 JewsSeript [1update

Using non-blocking doesn't make our I/O operations any faster, but what it does do is it lets
us run more than one operation at the same time.

[43]

Getting Set Up Chapter 1

In the non-blocking example, we start two 1/O operations before the half second mark, and
in between three and a half seconds, both come back, as shown in the following screenshot:

Blocking > Non-blocking
LN] ® blockingjs — [Users/Andrew/Desktop/olocking demo
Diocking js NOR-EAICKING J8
1 wvar getUserSync = require('./getUserSync'}): 1 wvar getUser = require(jatliser');
var userl = getUsersync('123°): getuser(‘123", function {userl) {
nsole.log(userl’, userl); nsole.log(‘userl’, userl);
i
var user2 = getUserSync('321');
nsole.log(user2’, userd); getlser('321°, function (user2) {
console. log('user2', userl):
var sum = 1 + 2: M
con log('The sum is ' + sum}:
var sum = 1 + 23
console. log(*The sum 1 + sum);
I Printing userd I Starting getuser for usera
N o oo [Pinsino o
I Prinking uctrd
I Frinting swm
blockingjs 11 WP UTF-D JeveScript [0

Now, the result here is that the entire application finishes much quicker. If you compare the
time taken in executing both the files, the non-blocking version finishes in just over three
seconds, while the blocking version takes just over six seconds. A difference of 50%. This
50% comes from the fact that in blocking, we have two requests each taking three seconds,
and in non-blocking, we have two requests each taking three seconds, but they run at the
same time.

Using the non-blocking model, we can still do stuff like printing the sum without having to
wait for our database to respond. Now, this is the big difference between the two; blocking,
everything happens in order, and in non-blocking we start events, attaching callbacks, and
these callbacks get fired later. We're still printing out user1 and user2, we're just doing it
when the data comes back, because the data doesn't come back right away.

[44]

Getting Set Up Chapter 1

Inside Node,js, the event loop attaches a listener for the event to finish, in this case for that
database to respond back. When it does, it calls the callback you pass in the non-blocking
case, and then we print it to the screen.

Now, imagine this was a web server instead of the preceding example.
That would mean if a web server comes in looking to query the database,
we can't process other users' requests without spinning up a separate
thread. Now, Node.js is single threaded, which means your application
runs on one single thread, but since we have non-blocking I/O, that's not a
problem.

In a blocking context, we could handle two requests on two separate threads, but that
doesn't really scale well, because for each request we have to beef up the amount of CPU
and RAM resources that we're using for the application, and this sucks because those
threads, are still sitting idle. Just because we can spin up other threads doesn't mean we
should, we're wasting resources that are doing nothing.

In the non-blocking case, instead of wasting resources by creating multiple threads, we're
doing everything on one thread. When a request comes in, the I/O is non-blocking so we're
not taking up any more resources than we would be if it never happened at all.

Blocking and non-blocking examples using
Terminal

Let's run these examples in real time and see what we get. And we have the two files
(blocking and non-blocking files) that we saw in the previous section.

We'll run both of these files, and I'm using the Atom editor to edit my text files. These are
things we'll be setting up later in the section, this is just for your viewing purpose, you don't
need to run these files.

Now, the blocking and non-blocking files, will both get run and they'll do similar things
to those we did in the previous section, just in a different way. Both use I/O operations,
getUsersSync and getUser, that take five seconds apiece. The time is no different, it's just
the order they execute in that makes the non-blocking version much quicker.

Now, to simulate and show how things work, I'll add a few console.log statements as
shown in the following code example, console.log ('starting userl'),
console.log('starting user2').

[45]

Getting Set Up Chapter 1

This will let us visualize how things work inside Terminal. By running node
blocking. js, this is how we run files. We type node and we specify the filename, as
shown in the following code:

node blocking.js

When I run the file, we get some output. starting user1 prints to the screen and then it sits
there:

[N] blocking-demo — node blocking.js — 108x29
~[Desktop/blocking-demo — node s i

Andrew:~/Desktop/blocking-demo$ node blocking.js

starting userl

[46]

Getting Set Up Chapter 1

Now, we have the user1 object printing to the screen with the name Andrew, and starting
user2 prints to the screen, as shown in the following code output:

[N] blocking-demo — -bash — 108x29
~|Desktop/blocking-demo — -bash +
)esktop/blocking-demo$ node blocking.js
starting userl
userl { id: ', name: 'Andrew' }
starting use
userZz { id: '321', name: 'Jen’' }
The sum is 3

Andrew:~ ktop/blocking-demo$

After that, the user2 object comes back around five seconds later with the name of Jen.

As shown in the preceding screenshot, our two users have printed to the screen, and at the
very end our sum, which is 3, prints to the screen; everything works great.

Notice that starting userl was immediately followed by the finishing of userl, and starting
user2 was immediately followed by the finishing of user2 because this is a blocking
application.

[47]

Getting Set Up Chapter 1

Now, we'll run the non-blocking file, which I've called non-blocking.js. When I run this
file, starting user1 prints, starting user2 prints, then the sum prints all back to back:

o e blocking-demo — -bash — 108x29
~[Desktop/blocking-demo — -bash

Andrew:~/De op/blocking-demo$ node blocking.js

starting userl

userl { id: '123', name: 'Andrew' }

starting user

userZ { id: '321', name: 'Jen' }

The sum is 3

Andrew:~/D /blocking-demo3 node non-blocking.js

starti

starting user2

The sum is 3

userl { id: '123', name: 'Andrew' }
e: "Jen' }

Andrew:~/Desktop/blocking-demo$

Around 5 seconds later, at basically the same time, userl and user2 both print to the screen.

This is how non-blocking works. Just because we started an I/O operation doesn't mean we
can't do other things, such as starting another one and printing some data to the screen, in
this case just a number. This is the big difference, and this is what makes non-blocking apps
so fantastic. They can do so many things at the exact same time without having to worry
about the confusion of multi-threading applications.

[48]

Getting Set Up Chapter 1

Let's move back into the browser and take a look at those sentences again in the Node
website:

® 0@ /@ nodejs * o

pes

€ = (@& Secure | https://nodejs.org/en/

n de

HOME ABOUT DOWNLOADS GETINVOLVED | SECURITY NEWS FOUNDATION

Node.js® is a JavaScript runtime built on Chrome's V8 JavaScript engine. Node.js uses an
event-driven, non-blocking 1/0 model that makes it lightweight and efficient. Node.js’
package ecosystem, npm, is the largest ecosystem of open source libraries in the world.

Spectre and Meltdown in the context of Node.js.
Download for macQS (x64)

8.9.4LTS 9.3.0 Current
Recommended For Most Users Latest Features

Other Downloads | Changelog | APIDoes Other Downloads | Changelog | APl Docs

Or have a look at the LTS schedule.

Node.js uses an event-driven, non-blocking I/O model that makes it lightweight and
efficient, and we saw that in action.

Because Node is non-blocking, we were able to cut down the time our application took by
half. This non-blocking I/O makes our apps super quick, this is where the lightweight and
efficient comes into play.

[49]

Getting Set Up Chapter 1

Node community — problem solving open source
libraries

Now, let's go to the last sentence on the Node website, as shown in the following
screenshot:

® 08 @ Nodejs ®

beg

€ = C @& Secure | https:/nodejs.ong/en;

n de

HOME ABOUT DOWNLOADS DOCS GETINVOLVED | SECURITY NEWS FOUNDATION

Node.js® is a JavaScript runtime built on Chrome's V8 JavaScript engine. Node.js uses an
event-driven, non-blocking 1/0 model that makes it lightweight and efficient. Node.js'
package ecosystem, npm, is the largest ecosystem of open source libraries in the world.

Spectre and Meltdown in the context of Node.js.

Download for macQS (x64)

8.9.4LTS 9.3.0 Current
Recommended For Most Users Latest Features

Other Downloads | Changelog | APIDocs Other Downloads | Changelog | APl Docs

Or have a look at the LTS schedule.

Node.js' package ecosystem, npm, is the largest ecosystem of open-source libraries in the
world. This is what really makes Node fantastic. This is the cherry on top-the community,
the people every day developing new libraries that solve common problems in your Node.js

applications.
Things such as validating objects, creating servers, and serving up content live using
sockets. There's libraries already built for all of those so you don't have to worry about this.

This means that you can focus on the specific things related to your application without
having to create all this infrastructure before you can even write real code, code that does

something specific to your apps use case.

[50]

Getting Set Up Chapter 1

Now, npm, which is available on npm7js.org, is the site we'll be turning to for a lot of third-
party modules:

® 08 [x e
« & NPM, Inc. [UIS] | hitps: www.npmijs.com - 4

Buﬂd amazmg thmgs

d's largest
and

If you're trying to solve a problem in Node that sounds generic, chances are that someone's
already solved it. For example, if I want to validate some objects, let's say I want to validate
that a name property exists and that there's an ID with a length of three. I could go into
Google or go into npm; [usually choose Google, and I could Google search npm validate
object.

[51]

Getting Set Up Chapter 1

When I google that, I'll just look for results from npm7js. com, and you can find the first three
or so are from that:

sce Gmwlidul.n“n.hjn;c.tvmsnglr a-:. = e

- C | @ Secure | https://www.googhe.co.in/search?ei=1cVWrPOEY bivg Too6G0B0& salidate+object&og=npm+validate+&gs_l=psy-ab.3.0.010.26567.630.06788.1310.0... ¥

GO gle npm validate object L Q i m

Al Vidvos Images Murws Maps Moz Suoltings Tools

About 2,189,000 results (0.37 seconds)

validate - npm

hitps:Awww.npmis. i L4

T Values can be d before validation. To enable pass an
oplions object to the schema construclor with typecast set to brue . You can override this selling by
|passing options to validate(). var user = schama({. name: { typa: 'string’ },. age: { type: 'number'}. }, {

typecast: true Jk.
validate-object validate-madel
Simple module to validate a givan wvar ValidateModel = require'validate-
ohject acoording to a ghwn . madal’);. var validate
object.validate validate.io-object
Validates an object based on a pre- Ingtallation. $ npem Install validate jo-
defined schema. object. For use in the browser ...

More resulls from npmjs.com »

object-validation - npm

hitps:/iwww.npmjs.) jon *

create{ config); Creates and returns new instance of Object Validation, validated target, schema)
Croates and reburns new instance of Object Validation. keys(targed, schema) Got keys to affeced
properties. mixin{ target) Adds the prototypal methods of Object Validation 10 a target object. set{
kay, value - Seol a selling to .

I can click the first one, and this will let me explore the documentation and see if it's right
for me:

[52]

Getting Set Up Chapter 1

® 08 [validate % e
« C | https:/mww.npmis.com/package /validate 4
validate I3 npm install validate
Validate object properties in javascript. how? learn more
[npm +3.0.1 { buid pussing
[¢ivifj published 2 years ago
3.0.1is the latest of 24 releases
Example
github.com/eivindfjeldstad/validate

var schema = regquire('validate'); MIT
var user = schema({

Collaborators list
type

required: . .
message! 'Name is reguired.'

email: | Stats
Epe gyt nd 350 downloads in the last day
required: true,
match: fE\B. 4\ . &f, 1,284 downloads in the last week
b e L L e 4,877 downloads in the last menth

e

This one looks great, so I can add it to my app without any effort.

Now, we'll go through this process. Don't worry, I'm not going to leave you high and dry
on how to add third-party modules. We'll be using a ton of them in the book because this is
what real Node developers do. They take advantage of the fantastic community of
developers, and that's the last thing that makes Node so great.

This is why Node has come to the position of power that it currently sits at, because it's non-
blocking, meaning it's great for I/O applications, and it has a fantastic community of
developers. So, if you ever want to get anything done, there's a chance someone already
wrote the code to do it.

This is not to say you should never use Rails or Python or any other blocking language
again, that is not what I'm getting at. What I'm really trying to show you is the power of
Node.js and how you can make your applications even better. Languages like Python have
things such as the library Twisted, which aims to add non-blocking features to Python.
Though the big problem is all of the third-party libraries, as they are still written in a
blocking fashion, so you're really limited as to which libraries you can use.

[531]

Getting Set Up Chapter 1

Since Node was built non-blocking from the ground up, every single library on npmjs.com
is non-blocking. So you don't have to worry about finding one that's non blocking versus
blocking; you can install a module knowing it was built from the ground up using a non
blocking ideology.

In the next couple of sections, you'll be writing your very first app and running it from
Terminal.

Different text editors for node applications

In this section, I want to give you a tour of the various text editors you can use for this book.
If you already have one you love using, you can keep using the one you have. There's no
need to switch editors to get anything done in this book.

Now, if you don't have one and you're looking for a few options, I always recommend
using Atom, which you can find at atom. io. It's free, open source, and it's available on all
operating systems, Linux, macOS, and Windows. It's created by the folks behind GitHub
and it's the editor that I'll be using inside of this book. There's an awesome community of
theme and plug-in developers so you really can customize it to your liking.

Now, aside from Atom there are a few other options. I've heard a lot of people talking about
Visual Studio Code. It is also open source, free, and available on all operating systems. If
you don't like Atom, I highly recommend you check this out, because I've heard so many
good things by word of mouth.

Next up, we always have Sublime Text, which you can find at sublimetext.com. Now,
Sublime Text is not free and it's not open source, but it's a text editor that a lot of folks do
enjoy using. I prefer Atom because it's very similar to Sublime Text, though I find it
snappier and easier to use, plus it's free and open source.

[54]

Getting Set Up Chapter 1

Now, if you are looking for a more premium editor with all of the bells and whistles in IDE
as opposed to a text editor, I always recommend JetBrains. None of their products are free,
though they do come with a 30-day free trial, but they really are the best tools of the trade.
If you find yourself in a corporate setting or you're at a job where the company is willing to
pay for an editor, I always recommend that you go with JetBrains. All of their editors come
with all of the tools you'd expect, such as version control integration, debugging tools, and
deploying tools built in.

So, take a moment, download the one you want to use, play around with it, make sure it fits
your needs, and if not, try another one.

Hello World - creating and running the first
Node app

In this section, you will be creating and running your very first Node app. Well, it will be a
simple one. It'll demonstrate the entire process, from creating files to running them from
Terminal.

Creating the Node application

The first step will be to create a folder. Every project we create will go live inside of its own
folder. I'll open up the Finder on macOS and navigate to my desktop. What I'd like you to
do is open up the desktop on your OS, whether you're on Linux, Windows, or macOS, and
create a brand new folder called hello-world.

only makes it more confusing to navigate inside of Terminal. Now, we
have this hello-world folder and we can open it up inside of our editor.

9 I don't recommend using spaces in your project file or folder names, as it

[551]

Getting Set Up Chapter 1

Now I'll use command + O (Ctrl + O for Windows users) to open up, and I'll navigate to the
desktop and double-click my hello-world folder, as shown here:

ece [4) Project — ~/Desktop/helio-world

Project untitied x

untitied 1:1 LF UTF-8 Plain Text [f) Ofiles

On the left I have my files, which are none. So, let's create a new one. I'll make a new file in
the root of the project, and we'll call this one app. js, as shown here:

[56]

Getting Set Up Chapter 1

[XoN] [4) Project — ~/Desktop/helio-worid
Project untitl = Enter the path for the new file.
app.js
untitled 11 LF UTF-8 Plain Text [f) Ofiles

This will be the only file we have inside our Node application, and in this file we can write
some code that will get executed when we start the app.

In the future, we'll be doing crazy stuff like initializing databases and starting web servers,
but for now we'll simply use console.log, which means we're accessing the log property
on the console object. It's a function, so we can call it with parentheses, and we'll pass in one
argument as string, Hello world!. I'll toss a semicolon on the end and save the file, as
shown in the following code:

console.log('Hello world!");
This will be the first app we run.

Now, remember, there is a basic JavaScript requirement for this course, so
nothing here should look too foreign to you. I'll be covering everything
new and fresh inside of this course, but the basics, creating variables,
calling functions, those should be something you're already familiar with.

[571

Getting Set Up Chapter 1

Running the Node application

Now that we have our app. js file, the only thing left to do is to run it, and we'll do that
over in Terminal. Now, to run this program, we have to navigate into our project folder. If
you're not familiar with Terminal, I'll give you a quick refresher.

You can always figure out where you are using pwd on Linux or macOS, or the dir
command on Windows. When you run it, you'll see something similar to the following
screenshot:

[NON & Gary — -bash — 108x29

Gary:~ Gary$ pwd
fUsers/Gary
Gary:~ Gary$ |:|

I'm in the Users folder, and then I'm in my user folder, and my user name happens to be
Gary.

When you open Terminal or Command Prompt, you'll start in your user
directory.

[581]

Getting Set Up Chapter 1

We can use cd to navigate into the desktop, and here we are:

[NoN) [Desktop — -bash — 108x29

Gary:~ Gary$ pwd
fUsers/Gary

Gary:~ Gary$ cd Desktop
Gary:Desktop Gary$ |:|

Now we're sitting in the desktop. The other command you can run from anywhere on your
computer is cd /users/Gary/desktop. And this will navigate to your desktop, no matter
what folder you're located in. The command cd desktop, requires you to be in the user
directory to work correctly.

Now we can start by cd-ing into our project directory, which we called hello-world, as
shown in the following command:

cd hello-world

[591]

Getting Set Up Chapter 1

With the following screenshot:

0] [] | hello-world — -bash — 108=29

Gary:~ Gary$ pwd

fUsers/Gary

Gary:~ Gary$ cd Desktop
Gary:Desktop Gary$ cd hello-world
Gary:hello-world Gary$ |:|

Once we're in this directory, we can run at the 1s command on Linux or Mac (which is the
dir command on Windows) to see all of our files, and in this case we just have one, we
have app. js:

[60]

Getting Set Up Chapter 1

[] [] 7 hello-warld — -bash — 108=29

Gary:~ Gary$ pwd

/Users/Gary

Gary:~ Gary$ cd Desktop
Gary:Desktop Gary$ cd hello-world
Gary:hello-world Gary$ 1ls

app.js

Gary:hello-world Gary$ D

This is the file we'll run.

Now, before you do anything else, make sure you are in the hello-world folder and you
should have the app. js file inside. If you do, all we'll do is run the node command

followed by a space so we can pass in an argument, and that argument will be the filename,
app.js as shown here:

node app.]js

[61]

Getting Set Up Chapter 1

Once you have this in place, hit enter and there we go, Hello world! prints to the screen, as
shown here:

[NON | hello-world — -bash — 108x29

Gary:~ Gary$ pwd

fUsers/Gary

Gary:~ Gary$ cd Desktop
Gary:Desktop Gary$ cd hello-world
Gary:hello-world Gary$ ls

app.js

Gary:hello-world Gary$
Gary:hello-world Gary$ node app.js
Hello world!

Gary:hello-world Gary$ D

And that is all it takes to create and run a very basic Node application. While our app
doesn't do anything cool, we'll be using this process of creating folders/files and running
them from Terminal throughout the book, so it's a great start on our way to making real-
world Node apps.

Summary

In this chapter, we touched base with the concept of Node.js. We took a look at what Node
is and we learned that it's built on top of the V8 JavaScript engine. Then we explored why
Node has become so popular, its advantages and its disadvantages. We took a look at the
different text editors we can choose from and, at the end, you created your very first Node
application.

In the next chapter, we'll dive in and create our first app. I am really excited to start writing
real-world applications.

[62]

Node Fundamentals — Part 1

In this chapter, you'll learn a ton about building Node applications, and you'll actually
build your first Node application. This is where all the really fun stuff is going to start.

We'll kick things off by learning about all of the modules that come built in to Node. These
are objects and functions that let you do stuff with JavaScript you've never been able to do
before. We'll learn how to do things, such as reading and writing from the filesystem, which
we'll use in the Node's application to persist our data.

We'll also be looking at third-party npm modules; this is a big part of the reason that Node
became so popular. The npm modules give you a great collection of third-party libraries
you can use, and they also have really common problems. So you don't have to rewrite that
boilerplate code over and over again. We'll be using a third-party module in this chapter to
help with fetching input from the user.

The chapter will specifically cover the following topics:

e Module basics
¢ Require own files

Third-party modules
Global modules
Getting input

Node Fundamentals — Part 1 Chapter 2

Module basics

In this section, you will finally learn some Node.js code, and we'll kick things off by talking
about modules inside Node. Modules are units of functionality, so imagine I create a few
functions that do something similar, such as a few functions that help with math problems,
for example, add, subtract, and divide. I could bundle those up as a module, call it Andrew-
math, and other people could take advantage of it.

Now, we'll not be looking at how to make our own module; in fact, we will be looking at
how we can use modules, and that will be done using a function in Node, called
require (). The require () function will let us do three things:

o First, it'll let us load in modules that come bundled with Node.js. These include
the HTTP module, which lets us make a web server, and the £s module, which

lets us access the filesystem for our machine.

We will also be using require () in later sections to load in third-party

0 libraries, such as Express and Sequelize, which will let us write less code.

e We'll be able to use prewritten libraries to handle complex problems, and all we
need to do is implement require () by calling a few methods.

e We will use require () to require our very own files. It will let us break up our
application into multiple, smaller files, which is essential for building real-world
apps.

If you have all of your code in one file, it will be really hard to test, maintain, and update.
Now, require () isn't that bad. In this section, we'll explore the first use case for

require ().

[64]

Node Fundamentals — Part 1 Chapter 2

Using case for require()

We'll take a look at two built-in modules; we'll figure out how to require them and how to
use them, and then we'll move on to starting the process of building that Node application.

Initialization of an application

The first step we'll take inside of the Terminal is that we'll make a directory to store all of
these files. We'll navigate from our home directory to the desktop using the cd Desktop

command:

cd Desktop

Then, we'll make a folder to store all of the lesson files for this project.

section, so if you get stuck or your code just isn't working for some reason,
you can download the lesson files, compare your files, and figure out
where things went wrong.

0 Now, these lesson files will be available in the resources section for every

Now, we'll make that folder using the mkdir command, which is the short form for make
directory. Let's call the folder notes-node, as shown in the following code:

mkdir notes—node

We'll make a note app in Node so that notes-node seems appropriate. Then we'll cd into
notes-node, and we can get started playing around with some of the built-in modules:

cd notes—-node

These modules are built in, so there's no need to install anything in Terminal. We can
simply require them right inside of our Node files.

[65]

Node Fundamentals — Part 1 Chapter 2

The next step in the process is to open up that directory inside the Atom text editor. So open

up the directory we just created on the Desktop, and you will find it there, as shown in the
following screenshot:

N O)< B = = 0 notes-node

<>
G
o0

untitied
| Favarites Today l—

E Recents [blocking-demn

0 hello-world
© Downloads

= Desktop 0 screens
[Documents

(i v v

L4

/2 Applications

2 iCloud Drive

5 Geogle Drive
Devices

O Gary

&) Multimedia

i:] Projects

(,) Remote Disc

Tags

New Folder

Cancel m
T m——

untitled 1:1

LF UTF-8 Plain Text [J Ofiles

Now, we will need to make a file, and we'll put that file in the root of the project:

[66]

Node Fundamentals — Part 1

Chapter 2

L N | | Project — ~/Desktop/notes-node
Project untitiea X

New Folder {A
Rename F2
Duplicate D
Delete L)
Copy ®8C
Cut ®X
Paste ®Bv
Add Project Folder {380
Remove Project Folder
Collapse All Project Folders
Copy Full Path ~0C
Copy Project Path
Open In New Window
Search in Directory
Show In Finder
Split Up
Split Down
Split Left
Split Right

untitled 1:1 Close Pane ®W

LF UTF-8 Plain Text [5) 0 files

We'll call this file app . js, and this is where our application will start:

Project app.js

appjs 11

|4 app.js — ~/Desktop/notes-node

x

LF UTF-8 JavaSeript [f) 0 files

[67]

Node Fundamentals — Part 1 Chapter 2

We will be writing other files that get used throughout the app, but this is the only file we'll
ever be running from Terminal. This is the initialization file for our application.

The built-in module to use require()

Now, to kick things off, the first thing I will do is to use console.log to print Starting
app, as shown in the following code:

console.log('Starting app');

The only reason we'll do this is to keep track of how our files are
executing, and we'll do this only for the first project. Down the line, once
you're comfortable with how files get loaded and how they run, we'll be
able to remove these console. log statements, as they won't be necessary.

After we call the console. log starting app, we'll load in a built-in module using
require ().

o We can get a complete list of all of the built-in modules in the Node.js API
docs.

To view Node.js API docs, go to nodejs.org/api. When you go to this URL, you'll be
greeted with a long list of built-in modules. Using the File System module we'll create a
new file and the OS module. The OS module will let us fetch things such as the username
for the currently logged-in user.

[68]

Node Fundamentals — Part 1 Chapter 2

Creating and appending files in the File System module

To kick things off though, we will start with the File System module. We'll go through the
process of creating a file and appending to it:

® 0 ® @ index | Node s v8:3.0 Docurr: % (-]

<« & & Secure | https://nodejs.org/ap ol of
Node.js v9.3.0 Documentation

Index | View onsingle page | View as JSON

Table of Contents

* Abo

e Docs

= Assertion Testing

* Async Hooks

+ Buffer

» C++ Addons

» C/CH++ Addons - N-API
Child Processes

» Cluster

» Command Line Options
= Console

» Crypto

+ Deprecated APls
= DN3

+ Domain

When you view a docs page for a built-in module, whether it's File System or a different
module, you'll see a long list of all the different functions and properties that you have
available to you. The one we'll use in this section is fs.appendFile.

[69]

Node Fundamentals — Part 1 Chapter 2

If you click on it, it will take you to the specific documentation, and this is where we can
figure out how to use appendFile, as shown in the following screenshot:

® 08 @ rFileSystom | Nodejs vB30 D x e
« C | @ Secure | https://nodejs.org/apifts_htmiifs_fs_appendfile_file_data_options_callback 4
fs.appendFile(file, data[, options], callback) #

¥ Histary

» file <string> | <Buffers | <numbers filename or file descriptor

= data <string> | <Buffer>

+ options <Object- | <string-
o encoding <strings | <null> Default: ‘utf8*

o mode <integer> Default: o666
s flag <string- Default: "a’

+ callback <Function>

s err <Error-

Asynchronously append data to a file, creating the file if it does not yet exist. data can be a string or a buffer.

Example:

fs.appendFile('message. txt', 'data to append’, Cerr} == {

if (err) throw err;

console.log('The "data to append” wns appended to file!");
125

If eptions is astring, then it specifies the encoding. Example:

Now, appendFile is pretty simple. We'll pass to it two string arguments (shown in the
preceding screenshot):

¢ One will be the file name
¢ The other will be the data we want to append to the file

This is all we need to provide in order to call f£s. appendFile. Before we can call
fs.appendFile, we need to require it. The whole point of requiring is to let us load in
other modules. In this case, we'll load in the £s module from app. js.

[70]

Node Fundamentals — Part 1 Chapter 2

Let's create a variable that will be a constant, using const.

Since we'll not be manipulating the code the module sends back, there's no
need to use the var keyword; we will use the const keyword.

Then we'll give it a name, £s and set it equal to require (), as shown in the following code:

const fs = require()

Here, require () is a function that's available to you inside any of your Node js files. You
don't have to do anything special to call it, you simply call it as shown in the preceding
code. Inside the argument list, we'll just pass one string.

Now, every time you call require (), whether you're loading a built-in
module, a third-party module, or your own file, you just pass in one
string.

In our case, we'll pass in the module name, which is £s and toss in a semicolon at the end,
as shown in the following code:

const fs = require('fs');

This will tell Node that you want to fetch all of the contents of the £s module and store
them in the fs variable. At this point, we have access to all of the functions available on the
fs module, which we explored over in the docs, including fs.appendFile.

Back in Atom, we can call the appendFile by calling fs.appendFile, passing in the two
arguments that we'll use; the first one will be the filename, so we add greetings.txt, and
the second one will be the text you want to append to the file. In our case, we'll append
Hello world!, as shown in the following code:

fs.appendFile ('greetings.txt', 'Hello world!"');

[71]

Node Fundamentals — Part 1 Chapter 2

Let's save the file, as shown in the preceding command, and run it from Terminal to see
what happens.

Warning when running the program on Node v7

If you're running Node v7 or greater, you'll get a little warning when you
run the program inside Terminal. Now, on v7, it'll still work, it's just a
warning, but you can get rid of it using the following code:

// Orignal line
fs.appendFile ('greetings.txt', 'Hello world!'");

// Option one
fs.appendFile ('greetings.txt', 'Hello world!', function (err) {
if (err) {
console.log('Unable to write to file');
}
1)

// Option two
fs.appendFileSync ('greetings.txt', 'Hello world!");

In the preceding code, we have the original line that we have inside our program.

In Option one hereis to add a callback as the third argument to the append file. This
callback will get executed when either an error occurs or the file successfully gets written
too. Inside option one, we have an i f statement; if there is an error, we simply print a
message to the screen, Unable to write to file.

Now, our second option in the preceding code, Option two, is to call appendFileSync,
which is a synchronous method (we'll talk more about that later); this function does not take
the third argument. You can type it as shown in the preceding code and you won't get the
warning.

So, pick one of these two options if you see the warning; both will work much the same.

If you are on v6, you can stick with the the original line, shown at the top of the preceding
code, although you might as well use one of the two options below that line to make your
code a little more future proof.

[72]

Node Fundamentals — Part 1 Chapter 2

Fear not, we'll be talking about asynchronous and synchronous functions, as well as
callback functions, extensively throughout the book. What I'm giving you here in the code is
just a template, something you can write in your file to get that error removed. In a few
chapters, you will understand exactly what these two methods are and how they work.

If we do the appending over in Terminal, node app. js, we'll see something pretty cool:

0] [] | notes-node — -bash — 108=29

Gary:Desktop Gary$ mkdir notes-node

Gary:Desktop Gary$ cd notes-node

Gary:notes-node Gary$ node app.js

Starting app.

(node:2355) [DEP@@13] DeprecationWarning: Calling an asynchronous function without callback is deprecated.
Gary:notes-node Bary$ D

As shown in the preceding code, we get our one console.log statement, Starting app..
So we know the app started correctly. Also, if we head over into Atom, we'll actually see
that there's a brand new greetings.txt file, as shown in the following code. This is the
text file that was created by fs.appendFile:

console.log('Starting app."');
const fs = require('fs');

fs.appendFile ('greetings.txt', 'Hello world!'");

[73]

Node Fundamentals — Part 1 Chapter 2

Here, £s.appendFile tries to append greetings.txt to a file; if the file doesn't exist, it
simply creates it:

[NN | greetings.txt — ~/Desktop/notes-node
Project app.js x greetings.txt x
Helle world!
[El appjs
B) greetings.ua
greetings.txt 1:1 LF UTF-8 Plain Text [f) Ofiles

You can see that we have our message, Hello world! inthe greetings.txt file, printing
to the screen. In just a few minutes, we were able to load in a built-in Node module and call
a function that lets us create a brand new file.

If we call it again by rerunning the command using the up arrow key and the enter key, and
we head back into the contents of greetings. txt, you can see this time around that we
have Hello world! twice, as shown here:

[74]

Node Fundamentals — Part 1 Chapter 2

[NN | greetings.txt — ~/Desktop/notes-node
Project app.js x greetings.txt x
Helleo world!Hello world.‘|
[El appjs
B) greetings.ua
greetings.txt 1:25 LF UTF-8 Plain Text [f) Ofiles

It appended Hello world! one time for each time we ran the program. We have an
application that creates a brand new file on our filesystem, and if the file already exists, it
simply adds to it.

The OS module in require()

Once we have created and appended the greetings. txt file, we'll customize this
greeting.txt file. To do this, we'll explore one more built-in module. We'll be using more
than just appendFile in the future. We'll be exploring other methods. For this section, the
real goal is to understand require (). The require () function lets us load in the module's
functionality so that we can call it.

[75]

Node Fundamentals — Part 1 Chapter 2

The second module that we'll be using is OS, and we can view it in the documentation. In
the OS module, we'll use the method defined at the very bottom, os.userInfo([options]):

® 0 ® /@ 08| Nodejs 820 Documen x e

“ & @ Secure | hitps://nodejs.arg/apifos. hitm

zr

Table of Contents

as

The os.userInfo([options]) method gets called and returns various information about the
currently logged-in user, such as the username, and this is what we'll pull off:

[76]

Node Fundamentals — Part 1 Chapter 2

® 0@ @ 0s|nodejs vB.3.0 Documen! X =]
& C | @ Secure | https://nodejs.org/api/os.htmigcs_os userinfo_options I
os.userlnfo([options]) #
Added in: v5.0.0
= options <Objects

o encoding <strings= Character encoding used to interpret resulting strings. If encoding issetto "buffer’ , the username,
shell,and homedir values will be Buffer instances. Default: 'utf8'

* Returns: <Object>

The os.userInfo() method returns information about the currently effective user -- on POSIX platforms, this is typically a subset of the
password file. The returned object includes the username , uid. gid. shell,and homedir. On Windows, the uid and gid fields are -1,
and shell is null.

The value of homedir returned by os. userInfo() is provided by the operating system. This differs from the result of os. homedir(), which

queries several environment variables for the home directory before falling back to the operating system response.

OS Constants #

The following constants are exported by 0s. constants .

Nate: Mot all constants will be available on every operating system.

Signal Constants it
» History
The following signal constants are exported by os . constants, signals:

Using the username that comes from the OS, we can customize the greeting.txt file so
that instead of Hello world! it cansay Hello Gary!.

To get started, we have to require OS. This means that we'll go back inside Atom. Now, just
below where I created my fs constant, I'll create a new constant called os, setting it equal to
require (); this gets called as a function and passes one argument, the module name, os,
as shown here:

console.log('Starting app.');

const fs require('fs');

require('os');

const os

fs.appendFile ('greetings.txt', 'Hello world!"');

[77 1

Node Fundamentals — Part 1 Chapter 2

From here, we can start calling methods available on the OS module, such as
os.userInfo([optional]).

Let's make a new variable called user to store the result. The variable user will get set equal
to os.userInfo, and we can call userInfo without any arguments:

console.log('Starting app.');

const fs = require('fs');
const os = require('os');

var user = os.userInfol();
fs.appendFile ('greetings.txt', 'Hello world!'");

Now, before we do anything with the fs.appendFile line, I'll comment it out and print
the contents of the user variable using console.log:

console.log('Starting app.');

const fs = require('fs');
const os = require('os');
var user = os.userInfo();

console.log(user);
// fs.appendFile('greetings.txt', 'Hello world!'");

This will let us explore exactly what we get back. Over in Terminal, we can rerun our
program using the up arrow key and enter key, and right here in the following code, you
see that we have an object with a few properties:

[78]

Node Fundamentals — Part 1 Chapter 2

[] [] "7 notes-node — -bash — 108x29

Gary:notes-node Gary$ node app.js
Starting app.
{ uid: 501,

gid: 28,

username: 'Gary',

homedir: '/Users/Gary',

shell: '/bin/bash' }
Gary:notes-node Gary$ D

We have uid, gid, username, homedir, and shell. Depending on your OS, you'll not have
all of these, but you should always have the username property. This is the one we care
about.

This means that back inside Atom, we can use user.username inside of appendrile.I'll
remove the console. log statement and uncomment our call to £s.appendFile:

console.log('Starting app."');

const fs = require('fs');
const os = require('os');
var user = os.userInfo();

fs.appendFile('greetings.txt', 'Hello world!"'");

Now, where we have worldin the fs.appendFile, we'll swap it with user.username.
There are two ways we can do this.

[79]

Node Fundamentals — Part 1 Chapter 2

Concatenating user.username

The first way is to remove world! and concatenate user.username. Then we can
concatenate another string using the + (plus) operator, as shown in the following code:

console.log('Starting app.');

const fs = require('fs');
const os = require('os');
var user = os.userInfo();
fs.appendFile ('greetings.txt', 'Hello' + user.username + '!');

Now if we run this, everything is going to work as expected. Over in Terminal, we can
rerun our app. It prints Starting app:

0] [] | notes-node — -bash — 108=29

Gary:notes-node Gary$ node app.js

Starting app.

(node:2433) [DEP@813] DeprecationWarning: Calling an asynchronous function without callback is deprecated.
Gary:notes-node Gary$

Over in the greetings.txt file, you should see something like Hello Gary! printing to
the screen, as shown here:

[80]

Node Fundamentals — Part 1 Chapter 2

[NN | greetings.txt — ~/Desktop/notes-node
Project app.js x greetings. Tt o
~ [notes-node 1 Hello world!Hello world!HelloGary!
[El appjs
greetings.txt* 1:35 LF UTF-8 Plain Text [f) Ofiles

Using the £s module and the os module, we were able to grab the user's username, create a
new file, and store it.

Using template strings

The second way to swap world with user.username in the fs.appendFile is, using an
ES6 feature known as template strings. Template strings start and end with the * (tick)
operator, which is available to the left of the 1 key on your keyboard. Then you type things
as you normally would.

This means that we'll first type hello, then we'll add a space with the ! (exclamation)
mark, and just before !, we will put the name:

console.log('Starting app.');

const fs = require('fs');
const os = require('os');
var user = os.userInfol();
fs.appendFile ('greetings.txt', “Hello !7);

[81]

Node Fundamentals — Part 1 Chapter 2

To insert a JavaScript variable inside your template string, you use the $ (dollar) sign
followed by opening and closing curly braces. Then we will just reference a variable such as
user.username:

console.log('Starting app.');

const fs = require('fs');
const os = require('os');

var user = os.userInfol();
fs.appendFile ('greetings.txt', "Hello ${user.username}!’);

Notice that the Atom editor actually picks up on the syntax of curly
braces.

This is all it takes to use template strings; it's an ES6 feature available because you're using
Node v6. This syntax is much easier to understand and update than the
string/concatenation version we saw earlier.

If you run the code, it will produce the exact same output. We can run it, view the text file,
and this time around, we have Hello Gary! twice, which is what we want here:

[] [] greetings.txt — ~/Desktop/notes-node
Project app.js » areatings tet o
~ M notes-node 1 Hello world!Hello world!HelloGary!Hello Gary!
B appie

groetinge.tet 1:46 LF UTF-8 Plain Text [£] O files

[82]

Node Fundamentals — Part 1 Chapter 2

With this in place, we are now done with our very basic example and we're ready to start
creating our own files for our notes application and requiring them inside app. js in the
next section.

First up, you learned that we can use require to load in modules. This lets us take existing
functionality written by either the Node developers, a third-party library, or ourselves, and
load it into a file so that it can be reusable. Creating reusable code is essential for building
large apps. If you have to build everything in an app every time, no one would ever get
anything done because they would get stuck at building the basics, things such as HTTP
servers and web servers. There are already modules for such stuff, and we'll be taking
advantage of the great npm community. In this case, we used two built-in modules, fs and
os. We loaded them in using require and we stored the module results inside two variables.
These variables store everything available to us from the module; in the case of fs, we use
the appendFile method, and in the case of OS, we use the userInfo method. Together, we
were able to grab the username and save it into a file, which is fantastic.

Require own files

In this section, you will learn how to use require () toload in other files that you created
inside your project. This will let you move functions outside app . js into more specific files;
this will make your application easier to scale, test, and update. To get started, the first
thing we'll do is to make a new file.

[83]

Node Fundamentals — Part 1 Chapter 2

Making a new file to load other files

In the context of our notes app, the new file will store various functions for writing and
reading notes. As of now, you don't need to worry about that functionality, as we'll get into
the detail later in the section, but we will create the file where it will eventually live. This
file will be notes. js, and we'll save it inside the root of our application, right alongside

app.js and greetings.txt, as shown here:

e0e [notes.js — ~fDesktop/notes-node

Project app.js X greetings.ue X notes)s x
~ M notes-node
[El appjs

Bl greetings.va

LF UTF-8 JavaScript [f) Ofiles

notesjs 1:1

For the moment, all we'll do inside notes is to use console. log to print a little log
showing the file has been executed using the following code:

console.log('Starting notes.js');

Now, we have console.log on the top of notes and one on the top of app. js. I'll change
console.loginthe app.js from Starting app. to Starting app.js. With this in
place, we can now require the notes file. It doesn't export any functionality, but that's fine.

By the way, when I say export, I mean the notes file doesn't have any
functions or properties that another file can take advantage of.

[84]

Node Fundamentals — Part 1 Chapter 2

We'll look at how to export stuff later in the section. For now though, we'll load our module
in much the same way we loaded in the built-in Node modules.

Let's make const; I'll call this one notes and set it equal to the return result from
require():

console.log('Starting app.js');

const fs = require('fs');

const os = require('os');

const notes = require('');

var user = os.userInfol();

fs.appendFile ('greetings.txt', "Hello ${user.username}!’);

Inside the parentheses, we will pass in one argument that will be a string, but it will be a
little different. In the previous section, we typed in the module name, but what we have in
this case is not a module, but a file, notes. js. What we need to do is to tell Node where
that file lives using a relative path.

Now, relative paths start with ./ (a dot forward slash), which points to the current
directory that the file is in. In this case, this points us to the app. js directory, which is the
root of our project notes—-node. From here, we don't have to go into any other folders to
access notes. js, it's in the root of our project, so we can type its name, as shown in the
following code:

console.log('Starting app.js');

const fs = require('fs');
const os = require('os');
const notes = require('./notes.js');
var user = os.userInfo();

fs.appendFile ('greetings.txt', "Hello ${user.username}!’);

[85]

Node Fundamentals — Part 1 Chapter 2

With this in place, we can now save app. js and see what happens when we run our
application. I'll run the app using the node app.js command:

@ @® | | notes node bash 108x29

Gary:notes-node Gary$ node app.is
Starting app.
Starting notes.js

(node:2477) [DEPB®L3] DeprecationWarning: Calling an asynchronous function without callback is deprecated.
Gary:notes-node Gary$ ||

As shown in the preceding code output, we get our two logs. First, we get Starting
app.Jjs and then we get Starting notes.js.Now, Starting notes.Jjs comes from the
note. js file, and it only runs because we required the file inside of app. js.

Comment out this command line from the app. s file, as shown here:

console.log('Starting app.js');

const fs = require('fs');

const os = require('os');

// const notes = require('./notes.js');

var user = os.userInfol();

fs.appendFile ('greetings.txt', "Hello ${user.username}!’);

Save the file, and rerun it from Terminal; you can see the notes. js file never executes
because we never explicitly touch it.

We never call it inside Terminal as we do in the preceding example, and we never require.

[86]

Node Fundamentals — Part 1 Chapter 2

For now though, we will be requiring it, so I'll uncomment that line.

By the way, I'm using command / (forward slash) to comment and
uncomment lines quickly. This is a keyboard shortcut available in most
text editors; if you're on Windows or Linux, it might not be command, it
might be Ctrl or something else.

Exporting files from note.js to use in app.js

For now though, the focus will be to export something from notes. js which we can use in
app.Jjs. Inside notes. js (actually, inside all of our Node files), we have access to a
variable called module. I'll use console.log to print module to the screen so that we can
explore it over in Terminal, as shown here:

console.log('Starting notes.js');
console.log (module) ;

Let's rerun the file to explore it. As shown in the following screenshot, we get a pretty big
object, that is, different properties related to the notes. js file:

@ @® | notes node bash 108x29

Starting notes.ijs
Module {
id: '/Users/@ary/Desktop/notes-node/notes.js’,
exports: {},
parent:
Module {
id: '.',
exports: {},
parent: null,
filename: '/Users/Gary/Desktop/notes-nade/app.js’,
loaded: false,
children: [[Circular] 1,
paths:

['/Users/Gary/Desktop/notes-node/node_modules',
'fusers/Gary/Desktop/node_modules’,
'fUsers/Bary/node_modules’,
'fusers/node_modules’,

'/node_modules' 1 },
filename: '/Users/Bary/Desktop/notes-node/notes.js’',
loaded: false,
children: [1,
paths:
['/Users/Gary/Desktop/notes-nade/node_modules’',

' /Uscrs/BGary/Desktop/node_modules',

*fUsers/Gary/node_modules’,

'/Users/node_modules',

'/node_modules' 1 }

(node:2486) [DEP@@13] Eepracationwarning: Calling an asynchronous function without callback is deprecated.
@ary:notes-node BGary$;

[871]

Node Fundamentals — Part 1 Chapter 2

Now, to tell the truth, we'll not be using most of these properties. We have things such as
id, exports, parent, and filename. The only one property we'll ever use in this book is
exports.

The exports object on the module property and everything on this object gets exported.
This object gets set as the const variable, notes. This means that we can set properties on
it, they will get set on notes, and we can use them inside app. js.

A simple example of the working of the exports object

Let's take a quick look at how that works. What we'll do is to define an age property using
module.exports, the object we just explored over in Terminal. Also, we know that it's an
object because we can see it in the preceding screenshot (exports: {}); this means thatI
can add a property, age, and set it equal to my age, which is 25, as shown here:

console.log('Starting notes.js');
module.exports.age = 25;

Then I can save this file and move into app. js to take advantage of this new age property.
The const variable notes will be storing all of my exports, in the present case, just age.

In £fs.appendFile, after the greeting.txt file, I'll add You are followed by the age.
Inside template strings, we will use $ with curly braces, notes.age, and a period at the
end, as shown here:

console.log('Starting app.js');

const fs = require('fs');

const os = require('os');

const notes = require('./notes.js');

var user = os.userInfo();

fs.appendFile ('greetings.txt', "Hello ${user.username}! You are

$S{notes.age}.);

[881]

Node Fundamentals — Part 1 Chapter 2

Now our greeting should say Hello Gary! You are 25.It's getting the 25 value from
our separate file (that is, note. js), which is fantastic.

Let's take a quick moment to rerun the program over in Terminal using the up arrow key
and enter keys:

[NON) "7 notes-node — -bash — 108x29

Gary:notes-node Gary$ node app.js

Starting app.js

Starting notes.js

(node:2582) [DEP@@13] DeprecationWarning: Calling an asynchronous function without callback is deprecated.
Gary:notes-node Gary$ |:|

[891]

Node Fundamentals — Part 1 Chapter 2

Back inside the app, we can open greetings.txt, and as shown in the following
screenshot, we have Hello Gary! You are 25:

[NN | greetings.txt — ~/Desktop/notes-node
Project app.js x greetings.txt x notes.js x
~ [notes-node 1 Hello world!Hello world!HelloGary!Hello Gary!
@ seok Helle Gary'!Hello Gary!Hello Gary!Hello Gary! You are 25|
B notes.jg
greetings.txt 2:58 (1,22) LF UTF-8 Plain Text [f) Ofiles

Using require (), we were able to require a file that we created, and this file stored some
properties that were advantageous to the rest of the project.

Exporting the functions

Now, obviously, the preceding example is pretty contrived. We'll not be exporting static
numbers; the real goal of exports is to be able to export functions that get used inside
app.Jjs. Let's take a quick moment to export two functions. In the notes. js file, I'll set
module.exports.addnote equal to a function; the function keyword followed by
opening and closing parentheses, which is followed by the curly braces:

console.log('Starting notes.js');
module.exports.addNote = function () {

}

[90]

Node Fundamentals — Part 1 Chapter 2

Now, throughout the course, I'll be using arrow functions where I can, as shown in the
preceding code. To convert a regular ES5 function into an arrow function, all you do is
remove the function keyword and replace it with an => sign right between the
parentheses and the opening curly braces, as shown here:

console.log('Starting notes.js');
module.exports.addNote = () => {

}

Now, there are some more subtleties to arrow functions that we'll be
talking about throughout the book, but if you have an anonymous
function, you can swap it with an arrow function without any problems.
The big difference is that the arrow function is not going to bind the () =>
{} keyword or the arguments array, which we'll be exploring throughout
the book. So if you do get some errors, it's good to know that the arrow
function could be the cause.

For now though, we'll keep things really simple, using console.log to print addNote.
This will let us know that the addNote function was called. We'll return a string, 'New
note', as shown here:

console.log('Starting notes.js');
module.exports.addNote = () => {

console.log('addNote');
return 'New note';

bi

Now, the addNote function is being defined in notes. js, but we can take advantage of it
over in app. js.

Let's take a quick second to comment out both the appendFile and user line in app. js:

console.log('Starting app.js');

const fs = require('fs');

const os = require('os');

const notes = require('./notes.js');
// var user = os.userInfo();

//

[91]

Node Fundamentals — Part 1 Chapter 2

// fs.appendFile ('greetings.txt', "Hello ${user.username}! You are
S{notes.age}.");

I'll add a variable, call the result, (res for short), and set it equal to the return result from
notes.addNote

console.log('Starting app.js');

const fs = require('fs');

const os = require('os');

const notes = require('./notes.js');

var res = notes.addNote ();

// var user = os.userInfo();

//

// fs.appendFile('greetings.txt', “Hello ${user.username}! You are
S{notes.age}.’);

Now, the addNote function is a dummy function for the moment. It doesn't take any
arguments and it doesn't actually do anything, so we can call it without any arguments.

Then we'll print the result variable, as shown in the following code, and we would expect
the result variable to be equal to the New note string:

console.log('Starting app.js');

const fs = require('fs');
const os = require('os');
const notes = require('./notes.js');
var res = notes.addNote ();

console.log(res);

// var user = os.userInfo();

//

// fs.appendFile('greetings.txt', "Hello ${user.username}! You are
S{notes.age}.) ;

If I save both of my files (app. js and notes. js) and rerun things from Terminal, you can
see that New note prints to the screen at the very end and just before addNote prints:

[92]

Node Fundamentals — Part 1 Chapter 2

[] [] "7 notes-node — -bash — 108x29

Gary:notes-node Gary$ node app.js

Starting app.js

Starting notes.js

(node:2582) [DEP@@13] DeprecationWarning: Calling an asynchronous function without callback is deprecated.
Gary:notes-node Gary$ node app.js

Starting app.js

Starting notes.js

addNote

New note
Gary:notes-node Gary$ D

This means that we successfully required the notes file we called addNote, and its return
result was successfully returned to app. js.

Using this exact pattern, we'll be able to define our functions for adding and removing
notes over in our notes. js file, but we'll be able to call them anywhere inside of our app,
including in app. js.

Exercise — adding a new function to the export object

Now it's time for a quick challenge. What I'd like you to do is make a new function in
notes. js called add. This add function will get set on the exports object.

Remember, exports is an object, so you can set multiple properties.

[93]

Node Fundamentals — Part 1 Chapter 2

This add function will take two arguments, a and b; it'll add them together and return the
result. Then over in app. js, I'd like you to call that add function, passing in two numbers,
whatever you like, such as 9 and -2, then print the result to the screen and make sure it
works correctly.

You can get started by removing the call to addNote since this will not be
needed for the challenge.

So, take a moment, create that add function inside notes. js, call it inside app. js, and
make sure the proper result prints to the screen. How'd it go? Hopefully, you were able to
make that function and call it from app. js.

Solution to the exercise
The first step in the process will be to define the new function. In notes. js, I'll set
module.exports.add equal to that function, as shown here:

console.log('Starting notes.js');

module.exports.addNote = () => {
console.log('addNote');
return 'New note';

bi
module.exports.add =

Let's set it equal to an arrow function. If you used a regular function, that is perfectly fine, I
just prefer using the arrow function when I can. Also, inside parentheses, we will be getting
two arguments, we'll be getting a and b, as shown here:

console.log('Starting notes.js');
module.exports.addNote = () => {
console.log('addNote');

return 'New note';

bi
module.exports.add = (a, b) => {

}i

[94]

Node Fundamentals — Part 1 Chapter 2

All we need to do is return the result, which is really simple. So we'll enter return a + b:

console.log('Starting notes.js');

module.exports.addNote = () => {
console.log('addNote');
return 'New note';

}i

module.exports.add = (a, b) => {
return a + b;
}i

Now, this was the first part of your challenge, defining a utility function in notes. js; the
second part was to actually use it over in app. js.

In app. js, we can use our function by printing the console.log result with a colon : (this
is just for formatting). As the second argument, we'll print the actual results, notes. add.
Then, we'll add up two numbers; we'll add 9 and -2, as shown in this code:

console.log('Starting app.js');

const fs = require('fs');
const os = require('os');
const notes = require('./notes.js');

console.log('Result:', notes.add (9, -2));

// var user = os.userInfo();

//

// fs.appendFile ('greetings.txt', "Hello ${user.username}! You are
S${notes.age}.");

[95]

Node Fundamentals — Part 1 Chapter 2

The result in this case should be 7. If we run the program you can see that we get just that, 7
prints to the screen:

0] [] | notes-node — -bash — 108=29

Gary:notes-node Gary$ node app.js
Starting app.js

Starting notes.js

(node:2582) [DEP@@13] DeprecationWarning: Calling an asynchronous function without callback is deprecated.
Gary:notes-node Gary$ node app.js
Starting app.js

Starting notes.js

addNote

New note

Gary:notes-node Gary$ node app.js
Starting app.js

Starting notes.js

Result: 7

Gary:notes-node Gary$ D

If you were able to get this, congratulations, you successfully completed one of your first
challenges. These challenges will be sprinkled throughout the book and they'll get
progressively more complex. But don't worry, we'll keep the challenges pretty explicit; I'll
tell you exactly what I want and exactly how I want it done. Now, you can play around
with different ways to do it, the real goal is to just get you writing code independent of
following someone else's lead. That is where the real learning happens.

In the next section, we will explore how to use third-party modules. From there, we'll start
building the notes application.

[961]

Node Fundamentals — Part 1 Chapter 2

Third-party modules

You now know two out of the three ways to use require (), and in this section, we'll
explore the last way, which is to require a package you've installed from npm. As I
mentioned in the first chapter, npm is a big part of what makes Node so fantastic. There is a
huge community of developers that have created thousands of packages that already solve
some of the most common problems in Node applications. We will be taking advantage of
quite a few packages throughout the book.

Creating projects using npm modules

Now, in the npm packages, there's nothing magical, it's regular Node code that aims to
solve a specific problem. The reason you'd want to use it is so you don't have to spend all
your time writing these utility functions that already exist; not only do they exist, they've
been tested, they've been proven to work, and others have used them and documented
them.

Now, with all that said, how do we get started? Well, to get started, we actually have to run
a command from the Terminal to tell our application we want to use npm modules. This
command will be run over in the Terminal. Make sure you've navigated inside your project
folder and inside the notes-node directory. Now, when you installed Node, you also
installed something called npm.

At one point, npm stood for Node package manager, but that's now a
running joke because there are plenty of things on npm that are not
specific to Node. A lot of frontend frameworks, such as jQuery and react,
now live on npm as well, so they've pretty much ditched the Node
package manager explanation and now on their site, they cycle through a
bunch of hilarious things that happen to match up with npm.

[97]

Node Fundamentals — Part 1 Chapter 2

We will be running some npm commands and you can test that you have it installed by
running npm, a space, and -v (we're running npm with the v flag). This should print the
version, as shown in the following code:

0] [] | notes-node — -bash — 108=29

Gary:notes-node Gary$ npm -v
5.5.1
Gary:notes-node Gary$ |:|

It's okay if your version is slightly different, that's not important; what is important is that
you have npm installed.

[981]

Node Fundamentals — Part 1 Chapter 2

Now, we'll run a command called npm init in Terminal. This command will prompt us to
fill out a few questions about our npm project. We can run the command and we can cycle
through the questions, as shown in the following screenshot:

® [] notes-node — npm TERM_PROGRAM=Apple_Terminal TERM=xterm-256color — 108=29

Gary:notes-node Gary$ npm -v

5.5.1

Gary:notes-node Gary$ npm init

This utility will walk you through creating a package.json file.

It only covers the most common items, and tries to guess sensible defaults.

See "npm help json® for definitive documentation on these fields
and exactly what they do.

Use “npm install <pkg>" afterwards to install a package and
save it as a dependency in the package.json file.

Press “C at any time to guit.
package name: (notes-node)

[991]

Node Fundamentals — Part 1 Chapter 2

In the preceding screenshot, at the top is a quick description of what's happening, and
down below it'll start asking you a few questions, as shown in the following screenshot:

® [] notes-node — npm TERM_PROGRAM=Apple_Terminal TERM=xterm-256¢color — 108=29

Gary:notes-node Gary$ npm init
This utility will walk you through creating a package.json file.
It only covers the most common items, and tries to guess sensible defaults.

See “npm help json® for definitive documentation on these fields
and exactly what they do.

Use “npm install <pkg>" afterwards to install a package and
save it as a dependency in the package.json file.

Press “C at any time to quit.
package name: (notes-—node)
version: (1.0.0)

description:

entry point: (app.js)

test command:

git repository:

keywords:

author:

license: (ISC)

About to write to /Users/Gary/Desktop/notes-node/package.json:

{
"name": "notes-node",
"version": "1.8.8",
"description": "",
"main": "app.js",
"seripts": {
"test": "echo \"Error: no test specified\" && exit 1"

The questions include the following;:

e name: Your name can't have uppercase characters or spaces; you can use notes-
node, for example. You can hit enter to use the default value, which is in
parentheses.

e version: 1.0.0 works fine too; we will leave most of these at their default value.

e description: We can leave this empty at the moment.

e entry point: This will be app . js, make sure that shows up properly.

[100]

Node Fundamentals — Part 1 Chapter 2

e test command: We'll explore testing later in the book, so for now, we can leave
this empty.
e git repository: We'll leave that empty for now as well.

¢ keywords: These are used for searching for modules. We'll not be publishing this
module so we can leave those empty.

e author: You might as well type your name.

e license: For the license, we'll stick with ISC at the moment; since we're not
publishing it, it doesn't really matter.

After answering these questions, if we hit enter, we'll get the following on our screen and a
final question:

® [] notes-node — npm TERM_PROGRAM=Apple_Terminal TERM=xterm-256color — 108=29

Use “npm install <pkg>" afterwards to install a package and
save it as a dependency in the package.json file.

Press *C at any time to guit.
package name: (notes—node)
version: (1.8.8)

description:

entry point: (app.js)

test command:

git repository:

keywords:

author:

license: (ISC)

About to write to fUsers/Gary/Desktop/notes-node/package.json:

{
"name": "notes-node",
"version": "1.8.8",
"description": "",
"main": "app.js",
"gseripts": {
"test": "echo \"Error: no test specified\" && exit 1"
}J’
"authox": "*,
"license": "ISC"

Is this ok? (yes) D

[101]

Node Fundamentals — Part 1 Chapter 2

Now, I want to dispel the myth that this command is doing anything magical. All this
command is doing is creating a single file inside your project. It'll be in the root of the
project and it's called package. json, and the file will look exactly like the preceding
screenshot.

To the final question, as shown down below in the preceding image, you can hit enter or
type yes to confirm that this is what you want to do:

Is this ok? (yes) ||

Now that we have created the file, we can actually view it inside our project. As shown in
the following code, we have the package. json file:

{

"name": "notes-node",
"version": "1.0.0",
"description": "",
"main": "app.js",
"scripts": {
"test": "echo \"Error: no test specified\" && exit 1"
b
"author": "",
"license": "ISC"

}

And this is all it is, it's a simple description of your application. Now, as I mentioned, we'll
not be publishing our app to npm, so a lot of this information really isn't important to us.
What is important, though, is that package . json is where we define the third-party
modules we want to install in our application.

[102]

Node Fundamentals — Part 1

Chapter 2

Installing the lodash module in our app

To install a module in the app, we will run a command over in the Terminal. In this chapter,
we'll be installing a module called 1odash. The 1odash module comes with a ton of utility
methods and functions that make developing inside Node or JavaScript a heck of a lot
easier. To take a look at what exactly we're getting into, let's move into the browser.

We'll to go to https://www.npmjs.com. Then we'll search for the package, 1odash, and you
can see it comes up, as shown in the following screenshot:

® 0@ /[e

x

€ 3 C i NPM, Ine. [US] | hitps:www.npmjs.com

arrayevery
rn bulld of lada

rdash.isnil

dash.eq

ndash._basefunctions

1) fa
h._arrayfilter
ader Jikd of 1a;
0Casn
odash methad

! lodash's

build of lodash's
odash's internal

nnm (irnae ie nowaarfial

Node Fundamentals — Part 1 Chapter 2

When you click on it, you should be taken to the package page, and the package page will
show you a lot of statistics about the module and the documentation, as shown here:

® O ® /[iodash. arrayevery ® a
& C | @ NPM, Inc. [US] | https:/www.npmis.com/package/lodash. arrayevery I
lodash._arrayevery npn 1 lodash. _arrayevery
The modern build of lodash’s internal arrayEvery exported as a Nede.jsfio.js module, how? learn more

: § jdalten published 3 years ago
Installation : =

3.0.0 is the latest release
Using npm:
ki github.com/lodash/lodash
£ {sudo -H] npm i -g npm lodash.com
§ npm i --save lodash. arrayevery
MIT
Inbcduejsiios: Collaborators list

var arrayEvery = require('lodash. arrayovery')p 5. I

See the package source for more details. Stats

327 downloads in the last day
1,719 downloads in the last week

5,886 downloads in the last month

Mo open issues on GitHub

Now, I use the 1odash package page when I'm looking for new modules; I like to see how
many downloads it has and when it was last updated. On the package page, you can see it
was updated recently, which is great it means the package is most likely compatible with
the latest versions of Node, and if you go further down the page, you can see this is actually
one of the most popular npm packages, with over a million downloads a day. We will be
using this module to explore how to install npm modules and how to actually use them in a
project.

Installation of lodash

To install 1odash, the first thing you need to grab is just a module name, which is 1odash.
Once you have that information, you're ready to install it.

Coming to Terminal, we'll run the npm install command. After installing, we'll specify
the module, 1odash. Now, this command alone would work; what we'll also do, though, is
provide the save flag.

[104]

Node Fundamentals — Part 1 Chapter 2

The npm install lodash command will install the module, and the save flag, —- (two)
hyphens followed by the word save, will update the contents of the package. json file.
Let's run this command:

npm install loadsh —--save

The preceding command will go off to the npm servers and fetch the code and install it
inside your project, and any time you install an npm module, it'll live in your project in a
node_modules folder.

Now, if you open that node_modules folder, you'll see the 1odash folder as shown in the
following code. This is the module that we just installed:

{

"name": "notes-node",
"version": "1.0.0",
"description": "",
"main": "app.js",
"scripts": {
"test": "echo \"Error: no test specified\" && exit 1"
}I
"author": "",
"license": "ISC",
"dependencies": {
"lodash": "*4.17.4"

}
}

As you can see over in package. json in the preceding figure, we've also had some
updates automatically take place. There's a new dependencies attribute that has an object
with key value pairs, where the key is the module we want to use in our project and the
value is the version number, in this case, the most recent version, version 4 .17 . 4. With this
in place, we can now require our module inside the project.

Over inside app . js, we can take advantage of everything that comes in 1odash by going
through the same process of requiring it. We'll make a const, we'll name that const _,
(which is a common name for the 1odash utility library), and we'll set it equal to
require (). Inside the require parentheses, we'll pass in the module name exactly as it
appears in the package. json file. This is the same module name you used when you ran
npm install. Then, we'll type lodash, as shown here:

console.log('Starting app.js');
const fs = require('fs');

14
const os = require('os');

[105]

Node Fundamentals — Part 1 Chapter 2

const _ = require('lodash');
const notes = require('./notes.js');

console.log('Result:', notes.add (9, -2));

// var user = os.userInfo();

//

// fs.appendFile ('greetings.txt', ‘Hello ${user.username}! You are
S{notes.age}.");

Now, the order of operations is pretty important here. Node will first look for a core
module with the name 1odash. It'll not find one because there is no core module, so the
next place it will look is the node_modules folder. As shown in the following code, it will
find 1odash and load that module, returning any of the exports it provides:

console.log('Starting app.js');

const fs = require('fs');

const os = require('os');

const _ = require('lodash');

const notes = require('./notes.js');

console.log('Result:', notes.add (9, -2));

// var user = os.userInfo();

//

// fs.appendFile('greetings.txt', "Hello ${user.username}! You are
${notes.age}.’);

Using the utilities of lodash

With the exports in place, we can now take advantage of some of the utilities that come with
Lodash. We'll quickly explore two in this section, and we'll be exploring more throughout
the book since Lodash is basically just a set of really handy utilities. Before we do, we
should take a look at the documentation so we know exactly what we're getting into.

[106]

Node Fundamentals — Part 1 Chapter 2

This is a really common step when you're using an npm module: first, you
install it; second, you've got to look at those docs and make sure that you
can get done what you want to get done.

On the npm page, click the lodash link given there, or go to 1odash.com and click the API
Documentation page, as shown here:

®0® /™ Lodash * 2]

< X | @ Secure | hitps://lodash.com #

L A modern JavaScript utility library delivering modularity, performance & axtras.
e

Download

& Core build (~4kB gzipped)
& Full bulld (~24kB gzipped)
% GDN copies

Lodash is released under the MIT license & supports modem environments.
Review the build differences & pick one that's right for you.

[107]

Node Fundamentals — Part 1

Chapter 2

You can view all of the various methods you have available to you, as shown in the

following screenshot:

® 0@ /| Lodash Documentation

I_O 4174 3

Q [gearch

= Array

time offer: Get
be Stock

BAAXE IT WATH ADOSE STOCK.

< C @ Secure | hitps://lodagh.com/docs/4.17.4 b4

“Array” Methods

_-chunk(array, [size=1])

Creates an array of elements split into groups the length of size. i array can't be split evenly, the final chunk will be the
ramaining elemeants.

Since

3.00

Arguments

array (Array):The amay to process.
[size=1] (numbar):The length of each chunk

Returns

In our case, we'll be using command + F (Ctrl + F for Windows users) to search for
_.isString. Then in the docs, we can click on it, opening it up in the main page, as shown
in the following screenshot:

[108]

Node Fundamentals — Part 1

Chapter 2
® 0 ® | Lodash Documentation * 2]
< C | & Secure | hitps://lodash.com/docs/4.17.4#is | 1
I_O a174 =
O _JsString
_+isString(value)
=] Lang
e Checks if value is classified ag a String primitive or object.
. Since
o String
0.1.0
aliz Arguments
wvalua (*): The value to check.
Returns
{boolean): Returns true if value is & siring, else false.
Example
MAAAE T WITH ADCRE STOCK.
s via Carbo

The _.isStringis a utility that comes with 1odash, and it returns t rue if the variable you
pass in is a string, and it returns false if the value you pass in is not a string. And we can
prove that by using it over in Atom. Let's use this.

Using the _.isString utility

To use the _.isString utility, we'll add console.login app. js to show the result to the
screen and we'll use _. isString, passing in a couple of values. Let's pass in t rue first,
then we can duplicate this line and we'll pass in a string such as Gary, as shown here:

console.log('Starting app.js');

const fs = require('fs');

const os = require('os');

const _ = require('lodash');

const notes = require('./notes.js');

console.log(_.isString(true));
console.log(_.isString('Gary'));

// console.log('Result:', notes.add(9, -2));

[109]

Node Fundamentals — Part 1 Chapter 2

// var user = os.userInfo();

//

// fs.appendFile('greetings.txt', “Hello ${user.username}! You are
S{notes.age}.");

We can run our project over in the Terminal using the same command we've used
previously, node app. js, to run our file:

0] [] | notes-node — -bash — 108=29

Gary:notes-node Gary$ node app.js
Starting app.js

Starting notes.js

false

true

Gary:notes-node Gary$ D

When we run the file, we get our two prompts that we've started both files, and we get
false and then true. false comes because the Boolean is not a string, and true comes up
because Gary is indeed a string, so it passes the test of _.isString. This is one of the many
utility functions that comes bundled with 1odash.

Now, lodash can do a lot more than simple type checking. It comes with a bunch of other
utility methods we can take advantage of. Let's explore one more utility.

[110]

Node Fundamentals — Part 1 Chapter 2

Using _.uniq
Back inside the browser, we can use command + F again to search for a new utility, which is

_.uniqg:

® 0@ /| Lodash Documentation * 2]
< C | & Secure | hitps://lodash.com/docs/4.17.4%unig b4
I_O a174 =
Q _uniq _-unig(array)
= Array

Creates a duplicate-free version of an array, using SameValueZero for equality comparisons, in which only the first
occurrence of each element is kept. The order of result values is determined by the order they occur in the array.

Since

0.1.0

Arguments

array (Array): The aray to inspact.

Returns

(Array): Raturns the new duplicate free array.

Example

This unique method, simply takes an array and it returns that array with all duplicates
removed. That means if [have the same number a few times or the same string, it'll remove

any duplicates. Let's run this.

Back inside Atom, we can add this utility into our project, we'll comment out our
_.isString calls and we will make a variable called filteredArray. This will be the

array without the duplicates, and what we'll do is call, after the equal sign, _.uniq.

Now, as we know, this takes an array. And since we're trying to use the unique function,
we'll pass in an array with some duplicates. Use your name twice as a string; I'll use my
name once, followed by the number 1, followed by my name again. Then I can use 1, 2, 3,

and 4 as shown here:
console.log('Starting app.js');

const fs = require('fs');
const os = require('os');

[111]

Node Fundamentals — Part 1 Chapter 2

const _ = require('lodash');
const notes = require('./notes.js');

// console.log(_.isString(true));

// console.log(_.isString('Gary'));

var filteredArray = _.unig(['Gary', 1, 'Gary', 1, 2, 3, 41);
console.log();

// console.log('Result:', notes.add(9, -2));

// var user = os.userInfo();

//

// fs.appendFile ('greetings.txt', "Hello ${user.username}! You are
S{notes.age}.");

Now, if things go as planned, we should get an array with all the duplicates removed,
which means we'll have one instance of Gary, one instance of 1, and then 2, 3, and 4, which
don't have duplicates.

The last thing to do is to print that using console.log so we can view it inside the
Terminal. I'll pass in this filteredArray variable to our console. log statement as
shown in the following code:

console.log('Starting app.js');

const fs = require('fs');

const os = require('os');

const _ = require('lodash');

const notes = require('./notes.js');

// console.log(_.isString(true));

// console.log(_.isString('Gary'));

var filteredArray = _.unig(['Gary', 1, 'Gary', 1, 2, 3, 41);
console.log(filteredArray) ;

// console.log('Result:', notes.add(9, -2));

// var user = os.userInfo();

//

// fs.appendFile ('greetings.txt', "Hello ${user.username}! You are
S${notes.age}.");

From here, we can run our project inside Node. I'll use the last command, then I can press
the enter key, and you can see we get our array with all duplicates removed, as shown in
the following code output:

[112]

Node Fundamentals — Part 1 Chapter 2

[] [] "7 notes-node — -bash — 108x29

Gary:notes-node Gary$ node app.js
Starting app.js

Starting notes.js

false

true

Gary:notes-node Gary$ node app.js
Starting app.js

Starting notes.js

['Gary', 1, 2, 3; & 1]
Gary:notes-node Gary$ D

We have one instance of the string Gary, one instance of the number 1, and then we have 2,
3, 4, exactly what we expected.

The lodash utility really is endless. There are so many functions that it can be kind of
overwhelming to explore at first, but as you start creating more JavaScript and Node
projects, you'll find yourself solving a lot of the same problems over and over again when it
comes to sorting, filtering, or type checking, and in that case, it's best to use a utility such as
lodash to get that lifting done. The 1odash utility is great for the following reasons:

* You don't have to keep rewriting your methods
o Itis well tested and it has been tried in production

If there were any issues, they've been sorted out by now.

[113]

Node Fundamentals — Part 1 Chapter 2

The node_modules folder

Now that you know how to use a third-party module, there is one more thing I want to
discuss. That is the node_modules folder in general. When you take your Node project and
you put it on GitHub, or you're copying it around or sending it to a friend, the
node_modules folder really shouldn't be taken with you.

The node_modules folder contains generated code. This is not code you've written and you
should never make any updates to the files inside Node modules because there's a pretty
good chance they'll get overwritten next time you install some modules.

In our case, we've already defined the modules and the versions inside package. json as
shown in the following code because we used that handy save flag:

{

"name": "notes-node",
"version": "1.0.0",
"description": "",
"main": "app.js",
"scripts": {
"test": "echo \"Error: no test specified\" && exit 1"
}I
"author": "",
"license": "ISC",
"dependencies": {
"lodash": "~4.17.4"

}
}

This actually means we can delete the node_modules folder completely. Now, we can copy
the folder and give it to a friend, we can put it on GitHub, or whatever we want to do.
When we want to get that node_modules folder back, all we have to do inside the Terminal
is run the npm install command without any module names or any flags.

[114]

Node Fundamentals — Part 1 Chapter 2

This command, when run without any names or flags, is going to load in your

package. json file, grab all of the dependencies and install them. After running this
command, the node_modules folder is going to look exactly as it looked before we deleted
it. Now, when you are using Git and GitHub, instead of deleting the node_modules folder,
you'll just ignore it from your repository.

Now, what we have explored so far is a process we'll be going through a lot more

throughout the book. So if npm still seems foreign or you're not quite sure why it's even
useful, it will become clear as we do more with our third-party modules, rather than just
type checking or looking for unique items in an array. There's a ton of power behind the
npm community and we'll be harnessing that to our fullest as we make real-world apps.

Global modules

One of the major complaints I get is the fact that students have to restart the app from the
Terminal every time they want to see the changes they just made inside their text editor. So,
in this section, we'll take a look at how we can automatically restart our app as we make
changes to the file. That means if I change from Gary to Mike and save it, it will
automatically restart over in the Terminal.

Installing the nodemon module

Now, to automatically restart our app as we make changes to a file, we have to install a
command-line utility, and we'll do this using npm. To get started, we'll go to Google
Chrome (or the browser you are using) and head over to https://www.npmjs.com, as we
did previously in the Installing the lodash module in our app section, and the module we're
looking for is called nodemon.

[115]

Node Fundamentals — Part 1

Chapter 2

The nodemon will be responsible for watching our app for changes and restarting the app
when those changes occur. Right here, as we see in the following screenshot, we can view
the docs for nodemon as well as various other things such as current version numbers and

SO On:
® O ® /[nodernon 50 (=]
< C | @ https://www.npmjs.com/package/nodemon 4

It's your turn. Help

nodemon

For use during development of a node.js based application.

1Seript. Take the 2017 JavaScript Ecosystem Survey »

npm install nodemon
how? learn more
ri| remy published 23 hours ago
1.14.10 is the latest of 169 releases
github.com/remy/nodemon
nodeman.io

MIT

Collaborators list

n

You will also notice that it's a really popular module, with over 30,000 downloads a day.
Now, this module is a little different from the one we used in the last section, that is,
lodash. The lodash got installed and added into our project's package. json file as

shown in the following code block:

{

"name": "notes-node",
"version": "1.0.0",
"description": "",
"main": "app. jsll,
"scripts": {

"test": "echo \"Error: no test specified\" && exit 1"

by

"authorll : Al ll,
"license": "ISC",
"dependencies": {
"lodash": ""4.17.4"

[116]

Node Fundamentals — Part 1 Chapter 2

That means it went into our node_modules folder and we were able to require it in our
app . js file (refer to the previous section for more detail). Nodemon, however, works a
little differently. It's a command-line utility that gets executed from the Terminal. It will be
a completely new way of starting our application, and to install modules to be run from the
command line, we have to tweak the install command that we used in the last section.

For now, we can start off much the same way, though. We'll use npm install and type the
name just like we did in the Installing the lodash module in our app section, but instead of
using the save flag, we'll use the g flag, which is short for global, as shown here:

npm install nodemon -g

This command installs nodemon as a global utility on your machine, which means it'll not
get added to your specific project and you'll never require nodemon. Instead, you'll be
running the nodemon command from Terminal, as shown here:

[NON) "7 notes-node — -bash — 108x29

node-pre-gyp at ChildProcess.<anonymous> (/usr/local/lib/node_modules/nodemon/node_modules/fs
events/node_modules/node-pre-gyp/lib/util/compile.js:83:29)

node-pre-gyp at ChildProcess.emit (events.js:159:13)

node-pre-gyp at maybeClose (internal/child_process.js:943:16)

node-pre-gyp at Process.ChildProcess._handle.onexit (internal/child_process.js:228:5)
node-pre-gyp Darwin 17.3.8

node-pre-gyp "fusr{local/bin/node" "fusrflocal/lib/node_modules/nodemon/node_modules/fsevents/n
ode_modules/node-pre—-gyp/bin/node-pre-gyp" "install" "--fallback-to-build"

node-pre-gyp fusr/local/lib/node_modules/nodemon/node_modules/fsevents

node-pre-gyp v9.3.0

node-pre-gyp ve.6.39

node-pre-gyp

Failed to execute 'fusr/local/bin/node /usr/local/lib/node_modules/npm/node_modules/node-gyp/bin/node-gyp.js
clean' (1)

> nodemon@l.14.18 postinstall fusr/local/lib/node_modules/nodemon

> node -e "console.log('\u@@lb[32mLove nodemon? You can now support the project via the open collective:\uee
1b[22m\u@0@1b[39m\n > \u@@lb[96m\u@dlb[imhttps://opencollective.com/nodemon/donate\ud@lb[®m\n')" || exit @

> https:/fopencollective.com/nodemon/donate

SKIPPING OPTIONAL DEPENDENCY: fsevents@®1.1.3 (node_modules/nodemon/node_modules/fsevents):
SKIPPING OPTIONAL DEPENDENCY: fsevents@®1.1.3 install: “node install”
SKIPPING OPTIONAL DEPENDENCY: Exit status 1

+ nodemon@l.14.1@
added 264 packages in 45.893s
Gary:notes-node Gary$ D

[117]

Node Fundamentals — Part 1 Chapter 2

When we install nodemon using the preceding command, it'll go off to npm and fetch all of
the code that comes with nodemon.

And it'll add it into the installation where Node and npm live on your machine, outside the
project you're working on.

The npm install nodemon -gcommand could be executed from anywhere in your
machine; it does not need to be executed from the project folder since it doesn't actually
update the project at all. With this in place, though, we now have a brand new command on
our machine, nodemon.

Executing nodemon

Nodemon will get executed as Node did, where we type the command and then we type
the file we want to start. In our case, app . js is the root of our project. When you run it,
you'll see a few things, as shown here:

® ® notes-node — node Jusr/local/bin/nodemaon app.js — 108x29

Gary:notes-node Gary$ nodemon app.js
[nodemon] 1.14.18

[nodemon] to restart at any time, enter ‘rs’
[nodemon] watching: =*.%

Starting app.js
Starting notes.js
(6 iyl alg 7 <l & g

0

[118]

Node Fundamentals — Part 1 Chapter 2

We'll see a combination of our app's output, along with nodemon logs that show you what's
happening. As shown in the preceding code, you can see the version nodemon is using, the
files it's watching, and the command it actually ran. Now, at this point, it's waiting for more
changes; it already ran through the entire app and it'll keep running until another change
happens or until you shut it down.

Inside Atom, we'll make a few changes to our app. Let's get started by changing Gary to
Mike in app. js, and then we'll change the filteredArray variable to var
filteredArray = _.unig(['Mike']), as shown in the following code:

console.log('Starting app.js');

const fs = require('fs');

const os = require('os');

const _ = require('lodash');

const notes = require('./notes.js');

// console.log(_.isString(true));

// console.log(_.isString('Gary'));
var filteredArray = _.uniqg(['Mike']);
console.log(filteredArray);

Now, I'll be saving the file. In the Terminal window, you can see the app automatically
restarted, and within a split second, the new output is shown on the screen:

@® i8] notes-node — node Jusrflocal/bin/nodemon app.js — 108=29

Gary:notes-node Gary$ nodemon app.js
[nodemon] 1.1]

[nodemon] to rt at any time, enter “rs’
[nodemon] watching: *.%

Starting app.js
Starting notes.js
['Gary', 1, 2, 3, &4 1]

Starting app.js
Starting notes.js

Starting app.js
Starting notes.js
['Mike' 1]

[119]

Node Fundamentals — Part 1 Chapter 2

As shown in the preceding screenshot, we now have our array with one item of string,
Mike. And this is the real power of nodemon.

You can create your applications and they will automatically restart over in the Terminal,
which is super useful. It'll save you a ton of time and a ton of headaches. You won't have to
switch back and forth every time you make a small tweak. This also prevents a ton of errors
where you are running a web server, you make a change, and you forget to restart the web
server. You might think your change didn't work as expected because the app is not
working as expected, but in reality, you just never restarted the app.

For the most part, we will be using nodemon throughout the book since it's super useful. It's
only used for development purposes, which is exactly what we're doing on our local
machine. Now, we'll move forward and start exploring how we can get input from the user
to create our notes application. That will the topic of the next few sections.

Before we get started, we should clean up a lot of the code we've already written in this
section. I'll remove all of the commented-out code in app. js. Then, I'll simply remove os,
where we have fs, os and lodash, since we'll not be using it throughout the project. I'll
also be adding a space between the third-party and Node modules and the files I've written,
which are as follows:

console.log('Starting app.js');

const fs = require('fs');
const _ = require('lodash');
const notes = require('./notes.js');

I find this to be a good syntax that makes it a lot easier to quickly scan for either third-party
or Node modules, or the modules that I've created and required.

Next up, over in notes. js, we'll remove the add function; this was only added for
demonstration purposes, as shown in the following figure. Then we can save both the
notes.js and app. js files, and nodemon will automatically restart:

console.log('Starting notes.js');

module.exports.addNote = () => {
console.log('addNote');
return 'New note';

bi

module.exports.add = (a, b) => {

[120]

Node Fundamentals — Part 1 Chapter 2

return a + b;
}i

Now we can remove the greetings.txt file. That was used to demonstrate how the f£s
module works, and since we already know how it works, we can wipe that file. And last but
not least, we can always shut down nodemon using Ctrl + C. Now we're back at the regular
Terminal.

And with this in place, now we should move on, figuring out how we can get input from
the user, because that's how users can create notes, remove notes, and fetch their notes.

Getting input

If a user wants to add a note, we need to know the note's title as well as the body of the
note. If they want to fetch a note, we need to know the title of the note they want to fetch,
and all this information needs to come into our app. And note apps, don't really do
anything cool until they get this dynamic user input. This is what makes your scripts useful
and awesome.

Now, throughout the book, we'll be creating note apps that get input from the user in a lot
of different ways. We'll be using socket I/O to get real-time info from a web app, we'll be
creating our own API so other websites and servers can make Ajax requests to our app, but
in this section, we'll start things off with a very basic example of how to get user input.

We'll be getting input from the user inside the command line. That means when you run the
app in the command line, you'll be able to pass in some arguments. These arguments will be
available inside Node, and then we can do other things with them, such as create a note,
delete a note, or return a note.

Getting input from the user inside the command
line

To start things off, let's run our app from the Terminal. We'll run it pretty similarly to how
we ran it in the earlier sections: we'll start with node (I'm not using nodemon since we'll be

changing the input), then we'll use app . js, which is the file we want to run, but then we
can still type other variables.

[121]

Node Fundamentals — Part 1 Chapter 2

We can pass all sorts of command-line arguments in. We could have a
command, and this would tell the app what to do, whether you want to
add a note, remove a note, or list a note.

If we want to add a note, that might look as a command shown in the following code:

node app.js add

This command will add a note; we can remove a note using the remove command, as
shown here:

node app.js remove
And we could list all of our notes using the 1ist command:
node app.js list

Now, when we run this command, the app is still going to work as expected. Just because
we passed in a new argument doesn't mean our app is going to crash:

[NON) "7 notes-node — -bash — 108x29

Gary:notes-node Gary$ node app.js list
Starting app.js

Starting notes.js

Gary:notes-node Gary$ |:|

[122]

Node Fundamentals — Part 1 Chapter 2

And we actually have access to the 1ist argument already, we're just not using it inside the
application.

To access the command-line arguments your app was initialized with, you'll want to use
that process object that we explored in the first chapter.

We can log out all of the arguments using console. log to print them to the screen; it's on
the process object, and the property we're looking for is argv.

The argv object is short for arguments vector, or in the case of JavaScript,
it's more like an arguments array. This will be an array of all the
command-line arguments passed in, and we can use them to start creating
our application.

Now save app. js and it'll look like the following;:

console.log('Starting app.js');

const fs = require('fs');
const _ = require('lodash');
const notes = require('./notes.js');

console.log(process.argv);

[123]

Node Fundamentals — Part 1

Chapter 2

Then we'll rerun this file:

0@

Gary:notes-node Gary$ node app.js list

Starting app.js

Starting notes.js

Gary:notes-node Gary$ node app.js list

Starting app.js

Starting notes.js

['fusr/local/bin/node’,
'fUsers/Gary/Desktop/notes-node/app.js'
'list' 1]

Gary:notes-node Gary$ D

notes-node — -bash — 108x29

Now, as shown in the preceding command output, we have three items which are as

follows:

e The first one points to the executable for Node that was used.

¢ The second one points to the app file that was started; in this case, it was app. js.

e The third one is where our command-line arguments start to come into play. In it,
we have our 1ist showing up as a string.

That means we can access that third item in the array, and that will be the command for our

notes application.

[124]

Node Fundamentals — Part 1 Chapter 2

Accessing the command-line argument for the notes
application

Let's access the command-line argument in the array now. We'll make a variable called
command, and set it equal to process.argv, and we'll grab the item in the third position
(which is 1ist, as shown in the preceding command output), which is the index of two as
shown here:

var command = process.argv[2];

Then we can log that out to the screen by logging out command the string. Then, as the
second argument, I'll pass in the actual command that was used:

console.log('Command: ' , command);

And this is just a simple log to keep track of how the app is getting executed. The cool stuff
is going to come when we add if statements that do different things depending on that
command.

Adding if/else statements

Let's create an i f/else block below the console.log('Command: ', command);.We'll
add if (command === 'add'), as shown here:

console.log('Starting app.js');

const fs = require('fs');

const _ = require('lodash');

const notes = require('./notes.js');
var command = process.argv[2];
console.log ('Command: ', command);
if (command === 'add')

In this case, we'll go through the process of adding a new note. Now, we're not specifying
the other arguments here, such as the title or the body (we'll discuss that in later sections).
For now, if the command does equal add, we'll use console. log to print Adding new
note, as shown in the following code:

console.log('Starting app.js');

const fs = require('fs');

[125]

Node Fundamentals — Part 1 Chapter 2

const _ = require('lodash');
const notes = require('./notes.js');

var command = process.argv[2];
console.log('Command: ', command);

if (command === 'add') {

console.log('Adding new note');

}

And we can do the exact same thing with a command such as 1ist. We'lladd else if
(command === 'list'), as shown here:

console.log('Starting app.js');

const fs = require('fs');
const _ = require('lodash');
const notes = require('./notes.js');
var command = process.argv([2];
console.log('Command: ', command);
if (command === 'add') {

console.log ('Adding new note');
} else if (command === 'list')

If the command does equal the string 1ist, we'll run the following block of code using
console.logtoprint Listing all notes. We can also add an else clause if there is no
command, which is console.log ('Command not recognized'), as shown here:

console.log('Starting app.js');

const fs = require('fs');
const _ = require('lodash');
const notes = require('./notes.js');
var command = process.argv[2];
console.log('Command: ', command);
if (command === 'add') {
console.log ('Adding new note');
} else if (command === 'list') {
console.log('Listing all notes');
} else {

[126]

Node Fundamentals — Part 1 Chapter 2

console.log('Command not recognized');

}

With this in place, we can now rerun our app for a third time, and this time around, you'll
see we have the command equal to list, and listing all notes shows up, as shown in the
following code:

if (command === 'add') {
console.log ('Adding new note');

} else if (command === 'list') {
console.log('Listing all notes');

} else {

console.log('Command not recognized');

}

This means we were able to use our argument to run different code. Notice that we didn't
run Adding new note and we didn't run Command not recognized. We could,
however, switch the node app.js command from 1ist to add, and in that case, we'll get
Adding new note printing, as shown in the following screenshot:

0] [] | notes-node — -bash — 108=29

Gary:notes-node Gary$ node app.js list
Starting app.js

Starting notes.js

Command: 1list

Listing all notes

Gary:notes-node Gary$ D

[127]

Node Fundamentals — Part 1 Chapter 2

And if we run a command that doesn't exist, for example read, you can see Command not
recognized prints as shown in the following screenshot:

0] [] | notes-node — -bash — 108=29

Gary:notes-node Gary$ node app.js add
Starting app.js

Starting notes.js

Command: add

Adding new note

Gary:notes-node Gary$ node app.js read
Starting app.js

Starting notes.js

Command: read

Command not recognized
Gary:notes-node Gary$

Exercise — adding two else if clauses to an if block

Now, what I'd like you to do is add two more else if clauses to our if block, which will
be as follows:

¢ One will be for the read command, which will be responsible for getting an
individual note back

¢ Another one called remove will be responsible for removing the note

All you have to do is add the else if statement for both of them, and then just put a quick
console. log printing something like Fetching note or Removing note.

Take a moment to knock that out as your challenge for this section. Once you add those two
else if clauses, run both of them from the Terminal and make sure your log shows up. If
it does show up, you are done, you can move ahead with this section.

[128]

Node Fundamentals — Part 1 Chapter 2

Solution to the exercise

For the solution, the first thing I'll do is to add an else if for read.I'll open and close my
curly braces and hit enter right in the middle so everything gets formatted correctly.

In the else if statement, I'll check whether the command variable equals the string read,
as shown here:

console.log('Starting app.js');

const fs = require('fs');

const _ = require('lodash');

const notes = require('./notes.js');

var command = process.argv[2];

console.log ('Command: ', command);

if (command === 'add') {
console.log ('Adding new note');

} else if (command === 'list') {
console.log('Listing all notes');

} else if () {

} else {

console.log('Command not recognized');

In the future, we'll be calling methods that update our local database with
the notes.

For now, we'll use console.log to print Reading note:

console.log('Starting app.js');

const fs = require('fs');

const _ = require('lodash');

const notes = require('./notes.js');
var command = process.argv|[2];
console.log('Command: ', command);
if (command === 'add') {

console.log ('Adding new note');

[129]

Node Fundamentals — Part 1 Chapter 2

} else if (command === 'list') {
console.log('Listing all notes');

} else if (command === 'read') {

} else {

console.log('Command not recognized');

}

The next thing you need to dois add an else if clause that checks whether the command
equals remove. In the else if, I'll open and close my condition and hit enter just as I did in
the previous else if clause; this time, I'll add if the command equals remove, we want to
remove the note. And in that case, all we'll do is to use console. log to print Reading
note, as shown in the following code:

console.log('Starting app.js');

const fs = require('fs');

const _ = require('lodash');

const notes = require('./notes.js');

var command = process.argv[2];

console.log('Command: ', command);

if (command === 'add') {
console.log ('Adding new note');

} else if (command === 'list') {
console.log('Listing all notes');

} else if (command === 'read') {
console.log('Reading note');

} else {

console.log('Command not recognized');

[130]

Node Fundamentals — Part 1 Chapter 2

And with this in place, we are done. If we refer to the code block, we've added two new
commands we can run over in the Terminal, and we can test those:

if (command === 'add') {
console.log ('Adding new note');
} else if (command === 'list') {
console.log('Listing all notes');
} else if (command === 'read') {
console.log('Reading note');
} else {
console.log('Command not recognized');
}

First up, I'll run node app. js with the read command, and Reading note shows up:

console.log('Starting app.js');

const fs = require('fs');
const _ = require('lodash');
const notes = require('./notes.js');

var command = process.argv[2];

console.log('Command: ', command);

if (command === 'add') {
console.log('Adding new note');

} else if (command === 'list') {
console.log('Listing all notes');

} else if (command === 'read') {
console.log('Reading note');

} else if (command == 'remove') {
console.log ('Removing note');

} else {
console.log('Command not recognized');

}

[131]

Node Fundamentals — Part 1 Chapter 2

Then I'll rerun the command; this time, I'll be using remove. And when I do that, Removing
note prints to the screen, as shown in this screenshot:

0] [] | notes-node — -bash — 108=29

Gary:notes-node Gary$ node app.js remove
Starting app.js

Starting notes.js

Command: remove

Removing note

Gary:notes-node Gary$ node app.js asdf
Starting app.js

Starting notes.js

Command: asdf

Command not recognized

Gary:notes-node Gary$

I'll wrap up my testing using a command that doesn't exist, and when I run that, you can
see Command not recognizedshowsup.

Getting the specific note information

Now, what we did in the previous subsection is step 1. We now have support for various
commands. The next thing we need to figure out is how we'll get more specific information.
For example, which note do you want to remove? Which note do you want to read? And
what do you want the note text to be in the case of adding a note? This is all information we
need to get from the Terminal.

Now, getting it is going to be pretty similar to what we did earlier, and to show you what it
looks like, we'll print the entire argv object once again, using the following command:

console.log(process.argv);

[132]

Node Fundamentals — Part 1 Chapter 2

Over in the Terminal, we can now run a more complex command. Let's say we want to
remove a note using the node app.js remove command, and we'll do that by its title. We
might use the title argument, which looks like the following code:

node app.js remove —-—title

In this title argument, we have —- (two) hyphens followed by the argument name, which
is title, followed by the = (equals) sign. Then we can type our note title. Maybe the note
title is secrets. This will pass the title argument into our application.

Now, there are a couple of different ways you could format the tit1le argument, which are
as follows:

* You could have the title secrets like the one in the preceding command

¢ You could have title equals secrets inside quotes, which will let us use spaces in
the title:

node app.js remove —--title=secrets
* You can remove the = (equals) sign altogether and simply put a space:
node app.js remove —-title="secrets 2"

No matter how you choose to format your argument, these are all valid ways to pass in the
title.

As you see in the preceding screenshot, I am using double quotes when
wrapping my string. Now, if you switch to single quotes, it will not break
on Linux or OS X, but it will break on Windows. That means when you're
passing in command-line arguments such as the title or the note body,
you'll want to wrap your strings, when you have spaces, in double quotes,
not single. So, if you are using Windows and you're getting some sort of
unexpected behavior with your arguments, make sure you're using double
quotes instead of single; that should fix the issue.

For the moment, I'll keep the = (equals) sign and the quotes and rerun the command:

node app.js remove —-title="secrets 2"

[133]

Node Fundamentals — Part 1 Chapter 2

When I run the command, you can see in the following code output that we have our two
arguments:

[] [] "7 notes-node — -bash — 108x29

Gary:notes-node Gary$ node app.js remove --title="secrets 2"
Starting app.js

Starting notes.js

Command: remove

['fusr/local/bin/node’,
'fUsers/Gary/Desktop/notes-node/app.js',
‘remove',

'—-title=secrets 2']

Removing note

Gary:notes-node Gary$ |:|

These are the arguments that we don't need, then we have our remove command, which is
the third one, and we now have a new fourth string, the title that is equal to secrets 2.
And our argument was successfully passed into the application. The problem is that it's not
very easy to use. In the fourth string, we have to parse out the key, whichis title, and the
value, which is secrets 2.

When we used the command, which was the third argument in the previous section, it was
a lot easier to use inside our app. We simply pulled it out of the arguments array and we
referenced it by using the command variable and checking whether it equaled add, 1ist,
read, Or remove.

[134]

Node Fundamentals — Part 1 Chapter 2

Things get a lot more complex as we use different styles for passing in the arguments. If we
rerun the last command with a space instead of an = (equals) sign, as shown in the
following code, which is perfectly valid, our arguments array now looks completely
different:

0] [] | notes-node — -bash — 108=29

Gary:notes-node Gary$ node app.js remove --title "secrets 2"
Starting app.js

Starting notes.js

Command: remove

['fusr/local/bin/node’,
'fUsers/Gary/Desktop/notes—node/app.js',
‘remove',

'-=title',
'secrets 2']

Removing note

Gary:notes-node Gary$ |:|

In the preceding code output, you can see that we have the title as the fourth item, and we
have the value, which is secrets 2, as the fifth, which means we have to add other
conditions for parsing. And this turns into a pain really quickly, which is why we will not
do it.

We'll use a third-party module called yargs in the next chapter to make parsing the
command-line arguments effortless. Instead of having strings, as shown in this one or the
one we discussed earlier, we'll get an object where the title property equals the secrets 2
string. That will make it super easy to implement the rest of the notes application.

Now, parsing certain types of command-line arguments, such as key value pairs, becomes a
lot more complex, which is why, in the next chapter, we'll be using yargs to do just that.

[135]

Node Fundamentals — Part 1 Chapter 2

Summary

In this chapter, we learned how to use require to load in modules that come with Node.js.
We created our files for our notes application and required them inside app. js. We
explored how to use built-in modules and we explored how to use modules we defined. We
found out how to require other files that we created, and how to export things such as
properties and functions from those files.

We explored npm a little bit, how we can use npm init to generate a package. json file,
and how we can install and use third-party modules. Next, we explored the nodemon
module, using it to automatically restart our app as we make changes to a file. Last, we
learned how to get input from the user, which is needed to create the notes application. We
learned that we can use command-line arguments to pass data into our app.

In the next chapter, we'll explore some more interesting Node fundamental concepts,
including yargs, JSON, and Refactor.

[136]

Node Fundamentals — Part 2

In this chapter, we'll continue our discussion on some more node fundamentals. We'll
explore yargs, and we'll see how to parse command-line arguments using process.argv
and yargs. After that, we'll explore JSON. JSON is nothing more than a string that looks
kind of like a JavaScript object, with the notable differences being that it uses double quotes
instead of single quotes and all of your property names—like name and age, in this
case—require quotes around them. We'll look into how to convert an object into a string,
then define that string, use it, and convert it back to an object.

After we've done that, we'll fill out the addNote function. Finally, we'll look into refactor,
moving the functionality into individual functions and testing the functionality.

More specifically, we'll go through following topics:

* yargs
e J[SON

e Adding note
e Refactor

yargs

In this section, we will use yargs, a third-party npm module, to make the process of parsing
much easier. It will let us access things such as title and body information without needing
to write a manual parser. This is a great example of when you should look for an npm
module. If we don't use a module, it would be more productive for our Node application to
use a third-party module that has been tested and thoroughly vetted.

Node Fundamentals — Part 2 Chapter 3

To get started, we'll install the module, then we'll add it into the project, parsing for things
such as a title of the body, and we'll call all the functions that will get defined over in
notes. js. If the command is add, we'll call add note, so on.

Installing yargs

Now, let's view the documents page for yargs. It's always a good idea to know what you're
getting yourself into. If you search for yargs on Google, you should find the GitHub page
as your first search result. As shown in the following screenshot, we have the GitHub page
for the yargs library:

® 0 ®) GitHub - yargs/yargs: yargs 1 % 2]
& C | @ GitHub, Inc. [US] | https://github.com/yarg had
O Features Business Explore Marketplace Pricing This repository Sign in - Sign up
Il yargs [yargs ©wach 70 &Str 3927 YFork 330
<> Code Issues 130 Pull requests & Projects 0 Wikl Insights

yargs the modern, pirate-themed successor to optimist. http://yargs.js.org/

{91,332 commits U 11 branches 132 releases A% 132 contributors o MIT

Eiranch: master = GLELUE Clone or download ~
: beoe chore(release): 10.1.1 Latest commit 23219ca 4 days aga
m docs docs: fix middiware docs (#1037) 4 days ago
| example use consoledog instead of util.print, fix #8613 10 months ago
b feat: async command handlers (#1001) 11 days ago
M locales feat: add Norwegian Nynorsk translations [#1028) 13 days ago
I test chore: use chai 4.x (#1033) 1 da

.editorconfig chore: add editorconfig (#848) 9 man

.gitignore feat: introduce .positional() for configuring positional arguments (#987 3 months ago

travis.yml fix: positional arguments now work if no handler is provided to inner 8 months ago

Now, yargs is a very complex library. It has a ton of features for validating all sorts of input,
and it has different ways in which you can format that input. We will start with a very basic
example, although we will be introducing more complex examples throughout this chapter.

[138]

Node Fundamentals — Part 2 Chapter 3

If you want to look at any other features that we don't discuss in the
chapter, or you just want to see how something works that we have talked
about, you can always find it in the yarg documents.

We'll now move into Terminal to install this module inside of our application. To do this,
we'll use npm install followed by the module name, yargs, and in this case, I'll use the @
sign to specify the specific version of the module I want to use, 11.0.0, which is the most
recent version at the time of writing. Next, I'll add the save flag, which, as we know,
updates the package. json file:

npm install yargs@11.0.0 —--save

If I leave off the save flag, yargs will get installed into the node_modules
folder, but if we wipe that node_modules folder later and run npm
install, yargs won't get reinstalled because it's not listed in the
package . json file. This is why we use the save flag.

Running yargs

Now that we've installed yargs, we can move over into Atom, inside of app. js, and get
started with using it. The basics of yargs, the very core of its feature set, is really simple to
take advantage of. The first thing we'll do is to require it up, as we did with fs and
lodash in the previous chapter. Let's make a constant and call it yargs, setting it equal to
require ('yargs'), as shown here:

console.log('Starting app.js');
const fs = require('fs');

const _ = require('lodash');

const yargs = require('yargs');
const notes = require('./notes.js');
var command = process.argv[2];

console.log('Command:"', command);
console.log(process.argv);

if (command === 'add') {
console.log ('Adding new note');

} else if (command === 'list') {
console.log('Listing all notes');

} else if (command === 'read') {

[139]

Node Fundamentals — Part 2 Chapter 3

console.log('Reading note');

} else if (command === 'remove') {
console.log('Removing note');
} else {

console.log('Command not recognized');

}

From here, we can fetch the arguments as yargs parses them. It will take the same
process.argv array that we discussed in the previous chapter, but it goes behind the
scenes and parses it, giving us something that's much more useful than what Node gives us.
Just above the command variable, we can make a const variable called argv, setting it equal
to yargs.argv, as shown here:

console.log('Starting app.js');

const fs = require('fs');
const = require('lodash');

const yargs = require('yargs');
const notes = require('./notes.js');

const argv = yargs.argv;

var command = process.argv[2];
console.log('Command: "', command);
console.log(process.argv);

if (command === 'add') {
console.log('Adding new note');

} else if (command === 'list') {
console.log('Listing all notes');

} else if (command === 'read') {
console.log('Reading note');

} else if (command === 'remove') {
console.log('Removing note');

} else {

console.log('Command not recognized');

[140]

Node Fundamentals — Part 2 Chapter 3

The yargs.argv module is where the yargs library stores its version of the arguments that
your app ran with. Now we can print it using console. log, and this will let us take a look
at the process.argv and yargs.argv variables; we can also compare them and see how
yargs differs. For the command where we use console.log to print process.argv, I'll
make the first argument a string called Process so that we can differentiate it in Terminal.
We'll call console.log again. The first argument will be the Yargs string, and the second
one will be the actual argv variable, which comes from yargs:

console.log('Starting app.js');

const fs = require('fs');
const _ = require('lodash');
const yargs = require('yargs');

const notes = require('./notes.js');

const argv = yargs.argv;

var command = process.argv[2];
console.log('Command: "', command);
console.log('Process', process.argv);
console.log('Yargs', argv);

if (command === 'add') {
console.log('Adding new note');

} else if (command === 'list') {
console.log('Listing all notes');

} else if (command === 'read') {
console.log('Reading note');

} else if (command === 'remove') {
console.log('Removing note');

} else {

console.log('Command not recognized');

}

Now we can run our app (refer to the preceding code block) a few different ways and see
how these two console. log statements differ.

First up, we'll run at node app.js with the add command, and we can run this very basic
example:

node app.js add

[141]

Node Fundamentals — Part 2 Chapter 3

We already know what the process.argv array looks like from the previous chapter. The
useful information is the third string inside of the array, which is 'add'. In the fourth string,
Yargs gives us an object that looks very different:

0] [] | notes-node — -bash — 108=29

Gary:notes-node Gary$ node app.js add

Starting app.js

Starting notes.js

Command: add

Process ['/usr/local/bin/node’,
'fUsers/Gary/Desktop/notes—node/app.js',
‘add' 1]

Yargs { _: ['add' 1, help: false, version: false, '$@': 'app.js' }

Adding new note

Gary:notes-node Gary$ D

As shown in the preceding code output, first we have the underscore property, then
commands such as add are stored.

If I were to add another command, say add, and then I were to add a modifier, say
encrypted, you would see that add would be the first argument and encrypted the second,
as shown here:

node app.js add encrypted

[142]

Node Fundamentals — Part 2 Chapter 3

[] [] "7 notes-node — -bash — 108x29

Gary:notes-node Gary$ node app.js add

Starting app.js

Starting notes.js

Command: add

Process ['/usr/local/bin/node’,
'fUsers/Gary/Desktop/notes-node/app.js',
‘add' 1]

Yargs { _: ['add' 1, help: false, version: false, '$0': 'app.js' }

Adding new note

Gary:notes-node Gary$ node app.js add encrypted

Starting app.js

Starting notes.js

Command: add

Process ['/usr/local/bin/node’,
'fUsers/Gary/Desktop/notes-node/app.js’',

‘add',
‘encrypted']
Yargs { _: ['add', ‘encrypted" 1,
help: false,
version: false,
'$8': 'app.js' }
Adding new note
Gary:notes-node Gary$ D

So far, yargs really isn't shining. This isn't much more useful than what we have in the
previous example. Where it really shines is when we start passing in key-value pairs, such
as the title example we used in the Getting input section of Node Fundamentals - Part 1 in
chapter 2.Icansetmy title flagequal to secrets, press enter, and this time around, we
get something much more useful:

node app.js add —-title=secrets

[143]

Node Fundamentals — Part 2 Chapter 3

In the following code output, we have the third string that we would need to parse in order
to fetch the value and the key, and in the fourth string, we actually have a title property
with a value of secrets:

0] [] | notes-node — -bash — 108=29

Gary:notes-node Gary$ node app.js add --title=secret
Starting app.js
Starting notes.js
Command: add
Process ['/usr/local/bin/node’,
'fUsers/Gary/Desktop/notes—node/app.js',
'add',
'--title=secret']
Yargs { _: ['add' 1,
help: false,
version: false,
title: 'secret',
'$8': 'app.js' }
Adding new note

Gary:notes-node Gary$ D

Also, yargs has built-in parsing for all the different ways you could specify this.

We can insert a space after title, and it will still work just as it did before; we can add
quotes around secrets, or add other words, like secrets from Andrew, and it will still
parses it correctly, setting the title property to the secrets from Andrew string, as
shown here:

node app.js add --title "secrets from Andrew"

[144]

Node Fundamentals — Part 2 Chapter 3

[] [] "7 notes-node — -bash — 108x29

Gary:notes-node Gary$ node app.js add --title "secrets from Andrew"
Starting app.js
Starting notes.js
Command: add
Process ['/usr/local/bin/node’,
'fUsers/Gary/Desktop/notes-node/app.js',
‘add',
'-=title’',
'secrets from Andrew']
Yargs { _: ['add' 1,
help: false,
version: false,
title: 'secrets from Andrew',
'$8': 'app.js' }
Adding new note

Gary:notes-node Gary$ D

This is where yargs really shines! It makes the process of parsing your arguments a lot
easier. This means that inside our app, we can take advantage of that parsing and call the
proper functions.

Working with the add command

Let's work with the add command, for example, for parsing your arguments and calling the
functions. Once the add command gets called, we want to call a function defined in notes,
which will be responsible for actually adding the note. The notes.addNote function will
get the job done. Now, what do we want to pass to the addNote function? We want to pass
in two things: the title, which is accessible on argv.title, as we saw in the preceding
example; and the body, argv.body:

console.log('Starting app.js');
const fs = require('fs');
const _ = require('lodash');

const yargs = require('yargs');

const notes = require('./notes.js');

[145]

Node Fundamentals — Part 2 Chapter 3

const argv = yargs.argv;
var command = process.argv[2];
console.log('Command: "', command);

console.log('Process', process.argv);
console.log('Yargs', argv);
if (command === 'add') {

console.log('Adding new note');
notes.addNote (argv.title, argv.body);

} else if (command === 'list') {
console.log('Listing all notes');

} else if (command === 'read') {
console.log('Reading note');

} else if (command === 'remove') {
console.log('Removing note');

} else {

console.log('Command not recognized');

Currently, these command-line arguments, title and body, aren't
required. So technically, the user could run the application without one of
them, which would cause it to crash, but in future, we'll be requiring both
of these.

Now that we have notes.addNote in place, we can remove our console. log statement,
which was just a placeholder, and we can move into the notes application notes. js.

Inside notes. js, we'll get started by making a variable with the same name as the method
we used over app. js and addNote, and we will set it equal to an anonymous arrow
function, as shown here:

var addNote = () => {
}i

Now, this alone isn't too useful, because we're not exporting the addNote function. Below
the variable, we can define module.exports in a slightly different way. In previous
sections, we added properties onto exports to export them. We can actually define an
entire object that gets set to exports, and in this case, we can set addNote equal to the
addNote function defined in preceding code block:

module.exports = {
addNote: addNote
bi

[146]

Node Fundamentals — Part 2 Chapter 3

In ES6, there's actually a shortcut for this. When you're setting an object
attribute and a value that's a variable and they're both exactly the same,
you can actually leave off the colon and the value. Either way, the result
identical.

In the preceding code, we're setting an object equal to module.exports, and that object has
a property, addNote, which points to the addNote function we defined as a variable in the
preceding code block.

Once again, addNote: and addNote are identical inside of ES6. We will be using the ES6
syntax for everything throughout this book.

Now I can take my two arguments, title and body, and actually do something with them.
In this case, we'll call console.logand Adding note, passing in the two arguments as the
second and third argument to console.log, title and body, as shown here:

var addNote = (title, body) => {
console.log('Adding note', title, body);
bi

Now we're in a pretty good position to run the add command with title and body and see
if we get exactly what we'd expect, which is the console. log statement shown in the
preceding code to print.

Over in Terminal, we can start by running the app with node app. js, and then specify the
filename. We'll use the add command; which will run the appropriate function. Then, we'll
pass in title, setting it equal to secret, and then we can pass in body, which will be our
second command-line argument, setting that equal to the string, This is my secret:

node app.js add —--title=secret --body="This is my secret"

In this command, we specified three things: the add command the title argument, which
gets set to secret; and the body argument, which gets set to "This is my secret".Ifall
goes well, we'll get the appropriate log. Let's run the command.

[147]

Node Fundamentals — Part 2 Chapter 3

In the following command output, you can see Adding note secret, which is the title; and
This is my secret, which is the body:

[NON | notes-node — -bash — 108x29

Gary:notes-node Gary$ node app.js add --title=secret --body="This is my secret"
Starting app.js
Starting notes.js
Command: add
Process ['/usr/local/bin/node',
'fUsers/Gary/Desktop/notes-node/app.js',
‘add',
'--title=secret',
'——body=This is my secret']
Yargs { _: ['add' 1,
help: false,
version: false,
title: 'secret',
body: 'This is my secret',

'$8': 'app.js' }
Adding note secret [his is my secret
Gary:notes-node Gary$ D

With this in place, we now have one of our methods set up and ready to go. The next thing
that we'll do is convert the other commands we have—the 1ist, read, and remove
commands. Let's look into one more command, and then you'll do the other two by yourself
as exercises.

Working with the list command

Now, with the 1ist command, I'll remove the console.log statement and call
notes.getAll, as shown here:

console.log('Starting app.js');
const fs = require('fs');
const _ = require('lodash');

const yargs = require('yargs');

const notes = require('./notes.js');

[148]

Node Fundamentals — Part 2 Chapter 3

const argv = yargs.argv;
var command = process.argv[2];
console.log('Command: "', command);

console.log('Process', process.argv);

console.log('Yargs', argv);

if (command === 'add') {
notes.addNote (argv.title, argv.body);

} else if (command === 'list') {
notes.getAll();

} else if (command === 'read') {
console.log('Reading note');

} else if (command === 'remove') {
console.log ('Removing note');

} else {

console.log('Command not recognized');

}

At some point, notes.getAll will return all of the notes. Now, getAl1 doesn't take any
arguments since it will return all of the notes regardless of the title. The read command will
require a title, and remove will also require the title of the note you want to remove.

For now, we can create the getAl11 function. Inside notes. js, we'll go through that
process again. We'll start by making a variable, calling it getA11, and setting it equal to an
arrow function, which we've used before. We start with our arguments 1ist, then we set
up the arrow (=>), which is the equal sign and the greater than sign. Next, we specify the
statements we want to run. Inside our code block, we'll run console.log (Getting all
notes), as shown here:

var getAll = () => {
console.log('Getting all notes');

ri

The last step to the process after adding that semicolon will be to add getAl1 to the
exports, as shown in the following code block:

module.exports = {
addNote,
getAll

}i

Remember that in ES6, if you have a property whose name is identical to
the value, which is a variable, you can simply remove the value variable
and the colon.

[149]

Node Fundamentals — Part 2 Chapter 3

Now that we have getAll in notes. js in place, and we've wired it up in app. js, we can
run things over in Terminal. In this case, we'll run the 1ist command:

node app.js list

[NON) "7 notes-node — -bash — 108x29

Gary:notes-node Gary$ node app.js list

Starting app.js

Starting notes.js

Command: 1list

Process ['/fusr/local/bin/node’,
'fUsers/Gary/Desktop/notes-node/app.js',
Malsicsan]

Yargs { _: ['list'], help: false, version: false, '$8': 'app.js' }

Getting all notes

Gary:notes-node Gary$ D

In the preceding code output, you can see at the bottom that Getting all notes prints to the
screen. Now that we have this in place, we can remove console.log('Process’,
process.argv) from the command variable in app. js. The resultant code will look like the
following code block:

console.log('Starting app.js');

const fs = require('fs');

const _ = require('lodash');

const yargs = require('yargs');
const notes = require('./notes.js');
const argv = yargs.argv;

var command = process.argv[2];

console.log('Command: "', command);

[150]

Node Fundamentals — Part 2

Chapter 3

console.log('Yargs', argv);

if (command === 'add') {
notes.addNote (argv.title, argv.body);

} else if (command === 'list') {
notes.getAll () ;

} else if (command === 'read') {
console.log('Reading note');

} else if (command === 'remove') {
console.log ('Removing note');

} else {

console.log('Command not recognized');

}

We will keep the yargs log around since we'll be exploring the other ways and methods to

use yargs throughout the chapter.

Now that we have the 1ist command in place, next, I'd like you to create a method for the

read and remove commands.

The read command

When the read command is used, we want to call notes.getNote, passingin title.
Now, title will get passed in and parsed using yargs, which means that we can use
argv.title to fetch it. And that's all we have to do when it comes to calling the function:

console.log('Starting app.js');

const fs = require('fs');
const = require('lodash');

const yargs = require('yargs');
const notes = require('./notes.js');

const argv = yargs.argv;

var command = process.argv([2];
console.log('Command:"', command);
console.log('Yargs', argv);
if (command === 'add') {
notes.addNote (argv.title, argv.body);
} else if (command === 'list') {
notes.getAll();
} else if (command === 'read') {
notes.getNote (argv.title);
} else if (command === 'remove') {

[151]

Node Fundamentals — Part 2 Chapter 3

console.log('Removing note');
} else {
console.log('Command not recognized');

}

The next step is to define getNote, because currently it doesn't exist. Over in notes. js,
right below the getAl1 variable, we can make a variable called getNote, which will be a
function. We'll use the arrow function, and it will take an argument; it will take the note
title. The getNote function takes the title, then it returns the body for that note:

var getNote = (title) => {
bi

Inside getNote, we can use console. log to print something like Getting note, followed
by the title of the note you will fetch, which will be the second argument to console.log:

var getNote = (title) => {
console.log('Getting note', title);
}i

This is the first command, and we can now test it before we go on to the second one, which
iS remove

Over in Terminal, we can use node app. js to run the file. We'll be using the new read
command, passing in a title flag. I'll use a different syntax, where title gets set equal to
the value outside of quotes. I'll use something like accounts:

node app.js read --title accounts

This accounts value will read the accounts note in the future, and it will print it to the
screen, as shown here:

[152]

Node Fundamentals — Part 2 Chapter 3

[] [] "7 notes-node — -bash — 108x29

Gary:notes-node Gary$ node app.js read --title accounts
Starting app.js
Starting notes.js
Command: read
Yargs { _: ['read' 1,

help: false,

version: false,

title: 'accounts',

'$8': 'app.js' }
fUsers/Gary/Desktop/notes-node/app.js:19

notes.getNote(argv.title);

LY

TypeError: notes.getNote is not a function
at Object.<anonymous> (/Users/Gary/Desktop/notes-node/app.js:19:9)
at Module._compile (module.js:668:38)
at Object.Module._extensions..js (module.js:671:10)
at Module.load (module.js:573:32)
at tryModulelLoad (module.js:513:12)
at Function.Module._load (module.js:585:3)
at Function.Module.runMain (module.js:761:18)
at startup (bootstrap_node.js:194:16)
at bootstrap_node.js:618:3
Gary:notes-node Gary$ D

As you can see in the preceding code output, we get an error, which we'll debug now.

Dealing with the errors in parsing commands

Getting an error is not the end of the world. Getting an error usually means that you have a
small typo or you forgot one step in the process. So, we'll first figure out how to parse
through these error messages, because the error messages you get in the code output can be
pretty daunting. Let's refer to the code output error here:

[153]

Node Fundamentals — Part 2 Chapter 3

[] [] "7 notes-node — -bash — 108x29

Gary:notes-node Gary$ node app.js read --title accounts
Starting app.js
Starting notes.js
Command: read
Yargs { _: ['read' 1,

help: false,

version: false,

title: 'accounts',

'$8': 'app.js' }
fUsers/Gary/Desktop/notes-node/app.js:19

notes.getNote(argv.title);

LY

TypeError: notes.getNote is not a function
at Object.<anonymous> (/Users/Gary/Desktop/notes-node/app.js:19:9)
at Module._compile (module.js:668:38)
at Object.Module._extensions..js (module.js:671:10)
at Module.load (module.js:573:32)
at tryModulelLoad (module.js:513:12)
at Function.Module._load (module.js:585:3)
at Function.Module.runMain (module.js:761:18)
at startup (bootstrap_node.js:194:16)
at bootstrap_node.js:618:3
Gary:notes-node Gary$

As you can see, the first line shows you where the error occurred. It's inside of our app. js
file, and the number 19 after the colon is the line number. It shows you exactly where things
went bad. The TypeError: notes.getNote is not a function line is telling you
pretty clearly that the getNote function you tried to run doesn't exist. Now we can take this
information and debug our app.

In app. js, we see that we call notes.getNote. Everything looks great, but when we move
into notes. js, we realize that we never actually exported getNote. This is why when we
try to call the function, we get getNote is not a function. All we have to do to fix that
error message is export getNote, as shown here:

module.exports = {
addNote,
getAll,
getNote

}i

Now when we save the file and rerun the app from Terminal, we'll get what we
expect—Getting note followed by the title, which is accounts, as shown here:

[154]

Node Fundamentals — Part 2 Chapter 3

[] [] "7 notes-node — -bash — 108x29

help: false,

version: false,

title: 'accounts',

'$8': 'app.js' }
fUsers/Gary/Desktop/notes-node/app.js:19

notes.getNote(argv.title);

A

TypeError: notes.getNote is not a function
at Object.<anonymous> (/Users/Gary/Desktop/notes—node/app.js:19:9)
at Module._compile (module.js:660:30)
at Object.Module._extensions..js (module.js:671:10)
at Module.load (module.js:573:32)
at tryModuleLoad (module.js:513:12)
at Function.Module._load (module.js:565:3)

at Function.Module.runMain (module.js:761:18)
at startup (bootstrap_node.js:194:16)
at bootstrap_node.js:618:3
Gary:notes-node Gary$ node app.js read --title accounts
Starting app.js
Starting notes.js
Command: read
Yargs { _: ['read' 1,
help: false,
version: false,
title: ‘'accounts',
'$8': 'app.js' }
Getting note accounts
Gary:notes-node Gary$ D

This is how we can debug our error messages. Error messages contain really useful
information. For the most part, the first couple of lines are code that you've written, and the
other ones are internal Node code or third-party modules. In our case, the first line of the
stack trace is important, as it shows exactly where the error occurred.

The remove command

Now, since the read command is working, we can move on to the last one, which is the
remove command. Here, I'll call notes. removeNote, passing in the title, which as we
know is available in argv.title:

console.log('Starting app.js');

const fs = require('fs');
const = require('lodash');

const yargs = require('yargs');
const notes = require('./notes.js');

const argv = yargs.argv;
var command = process.argv|[2];

[155]

Node Fundamentals — Part 2 Chapter 3

console.log('Command: "', command);

console.log('Yargs', argv);

if (command === 'add') {
notes.addNote (argv.title, argv.body);

} else if (command === 'list') {
notes.getAll () ;

} else if (command === 'read') {
notes.getNote (argv.title);

} else if (command === 'remove') {
notes.removeNote (argv.title);

} else {

console.log('Command not recognized');

}

Next up, we'll define the removeNote function over inside of our notes API file, right below
the getNote variable:

var removeNote = (title) => {
console.log('Removing note', title);
bi

Now, removeNote will work much the same way as getNote. All it needs is the title; it can
use this information to find the note and remove it from the database. This will be an arrow
function that takes the tit le argument.

In this case, we'll print the console. log statement, Removing note; then, as the second
argument, we'll simply print title back to the screen to make sure that it's going through
the process successfully. This time around, we'll export our removeNote function; we'll
define it using the ES6 syntax:

module.exports = {
addNote,
getAll,
getNote,
removeNote

}i

The last thing to do is test it and make sure it works. We can reload the last command using
the up arrow key. We change read to remove, and that is all we need to do. We're still
passing in the t it 1e argument, which is great, because that is what remove needs:

node app.js remove —--title accounts

[156]

Node Fundamentals — Part 2 Chapter 3

When I run this command, we get exactly what we expected. Removing note prints to the
screen, as shown in the following code output, and then we get the title of the note that
we're supposed to be removing, which is accounts:

0] [] | notes-node — -bash — 108=29

Gary:notes-node Gary$ node app.js remove --title accounts
Starting app.js
Starting notes.js
Command: remove
Yargs { _: [‘'remove' 1,
help: false,
version: false,
title: 'accounts',
'$8': 'app.js' }
Removing note accounts
Gary:notes-node Gary$

This looks great! That is all it takes to use yargs to parse your arguments.

With this, we now have a place to define all of that functionality, for saving, reading, listing,
and removing notes.

Fetching command

The last thing I want to discuss before we wrap up this section is—how we fetch command.

[157]

Node Fundamentals — Part 2 Chapter 3

As we know, command is available in the _ property as the first and only item. This means
that in the app. js, var command statement, we can set command equal to argv, then ._,
and then we'll use [] to grab the first item in the array, as shown in the following code:

console.log('Starting app.js');

const fs = require('fs');
const = require('lodash');

const yargs = require('yargs');
const notes = require('./notes.js');
const argv = yargs.argv;

var command = argv._[0];
console.log('Command: "', command);

console.log('Yargs', argv);

if (command === 'add') {
notes.addNote (argv.title, argv.body);

} else if (command === 'list') {
notes.getAll ();

} else if (command === 'read') {
notes.getNote (argv.title);

} else if (command === 'remove') {
notes.removeNote (argv.title);

} else {

console.log('Command not recognized');

}

With this in place, we now have the same functionality, but we'll use yargs everywhere. If I
rerun the last command, we can test that the functionality still works. And it does! As
shown in the following command output, we can see that Command: remove shows up:

[158]

Node Fundamentals — Part 2 Chapter 3

[] [] "7 notes-node — -bash — 108x29

Gary:notes-node Gary$ node app.js remove --title accounts
Starting app.js
Starting notes.js
Command: remove
Yargs { _: [‘'remove' 1,
help: false,
version: false,
title: 'accounts',
'$8': 'app.js' }
Removing note accounts
Gary:notes-node Gary$ D

Next, we'll look into filling out the individual functions. We'll take a look first at how we
can use JSON to store our notes inside our file system.

JSON

Now that you know how to parse command-line arguments using process.argv and
yargs, you've solved the first piece to the puzzle for the notes application. Now, how do

we get that unique input from the user? The second piece to the puzzle is to solve how we
store this information.

[159]

Node Fundamentals — Part 2 Chapter 3

When someone adds a new note, we want to save it somewhere, preferably on the
filesystem. So the next time they try to fetch, remove, or read that note, they actually get the
note back. To do this, we'll need to introduce something called JSON. If you're already
familiar with JSON, you probably know it is super popular. It stands for JavaScript Object
Notation, and it's a way to represent JavaScript arrays and objects using a string. Now, why
would you ever want to do that?

Well, you might want to do that because strings are just text, and that's pretty much
supported anywhere. I can save JSON to a text file, and then I can read it later, parse it back
into a JavaScript array or object, and do something with it. This is exactly what we'll take a
look at in this section.

To explore JSON and how it works, let's go ahead and make a new folder inside our project
called playground.

projects, which store simple one-off files that aren't a part of the bigger
application; they're just a way to explore a new feature or learn a new

0 Throughout the book, I'll create the playground folders and various
concept.

In the playground folder, we'll make a file called json. js, this is where we can explore
how JSON works. To get started, let's make a very simple object.

Converting objects into strings

Let's first make a variable called ob 3, setting it equal to an object. On this object, we'll just
define one property, name, and set it equal to your first name; I'll set this one equal to
Andrew, as shown here:

var obj = {
name: 'Andrew'
}i

[160]

Node Fundamentals — Part 2 Chapter 3

Now, let's assume that we want to take this object and work on it. Let's say we want to, for
example, send it between servers as a string and save it to a text file. To do this, we'll need
to call one JSON method.

Let's take a moment to define a variable to store the result, st ring0Obj, and we'll set it equal
to JSON. stringify, as shown here:

var stringObj = JSON.stringify (obj);

The JSON. stringify method takes your object, in this case, the obj variable, and returns
the JSON-stringified version. This means that the result stored in st ring0Obj is actually a
string. It's no longer an object, and we can take a look at that using console.log. I'll use
console. log twice. First up, we'll use the typeof operator to print the type of the string
object to make sure that it actually is a string. Since typeof is an operator, it gets typed in
lowercase, there is no camel casing. Then, you pass in the variable whose type you want to
check. Next up, we can use console. log to print the contents of the string itself, printing
out the st ringObj variable, as shown here:

console.log(typeof stringObj);
console.log(stringObj) ;

What we've done here is we've taken an object, converted it into a JSON string, and printed
it onto the screen. Over in Terminal, I'll navigate into the playground folder using the
following command:

cd playground

For now, it doesn't matter where you run the command, but in future it
will matter when we are in the playground folder, so take a moment to
navigate into it.

[161]

Node Fundamentals — Part 2 Chapter 3

We can now use node to run our json. js file. When we run the file, we see two things:

] @ | playground — -bash — 108=29

Gary:notes-node Gary$ cd playground
Gary:playground Gary$ node json.js
string

{"name":"Andrew"}

Gary:playground Gary$ D

As shown in the preceding code output, first, we will get our type, which is a string, and
this is great, because remember, JSON is a string. Next, we will get our object, which looks
pretty similar to a JavaScript object, but there are a few differences. These differences are as
follows:

e First up, your JSON will have its attribute names automatically wrapped in
double quotes. This is a requirement of the JSON syntax.

e Next up, you'll notice your strings are also wrapped in double quotes as opposed
to single quotes.

Now, JSON doesn't just support string values, you can use an array, a Boolean, a number,
or anything else. All of those types are perfectly valid inside of your JSON. In this case, we
have a very simple example where we have a name property and it's set to "Andrew".

This is the process of taking an object and converting it into a string. Next up, we'll define a
string and convert that into an object we can actually use in our app.

[162]

Node Fundamentals — Part 2 Chapter 3

Defining a string and using in app as an object

Let's get started by making a variable called personsString, and we'll to set it equal to a
string using single quotes since JSON uses double quotes inside of itself, as shown here:

var personString = '';

Then we'll define our JSON in the quotes. We'll start by opening and closing some curly
braces. We'll use double quotes to create our first attribute, which we'll call name, and we'll
set that attribute equal to Andrew. This means that after the closing quote, we'll add :; then
we'll open and close double quotes again and type the value Andrew, as shown here:

var personString = '{"name": "Andrew"}';

Next up, we can add another property. After the value, Andrew, I'll create another property
after the comma, called age, which will be set equal to a number. I can use my colon and
then define the number without the quotes, in this case, 25:

var personString = '{"name": "Andrew", "age": 25}';

You can go ahead and use your name and your age, obviously, but make sure the rest looks
identical to what you see here.

Now, let's say we get the earlier-defined JSON from a server or we grab it from a text file.
Currently, it's useless; if we want to get the name value, there is no good way to do that
because we're using a string, so personString.name doesn't exist. What we need to do is
take the string and convert it back into an object.

Converting a string back to an object

To convert the string back to object, we'll use the opposite of JSON. st ringify, which is
JSON.parse. Let's make a variable to store the result. I'll create a person variable and it
will be set equal to JSON.parse, passing in as the one and only argument the string you
want to parse, in this case, the person string, which we defined earlier:

var person = JSON.parse (personString);

Now, this variable takes your JSON and converts it from a string back into its original form,
which could be an array or an object. In our case, it converts it back into an object, and we
have the person variable as an object, as shown in the preceding code. Also, we can prove
that it's an object using the typeof operator. I'll use console. log twice, just like we did
previously.

[163]

Node Fundamentals — Part 2 Chapter 3

First up, we'll print typeof person, and then we'll print the actual person variable,
console.log (person):

console.log(typeof person);
console.log(person) ;

With this in place, we can now rerun the command in Terminal; I'll actually start nodemon
and pass in json.js:

nodemon json.js

As shown in the following code output, you can now see that we're working with an object,
which is great, and we have our regular object:

@ ® playground — node fusr/lucal/bin/nodemon json.js — 108x29

Gary:notes-node Gary$ cd playground
Gary:playground Gary$ node json.js

":"Andrew"}

ground Gary$ nodemon json.js
1.14.1

: 'Andrew', age: 25 }

We know that Andrew is an object because it's not wrapped in double quotes; the values
don't have any quotes, and we use single quotes for Andrew, which is valid in JavaScript,
but it's not valid in JSON.

This is the entire process of taking an object, converting it to a string, and then taking the
string and converting it back into the object, and this is exactly what we'll do in the notes
app. The only difference is that we'll be taking the following string and storing it in a file,
then later on, we'll be reading that string from the file using JSON. parse to convert it back
to an object, as shown in the following code block:

[164]

Node Fundamentals — Part 2 Chapter 3

// var obj = {

// name: 'Andrew'

/1Y

// var stringObj = JSON.stringify (obj);
// console.log(typeof stringObj) ;

// console.log(stringObi) ;

var personString = '{"name": "Andrew", "age": 25}';
var person = JSON.parse{personString};
console.log(typeof person);

console.log(person) ;

Storing the string in afile

With the basics in place, let's take it just one step further, that is, by storing the string in a
file. Then, we want to read the contents of that file back by using the £s module and
printing some properties from it. This means that we'll need to convert the string that we
get back from fs.readfilesync into an object using JSON.parse.

Writing the file in the playground folder

Let's go ahead and comment out all the code we have so far and start with a clean slate.
First up, let's go ahead and load in the £s module. The const variable £s will be set equal
to require, and we'll pass the £s module that we've used in the past, as shown here:

// var obj = {

// name: 'Andrew'

/1Y

// var stringObj = JSON.stringify (obj);
// console.log(typeof stringObj) ;

// console.log(stringObj) ;

// var personString = '{"name": "Andrew","age": 25}';
// var person = JSON.parse (personString);

// console.log(typeof person);

// console.log(person);

const fs = require('fs');

[165]

Node Fundamentals — Part 2 Chapter 3

The next thing we'll do is define the object. This object will be stored inside of our file, and
then will be read back and parsed. This object will be a variable called originalNote, and
we'll call it originalNote because later on, we'll load it back in and call that variable Note.

Now, originalNote will be a regular JavaScript object with two properties. We'll have the
title property, which we'll set equal to Some title, and the body property, which we
will set equal to Some body, as shown here:

var originalNote = {
title: 'Some title',
body: 'Some body'

bi

The next step that you will need to do is take the original note and create a variable called
originalNoteString, and set that variable equal to the JSON value of the object we
defined earlier. This means that you'll need to use one of the two JSON methods we used
previously in this section.

Now, once you have that originalNoteString variable, we can write a file to the
filesystem. I'll write that line for you, fs.writeFileSync. The writeFileSync method,
which we used before, takes two arguments. One will be the filename, and since we're using
JSON, it's important to use the JSON file extension. I'll call this file notes. json. The other
arguments will be text content, originalNoteString, which is not yet defined, as shown
in this code block:

// originalNoteString
fs.writeFileSync ('notes.Jjson', originalNoteString);

This is the first step to the process; this is how we'll write that file into the playground
folder. The next step to the process will be to read out the contents, parse it using the JSON
method earlier, and print one of the properties to the screen to make sure that it's an object.
In this case, we'll print the title.

Reading out the content in the file

The first step to print the title is to use a method we haven't used yet. We'll use the read
method available on the filesystem module to read the contents. Let's make a variable called
noteString. The noteString variable will be set equal to fs.readFileSynec.

[166]

Node Fundamentals — Part 2 Chapter 3

Now, readFileSync is similar to writeFileSync except that it doesn't take the text
content, since it's getting the text content back for you. In this case, we'll just specify the first
argument, which is the filename, notes. JSON:

var noteString = fs.readFileSync('notes.json');

Now that we have the string, it will be your job to take that string, use one of the preceding
methods, and convert it back into an object. You can call that variable note. Next up, the
only thing left to do is to test whether things are working as expected, by printing with the
help of console.log (typeof note).Then, below this, we'll use console.log to print
the title, note.title:

// note
console.log(typeof note);
console.log(note.title);

Now, over in Terminal, you can see (refer to the following screenshot) that I have saved the
file in a broken state and it crashed, and that's expected when you're using nodemon:

@® ® playground — node fusrflocal/bin/nodemon json.js — 108x29

[Gary:playground Gary$ node json.js

string

{"name" :"Andrew"}

[Gary:playground Gary$ nodemon json.js
1 14.1

ime, enter “rs’

object
{ name: 'Andrew',6 age: 25 }

fUsers/Bary/Desktop/notes-node/playground/json.js:21
fs.writeFileSync('notes.json', originalNoteString);
A

ReferenceError: originalNoteString is not defined
at Ohject.<ananymous> (/Users/Gary/Desktop/notes-node/playground/json.js:21:32)
at Module._compile (module.js:668:38)
at Object.Module._extensions..js (module.js:671:18)
at Mndule.lnad (module.js:573:32)
st tryModuleLoad (module.js:513:12)
at Function.Module._load (module.js:585:3)
at Function.Module.runMain (mndule.js:781:18)
at startup (bootstrap_node.js:194:16)
at bootstrap_node.js:6l8:3

To resolve this, the first thing I'll do is fill out the originalNoteString variable, which we
had commented out earlier. It will now be a variable called originalNoteString, and
we'll set it equal to the return value from JSON. stringify.

[167]

Node Fundamentals — Part 2 Chapter 3

Now, we know JSON. stringify takes our regular object and it converts the object into a
string. In this case, we'll take the originalNote object and convert it into a string. The next
line, which we already have filled out, will save that JSON value into the notes. JSON file.
Then we will read that value out:

var originalNoteString = JSON.stringify(originalNote);

The next step will be to create the note variable. The note variable will be set equal to
JSON.parse.

The JSON. parse method takes the string JSON and converts it back into a regular
JavaScript object or array, depending on whatever you save. Here we will pass in
noteString, which we'll get from the file:

var note = JSON.parse (noteString);

With this in place, we are now done. When I save this file, nodemon will automatically
restart and we would expect to not see an error. Instead, we expect that we'll see the object
type as well as the note title. Right inside Terminal, we have object and Some title printing
to the screen:

[NN J playground — node fusrflocal/bin/nodemon json.js — 108x29

A

ReferenceError: originalNoteString is not defined
at Object.<anonymous> (/Users/Gary/Desktop/notes-node/playground/json.js:21:32)
at Module._compile (module.js:668:38)
at Object.Module._extensions..js (module.js:671:180)
at Module.load (modulec.js:673:132)
at tryModulelLoad (module.js:513:12)
at Function.Module. load (module.js:5085:3)
at Function.Module.runMain (module.js:781:18)
at startup (bootstrap_node.js:194:16)
at bootstrap_node.js:618:3

object
Some title

nhject
Some title

With this in place, we've successfully completed the challenge. This is exactly how we will
save our notes.

[168]

Node Fundamentals — Part 2 Chapter 3

When someone adds a new note, we'll use the following code to save it:

var originalNote = {
title: 'Some title',
body: 'Some body'
bi
var originalNoteString = JSON.stringify(originalNote);
fs.writeFileSync ('notes.json', originalNoteString);

When someone wants to read their note, we'll use the following code to read it:

var noteString = fs.readFileSync('notes.json');
var note = JSON.parse (noteString);
console.log(typeof note);
console.log(note.title);

Now, what if someone wants to add a note? This will require us to first read all of the notes,
then modify the notes array, and then use the code (refer to the previous code block) to save
the new array back into the filesystem.

If you open up that notes. JSON file, you can see right here that we have our JSON code
inside the file:

[oK) [notes.json — ~/Desktop/notes-node

Project app.js x json.js x notes. fson X
~ [rotes-node 1 {"title":"Some title","body":"Some body"}|

> M node_modules

~ [playground
E] json js

B .DS_Store

B appis

|-E] greetings.txt

B notes.s

B package-lock json

Bl packageson

playgroundfnotes.json 1:42 LF UTF-8 JSON [3) Ofiles

[169]

Node Fundamentals — Part 2 Chapter 3

. Json is actually a file format that's supported by most text editors, so I actually already
have some nice syntax highlighting built in. Now, in the next section, we'll be filling out the
addNote function using the exact same logic that we just used inside of this section.

Adding and saving notes

In the previous section, you learned how to work with JSON inside Node.js, and this is the
exact format we'll be using for the notes. js application. When you first run a command,
we'll load in all the notes that might already exist. Then we'll run the command, whether it's
adding, removing, or reading notes. Finally, if we've updated the array, like we will when
we add and remove notes, we'll save those new notes back into the JSON file.

Now, this will all happen inside of the addNote function, which we defined in the
notes. js application, and we already wired up this function. In earlier sections, we ran the
app add command, and this function executed with the title and body arguments.

Adding notes

To get started with adding notes, the first thing we'll do is create a variable called notes,
and for the moment, we'll set it equal to an empty array, just as in the following, using our
square brackets:

var addNote
var notes

(title, body) => {
[1;

}i

Now that we have the empty array, we can go ahead and make a variable called note,
which is the individual note. This will represent the new note:

var addNote = (title, body) => {
var notes [1;
var note = {

}

}i

[170]

Node Fundamentals — Part 2 Chapter 3

On that note, we'll have the two properties: a title and a body. Now, title can be set
equal to the title variable, but, as we know, inside ES6, we can simply remove it when
both values are the same; so we'll add title and body as shown here:

var addNote = (title, body) => {
var notes [1;
var note = {
title,
body
bi
bi

Now we have the note and the notes array.

Adding notes to the notes array

The next step in the process of adding notes will be to add the note to the notes array. The
notes.push method will let us do just that. The push method on an array lets you pass in
an item, which gets added to the end of the array, and in this case, we'll pass in the note
object. So we have an empty array, and we add our one item, as shown in the following
code; next, we push it in, which means that we have an array with one item:

var addNote = (title, body) => {
var notes [1;
var note = {
title,
body
bi

notes.push (note) ;

bi

The next step in the process will be to update the file. Now, we don't have a file in place, but
we can load an fs function and start creating the file.

[171]

Node Fundamentals — Part 2 Chapter 3

Up above the addNote function, let's load in the £s module. I'll create a const variable
called £s and set it equal to the return result from require, and we'll require the £s
module, which is a core node module, so there's no need to install it using NPM:

const fs = require('fs');
With this in place, we can take advantage of fs inside the addNote function.

Right after we push our item on to the notes array, we'll call £s.writeFileSync, which
we've used before. We know we need to pass in two things: the file name and the content
we want to save. For the file, I'll call, notes-data.JsoN, and then we'll pass in the content
to save, which in this case will be the st ringify notes array, which means we can call
JSON.stringify passing in notes:

notes.push (note) ;
fs.writeFileSync ('notes—-data.json', JSON.stringify (notes));

We could have broken JSON. stringfy (notes) out into its own variable
and referenced the variable in the above statement, but since we'll only be
using it in one place, I find this is the better solution.

At this point, when we add a new note, it will update the notes-data.Json file, which
will be created on the machine since it does not exist, and the note will sit inside it. Now, it's
important to note that currently every time you add a new note, it will wipe all existing
ones because we never load in the existing ones, but we can get started testing that this note
works as expected.

I'll save the file, and over inside of Terminal, we can run this file using node app.js. Since
we want to add a note, we will be using that add command which we set up, then we'll
specify our title and our body. The tit1le flag can get set equal to secret, and for the body
flag, I'll set it equal to the Some body here string, as shown here:

node app.js add —--title=secret --body="Some body here"

[172]

Node Fundamentals — Part 2 Chapter 3

Now, when we run this command from Terminal, we'll see what we'd expect:

notes-node — -bash — 108x29

0@

Gary:playground Gary$ cd ..
Gary:notes-node Gary$ node app.js add --title=secret --body="Some body here"

Starting app.js
Starting notes.js
Command: add
Yargs { _: ['add' 1,
help: false,
version: false,
title: 'secret',
body: 'Some body here',
'$8': 'app.js' }
Gary:notes-node Gary$ D

[173]

Node Fundamentals — Part 2 Chapter 3

As shown in the preceding screenshot, we see a couple of the file commands we added: we
see that the add command was executed, and we have our Yargs arguments. The title and
body arguments also show up. Inside Atom, we also see that we have a new notes-

data. json file, and in the following screenshot, we have our note, with the secret title

and the some body here body:

[NN | 4] notes-data.json — ~/Desktop/notes-node
Project app.js x notes.js x notes-aata.son x Jsonjs o
~ [notes-node [{"title":"secret","body" :"Some body hcrc"}]|
> M node_modules
~ [l playground
E] json js
B) notes.json
B .DS_Store
B appis

|-E] greetings.txt
B notes jg

[El package-iockjson

B package.json

LF UTF-8 JSON [J Ofiles

notes-data.json 1:45

This is the first step in wiring up that addNote function. We have an existing notes file and
we do want to take advantage of these notes. If notes already exist, we don't want to simply
wipe them every time someone adds a new note. This means that in notes. js, earlier at
the beginning of the addNote function, we'll fetch those notes.

Fetching new notes

I'll add code for fetching new notes where I define the notes and note variables. As shown
in the following code, we'll use fs.readFileSync, which we've already explored. This will
take the filename, in our case, notes-data.JSON. Now, we will want to store the return
value from readFileSync on a variable; I'll call that variable, notesString:

var notesString = fs.readFileSync('notes-data.json');

[174]

Node Fundamentals — Part 2 Chapter 3

Since this is the string version, we haven't passed it through the JSON.parse method. So, I
can set notes (the variable we defined earlier in addNote function) equal to the return
value from the JSON.parse method. Then JSON.parse will take the string from the file we
read and it will parse it into an array; we could pass in notesstring just like this:

notes = JSON.parse (notesString);

With this in place, adding a new note is no longer going to remove all of the notes that were
already there.

Over in Terminal, I'll use the up arrow key to load in the last command, and I'll navigate
over to the title flag and change it to secret2 and rerun the command:

node app.js add —--title=secret2 —--body="Some body here"

In Atom, this time you can see we now have two notes inside of our file:

[NN | 4] notes-data.json — ~/Desktop/notes-node

Project app.js X notes)s X notes-datason x jsonjs x

~ [notes-node [{"title":"secret","body":"Some body here"},{"title":"secret2","body":"Some body here"}]
> M node_modules
~ [l playground
B jsonje
B) notes.json
[B) .ps_store
B appis
[E] greetings.txt

B notes jg
B) package-lock.json

B package.json

LF UTF-8 JSON [J Ofiles

notes-data.json 1:60

We have an array with two objects; the first one has the title of secret and the second one
has the title of secret2, which is brilliant!

[175]

Node Fundamentals — Part 2 Chapter 3

Trying and catching code block

Now, if the notes-data. json file does not exist, which it won't when the user first runs
the command, the program will crash, as shown in the following code output. We can prove
this by simply rerunning the last command after deleting the note-data. JSON file:

[NON) "7 notes-node — -bash — 108x29

Gary:notes-node Gary$ node app.js add --title=secret2 --body="Some body here"
Starting app.js
Starting notes.js
Command: add
Yargs { _: ['add'],
help: false,
version: false,
title: 'secret2',
body: 'Some body here',
'$8': 'app.js' }
fs.js:663
return binding.open(pathModule.toNamespacedPath(path),
A

Error: ENOENT: no such file or directory, open 'notes-data.json’'
at Object.fs.openSync (fs.js:663:18)
at Object.fs.readFileSync (fs.js:56B8:33)
at Object.addNote (/Users/Gary/Desktop/notes-node/notes.js:12:24)
at Object.<anonymous> (/Users/Gary/Desktop/notes—node/app.js:15:9)
at Module._compile (module.js:660:30)
at Object.Module._extensions..js (module.js:671:18)
at Module.load (module.js:573:32)
at tryModuleLoad (module.js:513:12)
at Function.Module._load (module.js:565:3)
at Function.Module.runMain (module.js:761:18)
Gary:notes-node Gary$

Right here, you can see we're actually getting a JavaScript error, no such file or directory;
it's trying to open up the notes-data. JsoN file, but without much success. To fix this,
we'll use a try-catch statement from JavaScript, which hopefully you've seen in the past.
To brush up this, let's go over it really quick.

[176]

Node Fundamentals — Part 2 Chapter 3

To create a t ry-catch statement, all you do is you type t ry, which is a reserved keyword,
and then you open and close a set of curly braces. Inside the curly braces is the code that
will run. This is the code that may or may not throw an error. Next, you'll specify the catch
block. Now, the catch block will take an argument, an error argument, and it also has a
code block that runs:

try{
} catch (e) |
}

This code will run if and only if one of your errors in t ry actually occurs. So, if we load the
file using readrilesync and the file exists, that's fine, catch block will never run. If it
fails, catch block will run and we can do something to recover from that error. With this in
place, all we'll do is move the noteString variable and the JSON. parse statements into
try, as shown here:

try{
var notesString = fs.readFileSync ('notes-data.json');
notes = JSON.parse (notesString);

} catch (e) {
}

That's it; nothing else needs to happen. We don't need to put any code in catch, although
you do need to define the catch block. Now, let's take a look at what happens when we run
the whole code.

The first thing that happens is that we create our static variables—nothing special
there—then we try to load in the file. If the notesString function fails, that is fine because
we already defined notes to be an empty array. If the file doesn't exist and it fails, then we
probably want an empty array for notes anyways, because clearly there are no notes, and
there's no file.

Next up, we'll parse that data into notes. There is a chance that this will fail if there's invalid
data in the notes-data. JSON file, so the two lines can have problems. By putting them in
try-catch, we're basically guaranteeing that the program isn't going to work
unexpectedly, whether the file does or doesn't exist, but it contains corrupted data.

[177]

Node Fundamentals — Part 2 Chapter 3

With this in place, we can now save notes and rerun that previous command. Note that I
do not have the notes-data file in place. When I run the command, we don't see any
errors, everything seems to run as expected:

[NON) "7 notes-node — -bash — 108x29

title: 'secret2',
body: 'Some body here',
'$8': 'app.js' }
fs.js5:663
return binding.open(pathModule.toNamespacedPath(path),
LY

Error: ENOENT: no such file or directory, open 'notes-data.json’'
at Object.fs.openSync (fs.js5:663:18)
at Object.fs.readFileSync (fs.js:56B8:33)
at Object.addNote (/Users/Gary/Desktop/notes-node/notes.js:18:24)
at Object.<anonymous> (/Users/Gary/Desktop/notes—node/app.js:15:9)
at Module._compile (module.js:666:38)
at Object.Module._extensions..js (module.js:671:10)
at Module.load (module.js:573:32)
at tryModulelLoad (module.js:513:12)
at Function.Module._load (module.js:585:3)
at Function.Module.runMain (module.js:761:18)
Gary:notes-node Gary$ node app.js add --title=secret2 --body="Some body here"
Starting app.js
Starting notes.js
Command: add
Yargs { _: ['add' 1,
help: false,
version: false,
title: 'secret2',
body: 'Some body here',
'$6': 'app.js' }
Gary:notes-node Gary$ D

When you now visit Atom, you can see that the notes-data file does indeed exist, and the
data inside it looks great:

[178]

Node Fundamentals — Part 2 Chapter 3

e0e [« Project — ~/Desktop/notes-nade
Project app.js X notes.js X notes-datafson x jsonjs o
~ [notes-node 1 [{"title":"secret2","body":"Some body here"}]
> M node_meodules
~ [l playground
E] json js
B) notes.json
B .DS_Store
B appis

|-E] greetings.txt
B notes jg

[El package-iockjson

B package.json

notes-datajson 1:1 LF UTF-8 JSON [9) Ofiles

This is all we need to do to fetch the notes, update the notes with the new note, and finally
save the notes to the screen.

Now, there is still a slight problem with addNote. Currently, addNote allows for duplicate
titles; I could already have a note in the JSON file with the title of secret. I can come along
and try to add a new note with the title of secret and it will not throw an error. What I'd
like to do is to make the title unique, so that if there's already a note with that title, it will
throw an error, letting you know that you need to create a note with a different title.

Making the title unique

The first step to make the title unique will be to loop through all of the notes after we load
them in and check whether there are any duplicates. If there are duplicates, we'll not call the
following two lines:

notes.push (note) ;
fs.writeFileSync ('notes-data.json', JSON.stringify (notes));

[179]

Node Fundamentals — Part 2 Chapter 3

If there are no duplicates then it's fine, we will call both of the lines shown in the preceding
code block, updating the notes-data file.

Now, we'll be refactoring this function down the line. Things are getting a little wonky and
a little out of control, but for the moment, we can add this functionality right into the
function. Let's go ahead and make a variable called duplicateNotes.

The duplicateNotes variable will eventually store an array with all of the notes that
already exist inside the notes array that have the title of the note you're trying to create.
Now, this means that if the duplicateNotes array has any items, that's bad. This means
that the note already exists and we should not add the note. The duplicateNotes variable
will get set equal to a call to notes, which is our array of notes.filter:

var duplicateNotes = notes.filter();

The filter method is an array method that takes a callback. We'll use an arrow function,
and that callback will get called with the argument. In this case, it will be the singular
version; if [have an array of notes, it will be called with an individual note:

var duplicateNotes = notes.filter ((note) => {

)i

This function gets called once for every item in the array, and you have the opportunity to
return either true or false. If you return true, it will keep that item in the array, which will
eventually get saved into duplicateNotes. If you return false, the new array it generates
will not have that item inside duplicateNotes variable. All we want to do is to return true

if the titles match, which means that we can return note.title === title, as shown
here:
var duplicateNotes = notes.filter ((note) => {
return note.title === title;

)i

If the titles are equal, then the preceding return statement will result as true and the item
will be kept in the array, which means that there are duplicate notes. If the titles are not
equal, which is most likely the case, the statement will result as false, which means that
there are no duplicate notes. Now, we can simplify this a little more using arrow functions.

[180]

Node Fundamentals — Part 2 Chapter 3

Arrow functions actually allow you to remove the curly braces if you only
have one statement.

I'll use the arrow function, as shown here:

var duplicateNotes = notes.filter ((note) => note.title === title);

Here, I have deleted everything except note.title === title and added this in front of
the arrow function syntax.

This is perfectly valid using ES6 arrow functions. You have your arguments on the left, the
arrow, and on the right, you have one expression. The expression doesn't take a semicolon
and it's automatically returned as the function result. This means that the code we have here
is identical to the code we had earlier, only it's much simpler and it only takes up one line.

Now that we have this in place, we can go ahead and check the length of the
duplicateNotes variable. If the length of duplicateNotes is greater than 0, this means
that we don't want to save the note because a note already exists with that title. If it is 0,
we'll save the note.

if (duplicateNotes.length === 0) {
}

Here, inside the if condition, we're comparing the notes length with the number zero. If
they are equal, then we do want to push the note onto the notes array and save the file. I'll
cut the following two lines:

notes.push (note) ;
fs.writeFileSync ('notes-data.json', JSON.stringify (notes));

Let's paste them right inside of the i f statement, as shown here:

if (duplicateNotes.length === 0) {
notes.push (note) ;
fs.writeFileSync ('notes—-data.json', JSON.stringify (notes));

}

If they're not equal, that's okay too; in that case we'll do nothing.

[181]

Node Fundamentals — Part 2 Chapter 3

With this in place, we can now save our file and test this functionality out. We have our
notes—data. json file, and this file already has a note with a title of secret2. Let's rerun

the previous command to try to add a new note with that same title:

node app.js add —--title=secret2 --body="Some body here"

0] [] | notes-node — -bash — 108=29

Gary:notes-node Gary$ node app.js add --title=secret2 --body="Some body here"
Starting app.js
Starting notes.js
Command: add
Yargs { _: ['add' 1,
help: false,
version: false,
title: 'secret2',
body: 'Some body here',
'$8': 'app.js' }
Gary:notes-node Gary$ D

[182]

Node Fundamentals — Part 2 Chapter 3

You're in Terminal, so we'll head back into our JSON file. You can see right here that we still
just have one note:

[NN | 4] notes-data.json — ~/Desktop/notes-node
Project app.js X notesjs X notes-datafson x jsonjs o
~ [notes-node 1 [{"title":"secret2","body":"Some body here"}H|

> M node_modules
~ [playground
E] json js
B notesjson
B .DS_Store
B appis

|-E] greetings.txt

B notes jg
B) package-lock.json

|-E] package.json

notes-datajson 1:46 LF UTF-8 JSON [9) Ofiles

Now all the titles inside of our application will be unique, so we can use these titles to fetch
and delete notes.

[183]

Node Fundamentals — Part 2 Chapter 3

Let's go ahead and test that other notes can still be added. I'll change the title flag from
secret?2 to secret, and run that command:

node app.js add —--title=secret —--body="Some body here"

notes-node — -bash — 108x29

[JoN |
Gary:notes-node Gary$ node app.js add --title=secret --body="Some body here"
Starting app.js
Starting notes.js
Command: add
Yargs { _: ['add'],
help: false,
version: false,
title: 'secret',
body: 'Some body here',
'$8': 'app.js' }
Gary:notes-node Gary$ D

[184]

Node Fundamentals — Part 2 Chapter 3

Inside our notes-data file, you can see both notes show up:

[NN | 4] notes-data.json — ~/Desktop/notes-node

Project app.js X notes)s X notes-datason x jsonjs x

~ [notes-node [{"title":"secret2","body":"Some body here"},{"title":"secret","body":"Some body here"}]
> M node_modules
~ [l playground
B jsonje
B) notes.json
[B) .ps_store
B appis

|-E] greetings.txt

B notes jg
B) package-lock.json

|-E] package.json

LF UTF-8 JSON [J Ofiles

notes-data.json 1:47

As I mentioned earlier, next we will be doing some refactoring, since the code that loads the
file, and the code that saves the file, will both be used in most of the functions we have
defined and/or will define (that is, the getA11, getNote and removeNote functions).

Refactoring

In the previous section, you created the addNote function, which works well. It starts by
creating some static variables, then we fetch any existing notes, we check for duplicates, and
if there are none, we push it onto the list, and then we save the data back into the filesystem.

[185]

Node Fundamentals — Part 2 Chapter 3

The only problem is that we'll be doing a lot of these steps over and over again for every
method. For example, with getAl1, the idea is to fetch all of the notes, and send them back
to app. js so it can print them to the screen for the user. The first thing we'll to do inside of
the getAl1 statement is have the same code; we'll have our t ry-catch block to fetch the
existing notes.

Now, this is a problem because we'll be repeating code throughout the application. It will
be best to break out the fetching of notes and the saving of notes into separate functions that
we can call in multiple locations.

Moving functionality into individual functions

To resolve the problem, I'd like to get started by creating two new functions:

e fetchNotes

® saveNotes

The first function, fetchNotes, will be an arrow function, and it will not to take any
arguments since it will be fetching notes from the filesystem, as shown here:

var fetchNotes = () => {
}i

The second function, saveNotes, will need to take an argument. It will need to take the
notes array you want to save to the filesystem. We'll set it equal to an arrow function, and
then we'll provide our argument, which I will name notes, as shown here:

var saveNotes = (notes) => {
}i

Now that we have these two functions, we can go ahead and start moving some of the
functionality from addNote up into the individual functions.

Working with fetchNotes

First up, let's do fetchNotes, which will need the following t ry-catch block.

[186]

Node Fundamentals — Part 2 Chapter 3

I'll actually cut it out of addNote and paste it in the fet chNotes function, as shown here:

var fetchNotes = () => {
try{
var notesString = fs.readFileSync('notes-data.json');
notes = JSON.parse (notesString);

} catch (e) {

’

This alone is not enough, because currently we don't return anything from the function.
What we want to do is to return the notes. This means that instead of saving the result from
JSON. parse onto the notes variable, which we haven't defined, we'll simply return it to
the calling function, as shown here:

var fetchNotes = () => {
try{
var notesString = fs.readFileSync('notes-data.json');

return JSON.parse (notesString);
} catch (e) {

’

So, if I call fetchNotes in the addNote function, shown as follows, I will get the notes
array because of the return statement in the preceding code.

Now, if there are no notes, maybe there's no file at all; or there is a file, but the data isn't
JSON, we can return an empty array. We'll add a return statement inside of catch, as
shown in the following code block, because remember, catch runs if anything inside try
fails:

var fetchNotes = () => {
try{
var notesString = fs.readFileSync('notes-data.json');

return JSON.parse (notesString);
} catch (e) {
return [];

[187]

Node Fundamentals — Part 2 Chapter 3

Now, this lets us simplify addNote even further. We can remove the empty space and we
can take the array that we set on the notes variable and remove it and instead call
fetchNotes, as shown here:

var addNote = (title, body) => {
var notes = fetchNotes();
var note = {
title,
body

}i

With this in place, we now have the exact same functionality we had before, but we have a
reusable function, fetchNotes, which we can use in the addNote function to handle the
other commands that our app will support.

Instead of copying code and having it in multiple places in your file, we've broken it into
one place. If we ever want to change how this functionality works, whether we want to
change the filename or some of the logic such as the t ry-catch block, we can change it
once instead of having to change it in every function we have.

Working with saveNotes

Now, the same thing will go for saveNotes just as in the case of the fetchNotes function.
The saveNotes function will take the notes variable and it will say this using
fs.writeFileSync. I will cut out the line in addNote that does this (that is,
fs.writeFileSync ('notes-data.json', JSON.stringfy (notes));)and pasteitin
the saveNotes function, as shown here:

var saveNotes = (notes) => {
fs.writeFileSync ('notes-data.json', JSON.stringify (notes));

ri

Now, saveNotes doesn't need to return anything. In this case, we'll copy the line in
saveNotes and then call saveNotes in the if statement of the addNote function, as
shown in the following code:

if (duplicateNotes.length === 0) {
notes.push (note) ;
saveNotes () ;

}

This might seem like overkill, we've essentially taken one line and replaced it with a
different line, but it is a good idea to start getting in the habit of creating reusable functions.

[188]

Node Fundamentals — Part 2 Chapter 3

Now, calling saveNotes with no data is not going to work, we want to pass in the notes
variable, which is our notes array defined earlier in the saveNotes function:

if (duplicateNotes.length === 0) {
notes.push (note) ;
saveNotes (notes) ;

}

With this in place, the addNote function should now work as it did before we did any of
our refactoring.

Testing the functionality

The next step in the process will be to test this out by creating a new note. We already have
two notes, with a title of secret and a title of secret2 in notes-data. json, let's make a
third one using the node app.js command in Terminal. We'll use the add command and

pass in a title of to buy and a body of food, as shown here:

node app.js add —--title="to buy" —--body="food"

This should create a new note, and if I run the command, you can see we don't have any
obvious errors:

] [] notes-node — -bash — 108x29

Gary:notes-node Gary$ node epp.js add ——title="to buy" ——body="food"
Starting app.is
Starting notes.js
Command: add
Yargs { _: ['add' 1],
e

body: 'food’,
'$0': ‘app.js' }
Gary:notes-node Gary$

[189]

Node Fundamentals — Part 2 Chapter 3

Inside of our notes-data. json file, if I scroll to the right, we have our brand new note as a
title of to buy and a body of food:

[NN | 4] notes-data.json — ~/Desktop/notes-node
Project app.js X notes.js X notes-datafson x jsonjs o
~ Il notes-node 1 ody hcrc"},{r'titlc":"sccrct","body":"Somc body here"},{"title":"to buy","body":"food"}]

> M node_modules
~ [playground
E] json js
B notesjson
B .DS_Store
B appis

|-E] greetings.txt

B notes jg
B) package-lock.json

|-E] package.json

notes-datajson 1:47 LF UTF-8 JSON [9) Ofiles

So, everything is working as expected even though we've refactored the code. Now, the
next thing I want to do inside addNote is take a moment to return the note that's being
added, and that will happen right after saveNotes comes back. So we'll return note:

if (duplicateNotes.length === 0) {
notes.push (note) ;
saveNotes (notes) ;
return note;

[190]

Node Fundamentals — Part 2 Chapter 3

This note object will get returned to whoever called the function, and in this case, it will get
returned to app. s, where we called it in the i f else block of the add command in the
app . js file. We can make a variable to store this result and we can call it note:

if (command === 'add'")
var note = notes.addNote (argv.title, argv.body);

If note exists, then we know that the note was created. This means that we can go ahead
and print a message, like Note created, and we can print the note title and the note
body. Now, if note does not exist, if it's undefined, this means that there was a duplicate
and that title already exists. If that's the case, I want you to print an error message such as
Note title already in use.

There's a ton of different ways you could do this. The goal, though, is to
print two different messages depending on whether or not a note was
returned.

Now, inside addNote, if the duplicateNotes if statement never runs, we don't have an
explicit call to return. But as you know, in JavaScript, if you don't call return, then
undefined automatically is returned. This means that if duplicateNotes.length is not
equal to zero, undefined will be returned and we can use that as the condition for our
statement.

The first thing I'll do here is to create an i £ statement, right next to the note variable we
defined in app. js:

if (command === 'add') {
var note = notes.addNote (argv.title, argv.body);
if (note) {

}

This will be an object if things went well, and it will be undefined if things went poorly.
This code in here is only ever going to run if it's an object. The Undefined result will fail
the condition inside of JavaScript.

Now, if the note was created successfully, what we'll do is to print a little message to the
screen, using the following console. log statement:

if (note) {
console.log('Note created');

}

[191]

Node Fundamentals — Part 2 Chapter 3

If things went poorly, inside the else clause, we can call console.log, and we can print
something like Note title taken, as shown here:

if (note) {

console.log('Note created');
} else {

console.log('Note title taken');
3

Now, the other thing that we want to do if things went well is print the notes content. I'll
do this by first using console. log to print a couple of hyphens. This will create a little
space above my note. Then I can use console. log twice: the first time we'll print the title,
INadd Title: as a string to show you what exactly you're seeing, then I can concatenate
the title, which we have access to in note.title, as shown in this code:

if (note) {
console.log('Note created');
console.log('-=");
console.log('Title: ' + note.title);

Now, the preceding syntax uses an ES5 syntax; we can swap this out with an ES6 syntax
using what we've already talked about: template strings. We'll add Tit1le, a colon, and then
we can use our dollar sign with our curly braces to inject the note.title variable, as
shown here:

console.log(' Title: ${note.title}")

Similarly, I'll add note.body after this to print out the body of the note. With this in place,
the code should look like:

if (command === 'add') {

var note = note.addNote (argv.title, argv.body);

if (note) {
console.log('Note created');
console.log('-—-");
console.log (' Title: ${note.title}");
console.log('Body: ${note.body});

} else {
console.log('Note title taken');

[192]

Node Fundamentals — Part 2 Chapter 3

Now, we should be able to run our app and see both of the title and body notes printed. In
Terminal, I'll rerun the previous command. This will try to create a note with to buy, which
already exists, so we should get an error message, and right here you can see Note title

taken:

0] [] | notes-node — -bash — 108=29

Gary:notes-node Gary$ node app.js add —-title="to buy" --body="food"
Starting app.js
Starting notes.js
Command: add
Yargs { _: ['add' 1,
help: false,
version: false,
title: 'to buy',
body: ‘'food',
'$8': 'app.js' }
Note title taken
Gary:notes-node Gary$ D

[193]

Node Fundamentals — Part 2 Chapter 3

Now, we can rerun the command, changing the title to something else, such as to buy
from store. This is a unique note title so the note should get created without any
problems:

node app.js add —--title="to buy from store" —--body="food"

0] [] | notes-node — -bash — 108=29

Gary:notes-node Gary$ node app.js add --title="to buy from store" --body="food"
Starting app.js
Starting notes.js
Command: add
Yargs { _: ['add' 1,
help: false,
version: false,
title: 'to buy from store',
body: ‘'food',
'$8': 'app.js' }
Note created
Title: to buy from store
Body: food

Gary:notes-node Gary$ D

As shown in the preceding output, you can see that we get just that: we have our Note
created message, our little spacer, and our title along with the body.

The addNote command is now complete. We have an output when the command actually
finishes, and we have all the code that runs behind the scenes to add the note to the data
that gets stored in our file.

[194]

Node Fundamentals — Part 2 Chapter 3

Summary

In this chapter, you learned that parsing in process.argv can be a real pain. We would
have to write a lot of manual code to parse out those hyphens, the equal signs, and the
optional quotes. However, yargs can do all of that for us and it puts it on a really simple
object we can access. You also learned how to work with JSON inside Node.js.

Next, we filled out the addNote function. We're able to add notes using the command line,
and we're able to save those notes into a JSON file. Finally, we pulled out a lot of the code
from addNote into separate functions, fetchNotes and saveNotes, which are now
separate, and they're able to be reused throughout the code. When we start filling out the
other methods, we can simply call fetchNotes and saveNotes instead of having to copy
the contents over and over again to every new method.

In the next chapter, we'll continue our journey on node fundamentals. We'll explore some
more concepts related to node, such as debugging; we'll work on the read and remove
notes commands. Apart from this, we'll also learn about the advanced features of yargs and
the arrow function.

[195]

Node Fundamentals — Part 3

We start adding support for all the other commands inside of the notes application. We'll
take a look at how we can create our read command. The read command will be
responsible for fetching the body of an individual note. It will fetch all the notes and print
them to the screen. Now, aside from all of that, we'll be looking at debugging broken apps,
and we'll look at some new ES6 features. You'll learn how to use the built-in Node
debugger.

Then, you will learn a little bit more about how we can configure yargs for the command-
line interface applications. We'll learn how to set up the commands, their descriptions, and
the arguments. We'll be able to set various properties on the arguments, for example,
whether or not they're required, and others.

Removing a note

In this section, you will write the code for removing a note when someone uses that remove
command, and they pass in the title of the note they want to remove. In the previous
chapter, we already created some utility functions that help us with fetching and saving
notes, so the code should actually be pretty simple.

Using the removeNote function

The first step in the process is to fill out the removeNote function, which we defined in the
previous chapters, and this will be your challenge. Let's remove console. log from the
removeNote function in the notes. js file. You only need to write three lines of code to get
this done.

Node Fundamentals — Part 3 Chapter 4

Now, the first line will fetch the notes, then the job will be to filter out the notes, removing
the one with title of argument. That means we want to go through all of the notes in the
notes array, and if any of them have a title that matches the title we want to remove, we
want to get rid of them. And this can be done using the notes. filter function we used
earlier. All we have to do is switch the equality statement in the duplicateNotes function
from equals to not equals, and this code will do just that.

It will go through the notes array. Every time it finds a note that doesn't match the title it
will keep it, which is what we want, and if it does find the title it will return false and
remove it from the array. And then we will add the third line, which is to save the new
notes array:

var removeNote = (title) => {
// fetch notes
// filter notes, removing the one with title of argument
// save new notes array

}i

The preceding code lines are the only three lines you need to fill out. Don't worry about
returning anything from removeNote or filling out anything inside of app. js.

The first thing we will do for the fetchNotes line is to create a variable called notes, just
like we did in addNote in the previous chapter, and we'll set it equal to the return result
from fetchNotes:

var removeNote = (title) => {
var notes = fetchNotes();
// filter notes, removing the one with title of argument
// save new notes array

Vi

At this point our notes variable stores an array of all of the notes. The next thing we need to
do is filter our notes.

If there is a note that has this title, we want to remove it. This will be done by creating a new
variable, and I'll call this one filteredNotes. Here we'll set filteredNotes equal to the
result that will come back from notes. filter, which we already used up previously:

var removeNote = (title) => {
var notes = fetchNotes();
// filter notes, removing the one with title of argument
var filteredNotes = notes.filter();
// save new notes array

ri

[197]

Node Fundamentals — Part 3 Chapter 4

We know that notes. filter takes a function as its one and only argument, and that
function gets called with the individual item in the array. In this case it would be a note.
And we can do this all on one line using the ES6 arrow syntax.

If we have only one statement, we don't need to open and close curly
braces.

That means right here we can return true if note.title does not equal the title that's
passed into the function:

var removeNote = (title) => {
var notes = fetchNotes();
var filteredNotes = notes.filter ((note) => note.title !== title);

// save new notes array

}i

This will populate filteredNotes with all of the notes whose titles do not match the one
passed in. If the title does match the title passed in, it will not be added to filteredNotes
because of our filter function.

The last thing to do is to call saveNotes. Right here, we'll call saveNotes passing in the
new notes array which we have under the filteredNotes variable:

var removeNote = (title) => {
var notes = fetchNotes();
var filteredNotes = notes.filter ((note) => note.title !== title);

saveNotes (filteredNotes) ;
// save new notes array
}i

If we were to pass in notes, it wouldn't work as expected; we're filtering the notes out but
we're not actually saving those notes, so it will not get removed from the JSON. We need to
pass filteredNotes as shown in the preceding code. And we can test these by saving the
file and trying to remove one of our notes.

I'l try to remove secret?2 from the notes-data. json file. That means all we need to do is
run the command, which we called remove, that is specified over in app. js, (refer to the
following code image, and then it will call our function).

[198]

Node Fundamentals — Part 3 Chapter 4

I'll run Node with app. js, and we'll pass in the remove command. The only argument we
need to provide for remove is the title; there's no need to provide the body. I'll set this equal
to secret2:

node app.js remove —-title=secret2

0] [] | notes-node — -bash — 108=29

Gary:notes-node Gary$ node app.js remove --title=secret2
Starting app.js
Starting notes.js
Command: remove
Yargs { _: [‘'remove' 1,
help: false,
version: false,
title: 'secret2',
'$8': 'app.js' }
Gary:notes-node Gary$ D

As shown in the screenshot, if I hit enter you can see we don't get any output. Although we
do have the command remove printing, there is no message saying whether or not a note
was removed, but we'll add that later in the section.

[199]

Node Fundamentals — Part 3 Chapter 4

For now, we can check the data. And right here you can see secret2 is nowhere in sight:

[NN | 4] notes-data.json — ~/Desktop/notes-node
Project app.js X notes.js X notes-data.json x jsonjs o

~ [notes-node [{"title":"secret","body":"Some body here"},{"title":"to buy","body":"food"},{"title":"4

> M node_modules
~ [l playground
E] json js
B notesjson
B .DS_Store
B appis

|-E] greetings.txt
B notes jg

[El package-iockjson

B package.json

LF UTF-8 JSON [J Ofiles

notes-data.json 1:18

This means our remove method is indeed working as expected. It removed the note whose
title matched and it kept all the notes whose title was not equal to secret2, exactly what

we wanted.

Printing a message of removing notes

Now, the next thing we'll do is print a message depending on whether or not a note was
actually removed. That means app . js, which calls the removeNote function, will need to
know whether or not a note was removed. And how do we figure that out? How can we
possibly return that given the information we have in notes. js removeNotes function?

Well, we can, because we have two really important pieces of information. We have the
length of the original notes array and we have the length of the new notes array. If they're
equal then we can assume that no note was removed. If they are not equal, we'll assume
that a note was removed. And that is exactly what we'll do.

[200]

Node Fundamentals — Part 3 Chapter 4

If the removeNote function returns t rue, that means a note was removed; if it returns
false, that means a note was not removed. In the removeNotes function we can add
return, as shown in the following code. We'll check if notes. length does not equal
filteredNotes.length:

var removeNote = (title) => {
var notes = fetchNotes();
var filteredNotes = notes.filter ((note) => note.title !== title);
saveNotes (filteredNotes) ;
return notes.length !== filteredNotes.length;

}i

If they're not equal it will return t rue, which is what we want because a note was removed.
If they're equal it will return false, which is great.

Now, inside of app. js we can add a few lines in the removeNote, else 1if block to make
the output for this command a little nicer. The first thing to do is to store that Boolean. I'll
make a variable called noteRemoved and we'll set that equal to the return, result as shown
in the following code, which will either be t rue or false:

} else if (command == 'remove') {
var noteRemoved = notes.removeNote (argv.title);

}

On the next line, we can create our message, and I'll do this all on one line using the ternary
operator. Now, the ternary operator lets you specify a condition. In our case, we'll use a var
message and it will be set equal to the condition noteRemoved, which will be t rue if a note
was removed and false if it wasn't.

Now, the ternary operator can be a little confusing, but it's really useful
inside JavaScript and Node.js. The format for the ternary operator is first
we add the condition, question mark, the truthy expression to run, colon,
and then the falsy expression to run.

After the condition, we'll put a space with a question mark and a space; this is the statement
that will run if it's true. If the not eRemoved condition passes, what we want to do is set
message equal to Note was removed:

var message = noteRemoved ? 'Note was removed'

Now, if noteRemoved is false, we can specify that condition right after the colon in the
previous statement. Here, if there is no note removed we'll use the text Note not found:

var message = noteRemoved ? 'Note was removed' : 'Note not found';

[201]

Node Fundamentals — Part 3 Chapter 4

Now with this in place, we can test out our message. The last thing to do is print the
message to the screen using console.log passing in message:

var noteRemoved = notes.removeNote (argv.title);
var message = noteRemoved ? 'Note was removed' : 'Note not found';
console.log(message) ;

This lets us avoid i f statements that make our else-if clause to remove unnecessarily
complex.

Back inside of Atom we can rerun the last command, and in this case no note will get
removed because we already deleted it. And when I run it, you can see that Note not
found prints to the screen:

0] [] | notes-node — -bash — 108=29

Gary:notes-node Gary$ node app.js remove --title=secret2
Starting app.js
Starting notes.js
Command: remove
Yargs { _: ['remove'],
help: false,
version: false,
title: 'secret2',
'$8': 'app.js' }
Note not found
Gary:notes-node Gary$ D

[202]

Node Fundamentals — Part 3 Chapter 4

Now I'll remove a note that does exist; in notes—-data. json I have a note with a title of
secret as shown here:

L] @ 4 nates-datajson — ~/Dask A
Project app.js £ notes.js o rotes-data.json . 1son.js X
v B notes-nade [{"title":"secret","body":"Some body "ov'ﬂ“},{“tj.|'tl.e“:"'7. buy","body" :"food"}, {"title": "y

> [node_moduies
~ I playground
R jsonje
Bl rotes json
B Dps_stone
B spois

B greetings.

B notes js
[package-lock json

[E) package jsan

notes-gdatajson 1:49 LF UTF-8 JSON [E) Ofiles

Let's rerun the command removing the 2 from the title in Terminal. When I run this
command, you can see Note was removed prints to the screen:

LR J notes-node — -bash — 108x29

Gary:notes-node Gary$ node app.js remove --title=secret2
Starting app.is
Starting notes.js
Command: remove
Yargs { _: ['‘remove' 1,
help: false,
version: false,
title: 'secret2',
'$6': ‘app.is’' }
Note not found
Gary:notes-node Gary$ node app.js remove --title=secret
Starting app.3is
Starting notes.js
Command: remove
Yargs { _: ['remove' 1,
help: false,
version: false,
title: 'secret',
__'S8': 'app.js’' }
Note was removed
Gary:notes-node Gary$

[203]

Node Fundamentals — Part 3 Chapter 4

That is it for this section; we now have our remove command in place.

Reading note

In this section, you will be responsible for filling out the rest of the read command. Now,
the read command does have an else-if block to find in app . §s where we call getNote:

} else if (command === 'read') {
notes.getNote (argv.title);

getNote is defined over inside notes. js, even though currently it just prints out some
dummy text:

var getNote = (title) => {
console.log('Getting note', title);
}i

What you'll need to do in this section is wire up both of these functions.

First up, you will need to do something with the return value from getNote. Our getNote
function will return the note object if it finds it. If it doesn't, it will return undefined just like
we do for addNote discussed in the section Adding and saving note, in the previous chapter.

After you store that value, you'll do some printing using console. log, similar to what we
have here:

if (command === 'add') {

var note = notes.addNote (argv.title, argv.body);

if (note) {
console.log('Note created');
console.log('-—");
console.log (' Title: ${note.title}");
console.log (' Body: ${note.body});

} else {
console.log('Note title taken');

[204]

Node Fundamentals — Part 3 Chapter 4

Obviously, Note created will be something like Note read and Note title taken will
be something like Note not found, but the general flow is going to be exactly the same.
Now, once you have that wired up inside of app. js, you can move on to notes. js, filling
out the function.

Now, the function inside of notes. js isn't going to be that complex. All you need to do is
fetch the notes, like we've done in previous methods, then you're going to use

notes. filter, which we explored to only return notes whose title matches the title passed
in as the argument. Now, in our case this is either going to be zero notes, which means the
note is not found, or it's going to be one note, which means we've found the note that the
person wants to return.

Next, we do need to return that note. It's important to remember the return value from
notes. filter is always going to be an array, even if that array only has one item. What
you're going to need to do is return the first item in the array. If that item doesn't exist that's
fine, it'll return undefined, as we want. If it does exist, great, that means we found the note.
This method only requires three lines of code, one for fetching, one for filtering, and the
return statement. Now, once you have all that done we'll test it out.

Using the getNote function

Let's work on this method. Now, the first thing I'll do is fill out, inside of app. js, a variable
called note which is going to store the return value from getNote:

} else if (command === 'read') {
var note = notes.getNote(argv.title);

Now, this could be an individual note object or it could be undefined. In the next line, I can
use an if statement to print the message if it exists, or if it does not exist. I'll use i f note,
and I am going to attach an else clause:

} else if (command === 'read') {
var note = notes.getNote(argv.title);
if (note) {
} else {

}

[205]

Node Fundamentals — Part 3 Chapter 4

This e1se clause will be responsible for printing an error if the note is not found. Let's get
started with that first since it's pretty simple, console.log, Note not found, as shown
here:

if (note) {
} else {
console.log('Note not found');

}

Now that we have our else clause filled out we can fill out the if statement. For this, I'll
print a little message, console.log ('Note found') will get the job done. Then we can
move on to printing the actual note details, and we already have that code in place. We are

going to add the hyphenated spacer, then we have our note title and our note body as
shown here:

if (note) {
console.log
console.log
console.log
console.log
} else {
console.log('Note not found');

Note found');

")
Title: ${note.title}’);

("
("
-
("Body: ${note.body}");

}

Now that we're done with the inside of app. js, we can move into the notes. s file and
fill out the getNote method because currently it doesn't do anything with the title that gets
passed in.

Inside notes, what you needed to do was fill out those three lines. The first one is going to
be responsible for fetching the notes. We already have did that before with the fetchNotes
function in the previous section:

var getNote = (title) => {
var notes = fetchNotes();
bi

[206]

Node Fundamentals — Part 3 Chapter 4

Now that we have our notes in place we, can call notes. filter, returning all of the notes.
I'll make a variable called filteredNotes, setting it equal to notes. filter. Now, we
know that the filter method takes a function, I'll define an arrow function (=>) just like this:

var filteredNotes = notes.filter(() => {
1)

Inside the arrow function (=>), we'll get the individual note passed in, and we'll return true
when the note title, the title of the note we found in our JSON file, equals, using triple
equals, title:

var filteredNotes = notes.filter (() => {
return note.title === title;
)i

}i

This will return t rue when the note title matches and false if it doesn't. Alternatively, we
can use arrow functions, and we only have one line, as shown following, where we return
something; we can cut out our condition, remove the curly braces, and simply paste that
condition right here:

var filteredNotes = notes.filter ((note) => note.title === title);
This has the exact same functionality, only it's a lot shorter and easier to look at.

Now that we have all of the data, all we need to do is return something, and we'll return the
first item in the filteredNotes array. Next, we'll grab the first item, which is the index of
zero, and then we just need to return it using the return keyword:

var getNote = (title) => {
var notes = fetchNotes();
var filteredNotes = notes.filter ((note) => note.title === title);

return filteredNotes[0];
bi

Now, there is a chance that filteredNotes, the first item, doesn't exist, and that's fine, it's
going to return undefined, in which case our else clause will run, printing Note not
found. If there is a note, great, that's the note we want to print, and over in app. js we do
just that.

[207]

Node Fundamentals — Part 3 Chapter 4

Running the getNote function

Now that we have this in place we can test out this brand new functionality inside of
Terminal by running our app using node app.js.I'll use the read command, and I'll pass
in a title equal to some string that I know does not exist inside of a title in the notes—
data.json file:

node app.js read —--title="something here"

When I run the command, we get Note not found, as shown here, and this is exactly
what we want:

0] [] | notes-node — -bash — 108=29

Gary:notes-node Gary$ node app.js read --title="something here"
Starting app.js
Starting notes.js
Command: read
Yargs { _: ['read' 1,
help: false,
version: false,
title: 'something here'
'$8': 'app.js' }
Note not found
Gary:notes-node Gary$ D

Now, if I do try to fetch a note where the title does exist, I would expect that note to come
back.

[208]

Node Fundamentals — Part 3 Chapter 4

In the data file I have a note with a title of to buy; let's try to fetch that one. I'll use the up
arrow key to populate the previous command and replace the title with to space, buy,
and hit enter:

900 notes-node — -bash — 108x29

Gary:notes-node Gary$ node app.js read --title="to buy"
Starting app.js
Starting notes.js
Command: read
Yargs { _: ['read' 1,
help: false,
version: false,
title: '"to huy',
'$8': 'app.js' }
Note found

Title: to buy
Body: food
Gary:notes-node Gary$ [

As shown in the previous code, you can see Note found prints to the screen, which is
fantastic. Following Note found we have our spacers and following that we have the title,
which is to buy, and the body, which is food, exactly as it appears inside of the data file.
With this in place, we are done with the read command.

The DRY principle

Now, there is one more thing I want to tackle before we wrap up this section. Inside app. js
we now have the same code in two places. We have the space or title body in the add
command as well as in the read command:

if (command === 'add') {
var note = notes.addNote (argv.title, argv.body);
if (note) {
console.log('Note created');
console.log('-—-");

[209]

Node Fundamentals — Part 3 Chapter 4

console.log(' Title: ${note.title}");
console.log (' Body: ${note.body}’);

} else {
console.log('Note title taken');

}

} else if (command === 'list') {
notes.getAll ();
} else if (command === 'read') {

var note = notes.getNote (argv.title);
if (note) {
console.log('Note found');
console.log (" ")
console.log(Title: ${note.title}");
console.log(Body: ${note.body}’);
} else {
console.log('Note not found');

}

When you find yourself copying and pasting code, it's probably best to break that out into a
function that both locations call. This is the DRY principle, which stands for Don't Repeat
Yourself.

Using the logNote function

In our case, we are repeating ourselves. It would be best to break this out into a function
that we can call from both places. In order to do this, all we're going to do is make a
function in notes. js called 1logNote

Now, in notes. js, down following the removeNote function, we can make that brand
new function a variable called 1ogNote. This is going to be a function that takes one

argument. This argument will be the note object because we want to print both the title and
the body. As shown here, we'll expect the note to get passed in:

var logNote = (note) => {

}i

[210]

Node Fundamentals — Part 3 Chapter 4

Now, filling out the LogNote function is going to be really simple, especially when you're
solving a DRY issue, because you can simply take the code that's repeated, cut it out, and
paste it right inside the 1ogNote function. In this case the variable names line up already, so
there is no need to change anything:

var logNote = (note) => {
console.log('——");
console.log (' Title: ${note.title}");
console.log (' Body: ${note.body}’);
}i

Now that we have the 1ogNote function in place, we can change things over in app. js. In
app . js, where we have removed the console. 1log statements we can call
notes.logNote, passing in the note object just like this:

else 1f (command === 'read') {
var note = notes.getNote (argv.title);
if (note) {
console.log('Note found');
notes.logNote (note) ;
} else {
console.log('Note not found');

}

And we can do the same thing in case of the add command i f block. I can remove these
three console. log statements and call notes.logNote, passing in note:

if (command === 'add') {
var note = notes.addNote (argv.title, argv.body);
if (note) {
console.log('Note created');
notes.logNote (note) ;
} else {
console.log('Note title taken');

}

And now that we have this in place, we can rerun our program and hopefully what we see
is the exact same functionality.

The last thing to do before we rerun the program is export the LogNote function in
exports module in notes. js file. LogNote is going to get exported and we're using the
ES6 syntax to do that:

module.exports = {
addNote,
getAll,

[211]

Node Fundamentals — Part 3 Chapter 4

getNote,
removeNote,
logNote

bi

With this in place, I can now rerun the previous command from Terminal using up and hit
enter:

node app.js read —--title="to buy"

[] [] "7 notes-node — -bash — 108x29

Gary:notes-node Gary$ node app.js read --title="to buy"
Starting app.js
Starting notes.js
Command: read
Yargs { _: ['read' 1],
help: false,
version: false,
title: 'to buy',
'$8': 'app.js' }
Note found

Title: to buy
Body: food
Gary:notes-node Gary$ D

As shown, we get Note found printing to the screen, with the title and the body just like
we had before. I'm also going to test out the add command to make sure that one's working,
node app.js add; we will use a title of things to do and a body of go to post office:

node app.js add —--title="things to do" —--body="go to post office"

[212]

Node Fundamentals — Part 3 Chapter 4

Now, when I hit enter, we would expect the same log to print as it did before for the add
command, and that's exactly what we get:

0] [] | notes-node — -bash — 108=29

Gary:notes-node Gary$ node app.js add --title="things to do" --body="go to post office"
Starting app.js
Starting notes.js
Command: add
Yargs { _: ['add' 1,
help: false,
version: false,
title: 'things to do',
body: 'go to post office',
'$8': 'app.js' }
Note created

Title: things to do
Body: go to post office
Gary:notes-node Gary$ D

Note created prints, we get our spacer, and then we get our title and our body.

In the next section, we're going to cover one of the most important topics in the book; which
is debugging. Knowing how to properly debug programs is going to save you literally
hundreds of hours over your Node.js career. Debugging can be really painful if you don't
have the right tools, but once you know how it's done, it really isn't that bad and it can save
you a ton of time.

Debugging

In this section, we're going to use the built-in debugger, which can look a little complex
because it's run inside of the command line. That means that you have to use the command-
line interface, which is not always the most pleasant thing to look at. In the next section,

though, we are going to be installing a third-party tool that uses Chrome DevTools in order
to debug your Node app. That one looks great because the Chrome DevTools are fantastic.

[213]

Node Fundamentals — Part 3 Chapter 4

Executing a program in debug mode

Before going ahead, we will learn that we do need to create a place to play around with
debugging and that's going to happen in a playground file, since the code we're going to
write is not going to be important to the notes app itself. Inside the notes app I'll make a
new file called debugging. js:

e0e [« Project — ~/Deskiop/notes-node
Project ag =+ Enter the path for the new file. jta.json x json.js x
~ [rotes-node playground/debugging. js
> M node_meodules 5 .
T e SRR,
var filteredNotes = notes.filter((note) => note.title !== title);
[E] jeonjs 44 saveNotes(filteredNotes);
B\ fctes o return notes. length !== filteredNotes. length;
B .DS_Store }'
B opeis 18 var logNote = (note) => {
[E) greetings.txt 49 console.log('');
B notes-data,son 50 console.log(Title: ${note.title}’);
il notes s 51 console. log("Body: ${note.body}");
B) package-lock.json b
) package.json 54 module.exports = {
35 addNote,
getAll,
getNote,
removeNote,
logNote
b
notesjs 58:10 LF UTF-8 JavaScript [f) Ofiles

In debugging. js we're going to start off with a basic example. We're going to make an
object called person, and on that object for the moment, we're going to set one property
name. Set it equal to your name, I'll set mine equal to the string Andrew as shown:

var person = {
name: 'Andrew'

bi

Next up we're going to set another property, but in the next line, person. age. I'll set mine
equal to my age, 25:

var person = {
name: 'Andrew'

bi

person.age = 25;

[214]

Node Fundamentals — Part 3 Chapter 4

Then we're going to add another statement that changes the name, person . name equals
something like Mike:

var person = {
name: 'Andrew'
bi
person.age = 25;
person.name = 'Mike';

Finally, we're going to console. log the person object, the code is going to look like this:

var person = {
name: 'Andrew'
bi
person.age = 25;
person.name = 'Mike';

console.log(person);

Now, we actually already have a form of debugging in this example, we have a
console. log statement.

As you're going through the Node application development process, you may or may not
have used console.log to debug your app. Maybe something's not working as expected
and you want to figure out exactly what that variable has stored inside of it. For example, if
you have a function that solves a math problem, maybe at one part in the function the
equation is wrong and you're getting a different result.

Using console.log can be a pretty great way to do that, but it's super limited. We can
view that by running it from Terminal, I'll run the following command for this:

node playground/debugging.js

When I run the file, I do get my object printed out to the screen, which is great, but, as you
know, if you want to debug something besides the person object you have to add another
console. log statement in order to do that.

[215]

Node Fundamentals — Part 3 Chapter 4

Imagine you have something like our app . js file, you want to see what command equals,
then you want to see what argv equals, it could take a lot of time to add and remove those
console. log statements. There is a better way to debug. This is using the Node debugger.
Now, before we make any changes to the project, we'll take a look at how the debugger
works inside of Terminal, and as I warned you in the beginning of the section, the built-in
Node debugger, while it is effective, is a little ugly and hard to use.

For now, though, we are going to run the app much the same way, only this time we're
going to type node inspect. Node debug is going to run our app completely differently
from the regular Node command. We're running the same file in the playground folder, it's
called debugging. js:

node inspect playground/debugging.js

When you hit enter, you should see something like this:

® [] notes-node — node « node inspect playground/debugging.js — 108x29

Gary:notes-node Gary$ node inspect playground/debugging.js

< Debugger listening on ws://127.8.8.1:9229/42a2b428-T6b8-4ed2-898a-088587e2f46T0

< For help see https://nodejs.org/en/docs/inspector

< Debugger attached.

Break on start in playground/debugging.js:1

> 1 (function , require, module, __filename, __dirname) { var person = {
2 name: ‘'Andrew’
3k

debug> D

In the output, we can ignore the first two lines. This essentially means that the debugger
was set up correctly and it's able to listen to the app running in the background.

[216]

Node Fundamentals — Part 3 Chapter 4

Next, we have our very first line break in playground debugging on line one, and right
following to it you can see line one with a little caret (>) next to it. When you first run your
app in debug mode, it pauses before it executes the first statement. When we're paused on a
line like line one, that means the line has not executed, so at this point in time we don't even
have the person variable in place.

Now, as you can see in the preceding code, we haven't returned to the command line, Node
is still waiting for input, and there are a few different commands we can run. For example,
we can run n, which is short for next. You can type n, hit enter, and this moves on to the
next statement.

The next statement we have, the statement on line one, was executed, so the person
variable does exist. Then I can use n again to go to the next statement where we declare the
person.name property, updating it from Andrew to Mike:

® [] notes-node — node « node inspect playground/debugging.js — 108=29

Gary:notes-node Gary$ node playground/debugging.js

{ name: 'Mike', age: 25 }

Gary:notes-node Gary$ node inspect playground/debugging.js

< Debugger listening on ws://127.0.8.1:9229/97e30353-1363-43ea-8255-4c9bbcc37019

< For help see https://nodejs.org/en/docs/inspector

< Debugger attached.

Break on start in playground/debugging.js:1

> 1 (function , require, module, __filename, __dirname) { var person
2 name: 'Andrew’
3k

debug> n

break in playground/debugging.js:1

» 1 (function (exports, reguire, module, __filename, __dirname) { var person
2 name: 'Andrew'’
<1 H

debug> n

break in playground/debugging.js:5
3 4
&

> 5 .age = 25;

&

7 person.name = 'Mike';
debug> D

Notice, at this point, age does exist because that line has already been executed.

[217]

Node Fundamentals — Part 3 Chapter 4

Now, the n command goes statement by statement through your entire program. If you
realize that you don't want to do that through the whole program, which could take a lot of
time, you can use c. The c command is short for Continue, and that continues to the very
end of the program. In the following code, you can see our console. log statement runs
the name Mike and the age 25:

® [] notes-node — node inspect playground/debugging.js — 108=29

Gary:notes-node Gary$ node playground/debugging.js
{ name: 'Mike', age: 25 }
Gary:notes-node Gary$ node inspect playground/debugging.js
< Debugger listening on ws://127.0.8.1:9229/97e38353-1363-43ea-8255-4c9bbec37819
< For help see https://nodejs.org/en/docs/inspector
< Debugger attached.
Break on start in playground/debugging.js:1
> 1 (function , require, module, __filename, __dirname) { var person
2 name: ‘'Andrew’
3}
debug> n
break in playground/debugging.js:1
> 1 (function (exports, require, module, __filename, __dirname) { var person
2 name: 'Andrew’
I H
debug> n
break in playground/debugging.js:5
3}
A
> 5 .age = 25;
]
7 person.name = 'Mike';
debug> ¢
< { name: 'Mike', age: 25 }
< Waiting for the debugger to disconnect...
debug> D

This is that's a quick example of how to use the debug keyword.

Now, we actually didn't do any debugging, we just ran through the program since it is a
little foreign in terms of writing these commands, such as next and continue, I decided to do
a dry run once with no debugging. You can use control + C to quit the debugger and get
returned back to Terminal.

Il use clear to clear all the output. Now that we have a basic idea about how we can
execute the program in debug mode, let's take a look at how we can actually do some
debugging.

[218]

Node Fundamentals — Part 3 Chapter 4

Working with debugging

I'll rerun the program using the up arrow key twice to return to the Node debug command.
Then, I'll run the program, and I'll hit next twice, n and n:

® [] notes-node — node « node inspect playground/debugging.js — 108=29

Gary:notes-node Gary$ node inspect playground/debugging.js
< Debugger listening on ws://127.0.0.1:9229/3d79759e-bc76-4ef8-9147-477370426584
< For help see https://nodejs.org/en/docs/inspector
< Debugger attached.
Break on start in playground/debugging.js:1
> 1 (function , reguire, module, __filename, __dirname) { var person
2 name: 'Andrew'
3k
debug> n
break in playground/debugging.js:1
» 1 (function (exports, require, module, __filename, __dirname) { var person
2 name: 'Andrew’
3}
debug> n
break in playground/debugging.js:5
3k
4
> 5 .age = 25;
&
7 person.name = 'Mike';
debug> n
break in playground/debugging.js:7
5 person.age = 25;
&
> 7 .name = 'Mike';
8
9 console.log(person);
debug> D

At this point in time, we are on line seven, that is where the line break currently is. From
here we can do some debugging using a command called repl, which stands for Read
Evaluate Print Loop. The repl command, in our case, brings you to an entirely separate
area of the debugger. When you hit it you're essentially in a Node console:

break in playground/debugging.js:7
5 person.age = 25;
6

> 7 .name = 'Mike';
8

9 console.log(person);
debug> repl
Press Ctrl + C to leave debug
> 1

[219]

Node Fundamentals — Part 3 Chapter 4

You can run any Node commands, for example, I can use console. log to print something
like test, and test prints up right there.

I can make a variable a that is equal to 1 plus 3, then I can reference a and I can see it's
equal to 4 as shown:

»var a = 1 + 3;

A |

More importantly, we have access to the current program as it sits, meaning as it was before
line seven was executed. We can use this to print out person, and as shown in the
following code, you can see the person's name is Andrew because line seven hasn't executed
and the age is 25, exactly as it appears in the program:

> person

{ name:
> i

This is where debugging gets really useful. Being able to look at the program paused at a
certain point in time is going to make it really easy to spot errors. I could do anything I
want, I could print out the person name property, and that prints Andrew to the screen, as
shown here:

> person
{ name:

> person.name

>l

Now, once again, we still have this problem. I have to hit next through the program. When
you have a really long program, there could literally be hundreds or thousands of
statements that need to run before you get to the point you care about. Obviously that is not
ideal, so we're going to look at a better way.

Let's quit repl using control + C; now we're back at the debugger.

From here we are going to make a quick change to our application in debugging. js.

[220]

Node Fundamentals — Part 3 Chapter 4

Let's say we want to pause line seven between the person age property update and the
person name property update. In order to pause, what we're going to do is run the
statement debugger:

var person = {
name: 'Andrew'
bi
person.age = 25;
debugger;
person.name = 'Mike';

console.log(person) ;

When you have a debugger statement exactly like previous, it tells the Node debugger to
stop here, which means instead of using n (next) to go statement by statement, you can use
c (continue), which is going to continue until either the program exits or it sees one of the
debugger keywords.

Now, over in Terminal, we're going to rerun the program exactly like we did before. This
time around, instead of hitting n twice, we're going to use c to continue:

@ @ nutes-node — node « node inspecl playgroundfdebugging.js — 108x29

Gary:notes-node Gary$ node inspect playground/debugging.js
< Debugger listening on ws://127.8.8.1:9229/79f3815b-a465-4f97-b365-b@77584e5acf
< For help see https://nodejs.org/en/docs/inspector
< Debugger attached.
Break on start in playground/debugging.js:l
> 1 (function , require, module, __filename, __dirname) { var person = {
Z name: 'Andrew’
I ¥
debug> c
break in playground/decbugging.js:7
5 person.age = 25;
&
> 7 H
a
9 person.name = 'Mike’';

debug>

[221]

Node Fundamentals — Part 3 Chapter 4

Now, when we first used ¢, it went to the end of the program, printing out our object. This
time around it's going to continue until it finds that debugger keyword.

Now, we can use repl, access anything we like, for example, person. age, shown in this
code:

debug> repl
Press Ctrl + C to leave debug repl
> person.age

Once we're done debugging, we can quit and continue through the program. Again, we can
use control + C to quit repl and the debugger.

All real debugging pretty much happens with the debugger keyword. You put it wherever
you want on your program, you run the program in debug mode, eventually it gets to the
debugger keyword and you do something. For example you explore some variable values,
you run some functions, or you play around with a code to find the error. No one really
uses n to print through the program, finding the line that causes the problem. That takes
way too much time and it's just not realistic.

Using debugger inside the notes application

Now that you know a little bit about the debugger, I want you to use it inside our notes
application. What we will do inside notes. js is add the debugger statement in logNote
function as the first line of the function. Then I will run the program in debug mode,
passing in some arguments that will cause 1ogNote to run; for example, reading a note,
after the note gets fetched, it's going to call logNote.

Now, once we have the debugger keyword in the 1ogNote function and run it in debug
mode with those arguments, the program should stop at this point. Once the program starts
in debug mode, we'll use ¢ to continue, and it'll pause. Next, we'll print out the note object
and make sure it looks okay. Then, we can quit repl and quit the debugger.

[222]

Node Fundamentals — Part 3 Chapter 4

Now, first we are adding the debugger statement right here:

var logNote = (note) => {
debugger;
console.log('-="');

console.log(Title: ${note.title}");
console.log(Body: ${note.body}’);
}i

We can save the file, and now we can move into Terminal; there's no need to do anything
else inside our app.

Inside Terminal we're going to run our app. js file, node debug app.Jjs, because we want
to run the program in debug mode. Then we can pass in our arguments, let's say the read
command, and I'll pass in a title, "to buy" as shown here:

node debug app.js read ——title="to buy"

In this case I have a note with the title "to buy", as shown here:

[NN | 4] notes-data.json — ~/Desktop/notes-node
Project app.js x notes.js [+] debugging.js X notes-data.json x json.js x
~ [notes-node] [{"title":"lto buy" ,"body" : " food"}, {"title":"to buy from store","body":"food"}, {"title":"

> [node_modules
v [playaround
B debugging.js
B ison.s
@ notes.json
Bl oS store
B appis

B greetings.txt
@ notes js

@ package-lock.json

@ package json

notes-data.json 1:12 LF UTF-8 JSON [£) Ofiles

[223]

Node Fundamentals — Part 3 Chapter 4

Now, when I run the preceding command, it's going to pause before that first statement
runs, this is expected:

- ® notes-node — node - node inspect app.js read --title=to buy — 108=29

Gary:notes-node Gary$ node inspect app.js read --title="to buy"

< Debugger listening on ws://127.8.8.1:9229/bkeeba57-6789-40c7-bacl-Bf1857aeelcS
< For help see https://nodejs.org/en/docs/inspector

< Debugger attached.

Break on start in app.js:1
> 1 (funetion , require, mondule, __filename, __dirname) { consnle.lng('Starting app.js');

2

3 const Ts = require('frs');

I can now use ¢ to continue through the program. It's going to run as many statements as it
takes for either the program to end or for the debugger keyword to be found, and as shown
in the following code, you can see the debugger was found and our program has stopped
on line 49 of notes. js:

® [] notes-node — node « node inspect app.js read --title=to buy — 108x29

Gary:notes-node Gary$ node inspect app.js read --title="to buy"

< Debugger listening on ws://127.0.0.1:9229/bk4eeba57-6709-40c7-bacl-8f1857aeedch

< For help see https://nodejs.org/en/docs/inspector

< Debugger attached.

Break on start in app.js:1

> 1 (function , require, module, __filename, __dirname) { console.log('Starting app.js');
2
3 const fs = require('fs');

debug> ¢

< Starting app.js

< Starting notes.js

< Command: read

< Yargs { _: ['read' 1],

< help: false,

< version: false,

< title: 'to buy',

< '$0': 'app.js' }

< Note found

break in notes.js:49
47

48 var logNote = (note) => {

>49 H

5@ console.log('--');

51 console.log(Title: ${note.title}"
debug> D

[224]

Node Fundamentals — Part 3 Chapter 4

This is exactly what we wanted to do. Now, from here, I'll go into repl and print out note
argument, and as shown in the following code, you can see we have the note with the title
of to buy and the body food:

debug> repl
Press Ctrl + C to leave debug repl

» note
{ title: , body: }
>

Now, if there was an error in this statement, maybe the wrong thing was printing to the
screen, this would give us a pretty good idea as to why. Whatever gets passed into the note
is clearly being used inside of the console. log statements, so if there was an issue with
what's printing, it's most likely an issue with what gets passed into the 1ogNote function.

Now that we've printed the note variable, we can shut down rep1l, and we can use control
+Cor quit to quit the debugger

Now we're back at the regular Terminal and we have successfully completed the debugging
inside the Node application. In the next section, we're going to look at a different way to do
the same thing, a way with a much nicer graphic user interface that I find a lot easier to
navigate and use.

Listing notes

Now that we've made some awesome progress on debugging, let's go back to the
commands for our app, because there is only one more to fill out (we have covered the add,
read, and remove commands in the chapter 3, Node Fundamentals - Part 2, and this
chapter, respectively). It's the 1ist command, and it's going to be really easy, there is
nothing complex going on in the case of the 1ist command.

Using the getAll function

In order to get started, all we need to do is fill out the list notes function, which in this case
we called getAll. The getAll function is responsible for returning every single note. That
means it's going to return an array of objects, an array of all of our notes.

[225]

Node Fundamentals — Part 3 Chapter 4

All we have to do that is to return fetchNotes, as shown here:

var getAll = () => {
return fetchNotes();

}

There's no need to filter, there's no need to manipulate the data, we just need to pass the
data from fetchNotes back through geta11l. Now that we have this in place, we can fill
out the functionality over inside of app. js.

We have to create a variable where we can store the notes, I was going to call it notes, but I
probably shouldn't because we already have a notes variable declared. I'll create another
variable, called allNotes, setting it equal to the return value from getal1l, which we know
because we just filled out returns all the notes:

else 1if (command === 'list') {
var allNotes = notes.getAll();
t

Now I can use console. log to print a little message and I'll use template strings so I can
inject the actual number of notes that are going to be printed.

Inside the template strings, I'll add Printing, then the number of notes using the $ (dollar)
sign and the curly braces, al1lNotes.length: that's the length of the array followed by
notes with the s in parenthesis to handle both singular and plural cases, as shown in the
following code block:

else 1f (command === 'list') {

var allNotes = notes.getAll();

console.log (' Printing ${allNotes.length} note(s).");
}

So, if there were six notes, it would say printing six notes.

Now that we have this in place, we have to go about the process of actually printing each
note, which means we need to call 1logNote once for every item in the allNotes array. To
do, this we'll use forEach, which is an array method similar to filter.

[226]

Node Fundamentals — Part 3 Chapter 4

Filter lets you manipulate the array by returning t rue or false to keep items or remove
items; forEach simply calls a callback function once for each item in the array. In this case
we can use it using al1Notes. forEach, passing in a callback function. Now, that callback
function will be an arrow function (=>) in our case, and it will get called with the note
variable just like filter would have. And all we'll call is notes.logNote, passing in the
note argument, which is right here:

else 1f (command === 'list') {
var allNotes = notes.getAll();
console.log (' Printing ${allNotes.length} note(s).);
allNotes.forEach ((note) => {
notes.logNote (note) ;
}) i
}

And now that we have this in place, we can actually simplify it by adding the 1ogNote call,
as shown in here:

else 1if (command === 'list') {
var allNotes = notes.getAll();
console.log (' Printing ${allNotes.length} note(s).");
allNotes.forEach ((note) => notes.logNote (note));

}

This is the exact same functionality, only using the expression syntax. Now that we have
our arrow function (=>) in place, we are calling notes. logNote once for each item in the
all notes array. Let's save the app. js file and test this out over in Terminal.

In order to test out the 1ist command, all I'll use is node app.js with the command 1ist.
There is no need to pass in any arguments:

node app.js list

[227]

Node Fundamentals — Part 3 Chapter 4

When I run this, I do get Printing 3 note(s) and thenIgetmy 3 notes to buy, to
buy from store,and things to do, as shown in the following code output, which is
fantastic:

[NON) "7 notes-node — -bash — 108x29

Gary:notes-node Gary$ node app.js list

Starting app.js

Starting notes.js

Command: 1list

Yargs { _: ['list'], help: false, version: false, '$@': 'app.js' }
Printing 3 note(s).

Title: to buy

Body: food

Title: to buy from store
Body: food

Title: things to do

Body: go to post office
Gary:notes-node Gary$

With this in place, all of our commands are now working. We can add notes, remove notes,
read an individual note, and list all of the notes stored in our JSON file.

Moving on to the next section, I want to clean up some of the commands. Inside app. js
and notes. js, we have some console. log statements that are printing out a few things
we no longer need.

At the very top of app. js, I am going to remove the console.log('Starting app.js"')
statement, making the constant s the first line.

I'll also remove the two statements: console.log('Command: ', command) and
console.log('Yargs', argv) that print the command and the yargs variable value.

[228]

Node Fundamentals — Part 3 Chapter 4

Inside notes. s, I will also remove the console.log('Stating notes.js') statement
at the very top of that file, since it is no longer necessary, putting constant £s at the top.

It was definitely useful when we first started exploring different files, but now we have
everything in place, there's no need. If I rerun the 1ist command, this time you can see it
looks a lot cleaner:

0] [] | notes-node — -bash — 108=29

Gary:notes-node Gary$ node app.js list
Printing 3 note(s).

Title: to buy

Body: food

Title: to buy from store

Body: food

Title: things to do
Body: go to post office
Gary:notes-node Gary$ D

Printing three notes is the very first line showing up. With this in place, we have done
our commands.

In the next section, we're going to take a slightly more in-depth look at how we can
configure yargs. This is going to let us require certain arguments for our commands. So if
someone tries to add a note without a title, we can warn the user and prevent the program
from executing.

[229]

Node Fundamentals — Part 3 Chapter 4

Advanced yargs

Before we get into the advanced discussion of yargs, first, I want to pull up the yargs docs
so that you at least know where the information about yargs is coming from. You can get it
by Googling npm yargs. We're going to go to the yargs package page on npm. This has the
documentation for yargs, as shown here:

® 0@ /[yuegs *

< | @ https://www.npmjs.com/package/yargs

documentation support

Meptunium, Promethium, Manganese npm Enterprise features pricing

We need your input. p make JavaScript better: Take the 2017 JavaScript Ecosystem survey »
yargs 28 npm tnstall yargs
bt pmming | cmornoe 100% [o 10,11] o 7o fotig | coe i st how? learn more

[come B s es1]

beoe published 5 days ago
Having prabilems? wanl to contribute? join our community slack, n

o . . . 10.1.1is the latest of 152 releases
Yargs be a node.js library fer hearties tryin' ter parse optstrings.

Collaborators list

£ R&

Now there is no table of contents for the yargs docs, which makes it kind of difficult to
navigate. It starts off with some examples that don't go in any particular order, and then
eventually it gets into a list of all the methods you have available, and that's what we're
looking for.

[230]

Node Fundamentals — Part 3 Chapter 4

So I'll use command + F (Ctrl + F) to search the page for methods, and as shown in the
following screenshot, we get the methods header, which is the one we're looking for:

hitps:{/www.npmjs.com/package) yargs

matheds AW

Byitsell,

require('yargs’).argv

will use the process. argv aray to construct the argv object.

You can pass in the process. argv yourself:
require('yargs'){['-x', 'l', '=y'; "2' l}.argv
or use . parse() todo the same thing: &
require('yargs’).parse(['-x', "1', "=y'; "2]}

The rest of these methods below come in just before the terminating . argv.

If you scroll down on the page, we start to see an alphabetical list of all the methods you
have access to inside of yargs. We're specifically looking for . command; this is the method
we can use to configure all four of our commands: the add, read, remove and 1ist notes:

[n "
L = c https:/iwww.npmis.com/package/vargs =
cholices: [‘xa', 's';, 'm', 'l', 'xl') methods AW
h
sargv

.command(cmd, desc, [builder], [handler])
command(cmd, desc, [module])

.command(module)

Document the commands exposed by your application,

Use desc to provide a description for each command your application accepts (the values stored in argv.). Set
desc to false tocreate a hidden d. Hidden c ds don't show up in the help output and aren't

available for completion.

Optionally, you can provide a builder object to give hints about the options that your command accepts:

We're going to specify which options they require, if any, and we can also set up things like
descriptions and help functionality.

[231]

Node Fundamentals — Part 3 Chapter 4

Using chaining syntax on yargs
Now in order to get started, we need to make some changes inside of app . js. We're going

to start with the add command (for more information, please refer to the Adding and saving
notes section in the previous chapter).

We want to add a few helpful pieces of information in argv function inside app. js, that
will:

e Let yargs verify the add command is ran appropriately, and
e Let the user know how the add command is meant to be executed

Now we are going to be chaining property calls, which means right before I access .argv I
want to call . command, and then I'll call . argv on the return value from command as
shown here:

const argv = yargs
.command ()
.argv;

Now this chaining syntax probably looks familiar if you've used jQuery, a lot of different
libraries are supported. Once we call . command on yargs, we're going to pass in three
arguments.

The first one is the command name, exactly how the user is going to type it in Terminal, in
our case it's going to be add:

const argv = yargs
.command ('add")
.argv;

Then we're going to pass another string in, and this is going to be a description of what the
command does. It is going to be some sort of English readable description that a user can
read to figure out weather that's the command that they want to run:

const argv = yargs
.command ('add', 'Add a new note')
.argv;

The next one is going to be an object. This is going to be the options object that lets us
specify what arguments this command requires.

[232]

Node Fundamentals — Part 3 Chapter 4

Calling the .help command

Now before we get into the options object, let's add one more call right after command.
We're going to call .help, which is a method, so we're going to call it as a function, and we

don't need to pass in any arguments:

const argv = yargs
.command ('add', 'Add a new note', {

)
.help()
.argv;

When we add on this help call, it sets up yargs to return some really useful information
when someone runs the program. For example, I can run the node app.js command with
the help flag. The help flag is added because we called that help method, and when I run
the program, you can see all of the options we have available:

node app.js —-help

0] [] | notes-node — -bash — 108=29

Gary:notes-node Gary$ node app.js --help
app.js [command]

Commands :
app.js add Add a new note

Options:
--version Show version number [boolean]
--help Show help [boolean]

Gary:notes-node Gary$ |:|

[233]

Node Fundamentals — Part 3 Chapter 4

As shown in the preceding output, we have one command, add Add a new note,and a
help option for the current command, help. And the same thing holds true if we run the
node app.js add command with help as shown here:

node app.js add --help

In this output, we can view all of the options and arguments for add command, which in
this case happens to be none because we haven't set those up:

0] [] | notes-node — -bash — 108=29
Gary:notes-node Gary$ node app.js add --help
app.js add

Add a new note

Options:
--version Show version number [boolean]
--help Show help [boolean]

Gary:notes-node Gary$ |:|

Adding the options object

Let's add options and arguments back inside Atom. In order to add properties, we're going
to update the options object, where the key is the property name, whether it's title or body,
and the value is another object that lets us specify how that property should work, as shown
here:

const argv = yargs
.command ('add', 'Add a new note', {
title: {
}

[234]

Node Fundamentals — Part 3 Chapter 4

})
.help()
.argv;

Adding the title

In the case of title, we would add the title on the left-hand side, and we would put our
options object on the right-hand side. Inside the title, we're going to configure three
properties describe, demand, and alias:

The describe property will be set equal to a string, and this is going to describe what is
supposed to be passed in for the title. In this case, we can just use Title of note:

const argv = yargs
.command ('add', 'Add a new note', {
title: {
describe: 'Title of note'
}
})
.help()
.argv;

Next we configure demand. It is going to tell yarg whether or not this argument is required.
demand is false by default, we'll set it to true:

const argv = yargs
.command ('add', 'Add a new note', {
title: {
describe: 'Title of note',

demand: true
}
})
.help()
.argv;

[235]

Node Fundamentals — Part 3 Chapter 4

Now if someone tries to run the add command without the title, it's going
to fail, and we can prove this. We can save app. js, and in Terminal, we
can rerun our previous command removing the help flag, and when I do
that, you see we get a warning, Missing required argument: title
as shown here:

@ L] notes-node — -bash — 108x28

Gary:notes-node Gary$ node app.js add
app.js add

Add a new note

Options:
--version Show version number [boolean]
=-=help Show help [boolean]
-=title Title of note [required]

Missing required argument: title
Gary:notes—node Gary$ [

Notice that in the output the title argument, is Title of note, which is
the describe string we used, and it's required on the right side, letting
you know that you have to provide a title when you're calling that add
command.

Along with describe and demand we are going to provide a third option, this is called
alias. The alias lets you provide a shortcut so you don't have to type —-tit1le; you can
set the alias equal to a single character like t:

const argv = yargs
.command ('add', 'Add a new note', {
title: {
describe: 'Title of note',
demand: true,
alias: 't'
t
)
.help()
.argv;

When you have done that, you can now run the command in Terminal using the new
syntax.

[236]

Node Fundamentals — Part 3 Chapter 4

Let's run our add command, node app.js add, instead of ——title. We're going to use -
t, which is the flag version, and we can set that equal to whatever we like, for example,
flag title will be the title, and —-body will get set equal to body , as shown in the
following code. Note that we haven't set up the body argument yet so there isno alias:

node app.js add -t="flag title" —--body="body"

If I run this command, everything works as expected. The flag title shows up right where it
should, even though we used the alias version which is the letter t, as shown here:

[NON) | notes-node — -bash — 108x29

Gary:notes-node Gary$ node app.js add =—t="flag title" --body="body"
Note created

Title: flag title
Body: body
Gary:notes-node Gary$ I

Adding the body

Now that we have our title configured, we can do the exact same thing for the body. We'll
specify our options object and provide those three arguments: describe, demand, and
alias for body:

const argv = yargs
.command ('add', 'Add a new note', {
title: {
describe: 'Title of note',
demand: true,
alias: 't!
}I
body: {
}
)
.help()
.argv;

[237]

Node Fundamentals — Part 3 Chapter 4

The first one is describe and that one's pretty easy. describe is going to get set equal to a
string, and in this case Body of note will get the job done:

const argv = yargs
.command ('add', 'Add a new note', {

title: {
describe: 'Title of note',
demand: true,
alias: 't!

}I

body: {

describe: 'Body of note'
}
})
.help()
.argv;

The next one will be demand, and to add a note we are going to need a body. So we'll set
demand equal to true, just like we do up previous for title:

const argv = yargs
.command ('add', 'Add a new note', {

title: {
describe: 'Title of note',
demand: true,
alias: 't!

}I

body: {

describe: 'Body of note'
demand: true
}
})
.help()
.argv;

And last but not least is the alias. The alias is going to get set equal to a single letter, I'll
use the letter b for body:

const argv = yargs
.command ('add', 'Add a new note', {

title: {
describe: 'Title of note',
demand: true,
alias: 't

}!

body: {

describe: 'Body of note'

[238]

Node Fundamentals — Part 3 Chapter 4

demand: true,
alias: 'b'
}
)
.help()
.argv;

With this in place, we can now save app. js and inside Terminal, we can take a moment to
rerun node app.js add with the help flag:

node app.js add —--help

When we run this command, we should now see the body argument showing up, and you
can even see it shows the flag version, as shown in the following output, the alias -b (Body
of note), and it is required:

[] [] | notes-node — -bash — 108x29

Gary:notes-node Gary$ node app.js add —--help
app.js add

Add a new note

Options:
--version Show version number [boolean]
--help Show help [boolean]
—--title, -t Title of note [required]
--body, -b Body of note [required]

Gary:notes-node Gary$ I

Now I'll run node app.js add passing in two arguments t. I'll set that equal to t, and b
setting it equal to b.

[239]

Node Fundamentals — Part 3 Chapter 4

When I run the command, everything works as expected:

node app.js add -t=t -b=b

[NON) | notes-node — -bash — 108=29

Gary:notes-node Gary$ node app.js add -t=t -b=b
Note created

Title: t
Body: b
Gary:notes-node Gary$ I

As shown in the preceding output screenshot, a new note was created with a title of t and a
body of b. With this in place, we've now successfully completed the setup for the add
command. We have our add command title, a description, and the block that specifies the
arguments for that command. Now we do have three more commands to add support for,
so let's get started doing that.

Adding support to the read and remove
commands

On the next line, I'll call . command again, passing in the command name. Let's do the 1ist
command first because this one is really easy, no arguments are required. Then we'll pass in
the description for the 1ist command, List all notes, as shown here:

.command('list', 'List all notes')
.help()
.argv;

Next up, we'll call command again. This time we'll do the command for read. The read
command reads an individual note, so for the description for the read command, we'll use
something like Read a note:

.command('list', 'List all notes')
.command('read', 'Read a note')
.help()

.argv;

[240]

Node Fundamentals — Part 3 Chapter 4

Now the read command does require the title argument. That means we are going to need
to provide that options object. I'll take title from add command, copy it, and paste it in
the read command options object:

.command ('list', 'List all notes')
.command ('read', 'Read a note', {
title: {
describe: 'Title of note',
demand: true,
alias: 't
}
})
.help ()
.argv;

As you probably just noticed, we have repeated code. The title configuration just got copied
and pasted into multiple places. It would be pretty nice if this was DRY, if it was in one
variable we could reference in both locations, in add and read commands.

Will call command for remove, just following where we called the command for read.
Now, the remove command will have a description. We'll stick with something simple like
Remove a note, and we will be providing an options object:

.command ('remove', 'Remove a note', {
)

Now I can add the options object identical to the read command. However, in that options
object, I'll set title equal to titleOptions, as shown here, to avoid the repetition of code:

.command ('remove', 'Remove a note', {
title: titleOptions
)

Adding the titleOption and bodyOption variables

Now I don't have the tit1eOptions object created yet so the code would currently fail, but
this is the general idea. We want to create the t it leOptions object once and reference it in
all the locations we use it, for add, read and remove command. I can take titleOptions,
and add it for read as well as for add command, as shown here:

.command ('add', 'Add a new note', {
title: titleOptions,
body: {

[241]

Node Fundamentals — Part 3 Chapter 4

describe: 'Body of note',
demand: true,
alias: 'b'
}
)
.command ('list', 'List all notes'")
.command ('read', 'Read a note', {
title: titleOptions
)
.command ('remove', 'Remove a note', {
title: titleOptions
)

Now, just previous the constant argv, I can create a constant called titleOptions, and I
can set it equal to that object that we defined for add and read command earlier, which is
describe, demand, and alias, as shown here:

const titleOptions = {

describe: 'Title of note',
demand: true,
alias: 't!

bi

We now have the titleOptions in place, and this will work as expected. We have the
exact same functionality we did before, but we now have the titleOptions in a separate
object, which follows the DRY principle we discussed in the Reading note section.

Now, we could also do the same thing for body. It might seem like overkill since we're only
using it in only one location, but if we're sticking to the pattern of breaking them out into
variables, I'll do it in the case of the body as well. Just following the titleOptions
constant, I can create the constant bodyOptions, setting it equal to the options object we
defined in the body, for add command in the previous subsection:

const bodyOptions = {
describe: 'Body of note',
demand: true,
alias: 'b'

bi

With this in place, we are now done. We have add, read, and remove, all with their
arguments set up referencing the titleObject and bodyObject variables defined.

[242]

Node Fundamentals — Part 3 Chapter 4

Testing the remove command

Let's test out the remove command in Terminal. I'll list out my notes using node app.js
list, so I can see which notes I have to remove:

node app.js list

[NON) "7 notes-node — -bash — 108x29

Gary:notes-node Gary$ node app.js list
Printing 5 note(s).

Title: to buy

Body: food

Title: to buy from store

Body: food

Title: things to do

Body: go to post office

Title: flag title
Body: body

Tehhas 2
Body: b
Gary:notes-node Gary$ D

I'll remove the note with the title t, using the node app.js remove command and our
flag "t ":

node app.js remove —-t="t"

[] [] | notes-node — -bash — 108=29

Gary:notes-node Gary$ node app.js remove —-t="t"
Note was removed
Gary:notes-node Gary$ I

[243]

Node Fundamentals — Part 3 Chapter 4

We'll remove the note with the title t, and as shown previous, Note was removed prints to
the screen. And if I use the up arrow key twice, I can list the notes out again, and you can
see the note with the title t has indeed gone:

[NON) "7 notes-node — -bash — 108x29

Gary:notes-node Gary$ node app.js remove -t="t"
Note was removed

Gary:notes-node Gary$ node app.js list

Printing &4 note(s).

Title: to buy

Body: food

Title: to buy from store

Body: food

Title: things to do

Body: go to post office

Title: flag title

Body: body
Gary:notes-node Gary$ I

Let's remove one more note using the node app.js remove command. This time we're
going to use ——title, which is the argument name, and the note we're going to remove has
the title flag title, as shown in this code:

[] [] | notes-node — -bash — 108=29

Gary:notes-node Gary$ node app.js remove --title="flag title"
Note was removed
Gary:notes-node Gary$ I

[244]

Node Fundamentals — Part 3 Chapter 4

When I remove it, it says Note was removed, and if I rerun the 1ist command, I can see
that we have three notes left, the note was indeed removed , as shown here:

[] [] | notes-node — -bash — 108=29

Gary:notes-node Gary$ node app.js remove --title="flag title"
Note was removed

Gary:notes-node Gary$ node app.js list

Printing 3 note(s).

Title: to buy

Body: food

Title: to buy from store

Body: food

Title: things to do
Body: go to post office
Gary:notes-node Gary$ I

And that is it for the notes application.

Arrow functions

In this section, you're going to learn the ins and outs of the arrow function. It's an ES6
feature, and we have taken a little look at it. Inside notes. js we used it in a few basic
examples to create methods such as fetchNotes and saveNotes, and we also passed it
into a few array methods like filter, and for each array, we used it as the callback function
that gets called once for every item in the array.

Now if you try to swap out all of the functions in a program with arrow functions, it's most
likely not going to work as expected because there are some differences between the two,
and it's really important to know what those differences are, so you can make the decision
to use a regular ES5 function or an ES6 arrow function.

[245]

Node Fundamentals — Part 3 Chapter 4

Using the arrow function

The goal in this section is to give you the knowledge to make that choice, and we'll kick
things off by creating a new file in the playground folder called arrow-function. js:

[NN | | Project — ~/Deskiop/notes-node
Project ap =+ Enter the path for the new file. ita.json x json.js x
~ [l notes-node playground/arrow—function.js

> M node_modules
¥

const argv = yargs
B os.store .command('add', 'Add a new note', {
Bl appis title: titleOptions,
body: bodyOptions
H

oammand{ '1ict! ‘lict a1l notect)

@ greetings.txt

[l notes-dataison

Inside this file, we're going to play around with a few examples, going over some of the
subtleties to the arrow function. Before we type anything inside of the file, I'll start up this
file with nodemon, so every time we make a change it automatically refreshes over in
Terminal.

If you remember, nodemon is the utility we installed in chapter 2, Node Fundamentals - Part
1. It was a global npm module. The nodemon is the command to run, and then we just pass
in the file path like we would for any other Node command. As we're going into the
playground folder, and the file itself is called arrow-function.js, we'll run the
following command:

nodemon playground/arrow-function.js

We'll run the file, and nothing prints to the screen, as shown in the following output,
besides the nodemon logs because we have nothing in the file:

® [] notes-node — node Jusrflocal/bin/nodeman playground/arrow-function.js — 108x29

Gary:notes-node Gary$ nodemon playground/arrow-function.js
[nodemon] 1.1

[nodemon] t t at any time, enter “rs’

[nodemon] watching: *.%

[246]

Node Fundamentals — Part 3 Chapter 4

To get started, in the arrowfunction. js file, we'll create a function called square, by
making a variable called square and setting it equal to an arrow function.

To make our arrow function (=>), we'll first provide the arguments inside parentheses.
Since we'll be squaring a number, we just need one number, and I'll refer to that number as
x. If I pass in 3, I should expect 9 back, and if I pass in 9, I would expect 81 back.

After the arguments list, we have to put the arrow in arrow function (=>) by putting the
equal sign and the greater than symbol together, creating our nice little arrow. From here
we can provide, inside curly braces, all the statements we want to execute:

var square = (x) => {
bi

Next, we might create a variable called result, setting that equal to x times x, then we might
return the result variable using the return keyword, as shown here:

var square = (x) => {
var result = x * x;
return result;

Fi

Now, obviously this can be done on one line, but the goal here is to illustrate that when you
use the statement arrow function (=>), you can put as many lines as you want in between
those curly braces. Let's call a square, we'll do that using console.log so we can print the
result to the screen. I'll call square; and we'll call square with 9, the square of 9 would be 81,
so we would expect 81 to print to the screen:

var square = (x) => {
var result = x * x;
return result;

bi

console.log(square(9));

[247]

Node Fundamentals — Part 3 Chapter 4

I'll save the arrow function (=>) file, and in Terminal, 81 shows up just as we expect:

® [] notes-node — node Jusrflocal/bin/nodemon playground/arrow-function.js — 108x29

Gary:notes-node Gary$ nodemon playground/arrow-function.js
[nodemon] 1.14
[t at any time, enter “rs’

Now the syntax we used in the previous example is the statement syntax for the arrow
function (=>). We've also explored the expression syntax earlier, which lets you simplify
your arrow functions when you return some expressions. In this case all we need to do is
specify the expression we want to return. In our case that's x times x:

var square = (x) => x * x;
console.log(square(9));

You don't need to explicitly add the return keyword. When you use an arrow function
(=>) without your curly braces, it's implicitly provided for you. That means we can save the
function as shown previous and the exact same result is going to print to the screen, 81
shows up.

This is one of the great advantages of arrow functions when you use them in cases like filter
or for those which we did in the notes. js file. It lets you simplify your code keeping
everything on one line and making your code a lot easier to maintain and scan.

Now, there is one thing I want to note: when you have an arrow function
(=>) that has just one argument, you can actually leave off the parentheses.
If you have two or more arguments, or you have zero arguments, you are
going to need to provide the parentheses, but if you just have one
argument, you can reference it with no parentheses.

[248]

Node Fundamentals — Part 3 Chapter 4

If I save the file in this state, 81 still prints to the screen; and this is great we have an even
simpler version of our arrow function (=>):

Now that we have a basic example down, I want to move on to a more complex example
that's going to explore the nuances between regular functions and arrow functions.

Exploring the difference between regular and
arrow functions

To illustrate the difference, I'll make a variable called user, which will be an object. On this
object we'll specify one property, name. Set name equal to the string, your name, in this case
I'll set it equal to the string Andrew:

var user = {
name: 'Andrew'

bi

Then we can define a method on the user object. Right after name, with my comma at the
end of the line, I'll provide the method sayHi, setting it equal to an arrow function (=>) that
doesn't take any arguments. For the moment, we'll keep the arrow function really simple:

var user = {
name: 'Andrew',
sayHi: () => {

}
bi

[249]

Node Fundamentals — Part 3 Chapter 4

All we'll do inside sayHi is use console. log to print to the screen, inside of template
strings Hi:

var user = {
name: 'Andrew',
sayHi: () => {

console.log (" Hi");
}
}i

We're not using template strings yet, but we will later so I'll use them here. Down following
the user object, we can test out sayHi by calling it, user.sayHi:

var user = {
name: 'Andrew',
sayHi: () => {

console.log (" Hi");
}
}i
user.sayHi () ;

I'll call it then save the file, and we would expect that Hi prints to the screen because all our
arrow function (=>) does is use console. log to print a static string. Nothing in this case
will cause any problems; you'd be able to swap out a regular function for an arrow function
(=>) without issue.

Now the first issue that will arise when you use arrow functions is the fact that arrow
functions do not bind a this keyword. So if you are using this inside your function, it's
not going to work when you swap it out for an arrow function (=>). Now, this binding;
refers to the parent binding, in our case there is no parent, function so this would refer to
the global this keyword. Now we have our console. log that does not use this, I'll swap
it out for a case that does.

We'll put a period after Hi, and I'll say I'm, followed by the name, which we would usually
be able to access via this.name:

var user = {
name: 'Andrew',
sayHi: () => {

console.log('Hi. I'm ${this.name});
}
bi
user.sayHi () ;

[250]

Node Fundamentals — Part 3 Chapter 4

If I try to run this code, it is not going to work as expected; we're going to get Hi I'm
undefined printing to the screen, as shown here:

Hi. I'm undefined

In order to fix this, we'll look at an alternative syntax to arrow functions that's great when
you're defining object literals, as we are in this case.

After sayHi, I'll make a new method called sayHiAlt using a different ES6 feature. ES6
provides us a new way to make methods on objects; you provide the method name,
sayHiAlt, then you go right to the parentheses skipping the colon. There's also no need for
the function keyword, even though it is a regular function it's not an arrow function (=>).
Then we move on to our curly braces as shown here:

var user = {
name: 'Andrew',
sayHi: () => {

console.log("Hi. I'm ${this.name}");

b
sayHiAlt () A

}
bi

user.sayHi();

Inside here I can have the exact same code we have in the sayHi function, but it is going to
work as expected. It's going to print Hi. I'm Andrew.I'll call sayHiAlt down following
instead of the regular sayHi method:

var user = {
name: 'Andrew',
sayHi: () => {

console.log('Hi. I'm ${this.name}");
}I
sayHiAlt () {
console.log("Hi. I'm ${this.name}");
}
bi
user.sayHiAlt ();

[251]

Node Fundamentals — Part 3 Chapter 4

And in Terminal, you can see Hi. I'm Andrew, prints to the screen:
y P

Hi. I'm Andrew

The sayHiAlt syntax is a syntax that you can use to solve this problem when you create

functions on object literals. Now that we know that the this keyword does not get bound,
let's explore one other quirk that arrow functions have, it also does not bind the arguments
array.

Exploring the arguments array

Regular functions, like sayHiAlt, are going to have an arguments array that's accessible
inside of the function:

var user = {
name: 'Andrew',
sayHi: () => {

console.log('Hi. I'm ${this.name});
}!
sayHiAlt () A
console.log(arguments) ;
console.log('Hi. I'm ${this.name});
)3
}i
user.sayHiAlt ();

Now, it's not an actual array, it's more like an object with array; like properties, but the
arguments object is indeed specified in a regular function. If I pass in one, two, and three
and save the file, we'll get that back when we log out arguments:

var user = {
name: 'Andrew',
sayHi: () => {

console.log("Hi. I'm ${this.name}");
}I
sayHiAlt () A
console.log (arguments) ;
console.log("Hi. I'm ${this.name}");
}
}i
user.sayHiAlt (1, 2, 3);

[252]

Node Fundamentals — Part 3 Chapter 4

Inside nodemon, it's taking a quick second to restart, and right here we have our object:

of OC)0galy falig
Hi. I'm Andrew

We have one, two, and three, we have the index for each as the property name, and this
works because we're using a regular function. If we were to switch to the arrow function
(=>) though, it is not going to work as expected.

Il add console.log (arguments) inside of my arrow function (=>), and I'll switch from
calling sayHiAlt back to the original method sayHi, as shown here:

var user = {
name: 'Andrew',
sayHi: () => {

console.log (arguments) ;
console.log('Hi. I'm ${this.name}");
}I
sayHiAlt () {
console.log (arguments) ;
console.log("Hi. I'm ${this.name}");
}
bi
user.sayHi (1, 2, 3);

When I save the file in arrow-function. js, we'll get something a lot different from what
we had before. What we'll actually get is the global arguments variable, which is the
arguments variable for that wrapper function we explored:

[253]

Node Fundamentals — Part 3 Chapter 4

® @ notes-node — node /usrflocal/binfnodeman playground/arrow-function.js — 108x29

{'a': {},
LARL s
{ [Function: requirel
resolve: { [Function: resolve] paths: [Function: paths] },
LEFGH
Module {
Ay Ogly
exports: {},
parent: null,
filename: '/Users/Gary/Desktop/notes—-node/playground/arrow-function.js',
loaded: false,
children: [1,
paths: [Array]l },
extensions: { '.js': [Function], '.json': [Function], '.node': [Function] },
ELEH
{ 'fusers/Gary/Desktop/notes-node/playground/arrow-function.js': [Module] } },
L2
Module {
el R
exports: {},
parent: null,
filename: '/Users/Gary/Desktop/notes-node/playground/arrow-function.js',
loaded: false,
children: [1,
paths:
['/users/Gary/Desktop/notes-node/playground/node_modules',
'fUsers/Gary/Desktop/notes-node/node_modules',
'fUsers/Gary/Desktop/node_modules',

In the previous screenshot, we have things like the require function, definition, our modules
object, and a couple of string paths to the file and to the current directory. These are
obviously not what we're expecting, and that is another thing that you have to be aware of
when you're using arrow functions; you're not going to get the arguments keyword, you're
not going to get the this binding (defined in sayHi syntax) that you'd expect.

These problems mostly arise when you try to create methods on an object and use arrow
functions. I would highly recommend that you switch to sayHiAlt syntax which we
discussed, in those cases. You get a simplified syntax, but you also get the disk binding and
you get your arguments variable as you'd expect.

Summary

In this chapter, we were able to reuse the utility functions that we already made in previous
chapters, making the process of filling out a remove note that much easier. Inside app. js,
we worked on how the removeNote function is executed, if it was executed successfully,
we print a message; if it didn't, we print a different message.

[254]

Node Fundamentals — Part 3 Chapter 4

Next, we were able to successfully fill out the read command and we also created a really
cool utility function that we can take advantage of in multiple places. This keeps our code
DRY and prevents us from having the same code in multiple places inside of our
application.

Then we discussed a quick introduction to debugging. Essentially, debugging is a process
that lets you stop the program at any point in time and play around with the program as it
exists at that moment. That means you can play around with variables that exist, or
functions, or anything inside of Node. We learned more about yargs, its configuration,
setting up commands, their description, and arguments.

Last, you explored a little bit more about arrow functions, how they work, when to use
them, and when not to use them. In general, if you don't need this keyword, or the
arguments keyword you can use an arrow function without a problem, and I always prefer
using arrow functions over regular functions when I can.

In the next chapter, we will explore asynchronous programming and how we can fetch data
from third-party APIs. We'll use both regular functions and arrow functions a lot more, and
you'll be able to see firsthand how to choose between one over the other.

[255]

Basics of Asynchronous
Programming in Node.js

If you've read any article about Node, you'd have probably come across four terms:
asynchronous, non-blocking, event-based, and single-threaded. All of those are accurate
terms to describe Node; the problem is it usually stops there, and it's really abstract. The
topic of asynchronous programming in Node.js has been divided into three chapters. The
goal in these upcoming three chapters is to make asynchronous programming super
practical by putting all these terms to use in our weather application. That's the project
we're going to be building in these chapters.

This chapter is all about the basics of asynchronous programming. We'll look into the basic
concepts, terms, and technology related to async programming. We'll look into making
requests to Geolocation APIs. We'll need to make asynchronous HTTP requests. Let's dive
in, looking at the very basics of async programming in Node.

Specifically, we'll look into the following topics:

¢ The basic concept of asynchronous program
o Call stack and event loop

¢ Callback functions and APIs

o HTTPS requests

Basics of Asynchronous Programming in Node.js Chapter 5

The basic concept of asynchronous program

In this section, we're going to create our first asynchronous non-blocking program. This
means our app will continue to run while it waits for something else to happen. In this
section, we'll look at a basic example; however, in the chapter, we'll be building out a
weather app that communicates with third-party APIs, such as the Google API and a
weather API. We'll need to use asynchronous code to fetch data from these sources.

For this, all we need to do is make a new folder on the desktop for this chapter. I'll navigate
onto my desktop and use mkdir to make a new directory, and I'll call this one weather-
app. All I need to do is navigate into the weather app:

[NON) || weather-app — -bash — 108x29

Gary:~ Gary$ cd Desktop
Gary:Desktop Gary$ mkdir weather-app
Gary:Desktop Gary$ cd weather-app
Gary:weather-app Gary$ l

Now, I'll use the clear command to clear the Terminal output.

Now, we can open up that new weather app directory inside of Atom:

E] L4 = E 555 w [P weather-app i |
Favorites Today
E Recents | CHOS >
BB weather-app >
O Downloads
Previous 7 Days
[Desktop

| notes-node r
@ Documents

2% Applications
¢ iCloud Drive
5 Google Drive

Devices

[Gary

[257]

Basics of Asynchronous Programming in Node.js Chapter 5

This is the directory we'll use throughout this entire chapter. In this section, we'll not be
building out the weather app just yet, we'll just play around with the async features. So
inside weather-app we'll make the playground folder.

This code is not going to be a part of the weather app, but it will be really useful when it
comes to creating the weather app in the later sections. Now inside playground, we can
make the file for this section. We'll name it async-basics. js as shown here:

® -89 | async-basics.js — ~/Desktop/weather-app
Project async-pasics.js x

¥ [weather-app

| playground

lllustrating the async programming model

To illustrate how the asynchronous programming model works, we'll get started with a
simple example using console.log. Let's get started by adding a couple of console.log
statements in a synchronous way. We'll create one console.log statement at the beginning
of the app that will say starting app, and we will add a second one to the end, and the
second one will print Finishing up, as shown here:

console.log('Starting app');
console.log('Finishing up');

Now these are always going to run synchronously. No matter how many times you run the
program, Starting app is always going to show up before Finishing up.

[258]

Basics of Asynchronous Programming in Node.js Chapter 5

In order to add some asynchronous code, we'll take a look at a function that Node provides
called setTimeout. The setTimeout function is a great method for illustrating the basics
of non-blocking programming. It takes two arguments:

e The first one is a function. This will be referred to as callback function, and it will
get fired after a certain amount of time.

e The second argument is a number, which tells the number of milliseconds you
want to wait. So if you want to wait for one second, you would pass in a
thousand milliseconds.

Let's call setTimeout, passing in an arrow function (=>) as our first argument. This will be
callback function. It will get fired right away; that is, it will get fired after the timeout is up,
after our two seconds. And then we can set up our second argument which is the delay,
2000 milliseconds, which equals those two seconds:

console.log('Starting app');

setTimeout (() => {
}, 2000);

Inside the arrow function (=>), all we'll do is use a console. log statement so that we can
figure out exactly when our function fires, because the statement will print to the screen.
We'll add console. log and then inside callback to get the job done, as shown here:

setTimeout (() => {
console.log('Inside of callback');
}, 2000);

With this in place, we're actually ready to run our very first async program, and I'll not use
nodemon to execute it. I'll run this file from the Terminal using the basic Node command;
node playground and the file inside the playground folder which is async-basic. js:

node playground/async-basics.js

Now pay close attention to exactly what happens when we hit enter. We'll see two messages
show up right away, then two seconds later our final message, Inside of callback,
prints to the screen:

[259]

Basics of Asynchronous Programming in Node.js Chapter 5

[NoN) 7| weather-app — -bash — 108x29

Gary:weather-app Gary$ node playground/async-basics.js
Starting app

Finishing up

Inside of callback

Gary:weather-app Gary$ I

The sequence in which these messages are shown is: first we got Starting app; almost
immediately after this, Finishing up prints to the screen and finally (two seconds later),
Inside of callback was printed as shown in the previous code. Inside the file, this is not
the order in which we wrote the code, but it is the order the code executes in.

The Starting app statement prints to the screen as we expect. Next, we call setTimeout,
but we're not actually telling it to wait two seconds. We're registering a callback that will
get fired in two seconds. This will be an asynchronous callback, which means that Node can
do other things while these two seconds are happening. In this case, the other thing it
moves down to the Finishing up message. Now since we did register this callback by
using setTimeout, it will fire at some point in time, and two seconds later we do see
Inside of callback printing to the screen.

By using non-blocking I/O, we're able to wait, in this case two seconds, without preventing
the rest of the program from executing. If this was blocking I/O, we would have to wait two
seconds for this code to fire, then the Finishing up message would print to the screen,
and obviously that would not be ideal.

Now this is a pretty contrived example, we will not exactly use set Timeout in our real-
world apps to create unnecessary arbitrary delays, but the principles are the same. For
example, when we fetch data from the Google API we'll need to wait about 100 to 200
milliseconds for that data to come back, and we don't want the rest of the program to just be
idle, it will continue. We'll register a callback, and that callback will get fired once the data
comes back from the Google servers. The same principles applies even though what's
actually happening is quite different.

[260]

Basics of Asynchronous Programming in Node.js Chapter 5

Now, we want to write another set Timeout right here. We want to register a set Timeout
function that prints a message; something like Second setTimeout works. This will be
inside the callback, and we want to register a delay of 0 milliseconds, no delay at all. Let's
fill out the async basics set Timeout. I'll call setTimeout with my arrow function (=>),
passing in a delay of 0 milliseconds, as shown in the following code. Inside the arrow
function (=>), I'll use console.log so I can see exactly when this function executes, and I'll
use Second setTimeout as the text:

setTimeout (() => {
console.log('Second setTimeout');
b 0);

Now that we have this in place, we can run the program from the Terminal, and it's really
important to pay attention to the order in which the statements print. Let's run the program:

node playground/async-basics.js

Right away we get three statements and then at the very end, two seconds later, we get our
final statement:

@ [] || weather-app — -bash — 108=29

Gary:weather-app Gary$ node playground/async-basics.js
Starting app

Finishing up

Second setTimeout

Inside of callback

Gary:weather-app Gary$ I

We start with starting app, which makes sense, it's at the top. Then we get Finishing
up. After Finishing up we get Second setTimeout, which seems weird, because we
clearly told Node we want to run this function after 0 milliseconds, which should run it
right away. But in our example, Second setTimeout printed after Finishing up.

[261]

Basics of Asynchronous Programming in Node.js Chapter 5

Finally, Inside of callback printed to the screen. This behavior is completely expected.
This is exactly how Node.js is supposed to operate, and it will become a lot clearer after the
next section, where we'll go through this example exactly, showing you what happens
behind the scenes. We'll get started with a more basic example showing you how the call
stack works, we'll talk all about that in the next section, and then we'll go on to a more
complex example that has some asynchronous events attached to it. We'll discuss the reason
why Second setTimeout comes up after the Finishing up message after the next
section.

Call stack and event loop

In the last section, we ended up creating our very first asynchronous application, but
unfortunately we ended up asking more questions than we got answers. We don't exactly
know how async programming works even though we've used it. Our goal for this section
is to understand why the program runs the way it does.

For example, why does the two-second delay in the following code not prevent the rest of
the app from running, and why does a 0 second delay cause the function to be executed
after Finishing up prints to the screen?

console.log('Starting app');

setTimeout (() => {
console.log('Inside of callback');

}, 2000);

setTimeout (() => {
console.log('Second setTimeout');

te 0)5

console.log('Finishing up');

These are all questions we'll answer in this section. This section will take you behind the
scenes into what happens in V8 and Node when an async program runs. Now let's dive
right into how the async program runs. We'll start with some basic synchronous examples
and then move on to figuring out exactly what happens in the async program.

[262]

Basics of Asynchronous Programming in Node.js Chapter 5

A synchronous program example

The following is example number one. On the left-hand side we have the code, a basic
synchronous example, and on the right-hand side we have everything that happens behind
the scenes, the Call Stack, our Node APIs, the Callback Queue, and the Event Loop:

var x = 1; Call Stack

Node APls

var y = x + 9;

console.log('y is ${y}'):

Event Loop O

Callback Queue

Now if you've ever read an article or watched any video lesson on how Node works, you've
most likely heard about one or more of these terms. In this section, we'll be exploring how
they all fit together to create a real-world, working Node application. Now for our first
synchronous example, all we need to worry about is the Call Stack. The Call Stack is part
of a V8, and for our synchronous example it's the only thing that's going to run. We're not
using any Node APIs and we're not doing any asynchronous programming.

The call stack

The Call Stack is a really simple data structure that keeps track of program execution inside
of a V8. It keeps track of the functions currently executing and the statements that are fired.
The Call Stack is a really simple data structure that can do two things:

* You can add something on top of it
* You can remove the top item

[263]

Basics of Asynchronous Programming in Node.js Chapter 5

This means if there's an item at the bottom of the data structure and there's an item above it,
you can't remove the bottom item, you have to remove the top item. If there's already two
items and you want to add something on to it, it has to go on because that's how the Call
Stack works.

Think about it like a can of Pringles or a thing of tennis balls: if there's already an item in
there and you drop one in, the item you just dropped will not be the bottom item, it's going
to be the top item. Also, you can't remove the bottom tennis ball from a can of tennis balls,
you have to remove the one on top first. That's exactly how the Call Stack works.

Running the synchronous program

Now when we start executing the program shown in the following screenshot, the first
thing that will happen is Node will run the main function. The main function is the wrapper
function we saw over in nodemon (refer to, Installing the nodemon module section in Chapter
2, Node Fundamentals Part-1) that gets wrapped around all of our files when we run them
through Node. In this case, by telling V8 to run the main function we are starting the
program.

As shown in the following screenshot, the first thing we do in the program is create a
variable x, setting it equal to 1, and that's the first statement that's going to run:

var x = 1; Call Stack

var y = x + 9;

console.log(’y is ${y}’);

[264]

Basics of Asynchronous Programming in Node.js Chapter 5

Notice it comes in on top of main. Now this statement is going to run, creating the variable.
Once it's done, we can remove it from the Call Stack and move on to the next statement,
where we make the variable y, which gets set equal to x, which is 1 plus 9. That means y is
going to be equal to 10:

var X

ts Call Stack

var y = x + 9;

console.log('y is ${y}’);

vary=x+9;

main()

As shown in the previous screenshot, we do that and move on to the next line. The next line
is our console. log statement. The console. log statement will print y is 10 to the screen.
We use template strings to inject the y variable:

console.log("y is S${y});

[265]

Basics of Asynchronous Programming in Node.js Chapter 5

When we run this line it gets popped on to the Call Stack, as shown here:

var X

4 Call Stack

X+ 9;

var y

console.log('y is ${y});

console.log(’y is ...

Once the statement is done, it gets removed. At this point, we've executed all the statements
inside our program and the program is almost ready to be complete. The main function is
still running but since the function ends, it implicitly returns, and when it returns, we
remove main from the Call Stack and the program is finished. At this point, our Node
process is closed. Now this is a really basic example of using the Call Stack. We went into
the main function, and we moved line by line through the program.

A complex synchronous program example

Let's go over a slightly more complex example, our second example. As shown in the
following code, we start off by defining an add function. The add function takes arguments
a and b, adds them together storing that in a variable called total, and returns total.
Next, we add up 3 and 8, which is 11, storing it in the res variable. Then, we print out the
response using the console. log statement, as shown here:

var add = (a, b) => {
var total = a + b;

return total;
Fi

var res = add(3, 8);

console.log(res);

[266]

Basics of Asynchronous Programming in Node.js Chapter 5

That's it, nothing synchronous is happening. Once again we just need the Call Stack. The
first thing that happens is we execute the main function; this starts the program we have
here:

var add = (a, b) == { Call Stack
var total = a + b;

Node APls

return total;
b

var res = add(3, 8);

console. log(res);

Event Loop O

Callback Queue

Then we run the first statement where we define the add variable. We're not actually
executing the function, we're simply defining it here:

var add = (a, b) = { Call Stack
var total = a + b;

return total;
}

var res = add(3, 8);

console. log(res);

var add = (a, b) ..

main()

[267]

Basics of Asynchronous Programming in Node.js Chapter 5

In the preceding image, the add () variable gets added on to the Call Stack, and we define
add. The next line, line 7, is where we call the add variable storing the return value on the
response variable:

var add = (a, b) => { Call Stack
var total = a + b;

return total;
i

[var res = add(3, 8);

console.log(res);

var res = add(3 ...

main()

When you call a function, it gets added on top of the Call Stack. When
you return from a function, it gets removed from the Call Stack.

In this example, we'll call a function. So we're going to add add () on to the Call Stack, and
we'll start executing that function:

var add = (a, b) => { Call Stack
var total = a + b;

return total;
|5

var res = add(3, 8);

console.log(res);

[268]

Basics of Asynchronous Programming in Node.js

As we know, when we add main we start executing main and, when we add add () we start
executing add. The first line inside add sets the total variable equal to a + b, which
would be 11. We then return from the function using the return total statement. That's

the next statement, and when this runs, add gets removed:

var add = (a, b) => {
var total = a + b;

return total;
1

var res = add(3, 8);

console. log(res);

Call Stack

return total;

add()

main()

So when return total finishes, add () gets removed, then we move on to the final line in
the program, our console. log statement, where we print 11 to the screen:

var add = (a, b) => {
var total = a + b;

return total;
h

var res = add(3, 8);

console.log(res);

The console. log statement will run, print 11 to the screen and finish the execution, and
now we're at the end of the main function, which gets removed from the stack when we
implicitly return. This is the second example of a program running through the V8 Call

Stack.

Call Stack

console.log(res);

main()

[269]

Basics of Asynchronous Programming in Node.js Chapter 5

An async program example

So far we haven't used Node APIs, the Callback Queue, or the Event Loop. The next
example will use all four (Call Stack, the Node APIs, the Callback Queue, and the Event
Loop). As shown on the left-hand side of the following screenshot, we have our async
example, exactly the same as we wrote it in the last section:

console. log('Starting app'); Call Stack

Node APls

setTimeout(() => {
console.log('Inside of callback');

}, 2000);]
setTimeout(() => {

console. log('Second setTimeout');
b, 0);

console,log('Finishing up');

Event Loop Q

Callback Queue

In this example, we will be using the Call Stack, the Node APIs, the Callback Queue, and
the Event Loop. All four of these are going to come into play for our asynchronous
program. Now things are going to start off as you might expect. The first thing that happens
is we run the main function by adding it on to the Call Stack. This tells a V8 to kick off the
code we have on the left side in the previous screenshot, shown here again:

console.log('Starting app');

setTimeout (() => {
console.log('Inside of callback');

}, 2000);

setTimeout (() => {
console.log('Second setTimeout');

e 0);

console.log('Finishing up');

[270]

Basics of Asynchronous Programming in Node.js

Chapter 5

The first statement in this code is really simple, a console.log statement that prints

Starting app to the screen:

' Icansole.log('Starting app'}d

setTimeout(() => {
console.log('Inside of callback');
}, 2000);

setTimeout(() => {
console.log('Second setTimeout');

}, 0);

console.log('Finishing up');

Call Stack

main{}

console log('Star

This statement runs right away and we move on to the second statement. The second
statement is where things start to get interesting, this is a call to set Timeout, which is
indeed a Node APL. It's not available inside a V8, it's something that Node gives us access

to:

console, log('Starting app');

setTimeout(() => {
console.log('Inside of callback');
}, 2000);

setTimeout(() => {
console.log('Second setTimeout');
b o0);

console, log('Finishing up');

Call Stack

sefTimeout (2 sec)

main()

[271]

Basics of Asynchronous Programming in Node.js Chapter 5

The Node APl in async programming

When we call the setTimeout (2 sec) function, we're actually registering the event
callback pair in the Node APIs. The event is simply to wait two seconds, and the callback is
the function we provided, the first argument. When we call set Timeout, it gets registered
right in the Node APIs as shown here:

console. log('Starting app'); Call Stack

Node APls

setTimeout (2 sec)

setTimeout(() => {
console.log('Inside of callback');
}, 2000);

setTimeout(() => {
console,log('Second setTimeout');

}, 0);
console, log('Finishing up');

main()

Now this statement will finish up, the Call Stack will move on, and the setTimeout will
start counting down. Just because the set Timeout is counting down, it doesn't mean the
Call Stack can't continue to do its job. The Call Stack can only run one thing at a time, but
we can have events waiting to get processed even when the Call Stack is executing. Now
the next statement that runs is the other call to set Timeout:

console. log(*Starting app’); Call Stack Node APIs

setTimeout (2 sec)

setTimeout(() => {
console.log('Inside of callback');
}, 2000);

setTimeout(() => {
console. log('Second setTimeout');
}, 0);

selTimeout (0 sec)

console.log('Finishing up');

main()

[272]

Basics of Asynchronous Programming in Node.js Chapter 5

In this, we register a set Timeout callback function with a delay of 0 milliseconds, and the
exact same thing happens. It's a Node API and it's going to get registered as shown in the

following screenshot. This essentially says that after zero seconds, you can execute this
callback:

console.log('Starting app'); Call Stack Node APls

setTimeout(() => { setTimeaut (2 sec)
console.log('Inside of callback');

}, 2000);

setTimeout (0 sec)

setTimeout(() => {
console.log('Second setTimeout');
Xy 8):

console.log('Finishing up'); setTimeout (0 sa0)

The setTimeout (0 sec) statement gets registered and the Call Stack removes that
statement.

The callback queue in async programming

At this point let's assume that set Timeout, the one that has a zero second delay, finishes.
When it finishes, it's not going to get executed right away; it's going to take that callback
and move it down into the Callback Queue, as shown here:

[273]

Basics of Asynchronous Programming in Node.js Chapter 5

console.log('Starting app');

Node APls

setTimeoul (2 sec)

setTimeout(() => {
console,log(‘'Inside of callback');
}, 2000);

setTimeout(() => {
console, log('Second setTimeout');
}, 0);

console,log('Finishing up');

Event Loop O

Callback Queue

selTimeout callback (0 sec)

The Callback Queue is all the callback functions that are ready to get fired. In the previous
screenshot, we move the function from Node API into the Callback Queue. Now the
Callback Queue is where our callback functions will wait; they need to wait for the Call
Stack to be empty.

When the Call Stack is empty we can run the first function. There's another function after it.
We'll have to wait for that first function to run before the second one does, and this is where
the Event Loop comes into play.

The event loop

The Event Loop takes a look at the Call Stack. If the Call Stack is not empty, it doesn't do
anything because it can't, there is nothing it can do you can only run one thing at a time. If
the Call Stack is empty, the Event Loop says great let's see if there's anything to run. In our
case, there is a callback function, but because we don't have an empty Call Stack, the Event
Loop can't run it. So let's move on with the example.

[274]

Basics of Asynchronous Programming in Node.js Chapter 5

Running the async code

The next thing that happens in our program is we run our console. log statement, which
prints Finishing up to the screen. This is the second message that shows up in the
Terminal:

console. log('Starting app');

Node APls

setTimeout (2 sec)

setTimeout(() => {
console. log('Inside of callback');
}, 2000);

setTimeout(() => {
console. log('Second setTimeout');
}, 0);

[console. log('Finishing up'); | R

Event Loop o

Callback Queue

setTimeout callback (0 sec)

This statement runs, our main function is complete, and it gets removed from the Call

Stack.

[275]

Basics of Asynchronous Programming in Node.js Chapter 5

At this point, the Event Loop says hey I see that we have nothing in the call stack and we do
have something in the Callback Queue, so let's run that callback function. It will take the
callback and move it into the Call Stack; this means the function is executing;:

console.log('Starting app'); Call Stack Node APls

setTimeout(() => {
console.log('Inside of callback'); 5

}, 2000);

setTimeout(() => {
console. log('Second setTimeout');
}, 0);

console.log('Finishing up');

Event Loop o

Callback Queue

It will run the first line which is sitting on line 8, console. log, printing Second
setTimeout to the screen. This is why Second setTimeout shows up after Finishing
up in our previous section examples, because we can't run our callback until the Call Stack
is complete. Since Finishing up is part of the main function, it will always run before
Second setTimeout.

[276]

Basics of Asynchronous Programming in Node.js Chapter 5

After our Ssecond setTimeout statement finishes, the function is going to implicitly return
and callback will get removed from the Call Stack:

console.log('Starting app'); Call Stack

Node APls

setTimeout (2 sec)

setTimeout(() == {
console.log('Inside of callback');
}, 2000);

setTimeout(() => {
console. log('Second setTimeout');
}. 9);

console. log('Finishing up');

Event Loop O

Callback Queue

[277]

Basics of Asynchronous Programming in Node.js Chapter 5

At this point, there's nothing in the Call Stack and nothing in the Callback Queue, but
there is still something in our Node APIs, we still have an event listener registered. So the
Node process is not yet completed. Two seconds later, the set Timeout (2 sec) eventis
going to fire, and it's going to take that callback function and move it into the Callback
Queue. It gets removed from the Node APIs and it gets added to the Callback Queue:

conaote: Mg (“STATEANG #pp) Call Stack Mode APIs

setTimeout(() => {
console.log('Inside of callback');
}, 2000);

setTimeout(() => {
console.log(‘Second setTimeout');
Y8}

console.log('Finishing up');

Event Loop Q l

Callback Queue

selTimeout callback (2 sec)

[278]

Basics of Asynchronous Programming in Node.js Chapter 5

At this point, the Event Loop will take a look at the Call Stack and see it's empty. Then it
will take a quick look at the Callback Queue and see there is indeed something to run.
What will it do? It will take that callback, add it on to the Call Stack, and start the process of
executing it. This means that we'll run our one statement inside callback. After that's
finished, the callback function implicitly returns and our program is complete:

console. log('Starting app'); Call Stack Node APls

setTimeout(() => {
console.log('Inside of cauhack'];]
}, 2000);

setTimeout(() => {
console. log('Second setTimeout');
} 0);

console. log('Finishing up'); console.log('Insid...

callback()

Event Loop o l

Callback Queue

This is exactly how our program ran. This illustrates how we're able to register our events
using Node APIs, and why when we use a set Timeout of zero the code doesn't run right
away. It needs to go through the Node APIs and through the Callback Queue before it can
ever execute on the Call Stack.

Now as I mentioned in the beginning of this section, the Call Stack, the Node APIs, the
Callback Queue, and the Event Loop are pretty confusing topics. A big reason why they're
confusing is because we never actually directly interact with them; they're happening
behind the scenes. We're not calling the Callback Queue, we're not firing an Event Loop
method to make these things work. This means we're not aware they exist until someone
explains them. These are topics that are really hard to grasp the first time around. By
writing real asynchronous code it's going to become a lot clearer how it works.

Now that we got a little bit of an idea about how our code executes behind the scenes, we'll
move on with the rest of the chapter and start creating a weather app that interacts with
third-party APIs.

[279]

Basics of Asynchronous Programming in Node.js Chapter 5

Callback functions and APIs

In this section, we'll take an in-depth look at callback functions, and use them to fetch some
data from a Google Geolocation API. That's going to be the API that takes an address and
returns the latitude and longitude coordinates, and this is going to be great for the weather
app. This is because the weather API we use requires those coordinates and it returns the
real-time weather data, such as the temperature, five-day forecast, wind speed, humidity,
and other pieces of weather information.

The callback function

Before we get started making the HTTPS request, let's talk about callback functions, and we
have already used them. Refer to the following code (we used it in the previous section):

console.log('Starting app');

setTimeout (() => {
console.log('Inside of callback');

}, 2000);

setTimeout (() => {
console.log('Second setTimeout');

Fo 0);

console.log('Finishing up');

Inside the set Timeout function we used a callback function. In general, a callback
function is defined as a function that gets passed as an argument to another function and is
executed after some event happens. Now this is a general definition, there is no strict
definition in JavaScript, but it does satisfy the function in this case:

setTimeout (() => {
console.log('Inside of callback');
}, 2000);

Here we have a function and we pass it as an argument to another function, set Timeout,
and it does get executed after some event—two-second pass. Now the event could be other
things, it could be a database query finishes, it could be an HTTP request comes back. In
those cases, you will want a callback function, like the one in our case, to do something with
that data. In the case of setTimeout, we don't get any data back because we're not
requesting any; we're just creating an arbitrary delay.

[280]

Basics of Asynchronous Programming in Node.js Chapter 5

Creating the callback function

Now before we actually make an HTTP request to Google, let's create a callback function
example inside our playground folder. Let's make a new file called callbacks. js:

[BCN] o Project — ~/Desktop/weather-app
Project async-basics.js x callback.is X

v [l weather-app

Bl async-basics.is

Bl coliback.js

Inside the file, we'll create a contrived example of what a callback function would look like
behind the scenes. We'll be making real examples throughout the book and use many
functions that require callbacks. But for this chapter, we'll start with a simple example.

To get started, let's make a variable called getUser. This will be the function we'll define
that will show us exactly what happens behind the scenes when we pass a callback to
another function. The getUser callback will be something that simulates what it would
look like to fetch a user from a database or some sort of web API. It will be a function, so
we'll set it as such using arrow function (=>):

var getUser = () => {
bi

The arrow function (=>) is going to take some arguments. The first argument it will take is
the id, which will be some sort of a unique number that represents each user. I might have
an id of 54, you might have an id of 2000; either way we're going to need the id to find a
user. Next up we'll get a callback function, which is what we will call later with the data,
with that user object:

var getUser = (id, callback) => {
}i

[281]

Basics of Asynchronous Programming in Node.js Chapter 5

This is exactly what happens when you pass a function to set Timeout.

The set Timeout function definition looks like this:
var getUser = (callback, delay) => {

b

It has a callback and a delay. You take the callback, and after a certain
amount of time passes, you call it. In our case, though, we'll switch the
order with an id first and the callback second.

Now we can call this function before actually filling it out. We'll call getUser, just like we
did with setTimeout in the previous code example. I'll call getUser, passing in those two
arguments. The first one will be some id; since we're faking it for now it doesn't really
matter, and I'll go with 31. The second argument will be the function that we want to run
when the user data comes back, and this is really important. As shown, we'll define that
function:

getUser (31, () => {
P

Now the callback alone isn't really useful; being able to run this function after the user data
comes back only works if we actually get the user data, and that's what we'll expect here:

getUser (31, (user) => {
)i

We'll expect that the user objects, things like id, name, email, password, or whatever,
comes back as an argument to the callback function. Then inside the arrow function (=>),
we can actually do something with that data, for example, we could show it on a web app,
respond to an API request, or in our case we can simply print it to the console,
console.log(user):

getUser (31, (user) => {
console.log(user);
P) i

Now that we have the call in place, let's fill out the getUser function to work like we have
it defined.

The first thing I'll do is create a dummy object that's going to be the user object. In the
future, this is going to come from database queries, but for now we'll just create a variable
user setting it equal to some object:

var getUser = (id, callback) => {

[282]

Basics of Asynchronous Programming in Node.js Chapter 5

var user = {
}
}i

Let's set an id property equal to whatever id the user passes in, and we'll set a name
property equal to some name. I'll use Vikram:

var getUser = (id, callback) => {
var user = {
id: id,
name: 'Vikram'

bi
bi

Now that we have our user object, what we want to do is call the callback, passing it as an
argument. We'll then be able to actually run, getUser (31, (user) function, printing the
user to the screen. In order to do this, we would call the callback function like any other
function, simply referencing it by name and adding our parentheses like this:

var getUser = (id, callback) => {
var user = {
id: id,
name: 'Vikram'

bi
callback () ;
bi

Now if we call the function like this, we're not passing any data from getUser back to the
callback. In this case, we're expecting a user to get passed back, which is why we are going
to specify user as shown here:

callback (user) ;

Now the naming isn't important, I happen to call it user, but I could easily call this
userObject and userObject as shown here:

callback (user) ;
}i

getUser (31, (userObject) => {
console.log(userObject) ;
)i

All that matters is the arguments, position. In this case, we call the first argument
userObject and the first argument pass back is indeed that userobject. With this in
place we can now run our example.

[283]

Basics of Asynchronous Programming in Node.js Chapter 5

Running the callback function

In the Terminal, we'll run the callback function using node, which is in the playground
folder, and we call the file callbacks. js:

node playground/callback.]js

When we run the file, right away our data prints to the screen:

[NON) || weather-app — -bash — 108x29

Gary:weather-app Gary$ node playground/callback.js
{ id: 31, name: 'Vikram' }
Gary:weather-app Gary$ I

We've created a callback function using synchronous programming. Now as I mentioned,
this is still a contrived example because there is no need for a callback in this case. We could
simply return the user object, but in that case, we wouldn't be using a callback, and the
whole point here is to explore what happens behind the scenes and how we actually call the
function that gets passed in as an argument.

Simulating delay using setTimeout

Now, we can also simulate a delay using set Timeout, so let's do that. In our code, just
before the callback (user) statement, we'll use set Timeout just like we did before in
the previous section. We'll pass an arrow function (=>) in as the first argument, and set a
delay of 3 seconds using 3000 milliseconds:

setTimeout (() => {
}, 3000);
callback (user) ;

bi

Now I can take my callback call, delete it from line 10, and add it inside of the callback
function, as shown here:

setTimeout (() => {
callback (user) ;
}, 3000);

bi

[284]

Basics of Asynchronous Programming in Node.js Chapter 5

Now we'll not be responding to the getUser request until three seconds have passed. Now
this will be more or less similar to what happens when we create real-world examples of
callbacks, we pass in a callback, some sort of delay happens whether we're requesting from
a database or from an HTTP endpoint, and then the callback gets fired.

If I save callbacks. js and rerun the code from the Terminal, you'll see we wait those
three seconds, which is the simulated delay, and then the user object prints to the screen:

eCe® weather-app — node playground/callback.js — 108x29

Gary:weather-app Gary$ node playground/callback.js
{ id: 31, name: 'Vikram' }
Gary:weather-app Gary$ node playground/callback.js

0

This is exactly the principle that we need to understand in order to start working with
callbacks, and that is exactly what we'll start doing in this section.

Making request to Geolocation API

The requests that we'll be making to that Geolocation API can actually be simulated over in
the browser before we ever make the request in Node, and that's exactly what we want to
do to get started. So follow along for the URL,
https://maps.googleapis.com/maps/api/geocode/json.

Now this is the actual endpoint URL, but we do have to specify the address for which we
want the geocode. We'll do that using query strings, which will be provided right after the
question mark. Then, we can set up a set of key value pairs and we can add multiples using
the ampersand in the URL, for example: https://maps.googleapis.com/maps/api/

geocode/json?key=valuekeytwo=valuetwo.

In our case, all we need is one query string address, https://maps.googleapis.com/maps/
api/geocode/qjson?address, and for the address query string we'll set it equal to an
address. In order to fill out that query address, I'll start typing 1301 lombard street
philadelphia.

Notice that we are using spaces in the URL. This is just to illustrate a point: we can use
spaces in the browser because it's going to automatically convert those spaces to something
else. However, inside Node we'll have to take care of that ourselves, and we'll talk about
that a little later in the section. For now if we leave the spaces in, hit enter, and we can see
they automatically get converted for us:

[285]

Basics of Asynchronous Programming in Node.js Chapter 5

® 0 ® [ntps:imaps.googleapis.com X e

< | @ Secure | hitps://maps. leapi fmaps defjsen?address=130%20Imbard%20street%20philadelphia 7

Space characters get converted to $20, which is the encoded version of a space. In this page,
we have all of the data that comes back:

® 0 ® [mpsymaps.googleapis.com % 2]

< C | & Secure | hitps://maps leapi aps/api fisontaddress=1301%20lombard%20street%20philadelphia o

L
- |results: |

- address_componentss |
-1

long_name: “1301°,

short_pame: “1301°,
- typos: [

"street_nunber”

1

long_name: “Lombard Street”,
short_name: "Lombard St°,
- types: [
"routa”

1

long_names “Center City”,
short_pame: "Center City",

- types: [

"neighborhocd”,

"political®

1

long_name: “Philadelphia”,
short_nmme: "Philadelphia®,
- types: [
"lseality”,
"political®
1

leng_name: "Philadelphia County”,
short_name: "Fhiladelphis County”,
- types: [
results

Now we'll use an extension called JSONView, which is available for Chrome and Firefox.

I highly recommend installing JSONView, as we should see a much nicer
version of our JSON data. It lets us minimize and expand various
properties, and it makes it super easy to navigate.

Now as shown in the preceding screenshot, the data on this page has exactly what we need.
We have an address_components property, we don't need that. Next, we have a formatted
address which is really nice, it includes the state, the zip code, and the country, which we
didn't even provide in the address query.

Then, we have what we really came for: in geometry, we have location, and this includes
the latitude and longitude data.

[286]

Basics of Asynchronous Programming in Node.js

Chapter 5

Using Google Maps APl data in our code

Now, what we got back from the Google Maps API request is nothing more than some
JSON data, which means we can take that JSON data, convert it to a JavaScript object, and
start accessing these properties in our code. To do this, we'll use a third-party module that
lets us make these HTTP requests inside of our app; this one is called request.

We can visit it by going to https://www.npmjs.com/package/request. When we visit this
page, we'll see all the documentation and all the different ways we can use the request
package to make our HTTP requests. For now, though, we'll stick to some basic examples.
On the request documentation page, on the right-hand side, we can see this is a super
popular package and it has seven hundred thousand downloads in the last day:

® 0 ® [mpsymapsgoogleapis.cor x / [request "
< C @ NPM, Ine. [US] | hetps:/ www.npmis.com/package/request
request EE3
npn install request
24,573 dependents updated 4 months age
1,427 %

vt pasens | corwoge BRY covroe SO copurcencs MBRBMM] oo 0] e o o

Super simple to use

Request is designed to be the simplest way possible to make http calls. It supports HTTPS and follows
redirects by default.

var request =

m', funection (error, response, body) |

regquest('h

console.log('

console.log('a

console.log('bs

1

Table of contents

« Streaming

npm install request
how? learn more
® mikeal published 4 months ago
2.82.0is the latest of 120 releases
github.com/request/request

Apache-2.0

Collaborators list
cELE

Stats

1,233,549 downloads in the last day

8,041,430 downloads in the last week

29,013,118 downloads in the last month

567 open issues on GitHub

49 open pull requests on GitHub

In order to get started we're going to install the package inside our project, and we'll make a

request to this URL.

[287]

Basics of Asynchronous Programming in Node.js Chapter 5

Installing the request package

To install the package, we'll go to the Terminal and install the module using npm init, to
create the package. json file:

® [] weather-app — npm TERM_PROGRAM=Apple_Terminal TERM=xterm-256color — 108=29

Gary:weather-app Gary$ npm init
This utility will walk you through creating a package.json file.
It only covers the most common items, and tries to guess sensible defaults.

See “npm help json® for definitive documentation on these fields
and exactly what they do.

Use "npm install <pkg>’ afterwards to install a package and
save it as a dependency in the package.json file.

Press “C at any time to gquit.
package name: (weather-app) D

[288]

Basics of Asynchronous Programming in Node.js Chapter 5

We'll run this command and use enter to use the defaults for every single option:

® [] weather-app — npm TERM_PROGRAM=Apple_Terminal TERM=xterm-256color — 108=29

Use "npm install <pkg>" afterwards to install a package and
save it as a dependency in the package.json file.

Press “C at any time to guit.
package name: (weather-app)
version: (1.0.8)

description:

entry point: (index.js)

test command:

git repository:

keywords:

author:

license: (ISC)

About to write to fUsers/Gary/Desktop/weather-app/package.json:

{
"name": "weather-app",
"yersion": "1.8.8",
"description":
"main": "index.js",
"seripts": {
"test": "echo \"Error: no test specified\" && exit 1"
e
"author": "",
"license": "ISC"

Is this ok? (yes) D

At the end, we'll type yes and hit enfer again.

Now that we have our package. json file we can use npm install, followed by the
module name, request, and I will specify a version. You can always find the latest version of
modules on the npm page. The latest version at the time of writingis 2.73.0, so we'll add
that, @2.73.0. Then we can specify the save flag because we do want to save this module in
our package. json file:

npm install request@2.73.0 —--save

It will be critical for running the weather application.

[289]

Basics of Asynchronous Programming in Node.js Chapter 5

Using request as a function

Now that we have the request module installed, we can start using it. Inside Atom we'll
wrap up the section by making a request to that URL, in a new file in the root of the project
called app . js. This will be the starting point for the weather application. The weather app
will be the last command-line app we create. In the future we'll be making the backend for
web apps as well as real-time apps using Socket.IO. But to illustrate asynchronous
programming, a command-line app is the nicest way to go.

Now, we have our app file, and we can get started by loading in request just like we did
with our other npm modules. We'll make a constant variable, call it request, and set it
equal to require (request), as shown here:

const request = require('request');

Now what we need to do is make a request. In order to do this, we'll have to call the
request function. Let's call it, and this function takes two arguments:

e The first argument will be an options object where we can configure all sorts of
information

e The second one will be a callback function, which will be called once the data
comes back from the HTTP endpoint

request ({}, () => {

)i

[290]

Basics of Asynchronous Programming in Node.js Chapter 5

In our case, it's going to get called once the JSON data, the data from the Google Maps API,
comes back into the Node application. We can add the arguments that are going to get
passed back from request. Now, these are arguments that are outlined in the request
documentation, I'm not making up the names for these:

Super simple to use

Request is designed to be the simplest way possible to make http calls. It supports HTTPS and follows
redirects by default.

var request = regquire('request');

request ("http://www.google.com', function (error, response, body) {

console.log({'error:', error); // Print the error if one occurred

console.log('statusCode:"', response && response.statusCode);

console.log('body:', body); // Print the HTML for the Google homepa

L

In the documentation, you can see they call it error, response, and body. That's exactly
what well call ours. So, inside Atom, we can add error, response, and body, just like the
docs.

Now we can fill out that options object, which is where we are going to specify the things
unique to our request. In this case, one of the unique things is the URL. The URL specifies
exactly what you want to request, and in our case, we have that in the browser. Let's copy
the URL exactly as it appears, pasting it inside of the string for the URL property:

request ({

url:
'https://maps.googleapis.com/maps/api/geocode/json?address=1301%201lombard%2
Ostreet%20philadelphia’,
}, (error, response, body) => {

)i

[291]

Basics of Asynchronous Programming in Node.js Chapter 5

Now that we have the URL property in place, we can add a comma at the very end and hit
enter. Because we will specify one more property, we'll set json equal to true:

request ({

url:
'https://maps.googleapis.com/maps/api/geocode/json?address=1301%201lombard%2
Ostreet%20philadelphia’,

json: true
}, (error, response, body) => {

1)

This tells request that the data coming back is going to be JSON data, and it should go
ahead, take that JSON string, and convert it to an object for us. That lets us skip a step, it's a
really useful option.

With this in place, we can now do something in the callback. In the future we'll be taking
this longitude and latitude and fetching weather. For now, we'll simply print the body to
the screen by using console.log. We'll pass the body argument into console.log, as
shown here:

request ({

url:
'https://maps.googleapis.com/maps/api/geocode/json?address=1301%201lombard%2
Ostreet%20philadelphia’,

json: true
}, (error, response, body) => {
console.log (body);
P

Now that we have our very first HTTP request set up, and we have a callback that's going
to fire when the data comes back, we can run it from the Terminal.

Running the request

To run the request, we'll use node and run the app. js file:

node app.]js

[292]

Basics of Asynchronous Programming in Node.js Chapter 5

When we do this, the file will start executing and there will be a really short delay before
the body prints to the screen:

[] [] 7 weather-app — -bash — 108x29

Gary:weather-app Gary$ node app.js
{ results:
[{ address_components: [Arrayl,
formatted_address: '1301 Lombard St, Philadelphia, PA 19147, USA',
geometry: [Objectl],
place_id: 'EiwxMzAxIExvbWJhcmQgU3QsIFBoaWxhZGVscGhpYSwgUEEgGMTkxNDcsIFVTQQ',
types: [Array]l } 1,

status: 'OK' }
Gary:weather-app Gary$ |:|

What we get back is exactly what we saw in the browser. Some of the properties, such as
address_components, show object in this case because we're printing it to the screen. But
those properties do indeed exist; we'll talk about how to get them later in the chapter. For
now, though, we do have our formatted_address as shown in the preceding screenshot,
the geometry object, the place_id, and types. This is what we'll be using to fetch the
longitude and latitude, and later to fetch the weather data.

Now that we have this in place, we are done. We have the first step of the process complete.
We've made a request to the Google Geolocation API, and we're getting the data back. We'll
continue creating the weather app in the next section.

Pretty printing objects

Before we continue learning about HTTP and what exactly is inside of error, response,
and body, let's take a quick moment to talk about how we can pretty print an object to the
screen. As we saw in the last subsection, when we ran our app with node app. js, the
body prints to the screen.

But since there is a lot of objects nested inside of each other, JavaScript starts clipping them:

[293]

Basics of Asynchronous Programming in Node.js Chapter 5

[] [] "| weather-app — -bash — 108x29

Gary:weather-app Gary$ node app.js
{ results:
[{ address_components: [Arrayl,
formatted_address: '1301 Lombard St, Philadelphia, PA 19147, USA',
geometry: [Objectl],
place_id: 'EiwxMzAxIExvbWJhcmQgU3QsIFBoaWxhZGVscGhpYSwgUEEgGMTkxNDcsIFVTQQ',
types: [Array]l } 1,
status: 'OK' }
Gary:weather-app Gary$ D

As shown in the preceding screenshot, it tells us an object is in the results, but we don't
get to see exactly what the properties are. This takes place for address_components,
geometry, and types. Obviously this is not useful; what we want to do is see exactly
what's in the object.

Using the body argument

To explore all of the properties, we're going to look at a way to pretty print our objects. This
is going to require a really simple function call, a function we've actually already used,
JSON.stringify. This is the function that takes your JavaScript objects, which body is,
remember we used the json: true statement to tell request to take the JSON and
convert it into an object. In the console. log, statement we'll take that object, pass body in,
and provide the arguments as shown here:

const request = require('request');

request ({

url:
'https://maps.googleapis.com/maps/api/geocode/json?address=1301%201lombard%2
Ostreet%20philadelphia’,

json: true
}, (error, response, body) => {
console.log (JSON.stringify (body));
P

[294]

Basics of Asynchronous Programming in Node.js Chapter 5

Now, this is how we've usually used JSON. st ringify, in the past we provided just one
argument, the object we want to st ringify, in this case we're going to provide a couple of
other arguments. The next argument is used to filter out properties. We don't want to use
that, it's usually useless, so we're going to leave it as undefined as of now:

console.log (JSON.stringify (body, undefined));

The reason we need to provide it, is because the third argument is the thing we want. The
third argument will format the JSON, and we'll specify exactly how many spaces we want
to use per indentation. We could go with 2 or 4 depending on your preference. In this case,
we'll pick 2:

console.log (JSON.stringify (body, undefined, 2));

We'll save the file and rerun it from the Terminal. When we stringify our JSON and print
it to the screen, as we'll see when we rerun the app, we get the entire object showing up.
None of the properties are clipped off, we can see the entire address_components array,
everything shows up no matter how complex it is:

[NON) | weather-app — -bash — 108x29

Gary:weather-app Gary$ node app.js
{
"results": [
{
"address_components": [
{
"long_name": "13@1",
"short_name": "1361",
"types": [
"street_number"

1

"long_name": "Lombard Street",
"short_name": "Lombard St",
"types": [

"route"

1

"long_name": "Center City",
"short_name": "Center City",
"types": [
"neighborhood",
"political"

"long_name": "Philadelphia",

[295]

Basics of Asynchronous Programming in Node.js Chapter 5

Next, we have our geometry object, this is where our latitude and longitude are stored, and
you can see them as shown here:

| weather-app — -bash — 108x29

"formatted_address":
"geometry": {
"location": {
"lat": 39.9444871,
"lng": -75.1631718
} T
"location_type": "RANGE_INTERPOLATED",
"viewport": {
"northeast": {
"lat": 39.94575688082915,

"lng": -75.16182281978849
}J’

"southwest": {
"lat": 39.9430581197885,
"lng": -75.16452087802915

"1301 Lombard St, Philadelphia, PA 19147, USA",

}
}
+
"place_id":
"types": [
"street_address"

]

"EiwxMzAxIExvbWlhcmQgU3QsIFBoaWxhZGVscGhpYSwgUEEgMTkxNDesIFVTQQ",

}
]J’
"status": "OK"

}
Gary:weather-app Gary$ D

[296]

Basics of Asynchronous Programming in Node.js Chapter 5

Then below that, we have our types, which was cut off before, even though it was an array
with one item, which is a string;:

0] [] | weather-app — -bash — 10829

"formatted_address": "1301 Lombard St, Philadelphia, PA 19147, USA",
"geometry": {
"location": {
"lat": 39.9444071,
"lng": -75.1631718
}J’
"location_type": "RANGE_INTERPOLATED",
"viewport": {
"northeast": {
"lat": 39.94575688082915,
"lng": -75.16182281970849
}J’
"southwest": {
"lat": 39.9430581197885,
"lng": -75.1645207882915
}
}
}J’
"place_id": "EiwxMzAxIExvbWJhcmQgU3QsIFBoaWxhZGVscGhpYSwgUEEgMTkxNDesIFVTQQ",
"E¥pes": [
"street_address"
1
}
]J’
"status": "OK"
}
Gary:weather-app Gary$ D

Now that we know how to pretty print our objects, it will be a lot easier to scan data inside
of the console—none of our properties will get clipped, and it's formatted in a way that
makes the data a lot more readable. In the next section, we'll start diving into HTTP and all
of the arguments in our callback.

Making up of the HTTPS requests

The goal in the previous section was not to understand how HTTP works, or what exactly
the arguments, error, response, and body are the goal was to come up with a real-world
example of a callback, as opposed to the contrived examples that we've been using so far
with setTimeout:

const request = require('request');

request ({
url:

[297]

Basics of Asynchronous Programming in Node.js Chapter 5

'https://maps.googleapis.com/maps/api/geocode/json?address=1301%201lombard%2
Ostreet%20philadelphia’,

json: true

}, (error, response, body) => {

console.log (JSON.stringify (body, undefined, 2));

P

In the preceding case, we had a real callback that got fired once the HTTP request came
back from the Google servers. We were able to print the body, and we saw exactly what we
had in the website. In this section, we'll dive into these arguments, so let's kick things off by
taking a look at the body argument. This is the third argument that request passes to the
callback.

Now the body is not something unique to the request module (body is part of HTTP,
which stands for the Hypertext Transfer Protocol). When you make a request to a website,
the data that comes back is the body of the request. We've actually used the body about a
million times in our life. Every single time we request a URL in the browser, what we get
rendered inside the screen is the body.

In the case of https://www.npmjs.com, the body that comes back is an HTML web page that
the browser knows how to render. The body could also be some JSON information, which is
the case in our Google API request. Either way, the body is the core data that comes back
from the server. In our case, the body stores all of the location information we need, and
we'll be using that information to pull out the formatted address, the latitude, and the
longitude in this section.

The response object

Before we dive into the body, let's discuss about the response object. We can look at the
response object by printing it to the screen. Let's swap out body in the console.log
statement for response in the code:

const request = require('request');
request ({

url:
'https://maps.googleapis.com/maps/api/geocode/json?address=1301%201lombard%2
Ostreet%20philadelphia’,

json: true
}, (error, response, body) => {

console.log (JSON.stringify (response, undefined, 2));
P

[298]

Basics of Asynchronous Programming in Node.js Chapter 5

Then save the file and rerun things inside of the Terminal by running the node app.js
command. We'll get that little delay while we wait for the request to come back, and then
we get a really complex object:

0] [] | weather-app — -bash — 108x29

Gary:weather-app Gary$ node app.js
{
"statusCode": 2e8,
"body": {
"results": [
{
"address_components": [
{
"long_name": "1381",
"short_name": "1361",
"types": [
"street_number"
1
hH
{
"long_name": "Lombard Street",
"short_name": "Lombard St",
"types": [
"route"
1
}J’
{
"long_name": "Center City",
"short_name": "Center City",
"types": [
"neighborhood",
"political"
1
h

In the preceding screenshot, we can see the first thing we have in the response object is a
status code. The status code is something that comes back from an HTTP request; it's a part
of the response and tells you exactly how the request went.

In this case, 200 means everything went great, and you're probably familiar with some
status codes, like 404 which means the page was not found, or 500 which means the server
crashed. There are other body codes we'll be using throughout the book.

We'll be making our very own HTTP API, so you'll become intimately
familiar with how to set and use status codes.

[299]

Basics of Asynchronous Programming in Node.js Chapter 5

In this section, all we care about is that the status code is 200, which means things went
well. Next up in the response object, we actually have the body repeated because it is part
of the response. Since it's the most useful piece of information that comes back, the request
module developers chose to make it the third argument, although you could access it using
response.body as you can clearly see in this case. Here, we have all of the information
we've already looked at, address components, formatted address geometry, so on.

Next to the body argument, we have something called headers, as shown here:

[NON || weather-app — -bash — 108x29

"headers": {

"content-type": "application/json; charset=UTF-8",

"date": "Tue, 16 Jan 2018 85:08:11 GMT",

"expires": "Wed, 17 Jan 2018 85:88:11 GMT",

"cache-control": "public, max-age=86408",

"access—-control-allow-origin": "*",

"server": "mafe",

"x-xss-protection": "1; mode=block",

"x=-frame-options": "SAMEQRIGIN",

"alt-svc": "hg=\":443\"; ma=25920800; quic=513083431; gquic=51303339; quic=513083338; quic=51303337; guic=51
303335,quic=\":443\"; ma=2592000; v=\"41,39,38,37,35\"",

"accept-ranges": "none",

"vary": "Accept-Language,Accept-Encoding",

"connection": "close"

}

Now, headers are part of the HTTP protocol, they are key-value pairs as you can see in the
preceding screenshot, where the key and the value are both strings. They can be sent in the
request, from the Node server to the Google API server, and in the response from the
Google API server back to the Node server.

Headers are great, there's a lot of built-in ones like content-type. The content-type is
HTML for a website, and in our case, it's application/json. We'll talk about headers
more in the later chapters. Most of these headers are not important to our application, and
most we're never ever going to use. When we go on and create our own API later in the
book, we'll be setting our own headers, so we'll be intimately familiar with how these
headers work. For now, we can ignore them completely, all I want you to know is that these
headers you see are set by Google, they're headers that come back from their servers.

[300]

Basics of Asynchronous Programming in Node.js Chapter 5

Next to the headers we have the request object, which stores some information about the
request that was made:

[] [] |7 weather-app — -bash — 108x29

"alt-svc": "hg=\":443\"; ma=25920800; quic=51303431; gquic=51303339; quic=513083338; quic=51303337; guic=51
3083335,quic=\":443\"; ma=2592000; v=\"41,39,38,37,35\"",
"accept-ranges": "none",
"vary": "Accept-Language,Accept-Encoding”,
"connection": "close"
}J’
"request": {
"uriv: {
"protocol": "https:",
"slashes": true,
"auth": null,
"host": "maps.googleapis.com",
"port": 443,
"hostname": "maps.googleapis.com",
"hash": null,

"search": "?address=1301%28lombard%28street%28philadelphia”,

"query": "address=1301%28lombard%2@street¥%28philadelphia",

"pathname": "/maps/api/geocode/json",

"path": "/maps/api/geocode/json?address=1301%208lombard%28street%28philadelphia",

"href": "https://maps.googleapis.com/maps/api/geocode/json?address=1301%28lombard%20street%28philadelp

"method": "GET",
"headers": {
"accept": "application/json"
}
}
} :
Gary:weather-app Gary$ ||

As shown in the preceding screenshot, you can see the protocol HTTPS, the host, the
maps.googleapis.com website, and other things such as the address parameters, the
entire URL, and everything else about the request, which is stored in this part.

Next, we also have our own headers. These are headers that were sent from Node to the
Google API:

[301]

Basics of Asynchronous Programming in Node.js Chapter 5

[] [] |7 weather-app — -bash — 108x29

"alt-svc": "hg=\":443\"; ma=25920800; quic=51303431; gquic=51303339; quic=513083338; quic=51303337; guic=51
3083335,quic=\":443\"; ma=2592000; v=\"41,39,38,37,35\"",
"accept-ranges": "none",
"vary": "Accept-Language,Accept-Encoding”,
"connection": "close"
}J’
"request": {
"uriv: {
"protocol": "https:",
"slashes": true,
"auth": null,
"host": "maps.googleapis.com",
"port": 443,
"hostname": "maps.googleapis.com",
"hash": null,

"search": "?address=1301%28lombard%28street¥%28philadelphia”,

"guery": "address=1301%20lombard%2@street¥%20philadelphia”,

"pathname": "/maps/api/geocode/json",

"path": "/maps/api/geocode/json?address=1301%28lombard%28street%28philadelphia",

"href": "https://maps.googleapis.com/maps/api/geocode/json?address=1301%28lombard%208street%28philadelp

"method": "GET",
"headers": {
"accept": "application/json"
}
}
} =
Gary:weather-app Gary$ U

This header got set when we added json: true to options object in our code. We told
request we want JSON back and request went on to tell Google, Hey, we want to accept some
JSON data back, so if you can work with that format send it back! And that's exactly what Google
did.

This is the response object, which stores information about the response and about the
request. While we'll not be using most of the things inside the response argument, it is
important to know they exist. So if you ever need to access them, you know where they live.
We'll use some of this information throughout the book, but as I mentioned earlier, most of
it is not necessary.

For the most part, we're going to be accessing the body argument. One thing we will use is
the status. In our case it was 200. This will be important when we're making sure that the
request was fulfilled successfully. If we can't fetch the location or if we get an error in the
status code, we do not want to go on to try to fetch the weather because obviously we don't
have the latitude and longitude information.

[302]

Basics of Asynchronous Programming in Node.js Chapter 5

The error argument

For now, we can move on to the final thing which is error. As I just mentioned, the status
code can reveal that an error occurred, but this is going to be an error on the Google servers.
Maybe the Google servers have a syntax error and their program is crashing, maybe the
data that you sent is invalid, for example, you sent an address that doesn't exist. These
errors are going to become evident via the status code.

What the error argument contains is errors related to the process of making that HTTP
request. For example, maybe the domain is wrong: if I delete s and the dot with go in the
URL, in our code, I get a URL that most likely doesn't exist:

const request = require('request');

request ({

url:
'https://mapogleapis.com/maps/api/geocode/json?address=1301%201lombard%20str
eet%20philadelphia’,

In this case, I'll get an error in the error object because Node cannot make the HTTP request,
it can't even connect it to the server. I could also get an error if the machine I'm making the
request from does not have access to the internet. It's going to try to reach out to the Google
servers, it's going to fail, and we're going to get an error.

Now, we can check out the error object by deleting those pieces of text from the URL and
making a request. In this case, I'll swap out response for error, as shown here:

const request = require('request');

request ({

url:
'https://mapogleapis.com/maps/api/geocode/json?address=1301%201lombard%20str
eet%20philadelphia’,

json: true
}, (error, response, body) => {

console.log (JSON.stringify (error, undefined, 2));
}) i

Now, inside the Terminal, let's rerun the application by running the node app.js
command, and we can see exactly what we get back:

[303]

Basics of Asynchronous Programming in Node.js Chapter 5

[] [] "| weather-app — -bash — 108x29

Gary:weather-app Gary$ node app.js
{
"code": "ENOTFOUND",
"errno": "ENOTFOUND",
"syscall": "getaddrinfo",
"hostname": "mapogleapis.com",
"host": "mapogleapis.com",
"port": 443
}
Gary:weather-app Gary$ D

When we make the bad request, we get our error object printing to the screen, and the thing
we really care about is the error code. In this case we have the ENOTFOUND error. This means
that our local machine could not connect to the host provided. In this case
mapogleapis.com, it doesn't exist so we'll get an error right here.

These are going to be the system errors, things such as your program not being able to
connect to the internet or the domain not being found. This is also going to be really
important when it comes to creating some error handling for our application there is a
chance that the user's machine won't be connected to the internet. We're going to want to
make sure to take the appropriate action and we'll do that depending on what is inside the
error object.

If we can fix the URL, setting it back to maps.googleapis.com, and make the exact same
request by using the up arrow key and the enter key, the request error object it's going to be
empty, and you can see null print to the screen:

[NON) | weather-app — -bash — 108x29

Gary:weather-app Gary$ node app.js
null
Gary:weather-app Gary$ D

In this case, everything went great, there was no error, and it was able to successfully fetch
the data, which it should be able to because we have a valid URL. That is a quick rundown
of the body, the response, and the error argument. We will use them in more detail as we

add error handling.

[304]

Basics of Asynchronous Programming in Node.js Chapter 5

Printing data from the body object

Now, we'll print some data from the body to the screen. Let's get started by printing the
formatted address, and then we will be responsible for printing both the latitude and the

longitude.

Printing the formatted address

We'll start with figure out where the formatted address is. For this, we'll go to the browser
and use J[SONView. At the bottom of the browser page, you can see that little blue bar
shows up when we highlight over items, and it changes as we switch items. For formatted
address, for example, we access the results property, results is an array. In the case of
most addresses, you'll only get one result:

® © ® /[nupsyymaps.googieapis.com/ x ' [I] request X

- C | @ Secure | https://maps googleapis.com/maps/api/geccodefjson?address =1301%20lombard%20street%20philadelphia

{

- iresults: [
==y
+ address_components: [..],
formatted_ address: "1301 Lombard St, Philadelphia, Ph 19147, USA",
- geometry: {
- location: {
lat: 39.9444071,
lng: =75.1631718
s
lacation_type: "RANGE_TNTRRPOTATED",
- viewport: {
- northeast: {
lat: 39.9457560802915,
ing: -75.16182281970849
}.
- southwest: {
lat: 39.943058B1197085,
lng: -75.1645207802915
}
}

k.
place_id: "EiwxMzAxIExvbWIhcmQgqU3QsIFBoaWxhZGVscGhpYSwqUEEgMTkxRDcsIFVTQQ",
- types: [

"street_address"

[305]

Basics of Asynchronous Programming in Node.js Chapter 5

We'll use the first result every time, so we have the index of 0, then it's the
.formatted_address property. This bottom line is exactly what we need to type inside of
our Node code.

Inside Atom, in our code, we'll delete the console.log statement, and replace it with a
new console. log statement. We'll use template strings to add some nice formatting to
this. We'll add Address with a colon and a space, then I'll inject the address using the dollar
sign and the curly braces. We'll access the body, results, and the first item in the results
array followed by formatted address, as shown here:

const request = require('request');

request ({

url:
'https://maps.googleapis.com/maps/api/geocode/json?address=1301%201lombard%2
Ostreet%20philadelphia’,

json: true

}, (error, response, body) => {

console.log(Address: ${body.results[0].formatted_address});

)i

With this in place, I can now add a semicolon at the end and save the file. Next, we'll rerun
the application inside of the Terminal, and this time around we get our address printing to
the screen, as shown here:

0] [] || weather-app — -bash — 108=29

Gary:weather-app Gary$ node app.js
Address: 1301 Lombard St, Philadelphia, PA 19147, USA
Gary:weather-app Gary$ D

Now that we have the address printing to the screen, what we would like to print both the
latitude and the longitude next.

Printing latitude and longitude

In order to get started, inside Atom, we'll add another console. log line right next to the
console.log we added for formatted address. We'll use template strings again to add
some nice formatting. Let's print the latitude first.

[306]

Basics of Asynchronous Programming in Node.js Chapter 5

For this, we'll add latitude followed by a colon. Then we can inject our variable using the
dollar sign with the curly braces. Then, the variable we want is on the body. Just like the
formatted address, it's also in the first results item; results at the index of zero. Next, we'll
be going into geometry. From geometry, we'll grab the location property, the latitude, . 1at,
as shown here:

console.log(Address: ${body.results[0].formatted_address});
console.log(Latitude: ${body.results[0].geometry.location.lat});
)i

Now that we have this in place, we'll do the exact same thing for longitude. We'll add
another console. log statement in the next line of the code. We'll use template strings once
again, typing longitude first. After that, we'll put a colon and then inject the value. In this
case, the value is on the body; it's in that same results item, the first one. We'll go into
geometry location again. Instead of . 1at, we'll access . 1ng. Then we can add a semicolon
at the end and save the file. This will look something like the following;:

console.log(Address: ${body.results[0].formatted_address});

console.log(Latitude: ${body.results[0].geometry.location.lat});

console.log(Longitude: ${body.results[0].geometry.location.lng});
)i

Now we'll test it from the Terminal. We'll rerun the previous command, and as shown in
the following screenshot, you can see we have the latitude, 39. 94, and the longitude,
-75.16 printing to the screen:

[NON || weather-app — -bash — 108x29

Gary:weather-app Gary$ node app.js

Address: 1301 Lombard St, Philadelphia, PA 19147, USA
Latitude: 39.9444871

Longitude: -75.1631718

Gary:weather-app Gary$ |:|

And these are the exact same values we have inside the Chrome browser, 39.94, -75.16.
With this in place, we've now successfully pulled off the data we need to make that request
to the weather API.

[307]

Basics of Asynchronous Programming in Node.js Chapter 5

Summary

In this chapter, we have gone through a basic example of asynchronous programming.
Next, we talked about what happens behind the scenes when you run asynchronous code.
We got a really good idea about how your program runs and what tools and tricks are
happening behind the scenes to make it run the way it does. We through a few examples
that illustrate how the Call Stack, Node APIs, the Callback Queue, and the Event Loop
work.

Then, we learned how to use the request module to make an HTTP request for some
information, the URL we requested was a Google Maps Geocoding URL, and we passed in
the address we want the latitude and the longitude for. Then we used a callback function
that got fired once that data came back.

At the end of the section Callback functions and APIs, we looked into a quick tip on how we
can format objects when we want to print them to the console. Last, we looked into what
makes up the HTTPS request.

In the next chapter, we'll add some error handling to this callback because that's going to be
really important for our HTTP requests. There's a chance that things will go wrong, and
when they do, we'll want to handle that error by printing a nice error message to the screen.

[308]

Callbacks in Asynchronous
Programming

This chapter is the second part of our asynchronous programming in Node.js. In this
chapter, we'll look at callbacks, HTTP requests, and more. We're going to handle a lot of the
errors that happen inside callbacks. There's a lot of ways our request in app . js can go
wrong, and we'll want to figure out how to recover from errors inside of our callback
functions when we're doing asynchronous programming.

Next, we'll be moving our request code block into a separate file and abstracting a lot of
details. We'll talk about what that means and why it's important for us. We'll be using
Google's Geolocation API, and we'll be using the Dark Sky API to take location information
like a zip code and turn that into real-world current weather information.

Then, we'll start wiring up that forecast AP]I, fetching real-time weather data for the address
that's geocoded. We'll add our request inside of the callback for geocodeAddress. This will
let us take that dynamic set of latitude and longitude coordinates, the 1at/1ng for the
address used in the arguments list, and fetch the weather for that location.

Specifically, we'll look into the following topics:

¢ Encoding user input

Callback errors

Abstracting callbacks
¢ Wiring up weather search

Chaining callbacks together

Callbacks in Asynchronous Programming Chapter 6

Encoding user input

In this section, you'll learn how to set up yargs for the weather app. You'll also learn how to
include user input, which is very important for our application.

As shown in the previous chapter, HTTPS request section, the user will not type their
encoded address into the Terminal; instead they will be typing in a plain text address like
1301 Lombard Street.

Now this will not work for our URL, we need to encode those special characters, like the
space, replacing them with $20. Now %20 is the special character for the space, other special
characters have different encoding values. We'll learn how to encode and decode strings, so
we can set up our URL to be dynamic. It's going to be based off of the address provided in
the Terminal. That's all we're going to discuss in this section. By the end of the section,
you'll be able to type in any address you like, and you'll see the formatted address, the
latitude, and the longitude.

Installing yargs

Before we can get started doing any encoding, we have to get the address from the user,
and before we can set up yargs we have to install it. In the Terminal, we'll run the npm
install command, the module name is yargs, and we'll look for version 10.1.1, which is
the latest version at the time of writing. We'll use the save flag to run this installation, as
shown in the following screenshot:

[NON || weather-app — -bash — 108x29

Gary:weather-app Gary$ npm install yargs --save

npm :1l| weather-app@1.0.8 No description
npm LUl weather-app@1.0.8 No repository field.

+ yargsf16.1.1
added 49 packages in 10.273s

Gary:weather-app Gary$ D

Now the save flag is great because as you remember. It updates the package. json file and
that's exactly what we want. This means that we can get rid of the node modules folder
which takes up a ton of space, but we can always regenerate it using npm install.

[310]

Callbacks in Asynchronous Programming Chapter 6

If you run npm install without anything else, no other module names or
flags. It will dig through that package. json file looking for all the
modules to install, and it will install them, recreating your node modules
folder exactly as you left it.

While the installation is going on, we do a bit of configuration in the app. js file. So we can
get started by first loading in yargs. For this, in the app . js file, next to request constant, I'll
make a constant called yargs, setting it equal to require (yargs) just like this:

const request = require('request');
const yargs = require('yargs');

Now we can go ahead and actually do that configuration. Next we'll make another constant
called argv. This will be the object that stores the final parsed output. That will take the
input from the process variable, pass it through yargs, and the result will be right here in
the argv constant. This will get set equal to yargs, and we can start adding some calls:

const request = require('request');
const yargs = require('yargs');
const argv = yargs

Now when we created the notes app we had various commands, you could add a note and
that required some arguments, list a note which required just the title, list all notes which
didn't require any arguments, and we specified all of that inside of yargs.

For the weather app the configuration will be a lot simpler. There is no command, the only
command would be get weather, but if we only have one why even make someone type it.
In our case, when a user wants to fetch the weather all they will do is type node app.js
followed by the address flag just like this:

node app.]js ——address

Then they can type their address inside of quotes. In my case it could be something like
1301 lombard street:

node app.js —--address '1301 lombard street'

This is exactly how the command will get executed. There's no need for an actual command
like fetch weather, we go right from the file name right into our arguments.

[311]

Callbacks in Asynchronous Programming Chapter 6

Configuring yargs

To configure yargs, things will look a little different but still pretty similar. In the Atom, I'll
get started by calling . opt ions, which will let us configure some top level options. In our
case, we'll pass in an object where we configure all of the options we need. Now I'll format
this like I do for all of my chained calls, where I move the call to the next line and I indent it
like this:

const argv = yargs
.options ({

})

Now we can set up our options and in this case we just have one, it will be that a option; a
will be short for address. I could either type address in the options and I could put a in the
alias, or I could put a in the options and type address in the alias. In this case I'll put a as
shown here:

const argv = yargs
.options ({
a: A

}
H)

Next up, I can go ahead and provide that empty object, and we'll go through these same
exact options we used inside of the notes app. We will demand it. If you'll fetch the weather
we need an address to fetch the weather for, so I'll set demand equal to true:

const argv = yargs
.options ({
a: A
demand: true,
}
)

Next up, we can set an alias, I'll set alias equal to address. Then finally we'll set
describe, we can set describe to anything we think would be useful, in this case I'll go
with Address to fetch weather for, as shown here:

const argv = yargs
.options ({
a: A
demand: true,
alias: 'address',

[312]

Callbacks in Asynchronous Programming Chapter 6

describe: 'Address to fetch weather for'
}
)

Now these are the three options we provided for the notes app, but I'll add a fourth one to
make our yargs configuration for the weather app even more full proof. This will be an
option called string. Now string takes a Boolean either t rue or false. In our case we
want true to be the value. This tells yargs to always parse the a or address argument as a
string, as opposed to something else like a number or a Boolean:

const argv = yargs
.options ({
a: A
demand: true,
alias: 'address',
describe: 'Address to fetch weather for',

string: true
}
})

In the Terminal, if I were to delete the actual string address, yargs would still accept this,
it would just think I'm trying to add a Boolean flag, which could be useful in some
situations. For example, do I want to fetch in Celsius or in Fahrenheit? But in our case, we
don't need any sort of t rue or false flag, we need some data, so we'll set string to true to
make sure we get that data.

Now that we have our options configuration in place, we can go ahead and add a couple
other calls that we've explored. I'll add .help, calling it as shown in the following code,
which adds the help flag. This is really useful especially when someone is first using a
command. Then we can access . argv, which takes all of this configuration, runs it through
our arguments, and restores the result in the argv variable:

const argv = yargs
.options ({

a: A
demand: true,
alias: 'address',

describe: 'Address to fetch weather for',
string: true
}
})
.help()
.argv;

[313]

Callbacks in Asynchronous Programming Chapter 6

Now the help method adds that help argument, we can also add an alias for it right
afterwards by calling .alias. Now .alias takes two arguments, the actual argument that
you want to set an alias for and the alias. In our case, we already have help registered, it
gets registered when we call help, and we'll set an alias which will just be the letter h,
awesome:

.help()
.alias('help', 'h'")
.argv;

Now we have all sorts of really great configurations set up for the weather app. For
example, inside the Terminal I can now run help, and I can see all of the help information
for this application:

[HON) | weather-app — -bash — 108x29

Gary:weather-app Gary$ node app.js --help

Options:
--version Show version number [boolean]
-a, —--address Address to fetch weather for [string] [required]
--help, -h Show help [boolean]

Gary:weather-app Gary$ I

I could also use the shortcut ~h, and I get the exact same data back:

[] [] | weather-app — -bash — 108x29

Gary:weather-app Gary$ node app.js =h

Options:
--version Show version number [boolean]
-a, —--address Address to fetch weather for [string] [required]
--help, -h Show help [boolean]

Gary:weather-app Gary$ I

[314]

Callbacks in Asynchronous Programming Chapter 6

Printing the address to screen

Now the address is also getting passed through but we don't print it to the screen, so let's
do that. Right after the configuration, let's use console. log to print the entire argv
variable to the screen. This will include everything that got parsed by yargs:

.help ()

.alias('help', 'h')

.argv;
console.log(argv);

Let's go ahead and rerun it in the Terminal, this time passing in an address. I'll use the a
flag, and specifying something like 1301 lombard street, closing the quotes, and hitting
enter:

node app.js —a '1301 lombard street'

When we do this we get our object, and as shown in the code output, we have 1301
Lombard St, Philadelphia, PA 19147, USA, the plain text address:

[] [] | weather-app — -bash — 108=28

Gary:weather-app Gary$ node app.js -a '1301 lombard street'
i 5 [0

version: false,

help: false,

h: false,

a: '1381 lombard street',

address: '1301 lombard street',

'$8': 'app.js' }

Address: 1301 Lombard St, Philadelphia, PA 19147, USA
Latitude: 39.9444871

Longitude: -75.1631718
Gary:weather-app Gary$ I

In the preceding screenshot, notice that we happen to fetch the latitude and longitude for
that address, but that's just because we have it hard coded in the URL in app. js. We still
need to make some changes in order to get the address, the one that got typed inside the
argument, to be the address that shows up in the URL.

[315]

Callbacks in Asynchronous Programming Chapter 6

Encoding and decoding the strings

To explore how to encode and decode strings we'll head into the Terminal. Inside the
Terminal, first we'll clear the screen using the clear command, and then we boot up a node
process by typing the node command as shown:

node

Here we can run any statements we like. When we're exploring a really basic node or
JavaScript feature, we'll look into some examples first, and then we go ahead and add it into
our actual application. We'll look at two functions, encodeURIComponent and
decodeURIComponent. We'll get started with encoding first.

Encoding URI component

Encoding, the method is called encodeURIComponent, encode URI in uppercase
component, and it takes just one argument, the string you want to encode. In our case, that
string will be the address, something like 1301 lombard street philadelphia. When
we run this address through encodeURIComponent by hitting enter, we get the encoded
version back:

encodeURIComponent ('1301 lombard street philadelphia')

As shown in the following code output, we can see all the spaces, like the space between
1301 and lombard, have been replaced with their encoded character, and for the case of the
space it is %20. By passing our string through encodeURIComponent, we'll create
something that's ready to get injected right into the URL so we can fire off that dynamic
request.

® [] weather-app — node — 108=29

Gary:weather-app Gary$ node
> encodeURIComponent('1381 lombard street philadelphia')

> 1

[316]

Callbacks in Asynchronous Programming Chapter 6

Decoding URI component

Now the alternative to encodeURIComponent is. This will take an encoded string like the
one in the previous example, and take all the special characters, like $20, and convert them
back into their original values, in this case space. For this, inside of decodeURIComponent
once again we'll pass a string.

Let's go ahead and type our first and last name. In my case it's Andrew, and instead of a
space between them I'll add %20, which we know is the encoded character for a space. Since
we're trying to decode something, it's important to have some encoded characters here.
Once yours looks like the following code with your first and last name, you can go ahead
and hit enter, and what we get back is the decoded version:

decodeURIComponent ('Andrew$20Mead')

As shown in the following code output, | have Andrew Mead with the %20 being replaced
by the space, exactly what we expected. This is how we can encode and decode URI
components in our app:

> decodeURIComponent('Andrewk28Mead’)

> 1

Pulling the address out of argv

Now what we want to do is pull the address out of argv, we already saw that it's there, we
want to encode it and we want to inject it in our URL in app. js file, replacing the address:

This will essentially create that dynamic request we've been talking about. We'll be able to
type in any address we want, whether it's an address or a zip code or a city state
combination, and we'll be able to fetch the formatted address, the latitude, and the
longitude.

In order to get started, the first thing I'll do is get the encoded address. Let's make a variable
called encodedAddress in the app. js next to the argv variable, where we can store that
result. We'll set this equal to the return value from the method we just explored in the
Terminal, encodeURIComponent. This will take the plain text address and return the
encoded result.

[317]

Callbacks in Asynchronous Programming Chapter 6

Now we do need to pass in the string, and we have that available on argv.address which
is the alias:

.help()
.alias('help', 'h'")
.argv;
var encodedAddress = encodeURIComponent (argv.address);

Here we could use argv.a as well as argv.address, both will work the
same.

Now we have that encoded result all that's left to do is inject it inside of the URL string. In
the app. js, currently we're using a regular string. We'll swap this out for a template string
so I can inject a variable inside of it.

Now that we have a template string, we can highlight the static address which ends at
philadelphia and goes up to the = sign, and remove it, and instead of typing in a static
address we can inject the dynamic variable. Inside of my curly braces, encodedAddress, as
shown here:

var encodedAddress = encodeURIComponent (argv.address);

request ({
url:

“https://maps.googleapis.com/maps/api/geocode/json?address=${encodedAddress

}\ 4
With this in place we are now done. We get the address from the Terminal, we encode it,
and we use that inside of a geocode call. So the formatted address, latitude, and longitude
should match up. Inside the Terminal, we'll shut down node by using control + C twice and
use clear to clear the Terminal output.

Then we can go ahead and run our app using node app. js, passing in either the a or
address flag. In this case, we'll just use a. Then we can go ahead and type in an address,
for example, 1614 south broad street philadelphia asshown here:

node app.js —a '1614 south broad street philadelphia’

[318]

Callbacks in Asynchronous Programming Chapter 6

When you run it you should have that small delay while we fetch the data
from the geocode URL.

In this case we'll find that it's actually taking a little longer than we would expect, about
three or four seconds, but we do get the address back:

[] [] || weather-app — -bash — 108x29

Gary:weather-app Gary$ node app.js -a '1614 broad street philadelphia’
Address: 1614 Broad Street, Philadelphia, PA 19145, USA

Latitude: 39.93008846

Longitude: =75.16877829999999

Gary:weather-app Gary$ I

Here we have the formatted address with a proper zip code state and country, and we also
have the latitude and longitude showing up. We'll try a few other examples. For example
for a town in Pennsylvania called Chalfont, we can type in chalfont pa whichisnota
complete address, but the Google Geocode API will convert it into the closest thing, as
shown here:

[NON) | weather-app — -bash — 108x29

Gary:weather-app Gary$ node app.js -a 'chalfont pa’
Address: Chalfont, PA 18914, USA
Latitude: 48.2884395

Longitude: -75.20890623
Gary:weather-app Gary$ I

We can see that it's essentially the address of the town, Chalfont, PA 18914 is the zip, with
the state USA. Next, we have the general latitude and longitude data for that town, and this
will be fine for fetching weather data. The weather isn't exactly changing when you move a
few blocks over.

Now that we have our data coming in dynamically, we are able to move on to the next
section where we'll handle a lot of the errors that happen inside of callbacks. There are a lot
of ways this request can go wrong, and we'll want to figure out how to recover from errors
inside of our callback functions when we're doing asynchronous programming.

[319]

Callbacks in Asynchronous Programming Chapter 6

Callback errors

In this section we'll learn how to handle errors inside of your callback functions, because as
you might guess things don't always go as planned. For example, the current version of our
app has a few really big flaws, if I try to fetch weather using node app.js with the a flag
for a zip that doesn't exist, like 000000, the program crashes, which is a really big problem.
It's going off. It's fetching the data, eventually that data will come back and we get an error,
as shown here:

0] [] | weather-app — -bash — 10829

Gary:weather-app Gary$ node app.js -a 0000080
fUsers/Gary/Desktop/weather-app/app.js:22
console.log(Address: ${body.results[@].formatted_address}’);
LY

TypeError: Cannot read property 'formatted_address' of undefined
at Reguest.request [as _callback] (/Users/Gary/Desktop/weather-app/app.js:22:43)
at Reguest.self.callback (/Users/Gary/Desktop/weather-app/node_modules/request/request.js:186:22)
at Reguest.emit (events.js:159:13)
at Reguest.<anonymous> (/Users/Gary/Desktop/weather-app/node_modules/request/request.js:1163:10)
at Reguest.emit (events.js:159:13)
at IncomingMessage.<anonymous> (/fUsers/Gary/Desktop/weather-app/node_modules/request/request.js:1885:12)
at Object.onceWrapper (events.js:254:19)
at IncomingMessage.emit (events.js:164:28)
at endReadableNT (_stream_readable.js:1862:12)
at process._tickCallback (internal/process/next_tick.js:152:19)
Gary:weather-app Gary$ D

It's trying to fetch properties that don't exist, such as
body.results[0].formatted_address is not a real property, and this is a big problem.

Our current callback expects everything went as planned. It doesn't care about the error
object, doesn't look at response codes; it just starts printing the data that it wants. This is the
happy path, but in real world node apps we have to handle errors as well otherwise the
applications will become really useless, and a user can get super frustrated when things
don't seem to be working as expected.

[320]

Callbacks in Asynchronous Programming Chapter 6

In order to do this, we'll add a set of i f/else statements inside of the callback. This will let
us check certain properties to determine whether or not this call, the one to our URL in the
app.Jjs, should be considered a success or a failure. For example, if the response code is a
404, we might want to consider that a failure and we'll want to do something other than
trying to print the address, latitude and longitude. If everything went well though, this is a
perfectly reasonable thing to do.

There are two types of errors that we'll worry about in this section. That will be:

¢ The machine errors, things like being unable to connect to a network, these are
usually will show up in the error object, and

¢ The errors coming from the other server, the Google server, this could be
something like an invalid address

In order to get started, let's take a look at what can happen when we pass a bad data to the
Google APL

Checking error in Google API request

To view what actually comes back in a call like the previous example, where we have an
invalid address, we'll head over to the browser and pull up the URL we used in the app. js
file:

tps/i . is. maps/api/geccode/jsontaddress=1301 lombard street philadelphia
€ C 0 hitps://maps.googleapis.com/maps/api/gec sontaddress=1 ba @

We will remove the address we used earlier from the browser history, and type in 000000,
hit enter:

@ @ [https://maps.googleapis.com X

“ C | & Secure | https://maps.googleapis.com/maps/api/geocode/json?address=000000

{
results: [],
status: "ZIERO RESULTS"

[321]

Callbacks in Asynchronous Programming Chapter 6

We get our results arrive but those are no results, and we have the status, the status says
ZERO_RESULTS, and this is the kind of information that's really important to track down.
We can use the status text value to determine whether or not the request was successful. If
we pass in a real zip code like 19147, which is Philadelphia, we'll get our results back,
and as shown in the following image, the status will get set equal to OX:

{
- iresults: [
-1
- address_components: [
-1
long_name: "19147",
short_name: "19147",
- types: [
"postal_code”
]
b
-1
long_name: "Philadelphia”,
short_name: "Philadelphia™,
- types: [
"locality”,
"political™
1
I
-1
long_name: "Philadelphia County”,
short_name: "Philadelphia County”,
- types: [
"administrative_area_level 2",
"political™
1
I
-1
long_name: "Pennsylvania”,
short_name: "PA",
- types: [
"administrative_area_level 1",
"political™
1
I

We can use this status to determine that things went well. Between these status property
and the error object, which we have inside of our app, we can determine what exactly to do
inside of the callback.

[322]

Callbacks in Asynchronous Programming Chapter 6

Adding the if statement for callback errors

The first thing we'll do is add an if statement as shown below, checking if the error object
exists:

request ({

url:
“https://maps.googleapis.com/maps/api/geocode/json?address=${encodedAddress
}\I

json: true
}, (error, response, body) => {

if (error) {

}

This will run the code inside of our code block if the error object exists, if it doesn't fine,
we'll move on into the next else if statement, if there is any.

If there is an error, all we'll dois add a console.log and a message to the screen,
something like Unable to connect to Google servers:

if (error) |
console.log('Unable to connect Google servers.');

}

This will let the user know that we were unable to connect to the user servers, not that
something went wrong with their data, like the address was invalid. This is what be inside
of the error object.

Now the next thing that we'll do is add an else if statement, and inside of the condition
we'll check the status property. If the status property is ZERO_RESULTS, which it was for the
zip code 000000, we want to do something other than trying to print the address. Inside of
our conditional in Atom, we can check that using the following statement:

if (error) {
console.log('Unable to connect Google servers.');
} else if (body.status === 'ZERO_RESULTS') {

}

If that's the case, we'll print a different message, other than Unable to connect Google
servers, for this one we can use console.log to print Unable to find that
address.:

if (error) {
console.log('Unable to connect Google servers.');

[323]

Callbacks in Asynchronous Programming Chapter 6

} else if (body.status === 'ZERO_RESULTS') {
console.log('Unable to find that address.');
}

This lets the user know that it wasn't a problem with the connection, we were just unable to
find the address they provided, and they should try with something else.

Now we have error handling for those system errors, like being unable to connect to the
Google servers, and for errors with the input, in this case we're unable to find a location for
that address, and this is fantastic, we have both of our errors handled.

Now the body . status property that shows up in the else if statement,
is not going to be on every AP], this is specific to the Google Geocode APL
When you explore a new APl it's important to try out all sorts of data,
good data like a real address and bad data like an invalid zip code, to see
exactly what properties you can use to determine whether or not the
request was successful, or if it failed.

In our case, if the status is ZERO_RESULTS, we know the request failed and we can act
accordingly. Inside of our app, now we'll add our last else if clause, if things went well.

Adding if else statement to check body status property

Now we want to add the else if clause checking if the body.status property equals OK.
If it does, we can go ahead and run these three lines inside of the code block:

console.log(Address: ${body.results[0].formatted_address});

console.log(Latitude: ${body.results[0].geometry.location.lat});

console.log(Longitude: ${body.results[0].geometry.location.lng});
)i

If it doesn't, these lines shouldn't run because the code block will not execute. Then we'll
test things out inside of the Terminal, try to fetch the address of 00000, and make sure that
instead of the program crashing we get our error message printing to the screen. Then we
go ahead and mess up the URL in the app by removing some of the important characters,
and make sure this time we get the Unable to connect to the Google servers.
message. And last we'll see what happens when we enter a valid address, and make sure
our three console.log statements still execute.

[324]

Callbacks in Asynchronous Programming Chapter 6

To get started we'll add that e1se if statement, and inside of the condition we'll check if
body.status is OK:

if (error) {
console.log('Unable to connect Google servers.');
} else if (body.status === 'ZERO_RESULTS') {
console.log('Unable to find that address.');
} else if (body.status === 'OK') {

}

If it is OK, then we'll simply take the three console. log lines (shown in the previous code
block) and move them in the else if condition. If it is OK, we'll run these three
console. log statements:

if (error) {
console.log('Unable to connect Google servers.');
} else if (body.status === 'ZERO_RESULTS') {
console.log('Unable to find that address.');
} else if (body.status === 'OK') {
console.log(Address: ${body.results[0].formatted_address}’);
console.log(Latitude: ${body.results[0].geometry.location.lat}’);
console.log(Longitude: ${body.results[0].geometry.location.lng}’);
}

Now we have a request that handles errors really well. If anything goes wrong we have a
special message for it, and if things go right we print exactly what the user expects, the
address, the latitude, and the longitude. Next we'll test this.

Testing the body status property

To test this inside of the Terminal, we'll start by rerunning the command with an address
that's invalid:

node app.js —a 000000

[NON) || weather-app — -bash — 108x29

Gary:weather-app Gary$ node app.js -a 000000
Unable to find that address.
Gary:weather-app Gary$ I

[325]

Callbacks in Asynchronous Programming Chapter 6

When we run this command, we see that Unable to find address. prints to the screen.
Instead of the program crashing, printing a bunch of errors, we simply have a little message
printing to the screen. This is because the code we have in second else if statement, that
tried to access those properties that didn't exist, no longer runs because our first else if
condition gets caught and we simply print the message to the screen.

Now we also want to test that the first message (Unable to connect to the Google
servers.) prints when it should. For this, we'll delete some part of the URI in our code,
let's say, s and ., and save the file:

request ({
url:
“https://mapgoogleapis.com/maps/api/geocode/json?address=${encodedAddress}"
json: true
}, (error, response, body) => {
if (error) {

console.log('Unable to connect Google servers.');
} else if (body.status === 'ZERO_RESULTS') {
console.log('Unable to find that address.');
} else if (body.status === 'OK') {

console.log(Address: ${body.results[0].formatted_address});
console.log(Latitude: ${body.results[0].geometry.location.lat});
console.log(Longitude: ${body.results[0].geometry.location.lng});
t
)i

Then we'll rerun the previous command in the Terminal. This time around we can see
Unable to connect to Google servers. prints to the screen just like it should:

[] [] || weather-app — -bash — 108=29

Gary:weather-app Gary$ node app.js —-a 000008
Unable to connect Google servers.
Gary:weather-app Gary$ l

Now we can test it the final thing, by first readjusting the URL to make it correct, and then
fetching a valid address from the Terminal. For example, we can use the node app. s,
setting address equal to 08822, which is a zip code in New Jersey:

node app.js ——address 08822

[326]

Callbacks in Asynchronous Programming Chapter 6

When we run this command, we do indeed get our formatted address for Flemington, NJ,
with a zip code and the state, and we have our latitude and longitude as shown here:

[NON) || weather-app — -bash — 108x29

Gary:weather-app Gary$ node app.js --address 8822
Address: Flemington, NJ 88822, USA
Latitude: 48.5377063

Longitude: -74.85687131
Gary:weather-app Gary$ I

We now have a complete error handling model. When we make a request to Google
providing a address that has problems, in this case there's ZERO_RESULTS, the error object
will get populated, because it's not technically an error in terms of what request thinks an
error is, it's actually in the response object, which is why we have to use body . status in
order to check the error.

That is it for this section, we now have error handling in place, we handle system errors,
Google server errors, and we have our success case.

Abstracting callbacks

In this section, we'll be refactoring app . js, taking a lot of the complex logic related to
geocoding and moving it into a separate file. Currently, all of the logic for making the
request and determining whether or not the request succeeded, our 1 £ else statements,
live inside of app. js:

request ({

url:
“https://maps.googleapis.com/maps/api/geocode/json?address=${encodedAddress
}\I

json: true
}, (error, response, body) => {

if (error) {

console.log('Unable to connect Google servers.');
} else if (body.status === 'ZERO_RESULTS') {
console.log('Unable to find that address.');
} else if (body.status === 'OK') {

console.log(Address: ${body.results[0].formatted_address}’);
console.log(Latitude: ${body.results[0].geometry.location.lat});
console.log(Longitude: ${body.results[0].geometry.location.lng});

[327]

Callbacks in Asynchronous Programming Chapter 6

This is not exactly reusable and it really doesn't belong here. What I'd like to do before we
add even more logic related to fetching the forecast, that's the topic of the next section, is
break this out into its own function. This function will live in a separate file, like we did for
the notes application.

In the notes app we had a separate file that had functions for adding, listing, and
removing notes from our local adjacent file. We'll be creating a separate function
responsible for geocoding a given address. Although the logic will stay the same, there
really is no way around it, it will be abstracted out of the app . js file and into its own
location.

Refactoring app.js and code into geocode.js file

First up, we will need to create a new directory and a new file then we'll add a few more

advanced features to the function. But before that, we'll see what the require statement will
look like.

Working on request statement

We'll load in via a constant variable called geocode the module, and we'll set it equal to
require, since we're requiring a local file we'll add that relative path,
./geocode/geocode. js:

const geocode = require ('./geocode/geocode.js');

That means you need to make a directory called geocode in the weather-app folder, and a
file called geocode. js. Since we have a . js extension, we can actually leave it off of our
require call.

Now, in the app. js file, next to . argv object, we need to call geocode . geocodeAddress.
The geocodeAddress function, that will be the function responsible for all the logic we
currently have in app. js. The geocodeAddress function will take the address,
argv.address:

geocode.geocodeAddress (argv.address) ;

[328]

Callbacks in Asynchronous Programming Chapter 6

It will be responsible for doing everything, encoding the URL, making the request, and
handling all of the error cases. This means, in that new file we need to export the
geocodeAddress function, just like we exported functions from the notes application
file. Next, we have all of the logic here:

var encodedAddress = encodedURIComponent (argv.address);

request ({

url:
“https://maps.googleapis.com/maps/api/geocode/json?address=${encodedAddress
}\I

json: true
}, (error, response, body) => {

if (error) {

console.log('Unable to connect Google servers.');
} else if (body.status === 'ZERO_RESULTS') {
console.log('Unable to find that address.');
} else if (body.status === 'OK') {

console.log(Address: ${body.results[0].formatted_address}’);
console.log(Latitude: ${body.results[0].geometry.location.lat});
console.log(Longitude: ${body.results[0].geometry.location.lng});
}
}) i

This logic needs to get moved inside of the geocodeaAddress function. Now we can copy
and paste the preceding shown code directly, there really is no way around some of the
more complex logic, but we will need to make a few changes. We'll need to load requests
into that new file, since we use it and it isn't going to be required in that file by default.
Then we can go ahead and clean up the request require call in the code, since we won't be
using it in this file.

Next up, the argv object is not going to exist, we'll get that passed in via the first argument,
just like the argv.address in the geocode . Address statement. This means we'll need to
swap this out for whatever we call that first argument for example, address. Once this is
done, the program should work exactly as it works without any changes in app. js, there
should be no change in functionality.

[329]

Callbacks in Asynchronous Programming Chapter 6

Creating geocode file

To get started, let's make a brand new directory in the weather-app folder, that's the first
thing we need to do. The directory is called geocode, which aligns with the require
statement we have in the geocode variable. In geocode folder, we'll make our file
geocode. js:

e0e = Project — ~/Deskiop/weather-app
Project =+ Enter the path for the new file. o
v Il weather-apo geocode/geocode. js H

CONST argv = yargs
> I node_modules

.options({
> Il playground y a: {
[E) .0s_store 3 demand: true,
B eppis 9 alias: 'address',

describe: 'Address to fetch weather for',
B s string: true
package.json }

H

halall

Bl package-lockjson

Now inside of geocode. js, we can get started by loading in request, let's make a constant
called request, and we'll set it equal to require ('request'):

const request = require('request');

Now we can go ahead and define the function responsible for geocoding, this one will be
called geocodeAddress. We'll make a variable called geocodeAddress, setting it equal to
an arrow function, and this arrow function will get an address argument past in:

var geocodeAddress = (address) => {
}i

This is the plain text unencoded address. Now before we copy the code from app. js into
this function body, we want to export our geocodeAddress function using
module.exports, which we know as an object. Anything we put on module.exports
object will be available to any files that require this file. In our case, we want to make a
geocodeAddress property available, setting it equal to the geocodeAddress function that
we defined in the preceding statement:

var geocodeAddress = (address) => {
bi

module.exports.geocodeAddress = geocodeAddress;

[330]

Callbacks in Asynchronous Programming Chapter 6

Now it's time to actually copy all of the code from app. js in to geocode. js. We'll cut the
request function code, move in to geocode. js, and paste it inside of the body of our
function:

var geocodeAddress = (address) => {
var encodedAddress = encodedURIComponent (argv.address);

request ({
url:
“https://maps.googleapis.com/maps/api/geocode/json?address=${encodedAddress
Py

json: true

}, (error, response, body) => {
if (error) {
console.log('Unable to connect Google servers.');
} else if (body.status === 'ZERO_RESULTS') {
console.log('Unable to find that address.');
} else if (body.status === 'OK') {

console.log(Address: ${body.results[0].formatted_address}’);
console.log (' Latitude: ${body.results[0].geometry.location.lat});
console.log (' Longitude: ${body.results[0].geometry.location.lng}’);
}
)i
bi

module.exports.geocodeAddress = geocodeAddress;

The only thing we need to change inside of this code, is how we get the plaintext address.
We no longer have that argv object, instead we get address passed in as an argument. The
final code will look like the following code block:

const request = require('request');
var geocodeAddress = (address) => {
var encodedAddress = encodedURIComponent (argv.address);

request ({
url:
‘https://maps.googleapis.com/maps/api/geocode/json?address=${encodedAddress
P

json: true

}, (error, response, body) => {
if (error) {
console.log('Unable to connect Google servers.');
} else if (body.status === 'ZERO_RESULTS') {
console.log('Unable to find that address.');
} else if (body.status === 'OK') {

[331]

Callbacks in Asynchronous Programming Chapter 6

console.log(Address: ${body.results[0].formatted_address});
console.log(Latitude: ${body.results[0].geometry.location.lat});
console.log(Longitude: ${body.results[0].geometry.location.lng});
}
)i
}i

module.exports.geocodeAddress = geocodeAddress;

With this in place, we're now done with the geocode file. It contains all of the complex logic
for making and finishing the request. Over at app. js, we can clean things up by removing
some extra spaces, and removing the request module which is no longer used in this file.
The final app . js file will look like the following code block:

const yargs = require('yargs');
const geocode = require('./geocode/geocode');

const argv = yargs
.options ({

a: A
demand: true,
alias: 'address',

describe: 'Address to fetch weather for',
string: true
}
)
.help ()
.alias('help', 'h")
.argv;

geocode.geocodeAddress (argv.address) ;

Now at this point the functionality should be exactly the same. Inside of the Terminal, I'll go
ahead and run a few to confirm the changes worked. We'll use the a flag to search for a zip
code that does exist, something like 19147, and as shown, we can see the address, the
latitude, and the longitude:

[] [] || weather-app — -bash — 108=29

Gary:weather-app Gary$ node app.js —-a 19147
Address: Philadelphia, PA 19147, USA
Latitude: 39.9358642

Longitude: -75.1516194
Gary:weather-app Gary$ I

[332]

Callbacks in Asynchronous Programming Chapter 6

Now we'll swap out that zip code to one that does not exist, like 000000, when we run this
through the geocoder, you can see Unable to find address prints to screen:

Gary:weather-app Gary$ node app.js -a 000008
Unable to find that address.
Gary:weather-app Gary$ clear

It means all of the logic inside of geocode. js is still working. Now the next step in the
process is the process of adding a callback function to geocodeAddress.

Adding callback function to geocodeAddress

The goal of refactoring the code and app. js was not to get rid of the callback, the goal was
to abstract all the complex logic related to encoding the data, making that request, and
checking for errors. app . js should not care about any of that, it doesn't even need to know
that an HTTP request was ever made. All the app . js should care about is passing an
address to the function, and doing something with the result. The result being either an
error message or the data, the formatted address, the latitude, and the longitude.

Setting up the function in geocodeAddress function in
app.js

Before we go ahead and make any changes in geocode. js, we want to take a look at how

we'll structure things inside of app . js. We'll pass an arrow function to geocodeAddress,
and this will get called after the request comes back:

geocode.geocodeAddress (argv.address, () => {
)i

In the parentheses, we'll expect two arguments, errorMessage, which will be a string, and
results, which will contain the address, the latitude, and the longitude:

geocode.geocodeAddress (argv.address, (errorMessage, results) => {

)i

[333]

Callbacks in Asynchronous Programming Chapter 6

Out of these two only one will be available at a time. If we have an error message we'll not
have results, and if we have results we'll not have an error message. This will make the
logic in the arrow function, of determining whether or not the call succeeded, much
simpler. We'll be able to use an if statement, if (errorMessage), and if there is an error
message, we can simply print it to the screen using console. log statement:

geocode.geocodeAddress (argv.address, (errorMessage, results) => {
if (errorMessage) A
console.log(errorMessage) ;
}
)i

There's no need to dig into any sort of object and figure out exactly what's going on, all of
that logic is abstracted in geocode. js. Now if there is no error message inside of the else
clause, we can go ahead and print the results. We'll use that pretty print method we talked
about in the previous chapter, we'll add the console.log (JSON.stringify) statement,
and we'll pretty print the results object which will be an object containing an address
property, a latitude property, and a longitude property.

Then, we'll pass the undefined argument as our second argument. This skips over the
filtering function which we don't need, and then we can specify the spacing, which will
format this in a really nice way, we'll use two spaces as shown here:

geocode.geocodeAddress (argv.address, (errorMessage, results) => {
if (errorMessage) {
console.log(errorMessage);
} else {
console.log (JSON.stringify (results, undefined, 2));
}
}) i

Now that we have our function set up inside of geocodeAddress function in app. js, and
we have a good idea about how it will look, we can go ahead and implement it inside of
geocode. js.

Implementing the callback function in geocode.js file

In our arguments definition, instead of just expecting an address argument we'll also expect
a callback argument, and we can call this callback argument whenever we like. We'll call it
in three places. We'll call it once inside of the i1f (error) block, instead of calling
console.log we'll simply call the callback with the Unable to connect to Google
servers. string. This string will be the error message we defined in geocodeAddress
function in app. js.

[334]

Callbacks in Asynchronous Programming Chapter 6

In order to do this, all we need to do is change our console.log call to a callback call.
We'll pass it as the first argument our error message. We can take the string exactly as it
appeared in console. log, and move it into the arguments for callback. Then I can
remove the console. log call and save the file. The resultant code will look like following:

request ({

url:
‘https://maps.googleapis.com/maps/api/geocode/json?address=${encodedAddress
P

json: true

}, (error, response, body) => {
if (error) {
callback ('Unable to connect to Google servers.');

}

Now we can do the exact same thing in the next el1se if block for our other console.log
statement, when there is zero results, we'll replace console.log with callback:

if (error) {
callback ('Unable to connect Google servers.');
} else if (body.status === 'ZERO_RESULTS') {
callback ('Unable to find that address.');
}

Now the last else if block will be a little trickier. It's a little trickier because we don't
exactly have our object. We also need to create an unde fined variable for the first
argument, since an error message will not be provided when things go well. All we have to
do to create that undefined error message is call callback, passing an undefined variable
as the first argument. Then we can go ahead and specify our object as the second argument,
and this object, this will be exactly what's in the geocodeAddress function, results:

} else if (body.status === 'OK') {
callback (undefined, |

})

console.log(Address: ${body.results[0].formatted_address});

console.log(Latitude: ${body.results[0].geometry.location.lat});

console.log(Longitude: ${body.results[0].geometry.location.lng});
}

Now as I mentioned the results have three properties: the first one will be formatted
address, so let's go ahead and knock that out first. We'll set address equal to
body . results, just like we have in the Address variable of console. log statement:

} else if (body.status === 'OK') {
callback (undefined, {

[335]

Callbacks in Asynchronous Programming Chapter 6

}

address: body.results[0].formatted_address
)
console.log(Address: ${body.results[0].formatted_address});
console.log(Latitude: ${body.results[0].geometry.location.lat});
console.log(Longitude: ${body.results[0].geometry.location.lng});

Here we're making things even easier, instead of having complex properties that are nested
deep inside of an object inside of app . js, we'll be able to access a simple address
property, and we'll do the same thing for Latitude and Longitude of console.log
statements.

Next, we'll grab the code that let us fetch the latitude, and I'll add my second property,
latitude, setting it equal to the code we grab from the console.log statement. Then we
can go ahead and add the last property, which will be 1ongitude, setting that equal to the
latitude code, replacing 1at with 1ng. Now that we have this in place we can add a
semicolon at the end, and remove the console. log statements since they're no longer
necessary, and with this we are done:

if

}

(error) A
callback ('Unable to connect Google servers.');
else if (body.status === 'ZERO_RESULTS') {
callback ('Unable to find that address.');
else if (body.status === 'OK') {

callback (undefined, |
address: body.results[0].formatted_address,
latitude: body.results[0].geometry.location.lat,
longitude: body.results[0].geometry.location.lng
1)

We can now rerun the file, and when we do we'll pass an address to geocodeAddress, this
will go off and make the request, and when the request comes back, we'll be able to handle
that response in a really simple way.

[3361]

Callbacks in Asynchronous Programming Chapter 6

Testing the callback function in geocode.js file

Inside of the Terminal, we'll go back to run two node app.js commands; the command
where we used the zip code of 19147, everything works as expected and a bad zip code
000000, to show the error message.

As shown in the following code output, we can see our results object with an address
property, a latitude property, and a longitude property:

[] [] | weather-app — -bash — 108=28

Gary:weather-app Gary$ node app.js -a 19147
{
"address": "Philadelphia, PA 19147, USA",
"latitude": 39.9350642,
"longitude": -75.1516194

}
Gary:weather-app Gary$ I

In case of a bad zip code, we just want to make sure the error message still shows up, and it
does, Unable to find that address. prints to the screen, as shown here:

Gary:weather-app Gary$ node app.js -a 900000
Unable to find that address.

Gary:weather-app Gary$ I

This is happening because of the if statement in the geocodeAddress function in app. js.

After abstracting all of that logic to the geocode file, the app. js file is now a lot simpler
and a lot easier to maintain. We can also call geocodeAddress in multiple locations. If we
want to reuse the code we don't have to copy and paste the code, which would not follow
the DRY principle, which stands for Don't Repeat Yourself, instead we can do the DRY
thing and simply call geocodeAddress like we have in the app. js file. With this in place
we are now done fetching the geocode data.

[337]

Callbacks in Asynchronous Programming Chapter 6

Wiring up weather search

In this section, you'll make your very first request to the weather API, and we'll do this in a
static way at first, meaning that it will not use the actual latitude and longitude for the
address we passed in, we'll simply have a static URL. We'll make the request and we'll
explore what data we get back in the body.

Exploring working of APl in the browser

Now before we can add anything to Atom, we want to go ahead and explore this API so we
can see how it works in the browser. This will give us a better idea about what weather data
we get back, when we pass a latitude and longitude to the API. To do this we'll head over to
the browser, and we'll visit a couple of URLs.

First up let's go to forecast.io. It is a regular weather website, you type in your location
and you get all the weather information you'd expect:

® 0 ® | § Dark Sky - Priadeiphia, PA % e

- C | @ Secure | https://darksky.nat/forecast/39.95

24,-75.1636/us12/en o

Developers
o1 Philadelphia, PA Q ‘Fumph - English +
Wind: 4 mphe Hurnidity: 83% Dew Pt: 247 UV index: |0 Visibility: 8mi Prassure: 1002 mb

O 29° Overcast.

Foggy tonight.
Owvercast
Mow Sam Fam Fam 1lam Zpm Apm dam Bpm 10pm 12am lam
33 38° 41° 41° 3% 36° 35° 36° 36°
Temperature viw v Jan18 | 3PM T 3 Now 3hm) Dark Sky Maps

[338]

Callbacks in Asynchronous Programming Chapter 6

As shown in the preceding image, there's warnings, there's radar, there's the current
weather, and we also have the weekly forecast in the website as shown in the following
image:

Mixed precipitation throughout the week, with temperatures rising to 59°F

on Monday.
O Today 20 QU - : o
Q wed 27 G ©
Octe 20 GEED 7 ©
&5 e 20" QU o
& sat 22 QD ;' o
(¥ sun +s QI S o
QO Mon « IS 55 ©
.~ Tue 2 G - o

This is similar to weather. com, but the one cool thing about forecast.io is that the API that
powers this website, it's actually available to you as a developer. You can make a request to
our URL, and you can fetch the exact same weather information.

[339]

Callbacks in Asynchronous Programming Chapter 6

That is exactly what we'll do when we can explore the API by going to the website
developer.forecast.io. Here we can sign up for a free developer account, in order to get
started making those weather requests:

® 08 /4 oarksiy ® 2]

- C i Secure | https://darksky.net/dev

0 Dark Sky API nocs FAQ | LOGIN |

Dark Sky API

The easiest, most advanced, weather AP| on the web.

TRY FOR FREE

Easy to Use Weather Conditions Advanced Data
P -

The Dark Sky Forecast API gives you 1,000 free requests a day, and I do not see us going
over that limit. After the 1,000 requests, each costs a one thousandth of a penny, so you get a
thousand requests for every penny you spend. We'll never go over that limit so don't even

worry about it. There is no credit card required to get started, you'll simply get cut off after
you make a thousand requests.

[340]

Callbacks in Asynchronous Programming Chapter 6

To get started you'll need to register for a free account, it's really simple, we just need an
email and a password. Once we've created an account and we can see the dashboard as
shown here:

Enter billing information to ensure your access isn't cut off after 1,000 calls per day!

Last 7 days Month-to-date Lastmonth Last2 months Last3 months All-time

&
990 LEFT 28 28
EE CALLS TODAY CALLS IN RANGE CALLS THIS MONT
FREE FREE FREE
APl Key 4aB4d1c42d9d32c97a2c291a32d5e2d 5 Reset AP| Key

The only piece of information we need from this page is our API key. The API key is like a
password, it will be part of the URL we request and it will help forecast.io keep track of
how many requests we make a day. Now I'll take this API key and paste it in the app. js, so
we have it accessible later when we need it.

[341]

Callbacks in Asynchronous Programming Chapter 6

The next thing we'll do is explore the documentation, the actual URL structure we need to
provide in order to fetch the weather for a given latitude and longitude. We can get that by
clicking the API Docs link button, which is present in the top-right side of The Dark Sky
Forecast API page. This'll lead us to following page:

Dark Sky APl — Overview

API| Request Types - e - ;
5 Yee The Dark Sky API allows you ta look up the weather anywhere on the globe, returning (where availabl'e):

Overview

Response Format

ven days

g back decades

WWe provide two types of APl requests:

s . A recast ’ t returns the current weather forecast for the next week
. A : t returns the observed or forecast weather conditions for a date in the past or future in
You should also read our | f 5¢ , but the short version is:

= The first 1000 APl reque:

APl re

10 https://darksky.net/poweredby/

somewhere prominent in vour app or service. {Details can be found inthe

If you have ary questions, please check th "} and, if you can't find what you're looking for thers, s

APl Request Types

Forecast Request

https://api.darksky.net/forecast/[key]/[latitude], [longitude]

In the API Docs link, we have a Forecast Request URL. As shown in the preceding image,
this URL is exactly what we need to make a request to in order to fetch the data.

[342]

Callbacks in Asynchronous Programming Chapter 6

Exploring the actual URL for code

Before we add this URL into our app and use the request library, we need to find the actual
URL which we can use to make the request. For this, we'll copy it and paste it into a new
tab:

C | O https://api.darksky.net/forecast/[key]/[latitude],[lo ngitudej|

Now, we do need to swap out some of the URL information. For example, we have our API
key that needs to get replaced, we also have latitude and longitude. Both of those need to
get replaced with the real data. Let's get started with that API key first since we already
copy and pasted it inside of app . js. We'll copy the API key, and replace the letters [key]
with the actual value:

C | O https://api.darksky.net/forecast/11d194f8a025abche50c5bd65dd97464) [latitude], [longitude]

Next up, we can grab a set of longitude and latitude coordinates. For this, go inside the
Terminal and run our app, node app. js, and for the address we can use any zip let's say,
19146 to fetch the latitude and longitude coordinates.

Next up, we'll copy these and place into the URL where they belong. The latitude goes
between the forward slash and the comma, and the longitude will go after the comma, as
shown here:

= C | O https://api.darksky.net/forecast/11d194f8a025abcbe50c5bd65dd97464/39.9350642,-75.1516194

[343]

Callbacks in Asynchronous Programming Chapter 6

Once we have a real URL with all of those three pieces of info swapped out for actual info,
we can make the request, and what we'll get back is the forecast information:

® @ |) Dark Sky AP\ Devaloper Cone x | [hitps:/fapl.darksky.netiforecs 2]

- C | @ Secure | https://api.darksky.net/forecast/11d19418a025abet SbdE5ddePA64/39.9350642,- 751516194 b4

: latitude: 35.9350642,
[Longitude: -75.15161%4,]
timezone: "America/New_York",

- gurreatlys {
time: 1516097511,
summary: “Overcast®,
icon: "cloudy”,
mearcstStormDistance: 35,
nearestStormBearing: 70,
precipIntensity: 0,
precipProbability: 0,
tomporature: 29.02,
apparentTemperature: 24.53,
dowPoint: 24.05,
humidity: 0.81,
pressures 1032.32,
windfpead: 4.1,
windCust: 5.41,
windBearing: 6H,
cloudCover: 0.94,
uvIndex: 0,
visibility: 6.1,
ezone: 340.66
I
- minutely: {
summary: "Overcast for the hour.”,
leon: "eloudy”,
- data: [
-1
time: 1516097460,
precipIntensity: 0,
precipProbability: 0

time: 1516097520,
procipintensitys 0,
timazona

Remember, this way the information is showing in the preceding image is
due to JSONView, I highly recommend installing it.

Now the data we get back, it is overwhelming. We have a forecast by the minute, we have
forecasts by the hour, by the week, by the day, all sorts of information, it's really useful but
it's also super overwhelming. In this chapter, we'll be using the first object that is
currently. This stores all of the current weather information, things like the current
summary which is clear, the temperature, the precipitation probability, the humidity, a lot
of really useful information is sitting in it.

In our case, what we really care about is the temperature. The current temperature in
Philadelphia is shown 84. 95 degrees. This is the kind of information we want to use inside
of our application, when someone searches for the weather in a given location.

[344]

Callbacks in Asynchronous Programming Chapter 6

Making a request for the weather app using the
static URL

Now in order to play around with the weather API, we'll take the exact same URL we have
defined in the previous section, and we'll make a request in app. js. First, we want to do a

little setup work.

Inside of app. js, we'll comment out everything we have so far, and next to our API key
we'll make a call to request, requesting this exact URL, just like we did for the geocode API
in the previous section/chapter, before we made it dynamic. Then we'll print out the
body.currently.temperature property to the screen, so when we run the app we'll see
the current temperature for whatever latitude and longitude we used. In our case it's a static
latitude and longitude representing Philadelphia.

In order to get started we'll load in request. Now we had it in the app. js file before and
then we removed it in the previous section, but we'll add it back once again. We'll add it
next to the commented out code, by creating a constant called request, and loading it in,
const request equals to require ('request'):

const request = require('request');

Now we can go ahead and make the actual request, just like we did for the geocode API by
calling request, it's a function just like this:

const request = require('request');
request () ;

We have to pass in our two arguments, the options object is the first one, and the second
one is the arrow function:

request ({}, () => {

)i

[345]

Callbacks in Asynchronous Programming Chapter 6

This is our callback function that gets fired once the HTTP request finishes. Before we fill
out the actual function, we want to set up our options. There're two options, URL and
JSON. We'll set url equal to the static string, the exact URL we have in the browser:

request ({
url:

'https://api.forecast.io/forecast/4a04d1c42£d9d32c97a2¢c291a32d5e2d/39.93962
84,-75.18663959999999"',

oo) => A

Then in the next line after comma, we can set json equal to t rue, telling the request library
to go ahead and parse that body as JSON, which it is:

request ({

url:
'https://api.forecast.io/forecast/4a04d1c42£fd9d32c97a2¢c291a32d5e2d/39.93962
84,-75.18663959999999",

json: true

oo O => A

From here, we can go ahead and add our callback arguments; error, response, and body.
These are the exact same three arguments we have in the if block of geocode. js file for
the geocoding request:

request ({

url:
'https://api.forecast.io/forecast/4a04d1c42£fd9d32c97a2¢c291a32d5e2d/39.93962
84,-75.18663959999999"',

json: true

}, (error, response, body) => {

)i

Now that we have this in place, the last thing we need to do is print the current
temperature, which is available on the body using console.log statement. We'll use
console.logto}nﬂntbody.currently.temperature,asshownlhere

request ({
url:
'https://api.forecast.io/forecast/4a04d1c42£d9d32c97a2c291a32d5e2d/39.93962
84,-75.18663959999999",
json: true
}, (error, response, body) => {
console.log(body.currently.temperature);
P

[346]

Callbacks in Asynchronous Programming Chapter 6

Now that we have the temperature printing, we need to test it by running it from the
Terminal. In the Terminal, we'll rerun the previous command. The address is not actually
being used here since we commented out that code, and what we get is 28.65, as shown in
this code output:

[NON) || weather-app — -bash — 108x29

Gary:weather-app Gary$ node app.js -a 19146
28.65
Gary:weather-app Gary$ I

With this we have our weather API call working inside of the application.

Error handling in the the callback function

Now we do want to add a little error handling inside of our callback function. We'll handle
errors on the error object, and we'll also handle errors that come back from the forecast.io
servers. First up, just like we did for the geocoding API, we'll check if error exists. If it does,
that means that we were unable to connect to the servers, so we can print a message that
relays that message to the user, console.log something like Unable to connect to
forecast.io server.:

request ({
url:
'https://api.forecast.io/forecast/4a04d1c42£d9d32c97a2¢c291a32d5e2d/39.93962
84,-75.18663959999999"',
json: true
}, (error, response, body) => {
if (error){
console.log('Unable to connect to Forecast.io server.');
t
console.log(body.currently.temperature);

1)

Now that we've handled general errors, we can move on to a specific error that the
forecast.io API throws. This happens when the format of the URL, the latitude and
longitude, is not correct.

[347]

Callbacks in Asynchronous Programming Chapter 6

For example, if we delete some numbers including the comma in the URL, and hit enter
we'll get a 400 Bad Request:

« C https:/fapi.forecast.iofforecast/4a04d 1c42fd9d32c87a2c291a32d5e2d/39.93965.186639599599999
400 Bad Request

nginx/1.4.6 (Ubuntu)

This is the actual HTTP status code. If you remember from the geolocation APl we had a
body . status property that was either OK or ZERO_RESULTS. This is similar to that
property, only this uses the HTTP mechanisms instead of some sort of custom solution that
Google used. In our case, we'll want to check if the status code is 400. Now if we have a bad
API key, I'll add a couple e's in the URL, we'll also get a 400 Bad Request:

https://api.forecast.io/forecast/4a04d1¢c42fd9d32c9 !:12::291.332(1bt:ef?d,"39_939t'i28-’l.,—a’:’a.'lHGGBQ:’JQQE}?}QQQ
400 Bad Request

nginx/1 4.6 (Ubuntu)

So both of these errors can be handled using the same code.

Inside of Atom, we can handle this by checking the status code property. After our if
statement closing curly brace, we'll add else if block, else if
(response.statusCode), this is the property we looked at when we looked at the
response argument in detail. response.statusCode will be equal to 400 if something
went wrong, and that's exactly what we'll check for here:

if (error){
console.log('Unable to connect to Forecast.io server.');
} else if (response.statusCode === 400) {

}

[348]

Callbacks in Asynchronous Programming Chapter 6

If the status code is 400 we'll print a message, console.log('Unable to fetch
weather'):

if (error){
console.log('Unable to connect to Forecast.io server.');
} else if (response.statusCode === 400) {
console.log('Unable to fetch weather.');

}

Now we've handled those two errors, and we can move on to the success case. For this we'll
add another else if block with response. statusCode equals 200. The status code will
equal 200 if everything went well, in that case we'll print the current temperature to the
screen.

I'll cut the console.log(body.currently.temperature) line out and paste it inside of
the else if code block:

if (error){
console.log('Unable to connect to Forecast.io server.');

} else if (response.statusCode === 400) {
console.log('Unable to fetch weather.');
} else if (response.statusCode === 200) {

console.log(body.currently.temparature);

Another way of error handling

There's is another way to represent our entire if block code. The following is an updated
code snippet, and we can actually replace everything we have in the current callback
function with this code:

if ('error && response.statusCode === 200) {
console.log(body.currently.temperature);
} else {

console.log('Unable to fetch weather.');

}

[349]

Callbacks in Asynchronous Programming Chapter 6

This condition checks if there is no error and the response status code is a 200, if that's the
case what do we do? We simply print the temperature like we were doing last time, that
was in the else if clause at the very bottom. Now we have an else case in the updated
code snippet, so if there is an error or the status code is not a 200, we'll go ahead and print
this message to the screen. This will handle things like the server not having a network
connection, or 404s from an invalid or broken URL. All right, use this code instead and
everything should be working as expected with the latest version of the weather API.

Testing the error handling in callback

Now we have some error handling in place and we can go ahead and test that our app still
works. From the Terminal we'll rerun the previous command, and we still get a
temperature 28.71:

[NON) || weather-app — -bash — 108x29

Gary:weather-app Gary$ node app.js —-a 19146
28.71
Gary:weather-app Gary$ I

Back inside of Atom, we'll trash some of the data by removing the comma, saving the file:

request ({

url:
'https://api.forecast.io/forecast/4a04d1c42£fd9d32c97a2¢c291a32d5e2d/39.93962
84-75.18663959999999"',

json: true

}, (error, response, body) => {
if (error){
console.log('Unable to connect to Forecast.io server.');
} else if (response.statusCode === 400) {
console.log('Unable to fetch weather.');
} else if (response.statusCode === 200) {

console.log(body.currently.temparature);

[350]

Callbacks in Asynchronous Programming Chapter 6

When we rerun it from the Terminal, this time, we would expect Unable to fetch weather.
to print to the screen, and when I rerun the app that is exactly what we get, as shown here:

Gary:weather-app Gary$ node app.js =-a 19146
Unable to fetch weather.

Gary:weather-app Gary$ I

Now, let's add the comma back in and test our last part of the code. To test the if error, we
can test that by removing something like the dot from forecast.io:

request ({

url:
'https://api.forecastio/forecast/4a04d1lc42£fd9d32c97a2c291a32d5e2d/39.939628
4,-75.18663959999999"',

json: true

}, (error, response, body) => {

We can rerun the app, and we see Unable to connect to Forecast.io server.:

Gary:weather-app Gary$ node app.js -a 19146
Unable to connect to Forecast.io server.

Gary:weather-app Gary$ I

All of our error handling works great, and if there is no errors the proper temperature
prints to the screen, which is fantastic.

Chaining callbacks together

In this section, we'll take the code that we created in the last section, and break it out into its
own file. Similar to what we did with the Geocoding API request where we called
geocodeAddress instead of actually having the request call in app . js. That means we'll
make a new folder, a new file, and we'll create a function in there that gets exported.

After that we'll go ahead and learn how to chain callbacks together. So when we get that
address from the Terminal we can convert that into coordinates. And we can take those
coordinates and convert them into temperature information, or whatever weather data we
want to pull off of the return result from the Forecast APL

[351]

Callbacks in Asynchronous Programming Chapter 6

Refactoring our request call in weather.js file

Now before we can dive into the refactoring, we'll create a brand new file, and we'll worry
about getting the code we created in the previous section into that function. Then we'll go
for creating that callback.

Defining the new function getWeather in weather file

First, let's make the directory. The directory will be called weather. And in the weather
directory we'll make a new file called weather. js.

Now in this file we can take all of our code from app. js, and paste it in weather. js:

const request = require('request');

request ({

url:
'https://api.forecast.io/forecast/4a04d1c42£fd9d32c97a2¢c291a32d5e2d/39.93962
84,-75.18663959999999",

json: true
}, (error, response, body) => {

if (error) {

console.log('Unable to connect to Forecast.io server.');

} else if (response.statusCode === 400) {
console.log('Unable to fetch weather.');
} else if (response.statusCode === 200) {

console.log(body.currently.temperature);

)i

The only thing we need to do in order to take this code and convert it to create that
function, which will get exported. And then we can move our call to the request inside of it.
We'll make a brand new function called getWeather next to the request variable:

const request = require('request');
var getWeather = () => {

bi

getWeather will take some arguments, but that'll be added later. For now we'll leave the
arguments list empty. Next, we'll take our call to request and move it inside the
getWeather function:

const request = require('request');

(Al
var getWeather = () => {

[352]

Callbacks in Asynchronous Programming Chapter 6

request ({

url:
'https://api.forecast.io/forecast/4a04d1c42£fd9d32c97a2¢c291a32d5e2d/39.93962
84,-75.18663959999999",

json: true
}, (error, response, body) => {

if (error) {

console.log('Unable to connect to Forecast.io server.');

} else if (response.statusCode === 400) {
console.log('Unable to fetch weather.');
} else if (response.statusCode === 200) {

console.log(body.currently.temperature);

)i
Yi

Then, we can go ahead and export this getWeather function. We'll add
module.exports.getWeather and set it equal to the getWeather function that we
defined up:

module.exports.getWeather = getWeather;

Providing weather directory in app.js

Now that we have this in place, we can go ahead and move into app. js to add some code.
The first thing we need do is remove the API key. We no longer need that. And we'll
highlight all of the commented code and uncomment it using the command /.

Now we'll import the weather. js file. We'll create a const variable called weather, and
setting it equal to the require, return result:

const yargs = require('yargs');
const geocode = require('./geocode/geocode');
const weather = require('');

In this case we're requiring our brand new file we just created. We'll provide a relative path
./ because we're loading in a file that we wrote. Then we'll provide the directory named
weather followed by the file named weather. js. And we can leave off that js extension,
as we already know:

const weather = require('./weather/weather');

[353]

Callbacks in Asynchronous Programming Chapter 6

Now that we have the Weather API loaded in, we can go ahead and call it. We'll comment
out our call to geocodeAddress and, we'll run weather.getWeather ():

// geocode.geocodeAddress (argv.address, (errorMessage, results) => {
// if (errorMessage) A

// console.log(errorMessage) ;

// } else {

// console.log (JSON.stringify (results, undefined, 2));

/)

/7YY

weather.getWeather () ;

Now as I mentioned before, there will be arguments later in the section. For now we'll leave
them empty. And we can run our file from the Terminal. This means we should see the
weather printing for the coordinates, we hard-coded in the previous section. So, we'll run
node app.js. We'll need to provide an address since we haven't commented out the yargs
code. So we'll add a dummy address. I'll use a zip code in New Jersey:

node app.js —a 08822

[] [] || weather-app — -bash — 108x29

Gary:weather-app Gary$ node app.js -a 08822
31.82

Gary:weather-app Gary$ l

Now, the geolocation code is never running, because that is commented out. But we are
running the weather code that got moved to the new file. And we are indeed seeing a
temperature 31.82 degrees, which means that the code is properly getting executed in the
new file.

Passing the arguments in the getWeather function

Now we'll need to pass in some arguments, including a callback function and inside
getWeather variable in weather file. We'll need to use those arguments instead of a static
lat/lng pair. And we'll also need to call the callback instead of using console.log. The
first thing we'll do before we actually change the weather. js code is change the app. js
code. There are three arguments to be added. These are 1at, 1ng and callback.

[354]

Callbacks in Asynchronous Programming Chapter 6

First up we'll want to pass in the latitude. We'll take the static data, like the latitude part
from the URL in weather. js, copy it, and paste it right inside of the arguments list in
app. js as first argument. The next one will be the longitude. We'll grab that from the URL,
copy it, and paste it inside of app . js as the second argument:

// lat, 1lng, callback
weather.getWeather (39.9396284, -75.18663959999999);

Then we can go ahead and provide the third one, which will be the callback function. This
function will get fired once the weather data comes back from the API. I'll use an arrow
function that will get those two arguments we discussed earlier in the previous section:
errorMessage and weatherResults:

weather.getWeather (39.9396284, -75.18663959999999, (errorMessage,
weatherResults) => {

)i

The weatherResults object containing any sort of temperature information we want. In
this case it could be the temperature and the actual temperature. Now, we have used
weatherResults in place of results, and this is because, we want to differentiate
weatherResults from the results variable in geocodeAddress.

Printing errorMessage in the getWeather function

Inside of the getWeather function in app. js, we now need to use if-else statements in
order to print the appropriate thing to the screen, depending on whether or not the error
message exists. If there is errorMessage we do want to go ahead and print it using
console. log. In this case we'll pass in the errorMessage variable:

weather.getWeather (39.9396284, -75.18663959999999, (errorMessage,
weatherResults) => {
if (errorMessage) {
console.log(errorMessage);
}
}) i

Now if there is no error message we'll use the weatherResults object. We'll be printing a
nice formatted message later. For now we can simply print the weatherResults object
using the pretty printing technique we talked about in the previous chapter, where we call
JSON.stringify inside of console.log

weather.getWeather (39.9396284, -75.18663959999999, (errorMessage,
weatherResults) => {

[355]

Callbacks in Asynchronous Programming Chapter 6

if (errorMessage) {
console.log(errorMessage);
} else {
console.log (JSON.stringify());
}
)i

Inside the JSON. stringify parentheses, we'll provide those three arguments, the actual
object; weatherResults, undefined for our filtering function, and a number for our
indentation. In this case we'll go with 2 once again:

weather.getWeather (39.9396284, -75.18663959999999, (errorMessage,
weatherResults) => {
if (errorMessage) {
console.log(errorMessage);
} else {
console.log (JSON.stringify (weatherResults, undefined, 2));

}
)i

And now that we have our getWeather call getting called with all three arguments, we can
go ahead and actually implement this call inside of weather. js.

Implementing getWeather callback inside weather.js file

To get started we'll make the URL in the weather. js file dynamic, which means we need
to replace the url strings with template strings. Once we have template strings in place, we
can inject the arguments, latitude and longitude, right into the URL.

Adding dynamic latitude and longitude

Let's go ahead and define all the arguments that are getting passed in. We add 1at, 1ng,
and our callback:

var getWeather = (lat, 1lng, callback) => {

First off let's inject that latitude. We'll take the static latitude, remove it, and between the
forward slash and the comma we'll inject it using dollar with our curly braces. This lets us
inject a value into our template string; in this case 1at. And we can do the exact same thing
right after the comma with the longitude. We'll remove the static longitude, use the dollar
sign with our curly braces to inject the variable into the string:

var getWeather = (lat, 1lng, callback) => {
request ({

[356]

Callbacks in Asynchronous Programming Chapter 6

url:
“https://api.forecast.io/forecast/4a04d1c42fd9d32c97a2c291a32d5e2d/${lat},$
{1ng}",

Now that the URL is dynamic, the last thing we need to do inside of getWeather is change
our console.log calls to callback calls.

Changing console.log calls into callback calls

To change our console. loginto callback calls, for the first two console. log calls we
can replace console.log with callback. And this will line up with the arguments that we
specified in app. js, where the first one is the errorMessage and the second one is the
weatherResults. In this case we'll pass the errorMessage back and the second argument
is undefined, which it should be. We can do the same thing for Unable to fetch
weather:

if (error) {

callback ('Unable to connect to Forecast.io server.');
} else if (response.statusCode === 400) {

callback ('Unable to fetch weather.');
}

Now the third console.log call will be a little more complex. We'll have to actually create
an object instead of just passing the temperature back. We'll call the callback with the first
argument being unde fined, because in this case there is no errorMessage. Instead we'll
provide that weatherResults object:

if (error) |
callback ('Unable to connect to Forecast.io server.');
} else if (response.statusCode === 400) {
callback ('Unable to fetch weather.');
} else if (response.statusCode === 200) {
(

callback (undefined, {

1)

console.log(body.currently.temperature);

}

Inside the parentheses, we can define all the temperature properties we like. In this case
we'll define temperature, setting it equal to body . currently, which stores all of the
currently weather data, .temperature

else if (response.statusCode === 200) {
callback (undefined, {
temperature: body.currently.temperature

[357]

Callbacks in Asynchronous Programming Chapter 6

})
console.log(body.currently.temperature);

}

Now that we have the temperature variable we can go ahead and provide that second
property to the object, which is actual temperature. Actual temperature will account for
things like humidity, wind speed, and other weather conditions. The actual temperature
data is available under a property on currently called apparentTemperature. We'll
provide that. And as the value we'll use the same thing. This gets us to the currently
object, just like we do for temperature. This will be
body.currently.apparentTemperature

else if (response.statusCode === 200) {
callback (undefined, {
temperature: body.currently.temperature,
apparentTemperature: body.currently.apparentTemperature
})
console.log(body.currently.temperature);

}

Now we have our two properties, so we can go ahead and remove that console.log
statement. Add a semicolon. The final code will look like:

const request = require('request');
var getWeather = (lat, 1lng, callback) => {
request ({
url:
‘https://api.forecast.io/forecast/4a04d1c42£fd9d32c97a2c291a32d5e2d/${1lat},$
{Ing}",
json: true
}, (error, response, body) => {
if (error) {
callback ('Unable to connect to Forecast.io server.');
} else if (response.statusCode === 400) {
callback ('Unable to fetch weather.');
(

} else if (response.statusCode === 200) {
callback (undefined, |
temperature: body.currently.temperature,
apparentTemperature: body.currently.apparentTemperature
1)
}
1)
bi

module.exports.getWeather = getWeather;

[358]

Callbacks in Asynchronous Programming Chapter 6

Now we can go ahead and run the app. We have our getWeather function wired up both
inside of the weather. js file and inside of app . js. Now once again we are still using static
coordinates, but this will be the last time we run the file with that static data. From the
Terminal we'll rerun the application:

Gary:weather-app Gary$ node app.js -a 08822
Flemington, NJ 88822, USA
i

"temperature": 48.82,

"apparentTemperature": 47.42
}
Gary:weather-app Gary$ I

And as shown we get our temperature object printing to the screen. We have our
temperature property 48.82 and we have the apparentTemperature, which is already at
47.42 degrees.

With this in place we're now ready to learn how to chain our callbacks together. That means
in app . js we'll take the results that come back from geocodeAddress, pass them in to
getWeather, and use that to print dynamic weather for the address you provide over here
in the Terminal. In this case we would get the address for the town in New Jersey. As
opposed to the static address which we're using in the app . js file that latitude/longitude
pair is for Philadelphia.

Chaining the geocodeAddress and getWeather
callbacks together

To get started we have to take our getWeather call and actually move it inside of the
callback function for geocodeAddress. Because inside this callback function is the only
place we have access to the latitude and longitude pairs.

Now if we open the geocode. js file, we can see that we get formatted_address back as
the address property, we get the 1atitude back as latitude, and we get 1ongitude back as
longitude. We'll start wiring this up.

[3591]

Callbacks in Asynchronous Programming Chapter 6

Moving getWeather call into geocodeAddress function

First, we do need to remove the comments of geocodeAddress in the app. js.

Next, we'll go ahead and take the console. log statement in the success case and replace it
with a console. log call that will print the formatted address:

geocode.geocodeAddress (argv.address, (errorMessage, results) => {
if (errorMessage) {
console.log(errorMessage);
} else {
console.log(results.address);
}
)i

This will print the address to the screen, so we know exactly what address we're getting
weather data for.

Now that we have our console.log printing the address, we can take the getWeather
call, and move it right below the console.log line:

geocode.geocodeAddress (argv.address, (errorMessage, results) => {
if (errorMessage) {
console.log(errorMessage);
} else {
console.log(results.address);
weather.getWeather (39.9396284, -75.18663959999999,
(errorMessage, weatherResults) => {
if (errorMessage) {
console.log(errorMessage) ;
} else {
console.log (JSON.stringify (weatherResults, undefined, 2));
}
}) i
}
}) i

And with this in place we're now really close to actually chaining the two callbacks
together. All that's left to do is take these static coordinates and replace them with the
dynamic ones, which will be available in the results object.

[360]

Callbacks in Asynchronous Programming Chapter 6

Replacing static coordinates with dynamic coordinates

The first argument will be results.latitude, which we defined in app. js on the object.
And the second one will be results.longitude:

geocode.geocodeAddress (argv.address, (errorMessage, results) => {
if (errorMessage) {
console.log(errorMessage);
} else {
console.log(results.address);
weather.getWeather (results.latitude, results.longitude,
(errorMessage, weatherResults) => {
if (errorMessage) {
console.log(errorMessage);
} else {
console.log (JSON.stringify (weatherResults, undefined, 2));
}
}) i
}
}) i

This is all we need to do to take the data from geocodeAddress and pass it in to
getWeather. This will create an application that prints our dynamic weather, the weather
for the address in the Terminal.

Now before we go ahead and run this, we'll replace the object call with a more formatted
one. We'll take both of the pieces of information-the temperature variable and the
apparentTemperature variable from weather. js file, and use them in that string in
app . js. This means that we can remove the console. log in the else block of
getWeather call, replacing it with a different console. log statement:

if (errorMessage) A
console.log(errorMessage) ;
} else {
console.log();

}

We'll use template strings, since we plan to inject a few variables in; these're currently,
followed by the temperature. We'll inject that using weatherResults.temperature. And
then we can go ahead and put a period, and add something along the lines of: It feels
like, followed by the apparent Temperature property, which I'll inject using
weatherResults.apparentTemperature. I'll put a period after that:

if (errorMessage) A
console.log(errorMessage) ;

[361]

Callbacks in Asynchronous Programming Chapter 6

} else {
console.log (' It's currently ${weatherResults.temperature}. It feels like
S${weatherResults.apparentTemperature}) ;

}

We now have a console. log statement that prints the weather to the screen. We also have
one that prints the address to the screen, and we have error handlers for both
geocodeAddress and getWeather.

Testing the chaining of callbacks

Let's go ahead and test this by rerunning the node app.js command in the Terminal. We'll
use the same zip code, 08822:

node app.js —a 08822

[] [] | weather-app — -bash — 108x29

Gary:weather-app Gary$ node app.js -a 88822
Flemington, NJ @8822, USA
It's currently 31.81. It feels like 24.9.

Gary:weather-app Gary$ I

When we run it we get Flemington, NJ as the formatted address and It's currently is 31.01.
It feels like 24.9. Now to test that this is working we'll type in something else inside of
quotes, something like Key West f1:

node app.js —a 'Key West fl1'

Gary:weather-app Gary$ node app.js -a 'Key West fl'
Key West, FL 33048, USA

It's currently 64.51. It feels like 64.52.
Gary:weather-app Gary$ I

And when we run this command we do get Key West, FL as shown as the formatted
address, and It's currently 64.51. It feels like 64.52.

With this in place, the weather application is now wired up. We take the address we get the
latitude/longitude pair using the Google Geocoding API. Then we use our forecast API to
take that latitude/longitude pair and convert it into temperature information.

[362]

Callbacks in Asynchronous Programming Chapter 6

Summary

In this chapter, we learned about how to set up yargs for the weather-app file and how to
include user input in it. Next, we looked into how to handle errors inside of our callback
functions and how to recover from those errors. We simply added else/if statements
inside of the callback function. Callbacks are just one function, so in order to figure out if
things went well or if things didn't go well, we have to use else/if statements, this lets us
do different things, such as print different messages, depending on whether or not we
perceive the request to have gone well. Then, we made our first request to the weather API,
and we looked into a way to fetch the weather based off of the latitude-longitude
combination.

Last, we looked in chaining the geocodeAddress and getWeather call functions. We took
that request call that was originally in app. js, and we moved it into weather. js, defining
it there. We used a callback to pass the data from weather. js into app. js where we
imported the weather. js file. Then, inside of the callback for geocodeAddress we call
getWeather and inside of that callback we printed the weather specific information to
the screen. This was all done using callback functions.

In the next chapter, we'll talk about a different way we can synchronize our asynchronous
code using ES6 promises.

[363]

Promises in Asynchronous
Programming

In the previous two chapters, we looked at many important concepts of asynchronous
programming in Node. This chapter is about promises. Promises are available in JavaScript
since ES6. Although they have been around in third-party libraries for quite some time, they
finally made their way into the core JavaScript language, which is great because they're a
really fantastic feature.

In this chapter, we'll learn about how promises work, we'll start to understand exactly why
they're useful, and why they've even come to exist inside JavaScript. We'll take a look at a
library called axios that supports promises. This will let us simplify our code, creating our
promise calls easily. We'll actually rebuild an entire weather app in the last section.

Specifically, we'll look into following topics:

e Introduction to ES6 promises
¢ Advanced promises
e Weather app with promises

Introduction to ES6 promises

Promises aim to solve a lot of the problems that come up when we have a lot of
asynchronous code in our application. They make it a lot easier to manage our
asynchronous computations—things such as requesting data from a database.
Alternatively, in the case of a weather app, things such as fetching data from a URL.

Promises in Asynchronous Programming Chapter 7

In the app. js file we do a similar thing using callbacks:

const yargs = require('yargs');
const geocode = require('./geocode/geocode');
const weather = require('./weather/weather');

const argv = yargs
.options ({

a: A
demand: true,
alias: 'address',

describe: 'Address to fetch weather for',
string: true
}
})

.help ()
.alias('help', 'h'")
.argv;
geocode.geocodeAddress (argv.address, (errorMessage, results) => {

if (errorMessage) {

console.log(errorMessage);
} else {

console.log(results.address);

weather.getWeather (results.latitude, results.longitude, (errorMessage,

weatherResults) => {
if (errorMessage) {
console.log(errorMessage) ;

} else {
console.log(' It's currently ${weatherResults.temperature}. It feels
like ${weatherResults.apparentTemperature}.");

In this code, we have two callbacks:

¢ One that gets passed into geocodeAddress
¢ One that gets passed into getWeather

We use this to manage our asynchronous actions. In our case, it's things such as fetching
data from an API, using an HTTP request. We can use promises in this example to make the
code a lot nicer. This is exactly the aim later in the chapter.

[365]

Promises in Asynchronous Programming Chapter 7

In this section, we'll explore the basics concept of promises. We'll compare and contrast
callbacks with promises just yet, because there's a lot more subtleties than can be described
without knowing exactly how promises work. So, before we talk about why they're better,
we will simply create some.

Creating an example promise

In the Atom, inside the playground folder, we'll create a new file and call it promise. s.
Before we define promises and talk about exactly how they work, we will run through a
simple example because that is the best way to learn just about anything—going through an
example and seeing how it works.

To get started, we'll work through a very basic example. We'll stick to the core promise
features.

To get started with this very simple example, we'll make a variable called

somePromise. This will eventually store the promise object. We'll be calling various
methods on this variable to do something with the promise. We'll set the somePromise
variable equal to the return result from the constructor function for promises. We'll use the
new keyword to create a new instance of a promise. Then, we'll provide the thing we want
to create a new instance of, Promise, as shown here:

var somePromise = new Promise

Now this Promise function, which is indeed a function—we have to call it like one; that is,
it takes one argument. This argument will be a function. We'll use an anonymous arrow
function (=>), and inside it, we'll do all of the asynchronous stuff we want to do:

var somePromise = new Promise (() => {
1) i

It will all be abstracted, kind of like we abstract the HTTP request inside the
geocodeAddress function in the geocode. s file:

const request = require('request');
var geocodeAddress = (address, callback) => {
var encodedAddress = encodeURIComponent (address) ;

request ({
url:
“https://maps.googleapis.com/maps/api/geocode/json?address=${encodedAddress

[366]

Promises in Asynchronous Programming Chapter 7

Py

json: true

}, (error, response, body) => {
if (error) {
callback ('Unable to connect to Google servers.');
} else if (body.status === 'ZERO_RESULTS') {
callback ('Unable to find that address.');
(

} else if (body.status === 'OK') {
callback (undefined, {
address: body.results[0].formatted_address,
latitude: body.results[0].geometry.location.lat,
longitude: body.results[0].geometry.location.lng
P
}
P
bi

module.exports.geocodeAddress = geocodeAddress;

All of the complex logic in the geocodeAddress function does indeed need to happen, but
the app. js file doesn't need to worry about it. The geocode . geocodeAddress function in
the app. js file has a very simple if statement that checks whether there's an error. If there
is an error, we will print a message, and if there's not, we move on. The same thing will be
true with promises.

The new Promise callback function will get called with two arguments, resolve and
reject:

var somePromise = new Promise((resolve, reject) => {
}) i

This is how we'll manage the state of our promise. When we make a promise, we're making
a promise; we're saying, "Hey, I'll go off and I'll fetch that website data for you." Now this
could go well, in which case, you will resolve the promise, setting its state to fulfilled.
When a promise is fulfilled, it's gone out and it's done the thing you've expected it to do.
This could be a database request, an HTTP request, or something else completely.

Now when you call reject, you're saying, "Hey, we tried to get that thing done man, but
we just could not." So the promise has been considered rejected. These are the two states
that you can set a promise to—fulfilled or rejected. Just like inside geocode. js, we either
provide one argument for an error, or we provide the second argument if things went well.
Instead of doing that though, promises give us two functions we can call.

[367]

Promises in Asynchronous Programming Chapter 7

Now, in order to illustrate exactly how we can use these, we'll call resolve. Once again,
this is not asynchronous. We're not doing anything quite yet. So all of this will

happen essentially in real time, as far as you see in Terminal. We'll call resolve with some
data. In this case, I'll pass in a string, Hey. It worked!, as shown here:

var somePromise = new Promise ((resolve, reject) => {
resolve ('Hey. It worked!');
)i

Now this string is the value the promise was fulfilled with. This is exactly what someone
will get back. In case of the geocode . geocodeAddress function in app file, it could be the
data, whether it's the results or the error message. In our case though, we're using resolve,
so this will be the actual data the user wanted. When things go well, Hey. It worked! is
what they expect.

Now you can only pass one argument to both resolve and reject,
which means that if you want to provide multiple pieces of information I
recommend that you resolve or reject an object that you can set multiple
properties on. In our case though, a simple message, Hey. It worked!,
will do the job.

Calling the promise method then

Now in order to actually do something when the promise gets either resolved or rejected,
we need to call a promise method called then; somePromise.then. The then method lets
us provide callback functions for both success and error cases. This is one of the areas
where callbacks differ from promises. In a callback, we had one function that fired no
matter what, and the arguments let us know whether or not things went well. With
promises we'll have two functions, and this will be what determines whether or not things
went as planned.

Now before we dive into adding two functions, let's start with just one. Right here, I'll call
then, passing in one function. This function will only get called if the promise gets fulfilled.
This means that it works as expected. When it does, it will get called with the value passed
to resolve. In our case, it's a simple message, but it can be something like a user object in
the case of a database request. For now though, we'll stick with message:

somePromise.then ((message) => {

H)

[368]

Promises in Asynchronous Programming Chapter 7

This will print message to the screen. Inside the callback, when the promise gets fulfilled
we'll call console. log, printing Success, and then as a second argument, we'll print the
actual message variable:

somePromise.then ((message) => {
console.log('Success: ', message);

H)

Running the promise example in Terminal

Now that we have a very basic promise example in place, let's run it from the Terminal
using nodemon, which we installed in the previous chapter. We'll add nodemon, and then
we'll go into the playground folder, /promise. js:

® [] weather-app — node Jusr/local/bin/fnodemon playground/promise.js — 108x=29

Gary:weather—app Gary$ nodemon playground/promise.js
[nodemon] 1.]

[nodemon] to rt at any time, enter “rs’
[nodemon] watching: #.%

Success: Hey. It worked.!

When we do this right away, our app runs and we get success. Hey. It worked! This
happens instantaneously. There was no delay because we haven't done anything
asynchronously. Now when we first explored callbacks (refer to chapter 5, Basics of
Asynchronous Programming in Node.js), we used setTimeout to simulate a delay, and this is
exactly what we'll do in this case.

Inside our somePromise function, we'll call set Timeout, passing in the two arguments:
the function to call after the delay and the delay in milliseconds. I'll go with 2500, which is
2.5 seconds:

var somePromise = new Promise ((resolve, reject) => {
setTimeout (() => {

}, 2500);

Now after those 2.5 seconds are up, then, and only then, do we want to resolve the
promise. This means that our function, the one we pass into then will not get called for 2.5
seconds. Because, as we know, this will not get called until the promise resolves. I'll save the
file, which will restart nodemon:

[369 1]

Promises in Asynchronous Programming Chapter 7

Success: Hey it worked!

In Terminal, you can see we have our delay, and then success: Hey it worked! prints
to the screen. This 2.5 second delay was caused by this set Timeout. After the delay was up
(in this case it's an artificial delay, but later it'll be a real delay), we're able to resolve with
the data.

Error handling in promises

Now there's a chance that things didn't go well. We have to handle errors inside our Node
applications. In that case, we wouldn't call resolve, we would call reject. Let's comment
out the resolve line, and create a second one, where we call reject. We'll call reject
much the same way we called resolve. We have to pass in one argument, and in this case,
a simple error message like Unable to fulfill promise will do:

var somePromise = new Promise((resolve, reject) => {
setTimeout (() => {
// resolve('Hey. It worked!');
reject ('Unable to fulfill promise');

}, 2500);

}) i

Now when we call reject, we're telling the promise that it has been rejected. This means
that the thing we tried to do did not go well. Currently, we don't have an argument that
handles this. As we mentioned, this function only gets called when things go as expected,
not when we have errors. If I save the file and rerun it in Terminal, what we'll get is a
promise that rejects:

(node:1853) UnhandledPromiseRejectionWarning: Unable to fulfill promise
(node:1853) UnhandledPromiseRejectionWarning: Unhandled promise rejection. This error originated either by t
hrowing inside of an async function without a catch block, or by rejecting a promise which was not handled w

ith .catch(). (rejection id: 1)
(node:1853) [DEP@@18] DeprecationWarning: Unhandled promise rejections are deprecated. In the future, promis
e rejections that are not handled will terminate the Node.js process with a non-zero exit code.

[370]

Promises in Asynchronous Programming Chapter 7

However, we don't have a handler for it, so nothing will print to the screen. This will be a
pretty big problem. We need to do something with that error message. Maybe we will alert
the user, or we will try some other code.

As shown in the previous code output, we can see that nothing printed between the
restarting and exiting. In order to do something with the error, we'll add a second argument
to the then method. This second argument is what lets us handle errors in our promises.
This argument will get executed and called with that value. In this case, it's our message.
We'll create an argument called errorMessage, as shown here:

somePromise.then ((message) => {
console.log('Success: ', message);
}, (errorMessage) => {

)i

Inside the argument, we can do something with that. In this case, we'll print it to the screen
using console. log, printing Error with a colon and a space to add some nice formatting,
followed by the actual value that was rejected:

}, (errorMessage) => {
console.log('Error: ', errorMessage);
P

Now that we have this in place, we can refresh things by saving the file. We will now see
our error message in Terminal, because we now have a place for it to do something;:

Error: Unable to fulfill promise

Here, we have a place for it to print the message to the screen; Unable to fulfill
promise prints to the screen, which works exactly as expected.

[371]

Promises in Asynchronous Programming Chapter 7

Merits of promises

We now have a promise that can either get resolved or rejected. If it gets resolved, meaning
the promise was fulfilled, we have a function that handles that. If it gets rejected, we have a
function that handles that as well. This is one of the reasons why promises are awesome.
You get to provide different functions, depending on whether or not the promise got
resolved or rejected. This lets you avoid a lot of complex if statements inside of our code,
which we needed to do in app . js to manage whether or not the actual callback succeeded
or failed.

Now inside a promise, it's important to understand that you can only either resolve or
reject a promise once. If you resolve a promise you can't reject it later, and if you
resolve it with one value you can't change your mind at a later point in time. Consider this
example, where I have a code like the following code; here I resolve first and then I
reject:

var somePromise = new Promise ((resolve, reject) => {
setTimeout (() => {
resolve ('Hey. It worked!');
reject ('Unable to fulfill promise');
}, 2500);
)i
somePromise.then ((message) => {
console.log('Success: ', message);
}, (errorMessage) => {
console.log('Error: ', errorMessage);

)i

In this case, we'll get our success message printing to the screen. We'll never see
errorMessage, because, as I just said, you can only do one of these actions once. You can
either resolve once or you can reject once. You can't do both; you can't do either twice.

This is another great advantage over callbacks. There's nothing preventing us from
accidentally calling the callback function twice. Let's consider the geocode. js file for
example. Let's add another line in the if block of geocode request call, as shown here:

const request = require('request');
var geocodeAddress = (address, callback) => {
var encodedAddress = encodeURIComponent (address);

request ({
url:

[372]

Promises in Asynchronous Programming Chapter 7

‘https://maps.googleapis.com/maps/api/geocode/json?address=${encodedAddress
P

json: true

}, (error, response, body) => {
if (error) {
callback ('Unable to connect to Google servers.');

callback () ;

This is a more obvious example, but it could easily be hidden inside of complex if-else
statements. In this case, our callback function in app. js will indeed get called twice,
which can cause really big problems for our program. Inside the promise example this
callback will never get called twice, no matter how many times you try to call resolve or
reject, this function will only get fired once.

We can prove that right now by calling resolve again. In the promise example case, let's
save the file with the following changes:

var somePromise = new Promise((resolve, reject) => {
setTimeout (() => {
resolve ('Hey. It worked!');
resolve () ;
reject ('Unable to fulfill promise');

}, 2500);
)i

Now, let's refresh things; we'll resolve with our message, Hey. It worked! and we'll
never ever have the function fired a second time with no message. Because, as we said, the
promise is already resolved. Once you set a promise's state to either fulfilled or rejected,
you can't set it again.

Now before a promise's resolve or reject function gets called, a promise is in a state
known as pending. This means that you're waiting for information to come back, or you're
waiting for your async computation to finish. In our case, while we're waiting for the
weather data to come back, the promise would be considered pending. A promise is
considered settled when it has been either fulfilled or rejected.

No matter which one you chose, you could say the promise has settled, meaning that it's no
longer pending. In our case, this would be a settled promise that was indeed fulfilled
because resolve is called right here. So these are just a couple of the benefits of promises.
You don't have to worry about having callbacks called twice, you can provide multiple
functions—one for success handling and one for error handling. It really is a fantastic
utility!

[373]

Promises in Asynchronous Programming Chapter 7

Now that we've gone through a quick example of how promises work, going over just the
very fundamentals, we'll to move on to something slightly more complex.

Advanced promises

In this section, we'll explore two more ways to use promises. We'll create functions that take
input and return a promise. Also, we'll explore promise chaining, which will let us combine
multiple promises.

Providing input to promises

Now the problem with the example we discussed in the previous section is that we have a
promise function, but it doesn't take any input. This most likely is never going to be the case
when we're using real-world promises. We'll want to provide some input, such as the ID of
a user to fetch from the database, a URL to request, or a partial URL, for example, just the
address component.

In order to do this, we'll have to create a function. For this example, we'll make a variable,
which will be a function called asyncada:

var asyncAdd = () => {
}

This will be a function that simulates the async functionality using set Timeout. In reality,
it's just going to add two numbers together. However, it will illustrate exactly what we need
to do, later in this chapter, to get our weather app using promises.

Now in the function, we will take two arguments, a and b, and we'll return a promise:
var asyncAdd = (a, b) => {

bi

[374]

Promises in Asynchronous Programming Chapter 7

So, whoever calls this asyncAdd method, they can pass in input, but they can also get the
promise back so that they can use then to sync up and wait for it to complete. Inside the
asyncAdd function, we'll use return to do this. We'll return the new Promise object
using the exact same new Promise syntax we did when we created the somePromise
variable. Now this is the same function, so we do need to provide the constructor function
that gets called with both resolve and reject, just like this:

var asyncAdd = (a, b) => {
return new Promise ((resolve, reject) => {

)i

Now we have an asyncAdd function, which takes two numbers and returns a promise. The
only thing left to do is to actually simulate the delay, and make the call to resolve. To do
this, we'll simulate the delay using set Timeout. Then we'll pass in my callback function,
setting the delay to 1.5 seconds, or 1500 milliseconds:

return new Promise ((resolve, reject) => {
setTimeout (() => {

}, 1500)

’

In the callback function, we'll write a simple i f-else statement that will check if the type
of both a and b is a number. If it is, great! We'll resolve the value of the two numbers
added. If they're not numbers (one or more), then we'll reject. To do this, we'll use the i £
statement with the typeof operator:

setTimeout (() => {
if (typeof a === 'number')
}, 1500);

Here, we're using the typeof object to get the string type before the variable. Also, we're
checking whether it's equal to a number, which is what will come back from typeof when
we have a number. Now similar to a, we'll add typeof b, which is also a number:

if (typeof a === 'number' && typeof b === 'number') {}

We can add the two numbers up, resolving the value. Inside the code block of the if
statement, we'll call resolve, passingina + b:

return new Promise ((resolve, reject) => {
setTimeout (() => {
if (typeof a === 'number' && typeof b === 'number') {

resolve(a + b);

[375]

Promises in Asynchronous Programming Chapter 7

}
}, 1500);

This will add the two numbers up, passing in one argument to resolve. Now this is the
happy path when both a and b are indeed numbers. If things don't go well, we'll want to
add reject. We'll use the else block to do this. If the previous condition fails,

we'll reject by calling reject ('Arguments must be numbers'):

if (typeof a ===
resolve(a + b);
} else {
reject ('"Argumets must be numbers');

}

'number' && typeof === 'number') {

Now we have an asyncAdd function that takes two variables, a and b, returns a promise,
and anyone who happens to call asyncAdd can add a then call onto the return result to get
that value.

Returning the promises

Now what exactly will this look like? To show this, first we'll comment out all of the code
we have in the newPromise variable of promise. js. Following this, we'll call

the asyncadd variable where we make asyncadd. We'll call it like we would any other
function, by passing in two values. Remember, this could be a database ID or anything else
for an async function. In our case, it's just two numbers. Let's say, 5 and 7. Now the return
value from this function is a promise. We can make a variable and call then on that variable,
but we can also just tack the then method, as shown here:

asyncAdd (5, 7).then

This is exactly what we'll do when we use promises; we'll tack on then, passing in our
callbacks. The first callback being the success case, and the second one being the error case:

ouldasyncAdd (5, 7).then(() => {
oo () => A

)i

In the second callback, we'll get our errorMessage, which we can log to the screen using
the console.log(errorMessage) ; statement, as shown here:

asyncAdd (5, 7).then(() => {

}, (errorMessage) => {

[376]

Promises in Asynchronous Programming Chapter 7

console.log(errorMessage) ;
)i

If one or more of the numbers are not actually numbers, the error function will fire
because we called reject. If both are numbers, all we'll do will get the result and print it to
the screen, using console.log. We'll add res and inside the arrow function (=>), we'll add
the console. log statement and print the string Result with a colon. Then, as the second
argument in console. log, we'll pass in the actual number, which will print it to the screen
as well:

asyncAdd (5, 7).then(() => {
console.log('Result:', res);
}, (errorMessage) => {

console.log(errorMessage) ;

)i

Now that we have our promise asyncAdd function in place, let's test this out inside
Terminal. To do this, we'll run nodemon to start up nodemon playground/promise. js:

@® [] weather-app — node Jusrflocal/bin/fnodemon playground/promise.js — 108x29

at any time, enter ‘rs’

Result: 12

Right away, we'll get the delay and the result, 12 prints to the screen. This is fantastic! We
are able to create the function that takes the dynamic input, but still returns a promise.

Now notice that we've taken an async function that usually requires callbacks and we've
wrapped it to use promises. This is a good handy feature. As you start using promises in
Node, you'll come to realize that some things do not support promises and you'd like them
to. For example, the request library that we used to make our HTTP requests does not
support promises natively. However, we can wrap our request call inside of a promise,
which is what we'll to do later in the section. For now though, we have a basic example
illustrating how this works. Next, we'd like to talk about promise chaining.

[377]

Promises in Asynchronous Programming Chapter 7

Promise chaining

Promise chaining is the idea of having multiple promises run in a sequence. For example, I
want to take an address and convert that into coordinates, and take those coordinates and
convert them into weather information; this is an example of needing to synchronize two
things. Also, we can do that really easily using promise chaining.

In order to chain our promises, inside our success call we'll return a new promise. In our
example, we can return a new promise by calling asyncadd again. I'll call asyncAdd next
to the res and console. log statements, passing in two arguments: the result, whatever
the previous promise has returned, and some sort of new number; let's use 33:

asyncAdd (5, 7).then((res) => {
console.log('Result:', res);
return asyncAdd(res, 33);

Now we're returning a promise so we can add my chaining onto it by calling the then
method again. The then method will to get called after we close the closing parenthesis for
our previous then method. This will also take one or more arguments. We can pass in a
success handler, which will be a function and an error handler, which will also be a
function:

asyncAdd (5, 7).then((res) => {
console.log('Result:', res);
return asyncAdd(res, 33);

}, (errorMessage) => {
console.log(errorMessage) ;
}) .then(() => {

oo O = A
)

Now that we have our then callbacks set up, we can actually fill them out. Once again we
will get a result; this will be the result of 5 plus 7, which is 12, plus 33, which will be 45.
Then, we can print console.log ('Should be 45').Next, we'll print the actual value
from results variable:

}) .then((res) => {
console.log('Should be 45', res);
oo () => A

’

[378]

Promises in Asynchronous Programming Chapter 7

Now our error handler will also be the same. We'll have errorMessage and we'll print it to
the screen using the console.log, printing errorMessage:

}) .then((res) => {
console.log('Should be 45', res);
}, (errorMessage) => {

console.log(errorMessage) ;

)i

Now what we have is some chaining. Our first then callback functions will fire based on
the result of our first asyncadd call. If it goes well, the first one will fire. If it goes poorly,
the second function will fire. Our second then call will be based on the asyncadd call,
where we add 33. This will let us chain the two results together, and we should get 45
printing to the screen. We'll save this file, which will restart things inside nodemon.
Eventually, we'll get our two results: 12 and our Should be 45. As shown in the following
code image, we get just that, Result: 12 and Should be 45, printing to the screen:

Result: 12

Should be 45 &5

Error handling in promises chaining

Now when it comes to error handling, there are a few quirks; so, we'll simulate some errors.
First up, let's simulate an error in our second asyncadd call. We know we can do that by
passing in a value that's not a number. In this case, let's wrap 33 inside quotes:

asyncAdd (5, 7).then((res) => {
console.log('Result:', res);
return asyncAdd(res, '33'");

}, (errorMessage) => {
console.log(errorMessage) ;

}) .then((res) => {
console.log('Should be 45', res);

}, (errorMessage) => {
concole.log(errorMessage) ;

b

[379]

Promises in Asynchronous Programming Chapter 7

This will be a string and our call should reject. Now we can save the file and see what
happens:

Result: 12

Arguments must be numbers

We get Result: 12, then we get our error, Arguments must be numbers. Exactly as we
expect, this is printing on the screen. Instead of getting Should be 45, we get our error
message.

But things get a little trickier when something earlier on in the promise chain gets rejected.
Let's swap '33' with the number 33. Then let's replace 7 with the string ' 7', as shown
here:

asyncAdd (5, '7'").then((res) => {
console.log('Result:', res);
return asyncAdd(res, 33);

}, (errorMessage) => {
console.log(errorMessage) ;

}) .then((res) => {
console.log('Should be 45', res);

}, (errorMessage) => {
concole.log(errorMessage) ;

H)

This will cause our first promise to fail, which means we'll never see the result. We should
see the error message printing to the screen, but that's not what will happen:

Arguments must be numbers

Should be 45 undefined

When we restart, we do indeed get the error message printing to the screen, but then we
also get Should be 45 undefined. The second then console.log is running because we
provided an error handler in the second asyncAdd function. It's running the error handler.
Then it says, Okay, things must be good now we ran the error handler. Let’s move on to the next
then call calling the success case.

[380]

Promises in Asynchronous Programming Chapter 7

The catch method

To fix the error, we can remove both of our error handlers from both the then calls, and
replace them with a call at the very bottom, to a different method, which we'll call . catch:

asyncAdd (5, '7'").then((res) => {
console.log('Result:', res);
return asyncAdd(res, 33);

}) .then((res) => {
console.log('Should be 45', res);
}) .catch;

The catch promise method is similar to then, but it just takes one function. This is the error
handler. As shown in the following code, we can specify one error handler if any of our
promise calls fail. We'll take errorMessage and print it to the screen using
console.log(errorMessage):

asyncAdd (5, '7'").then((res) => {
console.log('Result:', res);
return asyncAdd(res, 33);

}) .then((res) => {
console.log('Should be 45', res);
}) .catch((errorMessage) => {

console.log(errorMessage)
)i

For now though, if things are a little blurry that is okay, as long as you're starting to see
exactly what we're doing. We're taking the result from one promise and passing it to a
different one. In this case, the result works exactly as expected. The first promise fails, we
get, Arguments must be numbers printing to the screen. Also, we don't get that broken
statement where we try to print 45, but we get undefined instead. Using catch, we can
specify an error handler that will fire for all of our previous failures. This is exactly what we
want.

The request library in promises

Now as I mentioned earlier, some libraries support promises while others don't. The request
library does not support promises. We will make a function that wraps request, returning a
promise. We'll use some functionalities from the geocode. js file from the previous
chapter.

[381]

Promises in Asynchronous Programming Chapter 7

First, let's discuss a quick setup, and then we'll actually fill it out. In the playground folder,
we can make a new file to store this, called promise-2.7s:

@ [] [promise-2.js — ~/Desktop/weather-app
Project promise.js x promise-2.js b4
v M weather-app
¥ M geocode
@ geocode.js
> [l node_modules
v playground
@ async-basics.)s

@ callbacks.js

@ promise.js

We'll make a function called geocodeAddress. The geocodeAddress function will take
the plain text address, and it will return a promise:

var geocodeAddress = (address) => {
bi

The geocodeAddress function will return a promise. So if I pass in a ZIP code, such

as 19146, I would expect a promise to come back, which I can attach a then call to. This
will let me wait for that request to finish. Right here, I'll tack on a call to then, passing in
my two functions: the success handler for when the promise is fulfilled and the error
handler for when the promise is rejected:

geocodeAddress ('19146"') .then(() => {
oo => A
)

Now when things go well, I'll expect the 1ocation object with the address, the 1atitude,
and the longitude, and when things go poorly, I'll expect the error message:

geocodeAddress ('19146") .then((location) => {

}, (errorMessage) => {

})

[382]

Promises in Asynchronous Programming Chapter 7

When the error message happens, we'll just print it to the screen using console.log
(errorMessage) . For now, when things go well and the success case runs, we'll just print
that entire object using our pretty printing technique, console. log. Then, we'll call
JSON.stringify, like we've done many times before, passing in the three arguments—the
object, undefined for the filter method—which we'll never use in the book, and the number
2 for the number of spaces we'd like to use as our indentation:

geocodeAddress ('19146") .then((location) => {
console.log (JSON.stringify (location, undefined, 2));
}, (errorMessage) => {
console.log(errorMessage) ;
P

This is what we want to create, the function that lets this functionality work as expected.
This then call should work as shown in the previous code.

To get started I'll return the promise by calling: return new Promise, passing in my
constructor function:

var geocodeAddress = (address) => {
return new Promise (() => {

P
bi

Inside the function, we'll add that call to request. Let's provide the resolve and
reject arguments:

return new Promise ((resolve, reject) => {
P
bi

Now that we have our Promise set up, we can load in the request module on top of the
code, creating a constant called request and setting that equal to the return result from
require ('request'):

const request = require('request');

var geocodeAddress = (address) => {

[383]

Promises in Asynchronous Programming Chapter 7

Next, we'll move into the geocode. s file, grab code inside the geocodeAddress function,
and move it over into promise-2 file, inside of the constructor function:

const request = require('request');
var geocodeAddress = (address) => {

return new Promise ((resolve, reject) => {

var encodedAddress = encodeURIComponent (address);

request ({

url:

‘https://maps.googleapis.com/maps/api/geocode/json?address=${encodedAddress

}\I

json: true

}, (error, response, body) => {

if (error) {
callback ('Unable to connect to Google servers.');

} else if (body.status === 'ZERO_RESULTS') {
callback ('Unable to find that address.');
} else if (body.status === 'OK') {

callback (undefined, {
address: body.results[0].formatted_address,
latitude: body.results[0].geometry.location.lat,
longitude: body.results[0].geometry.location.lng
)i

P
P
}i

Now we are mostly good to go; we only need to change a few things. The first thing we
need to do is to replace our error handlers. In the i f block of the code, we have called our
callback handler with one argument; instead, we'll call re ject, because if this code runs,
we want to reject the promise. We have the same thing in the next e1se block. We'll call
reject if we get ZERO_RESULTS. This is indeed a failure, and we do not want to pretend
we succeeded:

if (error) {
reject ('Unable to connect to Google servers.');
} else if (body.status === 'ZERO_RESULTS') {
reject ('Unable to find that address.');

[384]

Promises in Asynchronous Programming Chapter 7

Now in the next else block, this is where things did go well; here we can call resolve.
Also, we can remove the first argument, as we know resolve and reject only take one
argument:

if (error) {

reject ('Unable to connect to Google servers.');
} else if (body.status === 'ZERO_RESULTS') {
reject ('Unable to find that address.');
} else if (body.status === 'OK') {
resolve (

We are able to specify multiple values though, because we resolve an object with
properties on it. Now that we have this in place, we are done. We can actually save our file,
rerun it inside Terminal, and test things out.

Testing the request library

To test, we'll save the file, move into Terminal, and shut down nodemon for the
promise. js file. We'll run node for the promise. js file. It's in the playground folder,
and it's called promise-2. js:

node playground/promise-2.js

Now, when we run this program, we're actually making that HTTP request. As shown in
the following code output, we can see the data comes back exactly as we expected:

Gary:weather-app Gary$ node playground/promise-2.js
{

"address": "Philadelphia, PA 19146, USA",
"latitude": 39.9396284,
"longitude": -75.18663959999999

}
Gary:weather-app Gary$ I

[385]

Promises in Asynchronous Programming Chapter 7

We get our address, latitude, and longitude variables. This is fantastic! Now let's test
to see what happens when we pass in an invalid address, something like 5 zeroes, which
we've used before to simulate an error:

const request = require('request');
var geocodeAddress = (address) => {
return new Promise ((resolve, reject) => {
var encodedAddress = encodeURIComponent (address);

request ({
url:
“https://maps.googleapis.com/maps/api/geocode/json?address=${encodedAddress
}\I
json: true

}, (error, response, body) => {
if (error) H{
reject ('Unable to connect to Google servers.');
} else if (body.status === 'ZERO_RESULTS') {
reject ('Unable to find that address.');
} else if (body.status === 'OK') {

resolve ({
address: body.results[0].formatted_address,
latitude: body.results[0].geometry.location.lat,
longitude: body.results[0].geometry.location.lng
P

We'll save the file, rerun the program, and Unable to find that address. prints to the
screen:

Gary:weather-app Gary$ node playground/promise-2.js
Unable to find that address.

Gary:weather-app Gary$ I

[386]

Promises in Asynchronous Programming Chapter 7

This happens only because we call reject. We will call reject inside of the Promise
constructor function. We have our error handler, which prints the message to the screen.
This is an example of how to take a library that does not support promises and wrap it in a
promise, creating a promise ready function. In our case, that function is geocodeAddress.

Weather app with promises

In this section, we'll learn how to use a library that has promises built in. We'll explore the
axios library, which is really similar to request. Although, instead of using callbacks as
request does, it uses promises. So we don't have to wrap our calls in promises to get that
promise functionality. We'll actually be recreating the entire weather app in this section.
We'll only have to write about 25 lines of code. We'll go through the entire process: taking
the address, getting the coordinates, and then fetching the weather.

Fetching weather app code from the app.js file

To fetch weather app code from the app.js file, we'll duplicate app. js, because we
configure yargs in the original app. js file and we'll want to carry the code over to the new
project. There's no need to rewrite it. In the weather directory, we'll duplicate app. js,
giving it a new name, app-promise. js.

Inside app-promise. js, before we add anything, let's rip some stuff out. We'll be ripping
out the geocode and weather variable declarations. We'll not be requiring any files:

[387]

Promises in Asynchronous Programming Chapter 7

promise-2 js app.j app-promise.js

1 const yargs = require('yargs');

const argv = yargs
.options({
a: {
demand: true,
alias: 'address',
describe: 'Address to fetch weather for',
string: true
}
3]
.help()
.alias('help', 'h')
argv;

geocode.geocodeAddress(argv.address, (errorMessage, results) => {
if (errorMessage) {
console. log{errorMessage) ;
} else {
console. log(results.address);
weather.getWeather{results.latitude, results.longitude, (errorMessage, weatherResult:
if (errorMessage) {
console. log(errorMessage) ;
} else {
console.log(It's currently ${weatherResults.temperature}. It feels like ${weath:
}
};
}
| 3 H

Then I'll remove everything after our yargs configuration, which in this case is just our call
to geocodeAddress. The resultant code will look like the following:

const yargs = require('yargs');

const argv = yargs
.options ({

a: |
demand: true,
alias: 'address',

describe: 'Address to fetch weather for',
string: true

[388]

Promises in Asynchronous Programming Chapter 7

.help()
.alias('help', 'h'")
.argv;

AXios documentations

Now that we have a clean slate, we can get started by installing the new library. Before we
run the npm install command, we'll see where we can find the documentation. We can
get it by visiting: https://www.npmjs.com/package/axios. As shown in the following
screenshot, we have the axios npm library page, where we can view all sorts of information
about it, including the documentation:

® 08] ades ® e

= C @ NPM, Inc. [US] | hetps://www.npm]s.com/package/axios 1

npm Enterprise leatures pricing o

It's your turn. Helpu prove JavaScript. Take the 2017 JavaScript Ecosystem Survey »
a}(iOS m npm install axios
[0.17.4] St peving | oo 848 s 3Wimanit | chocon e how? leam more

Promise based HTTP client for the brawser and node.js
T nickuraltsev published 2 manths ago

0.17.1 s the latest of 36 releases
Features

github.com/axios/axios

Make XMLHttpRequests from the browser

Make http requests from node.js

Supports the Promise API

Collaborators list
Intercept request and response _
Transform request and response data i L a‘
Cancel requests s
Automatic transforms for JSON data

Elioct sid Y LyCDC Siod

Here we can see some things that look familiar. We have calls to then and catch, just like we
do when we use promises outside of axios:

[389]

Promises in Asynchronous Programming Chapter 7

Performing a GET request

axios.get ('/user?ID=12345"
.then (function (response) |
conscle.log (response);
})
.catch (function ({(error) |{
conscle.log{error) ;

I

i n

W +F FTIE —
UPT1or CNne regquestc

ally 2, above could also be done as
axios.get ('/user', |{
params: {

ID: 12345

{8

.then (function (response) |
conscle.log (response) ;

H

.catch(function (errcr) {
console.log(error) ;

I

Inside the stats column of this page, you can see that this is a super popular library. The
most recent version is 0.13.1. This is the exact version we'll be using. Feel free to go to this
page when you use axios in your projects. There are a lot of really good examples and
documentation. For now though, we can install it.

[390]

Promises in Asynchronous Programming Chapter 7

Installing axios

To install axios, inside Terminal, we'll be running npm install; the library name is axios,
and we'll specify the version 0.17. 1 with the save flag updating the package. json file.
Now I can run the install command, to install axios:

[NoN] | weather-app — -bash — 108x29

Gary:weather-app Gary$ npm install axios@@.17.1 --save

npm | weather-appR1.6.8 No description
npm (L]l weather-app@1.8.8 No repository field.

+ axios@@.17.1
added 5 packages in 6.183s

Update available >
Run npm i -g npm to update

Gary:weather-app Gary$ I

Making calls in the app-promise file

Inside our app-promise file, we can get started by loading in axios at the top. We'll make
a constant called axios, setting it equal to require ('axios'), as shown here:

const yargs = require('yargs');
const axios = require('axios');

Now that we have this in place, we can actually start making the calls in the code. This will
involve us pulling out some of the functionality from the geocode and weather files. So
we'll open up the geocode. js and weather. js files. Because we will be pulling some of
the code from these files, things such as the URL and some of the error handling techniques.
Although we'll talk about the differences as they come up.

[391]

Promises in Asynchronous Programming Chapter 7

The first thing we need to do is to encode the address and get the geocode URL. Now this
stuff happens inside geocode. js. So we'll actually copy the encodedAddress variable
line, where we create the encoded address, and paste it in the app-promise file, following
the argv variable:

.argv;
var encodedAddress = encodeURIComponent (argv.address);

Now we do need to tweak this a little bit. The address variable doesn't exist; but we have
argv.address. So, we'll switch address with argv.address:

var encodeAddress = encodeURIComponent (argv.address) ;

Now we have the encoded address; the next thing we need to get before we can start using
axios is the URL that we want to make the request to. We'll grab that from the geocode. js
file as well. In app-promise.js, we will make a new variable called geocodeURI. Then,
we'll take the URL present in geocode. js, from the opening tick to the closing tick, copy it,
and paste it in app-promise. js, equal to geocodeURI:

var encodedAddress = encodeURIComponent (argv.address);

var geocodeUrl =
“https://maps.googleapis.com/maps/api/geocode/json?address=${encodedAddress
i

Now we use the encoded address variable inside the URL; this is fine because it does exist
in our code. So at this point, we have our geocodeUr1 variable and we can get started in
making our very first axios request.

Making axios request

In our case, we'll be taking the address and getting the 1atitude and longitude. To make
our request, we'll call a method available on axios, axios.get:

var geocodeUrl =
“https://maps.googleapis.com/maps/api/geocode/json?address=${encodedAddress
g

axios.get

[392]

Promises in Asynchronous Programming Chapter 7

The get is the method that lets us make our HTTP get request, which is exactly what we
want to do in this case. Also, it's really simple to set up. When you're expecting JSON data,
all you have to do is to pass in the URL that we have in the geocodeUr1 variable. There's
no need to provide any other options, such as an option letting it know it's JSON. axios
knows how to automatically parse our JSON data. What get returns is actually a promise,
which means we can use . then in order to run some code when the promise gets fulfilled
or rejected, whether things go well or poorly:

axios.get (geocodeUrl) .then ()

Inside then, we'll provide one function. This will be the success case. The success case will
get called with one argument, which the axios library recommends that you call
response:

axios.get (geocodeUrl) .then ((response) => {
}) i

Technically, we could call anything you like. Now inside the function, we'll get access to all
of the same information we got inside of the request library; things such as our headers,
response, and request headers, as well as the body information; all sorts of useful info. What
we really need though is the response . data property. We'll print that using
console.log:

axios.get (geocodeUrl) .then ((response) => {
console.log(response.data);
)i

Now that we have this in place, we can run our app-promise file, passing in a valid
address. Also, we can see what happens when we make that request.

Inside command line (Terminal), we'll use the clear command first to clear the Terminal
output. Then we can run node app-promise. js, passing in an address. Let's use a valid
address, for example, 1301 lombard street, philadelphia:

node app-promise.js —a '1301 lombard street philadelphia

The request goes out. And what do we get back? We get back the results object exactly as
we saw it when we used the other modules in the previous chapters:

[393]

Promises in Asynchronous Programming Chapter 7

[NON] | weather-app — -bash — 108x29

Gary:weather-app Gary$ node app-promise.js —-a '1301 lombard street philadelphia‘'
{ results:

[{ address_components: [Arrayl,
formatted_address: '1361 Lombard St, Philadelphia, PA 19147, USA',
geometry: [Object],
place_id: 'EiwxMzAxIExvbWJIhcmQgU3QsIFBoaWxhZGVscGhpYSwgUEEgMTkxNDcsIFVTQQ',

types: [Array]l } 1,
status: 'OK' }
Gary:weather-app Gary$ I

The only difference in this case is that we're using promises built in, instead of having to
wrap it in promises or using callbacks.

Error handling in axios request

Now aside from the success handler we used in the previous example, we can also add a
call to catch, to let us catch all of the errors that might occur. We'll to get the error object as
the one-and-only argument; then we can do something with that error object:

axios.get (geocodeUrl) .then ((response) => {
console.log(response.data);

})icatch((e) => {

}) i

Inside the function, we'll kick things off, using console. log to print the error argument:

}).catch((e) => {
console.log(e)

1)

Now let's simulate an error by removing the dot in the URL:

var encodedAddress = encodeURIComponent (argv.address);
var geocodeUrl =
"https://mapsgoogleapis.com/maps/api/geocode/json?address=${encodedAddress}

’

axios.get (geocodeUrl) .then ((response) => {
console.log(response.data);

}) .catch((e) => {
console.log(e)

)i

[394]

Promises in Asynchronous Programming Chapter 7

We can see what happens when we rerun the program. Now I'm doing this to explore the
axios library. I know exactly what will happen. This is not why I'm doing it. I'm doing it to
show you how you should approach new libraries. When you get a new library, you want
to play around with all the different ways it works. What exactly comes back in that error
argument when we have a request that fails? This is important information to know; so
when you write a real-world app, you can add the appropriate error handling code.

In this case, if we rerun the exact same command, we'll get an error:

0] [] | weather-app — -bash — 10829

Gary:weather-app Gary$ node app-promise.js -a '13081 lombard street philadelphia‘’
{ Error: getaddrinfo ENOTFOUND mapsgoogleapis.com mapsgoogleapis.com:&443

at errnoException (dns.js:55:10)
at GetAddrInfoRegWrap.onlookup [as oncomplete] (dns.js:97:26)

code: 'ENOTFOUND',

errno: 'ENOTFOUND',

syscall: 'getaddrinfo’',

hostname: 'mapsgoogleapis.com’,

host: 'mapsgoogleapis.com',

port: 443,

config:

{ adapter: [Function: httpAdapter],
transformRequest: { '@': [Function: transformRequest] },
transformResponse: { '@': [Function: transformResponse] },
timeout: @,
xsrfCookieName: 'XSRF-TOKEN',
xsrfHeaderName: ‘X-XSRF-TOKEN',
maxContentLength: -1,
validateStatus: [Function: validateStatus],
headers:
{ Accept: 'application/json, text/plain, */%',
'User-Agent': 'axios/8.17.1' },

method: 'get',
url: ‘'https://mapsgoogleapis.com/maps/api/geocode/json?address=1301%208lombard%2@street%28philadelphia’,
data: undefined },

request:

Writable {
_writableState:

WritableState {

As you can see, there really is nothing to print on the screen. We have a lot of very cryptic
error codes and even the errorMessage property, which usually contains something good
or does not. Then we have an error code followed by the URL. What we want instead is
print a plain text English message.

[395]

Promises in Asynchronous Programming Chapter 7

To do this, we'll use an i f-else statement, checking what the code property is. This is the
error code and in this case ENOTFOUND; we know it means that it could not connect to the
server. In app-promise. js, inside the error handler, we can add this by having i f and
checking the condition:

}) .catch((e) => {
if (e.code === 'ENOTFOUND') {

}

If that is the case, we'll print some sort of custom message to the screen using
console.log:

}) .catch((e) => {
if (e.code === 'ENOTFOUND') {
console.log('Unable to connect to API servers.');

}

console.log(e);
)i

Now we have an error handler that handles this specific case. So we can remove our call to
console.log:

axios.get (geocodeUrl) .then ((response) => {
console.log(response.data);
}) .catch((e) => {
if (e.code === 'ENOTFOUND') {
console.log('Unable to connect to API servers.');

}
)i

Now if we save the file, and rerun things from Terminal, we should get a much nicer error
message printing to the screen:

[NON] || weather-app — -bash — 108x29

Gary:weather-app Gary$ node app-promise.js —a '1301 lombard street philadelphia’
Unable to connect to API servers.
Gary:weather-app Gary$ I

This is exactly what we get: Unable to connect to API servers.Now I'll add that dot
back in, so things start working. We can worry about the response that comes back.

[396]

Promises in Asynchronous Programming Chapter 7

Error handling with ZERO_RESULT body status

As you remember, inside the geocode file, there were some things we needed to do. We've
already handled the error related to server connection, but there is still another error
pending, that is, if the body . status property equals ZERO_RESULTS. We want to print an
error message in that case.

To do this, we'll inside app-promise, create our very own error. We'll throw an error inside
the axios.get function. This error will cause all of the code after it, not to run. It will move
right into the error handler.

Now we only want to throw an error if the status property is set to ZERO_RESULTS. We'll
add an if statement at the very top of the get function to check if
(response.data.status) equals ZERO_RESULTS:

axios.get (geocodeUrl) .then ((response) => {
if (response.data.status === 'ZERO_RESULTS') {

}

If that is the case, then things went bad and we do not want to move on to make the
weather request. We want to run our catch code we have. To throw a new error that our
promise can catch, we'll use a syntax called throw new Error. This creates and throws an
error letting Node know that something went wrong. We can provide our own error
message, something that's readable to a user: Unable to find that address:

axios.get (geocodeUrl) .then ((response) => {
if (response.data.status === 'ZERO_RESULTS') {
throw new Error ('Unable to find that address.');

}

This is a message that'll let that user know exactly what went wrong. Now when this error
gets thrown, the same catch code will run. Currently, we only have one if condition that
checks whether the code property is ENOTFOUND. So we'll add an else clause:

axios.get (geocodeUrl) .then ((response) => {
if (response.data.status === 'ZERO_RESULTS') {
throw new Error ('Unable to find that address.');

}

console.log(response.data);
}) .catch((e) => {

if (e.code === 'ENOTFOUND') {
console.log('Unable to connect to API servers.');
} else {

[397]

Promises in Asynchronous Programming Chapter 7

}
)i

Inside the else block, we can print the error message, which is the string we typed in the
throw new Error syntax using the e. message property, as shown here:

axios.get (geocodeUrl) .then ((response) => {
if (response.data.status === 'ZERO_RESULTS') {
throw new Error ('Unable to find that address.');

console.log(response.data);

}) .catch((e) => {
if (e.code === 'ENOTFOUND') {
console.log('Unable to connect to API servers.');
} else {

console.log(e.message);
}
)i

If the error code is not ENOTFOUND, we'll simply print the message to the screen. This will
happen if we get zero results. So let's simulate that to make sure the code works. Inside
Terminal, we'll rerun the previous command passing in a zip code. At first, we'll use a valid
zip code, 08822 and we should get our data back. Then we'll use an invalid one: 00000.

When we run the request with a valid address, we get this:

[NON] | weather-app — -bash — 108x29

Gary:weather-app Gary$ node app-promise.js -a 88822
{ results:
[{ address_components: [Array]l,
formatted_address: 'Flemington, NJ 88822, USA',
geometry: [Object],
place_id: 'ChIJLwegZVPxwikRcGsYmH1fjZc',

types: [Arrayl } 1,
status: 'OK' }
Gary:weather-app Gary$ I

When we run the request with the invalid address, we get the error:

Gary:weather-app Gary$ node app-promise.js —-a 0000080
Unable to find that address.

[398]

Promises in Asynchronous Programming Chapter 7

By calling throw new Error, we're immediately stopping the execution of this function.
So console.log with e.message never prints, which is exactly what we want. Now that
we have our error handler in place, we can start generating that weather URL.

Generating the weather URL

In order to generate the weather URL, we'll copy the URL from the weather file, taking it
with the ticks in place, and moving it into the app-promise file. We'll make a new variable
called weatherUrl, setting it equal to the copied URL:

url:
“https://api.forecast.io/forecast/4a04d1c42fd9d32c97a2c291a32d5e2d/${1lat}, S
{1ng}",

Now weatherUrl does need a few pieces of information. We need the latitude and
longitude. We have two variables 1at and 1ng, so let's create them, getting the
appropriate value from that response object, var lat and var 1lng:

var lat;

var lng;

url:
“https://api.forecast.io/forecast/4a04d1c42fd9d32c97a2c291a32d5e2d/${1lat},$
{1ng}",

Now in order to pull them off, we have to go through that process of digging into the object.
We've done it before. We'll be looking in the response object at the data property, which is
similar to the body in the request library. Then we'll go into results, grabbing the first
item and accessing the geometry property, then we'll access location.lat:

var lat = response.data.results[0].geometry.location.lat;
Now similarly, we can add things for the 1ongitude variable:

var lat = response.data.results[0].geometry.location.lat;
var lng = response.data.results[0].geometry.location.lng;

[399]

Promises in Asynchronous Programming Chapter 7

Now before we make that weather request, we want to print the formatted address because
that's something the previous app did as well. In our console.log (response.data)
statement, and instead of printing response.data, we'll dive into the data object getting
the formatted address. This is also on the results array's first item. We'll be accessing

the formatted_address property:

var lat = response.data.results[0].geometry.location.lat;

var lng = response.data.results[0].geometry.location.lng;

var weatherUrl =
‘“https://api.forecast.io/forecast/4a04d1c42£fd9d32c97a2c291a32d5e2d/${1lat},$
{1ng}";

console.log(response.data.results[0].formatted_address);

Now that we have our formatted address printing to the screen, we can make our second
call by returning a new promise. This is going to let us chain these calls together.

Chaining the promise calls

To get started, we'll return a call to axios.get, passing in the URL. We just defined that, it
is weatherUrl:

var lat = response.data.results[0].geometry.location.lat;

var lng = response.data.results[0].geometry.location.lng;

var weatherUrl =
‘https://api.forecast.io/forecast/4a04d1c42fd9d32c97a2c291a32d5e2d/${1lat},$
{1ng}";

console.log(response.data.results[0].formatted_address);

return axios.get (weatherUrl);

Now that we have this call returning, we can attach another then call right between our
previous then call and catch call, by calling then, passing in one function, just like this:

return axios.get (weatherUrl);

}) .then(() => {
}) .catch((e) => {
if (e.code === 'ENOTFOUND') {

This function will get called when the weather data comes back. We'll get that same
response argument, because we're using the same method, axios.get:

}) .then ((response) => {

[400]

Promises in Asynchronous Programming Chapter 7

Inside the then call, we don't have to worry about throwing any errors, since we never
needed to access a body property in order to check if something went wrong. With the
weather request if this callback runs, then things went right. We can print the weather
information. In order to get that done, we'll make two variables:

® temperature

® apparentTemperature

The temperature variable will get set equal to response.data. Then we'll access that
currently property. Then we'll access temperature. We'll pull out the second variable, the
actual temperature or apparent Temperature, which is the property name, var
apparentTemperature. We'll be setting this equal to
response.data.currently.apparentTemperature

}) .then ((response) => {
var temperature = response.data.currently.temperature;
var apparentTemperature = response.data.currently.apparentTemperature;

Now that we have our two things pulled out into variables, we can add those things inside
of a call, console.log. We chose to define two variables, so that we don't have to add the
two really long property statements to console.log. We can simply reference the
variables. We'll add console.log and we'll use template strings in the console. log
statement, so that we can inject the previous mentioned two values inside of quotes: It's
currently, followed by temperature. Then we can add a period, It feels like,
followed by apparentTemperature:

}) .then ((response) => {
var temperature = response.data.currently.temperature;
var apparentTemperature = response.data.currently.apparentTemperature;

console.log(It's currently ${temperature}. It feels like
${apparentTemperature}.’) ;

Now that we have our string printing to the screen, we can test that our app works as
expected. We'll save the file and inside Terminal, we'll rerun the command from two
commands ago where we had a valid zip code:

[401]

Promises in Asynchronous Programming Chapter 7

[NON] | weather-app — -bash — 108x29

Gary:weather-app Gary$ node app-promise.js -a 88822
Flemington, NJ 08822, USA

It's currently 33.15. It feels like 33.15
Gary:weather-app Gary$ I

When we run this, we get the weather info for Flemington, New Jersey. It's currently 84
degrees, but it feels like 90. If we run something that has a bad address, we do get the error
message:

Gary:weather-app Gary$ node app-promise.js -a 800000
Unable to find that address.
Gary:weather-app Gary$ I

So everything looks great! Using the axios library, we're able to chain promises like the
app-promise without needing to do anything too crazy. The axios get method returns a
promise, so we can access it directly using then.

In the code, we use then once to do something with that geolocation data. We print the
address to the screen. Then we return another promise, where we make the request for the
weather. Inside of our second then call, we print the weather to the screen. We also added a
catch call, which will handle any errors. If anything goes wrong with either of our promises,
or if we throw an error, catch will get fired printing the messages to the screen.

This is all it takes to use axios and set up promises for your HTTP requests. Now one reason
people love promises over traditional callbacks is that instead of nesting we can simply
chain. So our code doesn't get indented to crazy levels. As we saw in app. js in the
previous chapter, we went a few indentation levels deep just to add two calls together. If we
needed to add a third it would have gotten even worse. With promises, we can keep
everything at the same level, keeping our code a lot easier to maintain.

[402]

Promises in Asynchronous Programming Chapter 7

Summary

In this chapter, we've gone through a quick example of how promises work, by going over
just the very fundamentals. Async is a critical part to Node.js. We went through the very
basics of callbacks and promises. We looked a few examples, creating a pretty cool weather

app.

This brings us to the end of our asynchronous Node.js programming, but this does not
mean that you have to stop building out the weather app. There are a couple ideas as to
what you could do to continue on with this project. First up, you can load in more
information. The response we get back from the weather API contains a ton of stuff besides
just the current temperature, which is what we used. It'd great if you can incorporate some
of that stuff in there, whether it's high/low temperatures, or chances of precipitation.

Next up, it'd be really cool to have a default location ability. There would be a command
that lets me set a default location, and then I could run the weather app with no location
argument to use that default. We could always specify a location argument to search for
weather somewhere else. This would be an awesome feature, and it would work kind of
similar to the Notes app, where we save data to the filesystem.

In the next chapter, we'll start creating web servers, which will be async. We'll make APIs,
which will be async. Also, we'll create real-time Socket.IO apps, which will be async. We'll
move on to creating Node apps that we deploy to servers, making those servers accessible
to anybody with a web connection.

[403]

Web Servers in Node

We'll cover a ton of exciting stuff in this chapter. We'll learn how to make a web server and
how to integrate version control into Node applications. Now to get all this done, we will
look at a framework called Express. It's one of the most popular npm libraries, and for good
reason. It makes it really easy to do stuff such as creating a web server or an HTTP APL. It's
kind of similar to the Dark Sky API we used in the last chapter.

Now most courses start with Express, and that can be confusing because it blurs the line
between what is Node and what is Express. We'll kick things off by adding Express to a
brand new Node app.

Specifically, we'll cover the following topics:

¢ Introducing Express
e Static server
e Rendering templates

Advanced templates
Middleware

Introducing Express

In this section, you'll make your very first Node.js web server, which means you'll have a
whole new way for users to access your app. Instead of having them run it from the
Terminal passing in arguments, you'll be able to give them a URL they can visit to view
your web app or a URL they can make an HTTP request to to fetch some data.

Web Servers in Node Chapter 8

This will be similar to what we did when we used the geocode API in the previous chapters.
Instead of using an API though, we'll be able to create our own. We'll also be able to set up a
static website for something like a portfolio site. Both are really valid use cases. Now all of
this will be done using a library called Express, which is the most popular npm library. It's
actually one of the reasons that Node got so popular because it was so easy to make REST
APIs and static web servers.

Configuring Express

Express is a no-nonsense library. Now there are a lot of different ways to configure it. So it
can get pretty complex. That's why we'll be using it throughout the next couple of chapters.
To get started, let's make a directory where we can store all of the code for this app. This
app will be our web server.

On the desktop let's us make a directory called node-web-server, by running the mkdir
node-web-server command in the Terminal:

[NoN 1 Desktop — -bash — 108x29

Gary:Desktop Gary$ mkdir node-web-server
Gary:Desktop Gary$ I

Once this directory is created, we'll navigate into it using cd:

[NON] | node-web-server — -bash — 108x29

Gary:Desktop Gary$ mkdir node-web-server
Gary:Desktop Gary$ cd node-web-server

Gary:node-web-server Gary$

And we'll also open it up inside Atom. In Atom, we'll open it up from the desktop:

[405]

Web Servers in Node Chapter 8

e < = E - 1 node-web-server o] Q
Favorites Today
LE,'. Recents 8 CHODB »
© bownload | B node-web-server |
EANTIOA weather-app »
E Deidtop Previous 7 Days
@ Documents "9 CHO8 =
#&: Applications Previous 30 Days
¢ iCloud Drive 7l notes-node >

=] Google Drive

Devices
[Gary
h; Multimedia
l;l Projects
(@) Remote Disc

Tags

New Folder Cancel m

Now before going further, we'll run the npm init command so we can generate the
package. json file. As shown in the following code, we'll run npm init:

® & node-web-server — npm TERM_PROGRAM=Apple_Terminal TERM=xterm-256calor — 108x29

Gary:node-web-server Gary$ npm init
This utility will walk you through creating a package.json file.
It only covers the most common items, and tries to guess sensible defaults.

See "npm help json® for definitive documentation on these fields
and exactly what they do.

Use “npm install <pkg>" afterwards to install a package and
save it as a dependency in the package.json file.

Press “C at any time to guit.
package name: (web-server) I

[406]

Web Servers in Node Chapter 8

Then, we'll use the default value just by pressing enter through all of the options shown in
the following screenshot. There's no need to customize any of these as of now:

® [] node-web-server — npm TERM_PROGRAM=Apple_Terminal TERM=xterm-256color — 108x29

Use “npm install <pkg>" afterwards to install a package and
save it as a dependency in the package.json file.

Press “C at any time to guit.
package name: (web-server)
version: (1.0.8)

description:

entry point: (index.js)

test command:

git repository:

keywords:

author:

license: (ISC)

About to write to /Users/Gary/Desktop/node-web-server/package.json:

{
"name": "web-server",
"version": "1.8.8",
"description": "",
"main": "index.js",
"seripts": {
"test": "echo \"Error: no test specified\" && exit 1"
}J’
"author": "",
"license": "ISC"

Is this ok? (yes) I

Then we'll type yes in the last statement Is this ok? (yes) and the package. json file
goes in place:

Is this ok? (yes) yes
Gary:node-web-server Gary$ I

Express docs website

As mentioned earlier, Express is a really big library. There's an entire website dedicated to
the Express docs. Instead of a simple README . md file, you can go to www.expressjs.com to
view everything the website have to offer:

[407]

Web Servers in Node Chapter 8

B 88 /o caoesen- Node s we sokcs x e
€ C | @ expressjs.com 5

Exnross Home Gettingstarted Guide APIreference Advanced topics Resources

EXpress SR dc

KEYNO ' ® “xpress,
State of the Union

$ npm instoll express --sove

50 Expross 4.16.0 containg Impartant security updates.

For more Information on what was added In this release, see the

Web Applications APls Performance Frameworks
Express is a minimal and flexible With a myriad of HTTP utility Express provides a thin layer of Marny f works arg

We'll find Getting started, help articles, and many more. The website has the Guide option
to help you do things such as Routing, Debugging, Error handling, and an API reference,
so we can look into exactly what methods we have access to and what they do. It's a very
handy website.

Installing Express

Now that we have our node-web-server directory, we'll install Express so we can get
started making our web server. In the Terminal we'll run the c1ear command first to clear
the output. Then we'll run the npm install command. The module name is express and
we'll be using the latest version, @4.16.0. We'll also provide the save flag to update the
dependencies inside of our package. json file as shown here:

npm install express@4.16.0 —-save

L] [] | node-web-server — -bash — 108x29

Gary:node-web-server Gary$ npm install express@4.16.8 --save
npm created a lockfile as package-lock.json. You should commit this file.
npm %Y web-server@1.e.8 No description

m web-server@1.8.8 No repository field.

npm

+ express@4.16.@
added 49 packages in 18.313s
Gary:node-web-server Gary$

[408]

Web Servers in Node Chapter 8

Once again we'll use the clear command to clear the Terminal output.

Now that we have Express installed, we can actually create our web server inside Atom. In
order to run the server, we will need a file. I'll call this file server. js. It will sit right in the
root of our application:

[] @ server.js — ~/Desktop/node-web-server
Project SErver.js ®
v [l node-web-server
> [node_modules
@ package-lock.json

@ package.json

This is where we'll configure the various routes, things like the root of the website, pages
like /about, and so on. It's also where we'll start the server, binding it to a port on our
machine. Now we'll be deploying to a real server. Later we'll talk about how that works. For
now, most of our server examples will happen on our localhost.

Inside server. js, the first thing we'll do is load in Express by making a constant called
express and setting it equal to require ('express'):

const express = require ('express');

Next up, what we'll do is make a new Express app. To do this we'll make a variable called
app and we'll set it equal to the return result from calling express as a function:

const express = require ('express');

var app = express|();

[409]

Web Servers in Node Chapter 8

Now there are no arguments we need to pass into express. We will do a ton of
configuration, but that will happen in a different way.

Creating an app

In order to create an app, all we have to do is call the method. Next to the variable app we
can start setting up all of our HTTP route handlers. For example, if someone visits the root
of the website we're going to want to send something back. Maybe it's some JSON data,
maybe it's an HTML page.

We can register a handler using app . get function. This will let us set up a handler for an
HTTP get request. There are two arguments we have to pass into app . get:

e The first argument is going to be a URL

¢ The second argument is going to be the function to run; the function that tells
Express what to send back to the person who made at the request

In our case we're looking for the root of the app. So we can just use forward slash (/) for the
first argument. In the second argument, we'll use a simple arrow function (=>) as shown
here:

const express = require ('express');
var app = express();

app.get ('/', (req, res) => {
bi

Now the arrow function (=>) will get called with two arguments. These are really important
to how Express works:

e The first argument is request (req) stores a ton of information about the request
coming in. Things like the headers that were used, any body information, or the
method that was made with a request to the path. All of that is stored in request.

¢ The second argument, respond (res), has a bunch of methods available so we can
respond to the HTTP request in whatever way we like. We can customize what
data we send back and we could set our HTTP status codes.

[410]

Web Servers in Node Chapter 8

We'll explore both of these in detail. For now though, we'll use one method, res. send. This
will let us respond to the request, sending some data back. In app . get function, let's call
res.send, passing in a string. In the parenthesis we'll add Hello Express!:

app.get ('/', (req, res) => {
res.send('Hello Express!');

P

This is the response for the HTTP request. So when someone views the website they will see
this string. If they make a request from an application, they will get back Hello Express!
as the body data.

Now at this point we're not quite done. We have one of our routes set up, but the app is
never going to actually start listening. What we need to do is call app.listen. The

app . listen function will bind the application to a port on our machine. In this case for our
local host app, we will use port 3000, a really common port for developing locally. Later in
the chapter, we'll talk about how to customize this depending on whatever server you use
to deploy your app to production. For now though, a number like 3000 works:

app.get ('/', (req, res) => {
res.send('Hello Express!');

)i

app.listen(3000);

With this in place we are now done. We have our very first Express server. We can actually
run things from the Terminal, and view it in the browser. Inside the Terminal, we'll use
nodemon server. js to start up our app:

nodemon server.js

[411]

Web Servers in Node Chapter 8

This will start up the app and you'll see that the app never really finishes as shown here:

@®] node-web-server — node « node jusrflocal/bin/nodemon server.js — 108=x29

Gary:node-web-server Gary$ nodemon server.js
[nodemon] 1.14.18

[nodemon] to tart at any time, enter ‘rs’
[nodemon] watching: *.%

Right now it's hanging. It's waiting for requests to start coming in. The apps that use
app.listen, they will never stop. You'll have to shut them down manually with control +
C, like we've done before. It might crash if you have an error in your code. But it'll never
stop normally, since we have that binding set up here. It will listen to requests until you tell
it to stop.

Now that the server is up, we can move into the browser and open up a new tab visiting the
website, localhost : followed by the port 3000:

® O ® /[localnost:3000 x

= C | ® localhost:3000

Hello Express!

This will load up the root of the website, and we specify the handler for that route. Hello
Express! shows up, which is exactly what we expected. Now there's no thrills. There's no
formatting. We're just sending a string from the server back to the client that made the
request.

[412]

Web Servers in Node Chapter 8

Exploring the developer tools in the browser for the app
request

What we'd like to do next is open up the developer tools, so we can explore exactly what
happened when that request was made. Inside Chrome you can get to the Developer Tools
using Settings| More Tools| Developer Tools:

® 0 ® [localhost:3000 x =]
« & | (@D localhost:3000 -4 s
- New Tab HT
Hello E: 551
e New Window *N
Mew Incognito Window d 1]
Higtery >
Downloads ¥
Bookmarks [3
Zoom - S|
Print... P
Cast..
Find... MF
Save Page As... S Maore Tools *
Clear Browsing Data... ©R®<@& Edit cut | Copy | Paste
Extensions X
Tirsk Manager Settinge
Help -
Developer Tools Al

Or you can use the keyboard shortcut shown along with Developer Tools for the operating
system.

I would highly recommend memorizing that keyboard shortcut because
o you'll use the Developer Tools a ton in your career with Node.

[413]

Web Servers in Node Chapter 8

We'll now open up the Developer Tools, which should look similar to the ones we used

when we ran the Node Inspector debugger. They're a little different, but the idea is the
same:

® 0@ Y iocalhost:3000 * (2]

\ C @ lecalhost:3000 r

Hello Express!
[(] Ewkments Console Sources MNetwork Performance Memory Applicaion Security Audits o1 b3
® O ®m T | Vew I3 % [Groupbykame Prosorve log () Disable cache Offiree Online ¥
Filtor HidedataURLs "] XHA J8 CS8 kng Maedia Fot Doc WS Manifest Cther

10ms 20ms 20m s sams s o sams wam 100 1
Recording network activity...
Perform a request or hit 38 R to record the reload.

We have a bunch of tabs up top, and then we have our tab specific information down
following on the page. In our case, we want to go to the Network tab, and currently we

have nothing. So we'll refresh the page with the tab open, and what we see right here is our
localhost request:

& 4 Elements Consols Sources Motwork Performance Memory Application Security Audits

x
P 8 m T View I5 Ty Group by frame Prosnrve log Dinanin cachns offine Onling v
Fine Hide cntaURLs 7] XHA JS CSS kng Maedin Fomt Doc WS Mandpst Othor
0m e 20m W sam wam T Qm wam 100 m
Narrw Status Tyoe Inittiator S Tiene Waterfall 100.00
|_| lncathast 200 oooumant Othor 268 16ms |l
1 requests | 218 B transfered | Finish: 16 ms | BOMContortLonded: 118 mes | Load: 118 ms

[414]

Web Servers in Node Chapter 8

This is the request that's responsible for showing Hello Express! to the screen. We can
actually click the request to view its details:

[@] Elkments Console Sources Network Perormance Memory Applicaion Security Audits P X
& m T Vew IZ & Group by frama Prosorve o) Disabin cachs Ofing Onling v
1 Hidedata URLs [} XHA J& C28 Ing Media Font Doc WS Manifest Other
1oms 20ms 20ms ‘s sams “ms Toms m wams 10 1
Name * | Hoaders Proview Resporse Timing
locahast ¥ Genaral

Request URL: http://Lecalnost: 3000/
Request Method: GET

Status Code: @ 200 0K

Remaote Address: [::11:3000

Retorror Polley: no-referrer-wnen-gowngrade

¥ Response Headers
Connection: kesp-alive
Content-Length: 12
Content-Type: text/htal; charsetsutf-8
Date: Sun, 21 Jam 2018 15:903:13 GHMT
ETage W/"e=KUTr2AIKtgc qelVnd/ETWiNEZE"
X-Powered-By: Express

v Request Headers W =
Accept: text/htel, applicat ion/uhteloxnl, application/sml;ged. 9, irage/webp, inage/apng, »/=;qed. 8
Accept-Encoding: gzip, deflate, br
Acoept-Language: en-GB, en-Us;q=0.9, en;g=2.8
1 recuests | 218 B transfamed | Finish: 16 ms ... Cacho-Controk no—cache

ViU SOURTE

This page can be a little overwhelming at first. There is a a lot of information. Up on top we
have some general info, such as the URL that was requested, the method that the client
wanted; in this case, we made a GET request, and the status code that came back. The
default status code being 200, meaning that everything went great. We'd like to point the
attention to is one response header.

Under Response Headers we have a header called Content-Type. This header tells the
client what type of data came back. Now this could be something like an HTML website,
some text, or some JSON data and the client could be a web browser, an iPhone, an Android
device, or any other computer with network capabilities. In our case, we're telling the
browser that what came back is some HTML, so why don't you render it as such. We use
the text/html Content-Type. And this automatically got set by Express, which is one of the
reasons it's so popular. It handles a lot of that mundane stuff for us.

Passing HTML to res.send

Now that we have a very basic example, we want to step things up a notch. Inside Atom,
we can actually provide some HTML right inside of send by wrapping our Hello

Express! message in an h1 tag. Later in this section, we'll be setting up a static website that
has HTML files that get served up. We'll also look at templating to create dynamic web
pages. But for now, we can actually just pass in some HTML to res. send:

app.get ('/', (req, res) => {

[415]

Web Servers in Node Chapter 8

res.send('<hl1>Hello Express!</hil>");
)i

app.listen(3000);

We'll save the server file, which should restart things in the browser. When we give the
browser a refresh, we get Hello Express! printing to the screen:

® ® /M localhost x

< C | @ localhost:3000

Hello Express!

This time though, we have it in an h1 tag, which means it's formatted by the default
browser styles. In this case it looks nice and big. With this in place we can now open up the
request inside the Network tab, and what we get is the exact same thing we had before.
We're still telling the browser that it's HTML. Only one difference this time: we actually
have an HTML tag, so it gets rendered using the browser's default styles.

Sending JSON data back

The next thing we'd look into is how we can send some JSON data back. Sending JSON is
really easy with Express. To illustrate how we can do it we'll comment out our current call
to res.send and add a new one. We'll call res. send passing in an object:

app.get ('/', (req, res) => {
// res.send('<hl>Hello Express!</hi>");
res.send ({

})
)i

[416]

Web Servers in Node Chapter 8

On this object we can provide whatever we like. We can create a name property, setting it
equal to the string version of any name, say Andrew. We can make a property called 1ikes,
setting it equal to an array, and we can specify some things we may like. Let's add Biking
as one of them, and then add cities as another:

res.send ({
name: 'Andrew',
likes: [
'Biking"',
'Cities’
]
)i

When we call res. send passing in an object, Express notices that. Express takes it, converts
it into JSON, and sends it back to the browser. When we save server. js and nodemon

refreshes, we can refresh the browser, and what we get is my data formatted using JSON
view:

® ® ' [localhost X

< C | @ localhost:3000

{

name: "Andrew",
- likes: [
"Biking",
"Cities"

[417]

Web Servers in Node

Chapter 8

This means we can collapse the properties and quickly navigate the JSON data.

= C | @ localhost:3000

® ® /' [localhost x

Now the only reason JSON view picked up on this is because that Content-Type header
that we explored in our last request it actually changed. If I open up localhost, a lot of
things look the same. But now Content-Type has an application/json Content-Type:

= al Elpments Console Sources Network Performance Moemory Application Security Awdits

P 8 m T vew I5 Ty Group by frame Prosnrve log Dinanin cachns offine Onling v
Filtor Hidedata URLs [} XHA J& C88 Ing Media Font Doc WS Manifest Other
20ms s sams sams 10ams 12me 140 ms 18me 18ms
Name ¥ Headers Proview Resporse Timing
locathast ¥ Ganeral
| jsonview-core.cas Request URL: htte://lecalhost: 3000/
® options.pag Regquest Method: GET

Status Code: @ 208 0K
Remote Address: [::1]:3000
Reterrer Policy: no-referrer-when-downgrade
¥ Reaponse Headsrs view source
Connection: keep-alive
Content-Length: 45
Content-Type: Applicatisn/jsan: charsetsutf-g
Date: Sun, 21 Jan 2018 15:17:26 GHT
ETage W/ 2a-ZtMY 1 ZCvP InTP+UnAS j OFTIDOLA"
A requests | 257 B transformed | Finish: 302 ms... X-Powered-By: Express

220ms

2oms

260 ms

LN

EEL

This Content-Type tells the requester whether it's an Android phone, an iOS device, or the
browser that JSON data is coming back, and it should parse it as such. That's exactly what

the browser does in this case.

[418]

Web Servers in Node Chapter 8

Express also makes it really easy to set up other routes aside from the root route. We can
explore that inside Atom by calling app . get a second time. We'll call app . get. We'll create
a second route. We'll call this one about:

app.get ('/about")
app.listen(3000);

Notice that we just used /about as the route. It's important to keep that forward slash in
place, but after that you can type whatever you like. In this case we'll have a /about page
that someone can visit. Then I'll provide the handler. The handler will take the req and the
res object:

app.get ('/about', (req, res) => {

)i
app.listen(3000);

This will let us figure out what kind of request came in, and it will let us respond to that
request. For now just to illustrate we can create more pages, we'll keep the response simple,
res.send. Inside the string we're going to print About Page:

app.get ('/about', (req, res) => {
res.send('About Page');

)i

Now when we save the server. js file, the server is going to restart. In the browser we can
visit localhost :3000/about. At /about we should now see our new data, and that's
exactly what we get back, About Page shows up as shown here:

[419]

Web Servers in Node Chapter 8

@ © ® /[localhost:3000fabout x
- C | @ localhost:3000/about
About Page

Using app . get we're able to specify as many routes as we like. For now we just have an
about route and a / route, which is also referred to as the root route. The root route returns
some data, which happens to be JSON, and the about route returns a little bit of HTML.
Now that we have this in place and we have a very basic understanding about how we can
set up routes in Express, we'd like you to create a new route /bad. This is going to simulate
what happens when a request fails.

Error handling in the JSON request

To show the error handling request with JSON, we're going to call app . get. This app. get
is going to let us register another handler for a get HTTP request. In our case the route we're
looking for inside of quotes is going to be /bad. When someone makes a request for this
page, what we want to do is going to be specified in the callback. The callback will take our
two arguments, req and res. We'll use an arrow function (=>), which I've used for all of the
handlers so far:

app.get ('/bad', (req, res) => {
)i

app.listen(3000);

[420]

Web Servers in Node Chapter 8

Inside the arrow function (=>), we'll send back some JSON by calling res. send. But instead
of passing in a string, or some string HTML, we'll pass in an object:

app.get ('/bad', (req, res) => {
res.send ({

)i
)i

Now that we have our object in place we can specify the properties we want to send back.
In this case we'll set one errorMessage. We'll set my error message property equal to a
string, Unable to handle request:

app.get ('/bad', (req, res) => {
res.send ({
errorMessage: 'Unable to handle request'

)i
)i

Next up we'll save the file, restarting it in nodemon, and visit it in the browser. Make sure
our error message showed up correctly. In the browser, we'll visit /bad, hit enter, and this is
what we get:

® © ® /M Iocalhost:3000/bad x

< C | @ localhost:3000/bad

{

errorMessage: "Unable to handle request”

}

[421]

Web Servers in Node Chapter 8

We get our JSON showing up using JSON view. We have our error message, and we have
the message showing up: Unable to handle request. Now if you are using JSON view and
you want to view the raw JSON data, you can actually click on View source, and it will
show it in a new tab. Here, we're looking at the raw JSON data, where everything is
wrapped in those double quotes:

® © ® /[localhost:3000/bad ¥ / [view-source:localhost:3000/b %

C | (O view-source:localhost:3000/bad

i {"errorMessage":"Unable to handle request"}

I'll stick to the JSON view data because it's a lot easier to navigate and view. We now have a
very basic Express application up and running. It listens on port 3000 and it currently has
handlers for 3 URLs: when we get the root of the page, when we get /about, and when we
make a get request for /bad.

The static server

In this section, we'll learn how to set up a static directory. So if we have a website with
HTML, CSS, JavaScript, and images, we can serve that up without needing to provide a
custom route for every single file, which would be a real burden. Now setting this up is
really simple. But before we make any updates to server. js, we'd create some static assets
inside of our project that we can actually serve up.

[422]

Web Servers in Node Chapter 8

Making an HTML page

In this case we'll make one HTML page that we'll be able to view in the browser. Before we
get started, we do need to create a new directory, and everything inside this directory will
be accessible via the web server, so it's important to not put anything in here that you don't
want prying eyes to see.

Everything in the directory should be intended to be view able by anybody. We'll create a
public folder to store all of our static assets, and inside here we'll make an HTML page.
We'll create a help page for our example project by creating a file called help.html:

[] []) Project — ~/Desktop/node-web-server
Project 4+ Enter the path for the new file.
=~ M ods-web-server public/help.html
> I node_modules
(IKEST 1
'‘Biking',
Bl package-lock json "Cities'
@ package json i 1
El sorver.je }) i
3);
app.get('/about', (req, res) == {

Now in help.html we will make a quick basic HTML file, although we'll not touch on all
of the subtleties of HTML, since this is not really an HTML book. Instead, we'll just set up a
basic page.

The first thing we need to do is create a DOCTYPE which lets the browser know what version
of HTML we're using. That will look something like this:

<!DOCTYPE html>

After the opening tag, and the exclamation mark, we'd type DOCTYPE in uppercase. Then,
we provide the actual DocTYPE for HTMLS5, the latest version. Then we can use the greater
than sign to close things up. In the next line, we'll open up our html tag so we can define
our entire HTML file:

<!DOCTYPE html>
<html>
</html>

Inside html, there are two tags we'll use: the head tag which lets us configure our doc, and
the body tag which contains everything we want to render to the screen.

[423]

Web Servers in Node Chapter 8

The head tag

We'll create the head tag first:

<!DOCTYPE html>
<html>
<head>
</head>
</html>

Inside head, we'll provide two pieces of info, charset and title tag:

e First up we have to set up the charset which lets the browser know how to
render our characters.

e Next up we'll provide the title tag. The title tag lets the browser know what
to render in that title bar, where the new tab usually is.

As shown in the following code snippet, we'll set meta. And on meta, we'll set the charset
property using equals, and provide the value ut £-8:

<head>

<meta charset="utf-8">
</head>

For the title tag, we can set it to whatever we like; Help Page seems appropriate:

<head>
<meta charset="utf-8">
<title>Help Page</title>
</head>

The body tag

Now that our head is configured, we can add something to the body of our website. This is
the stuff that's actually going to be viewable inside the viewport. Next to the head, we'll
open and close the body tag:

<body>
</body>

Inside body again, we'll provide two things: an h1 title and a p paragraph tag.

[424]

Web Servers in Node Chapter 8

The title is going to match the title tag we used in the head, Help Page, and the
paragraph will just have some filler text—Some text here:

<!DOCTYPE html>
<html>
<head>
<meta charset="utf-8">
<title>Help Page</title>
</head>
<body>
<h1>Help Page</h1>
<p>Some text here</p>
</body>
</html>

Now we have an HTML page and the goal is to be able to serve this page up in our Express
app without having to manually configure it.

Serving the HTML page in the Express app

We'll serve our HTML page in the Express app using a piece of Express middleware.
Middleware lets us configure how our Express application works, and it's something we'll
use extensively throughout the book. For now, we can think of it kind of like a third-party
add-on.

In order to add some middleware, we'll call app.use. The app.use takes the middleware
function we want to use. In our case, we'll use a built-in piece of middleware. So inside
server. js, next to the variable app statement, we'll provide the function off of the
express object:

const express = require ('express');
var app = express();
app.use();

We will be making our own middleware in the next chapter, so it'll become clear exactly
what's getting passed into use in a little bit. For now, we'll pass in express.static and to
call it as a function:

var app = express();

app.use (express.static());

[425]

Web Servers in Node Chapter 8

Now express.static takes the absolute path to the folder you want to serve up. If we
want to be able to serve up /help, we'll need to provide the path to the public folder. This
means we need to specify the path from the root of our hard drive, which can be tricky
because your projects move around. Luckily we have the __dirname variable:

app.use (express.static (__dirname));

This is the variable that gets passed into our file by the wrapper function we explored. The
__dirname variable stores the path to your projects directory. In this case, it stores the path
to node-web-server. All we have to do is concatenate /public to tell it to use this
directory for our server. We'll concatenate using the plus sign and the string, /public:

app.use (express.static(__dirname + '/public'));

With this in place, we are now done. We have our server set up and there's nothing else to
do. Now we should be able to restart our server and access /help.html. We should now
see the HTML page we have. In the Terminal we can now start the app using nodemon
server.js:

ACAndrew:~/Desktop/node-web-server$ nodemon server.js

[node

Once the app is up and running we can visit it in the browser. We'll start by going to
localhost:3000:

® O ® /[localhost:3000 x \T

= C | @ localhost:3000

{
name: "Andrew",
- likes: [
"Biking",
"Cities"

[426]

Web Servers in Node Chapter 8

Here we get our JSON data, which is exactly what we expect. And if we change that URL to
/help.html we should get our Help Page rendering:

L ® [Help Page X

“— C | @ localhost:3000/help.htmi

Help Page

Some text here

And that is exactly what we get, we have our Help Page showing to the screen. We have the
Help Page title as the head, and the Some text here paragraph following as body. Being
able to set up a static directory that easily has made Node the go-to choice for simple
projects that don't really require a backend. If you want to create a Node app for the sole
purpose of serving up a directory you can do it in about four lines of code: the first three
lines and the last line in the server. js file.

The call to app.listen

Now one more thing we'd discuss is the call to app.listen (3000).The app.listen does
take a second argument. It's optional. It's a function. This will let us do something once the
server is up because it can take a little bit of time to get started. In our case we'll

assigl’l console.logamessage: Server is up on port 3000:

app.listen (3000, () => {
console.log('Server is up on port 3000"');
P i

Now it's really clear to the person who started the app that the server is actually ready to go
because the message will print to the screen. If we save server. js, and go back into the
Terminal we can see Server is up on port 3000 prints:

Server is up on port 30686

[427]

Web Servers in Node Chapter 8

Back inside the browser we can refresh and we get the exact same results:

® © ® /[y Help Page bt

“— C | @ localhost:3000/help.html

Help Page

Some text here

That's it for this section. We now have a static directory where we can include JavaScript,
CSS, images, or any other file types we like.

Rendering templates

In the last couple sections, we looked at multiple ways that we can render HTML using
Express. We passed some HTML into response. send, but obviously that was not ideal. It's
a real pain to write the markup in a string. We also created a public directory where we can
have our static HTML files, such as our help file, and we can serve these up to the browser.
Both of those work great but there is a third solution, and that will be the topic in this
section. The solution is a templating engine.

A templating engine will let you render HTML but do it in a dynamic way, where we can
inject values, such as a username or the current date, inside the template, kind of like we
would in Ruby or PHP. Using this templating engine, we'll also be able to create reusable
markup for things such as a header or a footer, which is going to be the same on a lot of
your pages. This templating engine, handlebars, will be the topic of this section and the
next, so let's get started.

[428]

Web Servers in Node Chapter 8

Installing the hbs module

The first thing we'll do is install the hbs module. This is a handlebars view engine for
Express. Now there are a ton of other view engines for Express, for example EJS or Pug.
We'll go with handlebars because its syntax is great. It's a great way to get started.

Now we'll see a few things inside of the browser. First up we will visit handlebarsjs.com.
This is the documentation for handlebars. It shows you exactly how to use all of its features,
so if we want to use anything, we can always go here to learn how to use it.

Now we'll install a module that's a wrapper around handlebars. It will let us use it as an
Express view engine. To view this, we'll go to npmijs.com/package/hbs.

This is the URL structure for all packages. So if you ever want to find a
packages page, you simply type npmjs.com/package/ the package
name.

This module is pretty popular. It's a really great view engine. They have a lot of
documentation. I just want to let you know this exists as well. Now we can install and
integrate it into our application. In the Terminal, we'll install hbs using npm install, the
module name is hbs, and the most recent version is @4. 0. 1. I will use the save flag to
update package. json:

L ® | node-web-server — -bash — 108x29

Gary:node-web-server Gary$ npm install hbs@4.8.1 --save
web-server@1.8.8 No description
| web-server@1.8.8 No repository field.

+ hbs@4.8.1

added 27 packages in 11.128s
Gary:node-web-server Gary$ i

Now actually configuring Express to use this handlebars view engine is super simple. All
we have to do is import it and add one statement to our Express configuration. We'll do just
that inside Atom.

[429]

Web Servers in Node Chapter 8

Configuring handlebars

Inside Atom, let's get started by loading in handlebars const hbs = require hbs, as
shown and from here we can add that one line:

const express = require ('express');
const hbs = require('hbs');

Next, let's call app . set where we call app . use for Express static:

app.set
app.use (express.static(__dirname + '/public'));

This lets us set some various Express-related configurations. There's a lot of built-in ones.
We'll be talking about more of them later. For now, about what we'll do is pass in a key-
value pair, where the key is the thing you want to set and the value is the value you want to
use. In this case, the key we're setting is view engine. This will tell Express what view
engine we'd like to use and we'll pass in inside of quotes hbs:

app.set ('view engine', 'hbs');
app.use (express.static(__dirname + '/public'));

This is all we need to do to get started.

Our first template

Now in order to create our very first template, what we'd like to do is make a directory in
the project called views. The views is the default directory that Express uses for your
templates. So what we'll do is add the views directory and then we'll add a template inside
it. We'll make a template for our About Page.

Inside views, we'll add a new file and the file name will be about . hbs. The hbs handlebars
extension is important. Make sure to include it.

Now Atom already knows how to parse hbs files. At the bottom of the about . hbs file,
where it shows the current language it's using, HTML in parentheses mustache.

Mustache is used as the name for this type of handlebars syntax because
when you type the curly braces ({) I guess they kind of look like
mustaches.

[430]

Web Servers in Node Chapter 8

What we'll do to get started though is take the contents of help.html and copy it directly.
Let's copy this file so we don't have to rewrite that boilerplate, and we'll paste it right in the
about .hbs:

<!DOCTYPE html>
<html>
<head>
<meta charset="utf-8">
<title>Help Page</title>
</head>
<body>
<hl>Help Page</hl>
<p>Some text here</p>
</body>
</html>

Now we can try to render this page. We'll change the h1 tag from help page to about page:

<body>
<hl>About Page</hl>
<p>Some text here</p>
</body>

We'll talk about how to dynamically render stuff inside this page later. Before that we'd like
to just get this rendering.

Getting the static page for rendering

Inside server. js, we already have a root for /about, which means we can render our hbs
template instead of sending back this about page string. We will remove our call to
res.send and we'll replace it with res.render:

app.get ('/about', (req, res) => {
res.render

)i

Render will let us render any of the templates we have set up with our current view engine
about . hbs file. We do indeed have the about template and we can pass that name,
about .hbs, in as the first and only argument. We'll render about . hbs:

app.get ('/about', (req, res) => {
res.render ('about.hbs');
)i

[431]

Web Servers in Node Chapter 8

This will be enough to get that static page rendering. We'll save server. js and in the
Terminal, we'll clear the output and we'll run our server using nodemon server. js:

® [] node-web-server — node « node fusrflocal/bin/nodemon server.js — 108x29

Gary:node-web-server Gary$ nodemon server.js
[nodemon] 1]

[nodemon] start at any time, enter “rs’
[nodemon] watching: #.#%

Server is up on port 3800

Once the server is up and running, it is showing on port 3000. We can open up this /about
URL and see what we get. We'll head into Chrome and open up localhost:3000 /about,
and when we do that, we get the following;:

® © ® /[HelpPage X

= C | @ localhost:3000/about

About Page

Some text here

We get my about page rendered just like we'd expect it. We've got an h1 tag, which shows
up nice and big, and we have our paragraph tag, which shows up the following. So far we
have used hbs but we haven't actually used any of its features. Right now, we're rendering a
dynamic page, so we might as well have not even included it. What I want to do is talk
about how we can inject data inside of our templates.

[432]

Web Servers in Node Chapter 8

Injecting data inside of templates

Let's come up with some things that we want to make dynamic inside our handlebars file.
First up, we'll make this h1 tag dynamic so the page name gets passed into the template in
about . hbs page, and we'll also add a footer. For now, we'll just make that a simple footer
tag:

<footer>

</footer>

</body>
</html>

Inside of the footer, we'll add a paragraph and that paragraph will have the copyright for
our website. We'll just say something like copyright followed by the year, which is 2018:

<footer>
<p>Copyright 2018</p>
</footer>

Now year should also be dynamic, so that as the years change, we don't have to manually
update our markup. We'll look at how to make both the 2018 and the about page dynamic,
which means they're getting passed in instead of being typed in the handlebars file.

In order to do this, we'll have to do two things:

e We'll have to pass some data into the template. This will be an object a set of key
value pairs, and

e We'll have to learn how to pull off some of those key-value pairs inside of our
handlebars file

Passing in data is pretty simple. All we have to do is specify a second argument to
res.render in server. js. This will take an object, and on this object we can specify
whatever we like. We might have a pageTitle that gets set equal to About Page:

app.get ('/about', (req, res) => {
res.render ('about.hbs', {
pageTitle: 'About Page'
P) i
P) i

[433]

Web Servers in Node Chapter 8

We have one piece of data getting injected in the template. It's not used yet but it is indeed
getting injected. We could also add another one like currentvyear. We'll put currentYear
next to the pageTitle and we'll set currentYear equal to the actual year off of the date
JavaScript constructor. This will look something like this:

app.get ('/about', (req, res) => {
res.render ('about.hbs', {
pageTitle: 'About Page',
currentYear: new Date() .getFullYear ()
}) i
}) i

We'll create a new date which makes a new instance of the date object. Then, we'll use a
method called getFullYear, which returns the year. In this case, it would return 2018, just
like this .getFullYear. Now we have a pageTitle and a currentYear. These are both
getting passed in, and we can use them.

In order to use these pieces of data, what we have to do inside of our template is use that
handlebars syntax which looks a little bit like shown in the following code. We start by
opening up two curly braces in the h1 tag, then we close two curly braces. Inside the curly
braces, we can reference any of the props we passed in. In this case, let's use pageTitle,
and inside our copyright paragraph, we'll use, inside of double curly braces, currentYear:

<body>
<hl>{{pageTitle}}</h1>
<p>Some text here</p>

<footer>
<p>Copyright 2018</p>
</footer>
</body>
</html>

[434]

Web Servers in Node Chapter 8

With this in place, we now have two pieces of dynamic data getting injected inside our
application. Now nodemon should have restarted in the background, so there's no need to
manually do anything there. When we refresh the page, we do still get About Page, which

is great:

® © ® /[y AboutPage X

- C | ® localhost:3000/about

About Page

Some text here

Copyright 2018

This comes from the data we defined in server. js, and we get Copyright 2018 showing
up. Well this web page is pretty simple and doesn't look that interesting. At least you know
how to create those servers and inject that data inside your web page. All you have to do
from here is add some custom styles to get things looking nice.

Before we go ahead, let's move into the about file and swap out the title. Currently, it says
Help Page. That's left over from the public folder. Let's change it to Some Website:

<!DOCTYPE html>
<html>
<head>
<meta charset="utf-8">
<title>Some Website</title>
</head>
<body>
<hl>{{pageTitle}}</h1>
<p>Some text here</p>

<footer>
<p>Copyright 2018</p>
</footer>
</body>
</html>

[435]

Web Servers in Node Chapter 8

Now that we have this in place. Next, we'll create a brand new template and that template
is going to get rendered when someone visits the root of our website, the / route. Now
currently, we render some JSON data:

app.get ('/', (req, res) => {
// res.send('<hl>Hello Express!</hl>");
res.send ({
name: 'Andrew',
likes: [
'Biking"',
'Cities'
]
}) i

What we want to do is replace this with a call to response. render, rendering a brand new
view.

Rendering the template for the root of the website

To get started, we'll duplicate the about . hbs file so we can start customizing it for our
needs. We'll duplicate it, and call this one home . hbs:

<!DOCTYPE html>
<html>
<head>
<meta charset="utf-8">
<title>Some Website</title>
</head>
<body>
<h1>{{pageTitle}}</hl>
<p>Some text here</p>

<footer>
<p>Copyright 2018</p>
</footer>
</body>
</html>

[436]

Web Servers in Node Chapter 8

Now from here most things are going to stay the same. We'll keep the pageTitle in place.
We'll also keep the Copyright and footer following. What we want to change though is
this paragraph. It was fine that the About Page as a static one, but for the home page, we'll
set it equal to, inside curly braces, the welcomeMessage property:

<body>
<h1>{{pageTitle}}</hl>
<p>{{welcomeMessage} }</p>

<footer>
<p>Copyright {{currentYear}}</p>
</footer>
</body>

Now welcomeMessage is only going to be available on home . hbs, which is why we have
specifying it in home . hbs but not in about . hbs.

Next up, we needed to call response render inside of the callback. This will let us actually
render the page. We'll add response. render, passing in the template name we want to
render. This one is called home . hbs. Then we'll pass in our data:

app.get ('/', (req, res) => {
res.render ('home.hbs', {

})
)i

Now to get started, we can pass in the page title. We'll set this equal to Home Page and
we'll pass in some sort of generic welcome message - Welcome to my website.Then we'll
pass in the currentYear, and we already know how to fetch the currentYear: new

Date (), and on the date object, we'll call the getFullYear method:

res.render ('home.hbs', {
pageTitle: 'Home Page',
welcomeMessage: 'Welcome to my website',
currentYear: new Date () .getFullYear ()

1)

With this in place, all we needed to do is save the file, which is automatically going to
restart the server using nodemon and refresh the browser. When we do that, we get the
following;:

[437]

Web Servers in Node Chapter 8

® ® ' 3 some website X

< | @ localhost:3000

Home Page

Welcome to my website

Copyright 2018

We get our Home Page title, our Welcome to my website message, and my copyright with
the year 2018. And if we go to /about, everything still looks great. We have our dynamic

page title and copyright and we have our static some text here text:

® © ® / [some Website X

— ! | O localhost:3000/about

About Page

Some text here

Copyright 2018

With this in place, we are now done with the very basics of handlebars. We see how this can
be useful inside of a real-world web app. Aside from a realistic example such as the
copyright, other reasons you might use this is to inject some sort of dynamic user data -
things such as a username and email or anything else.

[438]

Web Servers in Node Chapter 8

Now that we have a basic understanding about how to use handlebars to create static
pages, we'll look at some more advanced features of hbs inside the next section.

Advanced templates

In this section, we'll learn a few more advanced features that handlebars has to offer. This
will make it easier to render our markup, especially markup that's used in multiple places,
and it will make it easier to inject dynamic data into your web pages.

In order to illustrate the first thing we'll talk about, I want to open up both about .hbs and
home . hbs, and you'll notice down at the bottom that they both have the exact same footer
code as follows:

<footer>
<p>Copyright {{currentYear}}</p>
</footer>

We have a little copyright message for both and they both have the same header area,
which is the h1 tag.

Now this really isn't a problem because we have two pages, but as you add more and more
pages it's going to become a real pain to update your header and your footer. You'll have to
go into every file and manage the code there, but what we'll talk about instead is something
called a partial.

Adding partials

A partial is a partial piece of your website. It's something you can reuse throughout your
templates. For example, we might have a footer partial that renders the footer code. You can
include that partial on any page you need a footer. You could do the same thing for header.
In order to get started, the first thing we need to do is set up our server. js file just a little
bit to let handlebars know that we want to add support for partials.

In order to do this, we'll add one line of code in the server. js file where we declared our
view engine previously, and it will look something like this (hbs.registerPartials):

hbs.registerPartials
app.set ('view engine', 'hbs');
app.use (express.static(__dirname + '/public'));

[439]

Web Servers in Node Chapter 8

Now registerPartials is going to take the directory you want to use for all of your
handlebar partial files, and we'll be specifying that directory as the first and only argument.
Once again, this does need to be the absolute directory, so I'll use the __dirname variable:

hbs.registerPartials (__dirname)

Then we can concatenate the rest of the path, which will be /views. In this case, I want you
touse /partials.

hbs.registerPartials(__dirname + '/views/partials')

We'll store our partial files right inside a directory in the views folder. Now we can
create that folder right in views called partials.

Inside partials, we can put any of the handlebars partials we like. To illustrate how they
work, we'll create a file called footer.hbs:

@ [] | Project — ~/Desktop/node-web-server
Project 4+ Enter the path for the new file. X help.him b
~ [node-web-server views/partials/footer.hbs

» Il node_modules
var app = expressl);

v I publi z : z : ,
aad hbs. registerPartials{_ dirname + '/views/partials');
Bl help.ntm! 5 app.set('view engine', 'hbs');
~ M views 6 app.uselexpress.static(__dirname + '/public'));
Bl abouthbs i app.get('s', (req, res) => {
& o tia res.render('home.hbs', {
- < pageTitle: 'Home Page',
i i welcomeMessage: 'Welcome to my website',
B packagejeon currentYear: new Date().getFullYear()

B SErver.js 13 H H
1 B

Inside footer.hbs, we'll have access to the same handlebars features, which means we can
write some markup, we can inject variables, we can do whatever we like. For now, what
we'll do is copy the footer tag exactly, pasting it inside footer . hbs:

<footer>
<p>Copyright {{getCurrentYear}}</p>
</footer>

[440]

Web Servers in Node Chapter 8

Now we have our footer.hbs file, this is the partial and we can include it in both

about . hbs and home . hbs. In order to do that, we'll delete the code that we already have in
the partial and we'll replace it with opening and closing two curly braces. Now instead of
injecting data, we want to inject a template and the syntax for that is to add a greater than
symbol with a space, followed by the partial name. In our case that partial is called footer,
so we can add this right here:

{{> footer}}
</body>
</html>

Then I can save about and do the same thing over in home . hbs. We now have our footer
partial. It's rendering on both pages.

Working of partial

To illustrate how this works, I'll fire up my server and by default nodemon; it's not going to
watch your handlebars files. So if you make a change, the website's not going to render as
you might expect. We can fix this by running nodemon, passing in server. js and
providing the —e flag. This lets us specify all of the extensions we want to watch. In our
case, we'll watch the JS extension for the server file, and after the comma, the hds extension:

® [] node-web-server — node « node /usrflocal/bin/nodemon server.js -e js,hbs — 108x29

Gary:node-web-server Gary$ nodemon server.js —e js,hbs
[nodemon] 1 10

[nodemon] art at any time, enter ‘rs’

[nodemon] watching: *.*

Server is up on port 3608

Now our app is up and running, we can refresh things over in the browser, and they should
look the same. We have our about page with our footer:

[441]

Web Servers in Node Chapter 8

® ® ' [} some Website x

“ C | @ localhost:3000/about

About Page

Some text here

Copyright 2018

We have our home page with the exact same footer:

® ® /[some website x W

< C | @ localhost:3000

Home Page

Welcome to my website

Copyright 2018

The advantage now is if we want to change that footer, we just do it in one place, in the
footer.hbs file.

We can add something to our footer paragraph tag. Let's add a little message created by
Andrew Mead witha -:

<footer>
<p>Created By Andrew Mead - Copyright {{CurrentYear}}</p>

</footer>

[442]

Web Servers in Node Chapter 8

Now, save the file and when we refresh the browser, we have our brand new footer for
Home Page:

@ ® /[some website X

= C | @ localhost:3000

Home Page

Welcome to my website

Created By Andrew Mead - Copyright 2018

We have our brand new footer for About Page:

® ® /' [4 some website b4

- C | ® localhost:3000/about

About Page

Some text here

Created By Andrew Mead - Copyright 2018

It will show up for both the home page and the about page. There's no need to do you
anything manual in either of these pages, and this is the real power of partials. You have
some code, you want to reuse it inside your website, so you simply create a partial and you
inject it wherever you like.

[443]

Web Servers in Node Chapter 8

The Header partial

Now that we have the footer partial in place, let's create the header partial. That means we'll
need to create a brand new file header.hbs. We'll want to add the h1 tag inside that file
and then we'll render the partial in both about . hbs and home . hbs. Both pages should still
look the same.

We'll get started by creating a new file in the partials folder called header.hbs.
Inside header . hbs, we'll take the h1 tag from our website, paste it right inside and save it:
<hl1>{{pageTitle}}</h1>

Now we can use this header partial in both about and home files. Inside of about, we need
to do this using the syntax, the double curly braces with the greater than sign, followed by
the partial name header. We'll do the exact same thing for the home page. In the home page,
we'll delete our h1 tag, inject the header and save the file:

about hbs foot home.hbs
<!DOCTYPE html> <!DOCTYPE html>
<html> <html>
<head> <head>
<meta charset="utf-8"=> <meta charset="utf-8">
<title>Some Website</title> <title>Some Website</title>
</head> </head>
<body> <body>
8 {{> headerﬁ} 8 {{= headerﬂ}
<p=Some text here</p> <p>{{welcomeMessage}}</p>
{{> footer}} {{> footer}}
</fbody> </body>
</html> </html>

Now we'd create something slightly different just so we can test that it actually is using the
partial. We'll type 123 right after the h1 tag in header . hbs:

<hl>{{pageTitle}}</h1>123

[444]

Web Servers in Node Chapter 8

Now that all the files are saved, we should be able to refresh the browser, and we see about
page with 123 printing, which is fantastic:

@ ® /[some Website x

“ C | ® localhost:3000/about

About Page

123
Some text here

Created By Andrew Mead - Copyright 2018

This means the header partial is indeed working, and if I go back to the home page,
everything still looks great:

@ 0 ® /[y some website x

< C | @ localhost:3000

Home Page

123
Welcome to my website

Created By Andrew Mead - Copyright 2018

[445]

Web Servers in Node Chapter 8

Now that we have the header broken out into its own file, we can do all sorts of things. We
can take our h1 tag and put it inside of a header tag, which is the appropriate way to
declare your header inside of HTML. As shown, we add an opening and closing header
tag. We can take the h1 and we can move it right inside:

<header>
<hl>{{pageTitle}}</h1>
</header>

We could also add some links to the other pages on our website. We could add an anchor
tag for the homepage by adding an a tag:

<header>
<hl>{{pageTitle}}</hl>
<p><a></p>
</header>

Inside the a tag, we'll specify the link text we'd like to show up. I'll go with Home, then
inside the href attribute, we can specify the path the link should take you to, which would
just be /:

<header>
<hl>{{pageTitle}}</hl1>
<p>Home</p>
</header>

Then we can take the same paragraph tag, copy it and paste it in the next line and make a
link for the about page. I'll change the page text to About, the link text, and the URL
instead of going to / will go to /about:

<header>

<hl>{{pageTitle}}</h1>

<p>Home</p>

<p>About</p>
</header>

[446]

Web Servers in Node Chapter 8

Now we've made a change to our header file and it will be available on all of the pages of
our website. I'm on the home page. If I refresh it, I get Home and About page links:

@® © ® /[y some website x

€ Re'?“ﬂ‘f@localhost;:iooo

Home Page

Home
About
Welcome to my website

Created By Andrew Mead - Copyright 2018

I can click on the About to go to the About Page:

® @® /' [sSome Website X

- C | @ localhost:3000/about

About Page

Home
About
Some text here

Created By Andrew Mead - Copyright 2018

Similarly, I can click on Home to come right back. All of this is much easier to manage now
that we have partials inside of our website.

[447]

Web Servers in Node Chapter 8

The Handlebars helper

Now before we go further, there is one more thing I want to talk about, that is, a handlebars
helper. Handlebars helpers are going to be ways for us to register functions to run to
dynamically create some output. For example, inside server. js, we currently inject the
current year inside of both of our app . get templates and that's not really necessary.

There is a better way to pass this data in, and this data shouldn't need to be provided
because we'll always use the exact same function. We'll always take the new date
getfullYear return value passing it in. Instead, we'll use a partial, and we'll set ours up
right now. Now a partial is nothing more than a function you can run from inside of your
handlebars templates.

All we need to do is register it and I'll do that in the server. js, following on from where
we set up our Express middleware. As shown in the following code, we'll call
hbs.register and we'll be registering a helper, so we'll call a registerHelper:

hbs.registerPartials(__dirname + '/views/partials')
app.set ('view engine', 'hbs');
app.use (express.static(__dirname + '/public'));

hbs.registerHelper();
Now registerHelper takes two arguments:

¢ The name of the helper as the first argument
¢ The function to run as the second argument.

The first argument right here will be getCurrentYear in our case. We'll create a helper
that returns that current year:

hbs.registerHelper ('getCurrentYear',);

The second argument will be our function. I'll use an arrow function (=>):
hbs.registerHelper ('getCurrentYear', () => {
1)

Anything we return from this function will get rendered in place of the getCurrentYear
call. That means if we call getCurrentYear inside the footer, it will return the year from
the function, and that data is what will get rendered.

[448]

Web Servers in Node Chapter 8

In the server. js, we can return the year by using return and having the exact same code
we have app . get object:

hbs.registerHelper ('getCurrentYear'), () => {
return new Date () .getFullYear ()

)i

We'll make a new date and we'll call its getFullYear method. Now that we have a helper,
we can remove this data from every single one of our rendering calls:

hbs.registerHelper ('getCurrentYear, () => {
return new Date () .getFullYear ()

)i

app.get ('/', (req, res) => {

res.render ('home.hbs', {
pageTitle: 'Home Page',
welcomeMessage: 'Welcome to my website'
P
P

app.get ('/about', (req, res) => {
res.render ('about.hbs', {

pageTitle: 'About Page'

b

}) i

This is going to be really fantastic because there really is no need to compute it for every
page since it's always the same. Now that we've removed that data from the individual calls
to render, we will have to use getCurrentYear inside the footer.hbs file:

<footer>
<p>Created By Andrew Mead - Copyright {{getCurrentYear}}</p>
</footer>

Instead referencing the current year, we will use the helper getCurrentYear, and there's
no need for any special syntax. When you use something inside curly braces that clearly
isn't a partial, handlebars is first going to look for a helper with that name. If there is no
helper, it'll look for a piece of data with that getCurrentYear name.

[449]

Web Servers in Node Chapter 8

In this case, it will find the helper, so everything will work as expected. We can now save
footer.hbs, move into the browser, and give things a refresh. When I refresh the page, we

still get Copyright 2018 in Home Page:

@ ® /[y some website X

= C | @ localhost:3000

Home Page

Home
About
‘Welcome to my website

Created By Andrew Mead - Copyright 2018

If I go to the About Page, everything looks great:

@ ® /[y some website b

&« C | @ localhost:3000/about

About Page

Home
About
Some text here

Created By Andrew Mead - Copyright 2018

[450]

Web Servers in Node Chapter 8

We can prove that data is coming back from our helper by simply returning something else.
Let's comment out our helper code in server. js and before the comment, we can
use return test, just like this:

hbs.registerHelper ('getCurrentYear', () => {
return 'test';//return new Date () .getFullYear ()
)i

We can now save server. js, refresh the browser, and we get tests showing up as shown
here:

® ® /' [Y some Website b

“— C | @ localhost:3000/about

About Page

Home
About
Some text here

Created By Andrew Mead - Copyright test

So the data that renders right after the Copyright word is indeed coming from that helper.
Now we can remove the code so we return the proper year.

Arguments in Helper

Helpers can also take arguments, and this is really useful. Let's create a second helper that's
going to be a capitalization helper. We'll call the helper screamIt and its job will be to take
some text and it will return that text in uppercase.

[451]

Web Servers in Node Chapter 8

In order to do this, we will be calling hbs . registerHelper again. This helper will be
called screamIt, and it will take a function because we do need to run some code in order
to do anything useful:

hbs.registerHelper ('getCurrentYear', () => {
return new Date () .getFullYear ()

P) i

hbs.registerHelper ('screamIt', () => {

)i

Now screamIt is going to take text to scream and all it will do is call on that string the
toUpperCase method. We'll return text . toUpperCase, just like this:

hbs.registerHelper ('screamIt', (text) => {
return text.toUpperCase();

1)

Now we can actually use screamIt in one of our files. Let's move into home . hbs. Here, we
have our welcome message in the p tag. We'll remove it and we'll scream the welcome
message. In order to pass data into one of our helpers, we first have to reference the helper
by name, screamIt, then after a space we can specify whatever data we want to pass in as
arguments.

In this case, we'll pass in the welcome message, but we could also pass in two arguments by
typing a space and passing in some other variable which we don't have access to:

<!DOCTYPE html>
<html>
<head>
<meta charset="utf-8">
<title>Some Website</title>
</head>
<body>
{{> header}}

<p>{{screamIt welcomeMessage}}</p>
{{> footer}}

</body>
</html>

[452]

Web Servers in Node Chapter 8

For now, we'll use it like this, which means we'll call the screamIt helper, passing in one
argument welcomeMessage. Now we can save home . hbs, move back into the browser, go
to the Home Page and as shown following, we get WELCOME TO MY WEBSITE in all
uppercase:

® ® /[y some website *

< C | ® localhost:3000

Home Page

Home

About

WELCOME TO MY WEBSITE

Created By Andrew Mead - Copyright test

Using handlebars helpers, we can create both functions that don't take arguments and
functions that do take arguments. So when you need to do something to the data inside of
your web page, you can do that with JavaScript. Now that we have this in place, we are
done.

Express Middleware

In this section, you'll learn how to use Express middleware. Express middleware is a
fantastic tool. It allows you to add on to the existing functionality that Express has. So if
Express doesn't do something you'd like it to do, you can add some middleware and teach
it how to do that thing. Now we've already used a little bit of middleware. In server.js
file, we used some middleware and we teach Express how to read from a static directory,

which is shown here:

app.use (express.static(__dirname + '/public'));

We called app . use, which is how you register middleware, and then we provided the
middleware function we want to use.

[453]

Web Servers in Node Chapter 8

Now middleware can do anything. You could just execute some code such as logging
something to the screen. You could make a change to the request or the response object.
We'll do just that in the next chapter when we add API authentication. We'll want to make
sure the right header is sent. That header will be expected to have an API token. We can use
middleware to determine whether or not someone's logged in. Basically, it will determine
whether or not they should be able to access a specific route, and we can also use
middleware to respond to a request. We could send something back from the middleware,
just like we would anywhere else, using response.render or response. send.

Exploring middleware

In order to explore middleware, we'll create some basic middleware. Just following where
we call app . use registering our Express static middleware, we'll call app . use again:

app.use (express.static(__dirname + '/public'));
app.use () ;

Now app . use is how you register middleware, and it takes a function. So, we'll pass in an
arrow function (=>):

app.use(() => {
)i

The use function takes just one function. There is no need to add any other arguments. This
function will get called with the request (req) object, the response (res) object and a third
argument, next:

app.use((req, res, next) => {
1) i

Now request and response objects, these should seem familiar by now. They're the exact
same arguments we get whenever we register a handler. The next argument is where
things get a little trickier. The next argument exists so you can tell Express when your
middleware function is done, and this is useful because you can have as much middleware
as you like registered to a single Express app. For example, I have some middleware that
serves up a directory. We'll write some more that logs some request data to the screen, and
we could have a third piece that helps with application performance, keeping track of
response times, all of that is possible.

[454]

Web Servers in Node Chapter 8

Now inside app . use function, we can do anything we like. We might log something to the
screen. We might make a database request to make sure a user is authenticated. All of that
is perfectly valid and we use the next argument to tell Express when we're done. So if we
do something asynchronous, the middleware is not going to move on. Only when we call
next, will the application continue to run, like this:

app.use((req, res, next) => {
next () ;

)i

Now this means if your middleware doesn't call next, your handlers for each request,
they're never going to fire. We can prove this. Let's call app . use, passing in an empty
function:

app.use((req, res, next) => {
P
Let's save the file and in the Terminal, we'll run our app using nodemon with server. js:

nodemon server.js

e0e

Gary:node-web-server Gary$ nodemon server.js
[nodemon] 1.14.180

[nodemon] to art at any time, enter ‘rs’
[nodemon] watching: *.%

node-web-server — node « node [usr/local/bin/nodemon server.js — 108x29

Server is up on port 36608

I'll move into the browser and I'll make a request for the home page. I'll refresh the page
and you can see that up top, it is trying to load but it's never going to finish:

[455]

Web Servers in Node Chapter 8

L @ Some website x

= X | @ localhost:3000

Home Page

Home

About

Now it's not that it can't connect to the server. It connects to the server just fine. The real
problem is that inside our app, we have middleware that doesn't call next. To fix this, all

we'll do is call next like this:

app.use((req, res, next) => {
next ();

)i

Now when things refresh over inside the browser, we get our Home Page exactly as we
expect it:

® © ® | [} some website *

[C (@ localhost:3000

Home Page

Home
About
WELCOME TO MY WEBSITE

Created By Andrew Mead - Copyright 2018

The only difference is now we have a place where we can add on some functionality.

Creating a logger

Inside app . use, we're going to get started by creating a logger that will log out all of the
requests that come in to the server. We'll store a timestamp so we can see exactly when
someone made a request for a specific URL.

[456]

Web Servers in Node Chapter 8

To get started inside the middleware, let's get the current time. I'll make a variable called
now, setting it equal to newDate, creating a new instance of our date object, and I'll call
it toString method:

app.use((req, res, next) => {
var now = new Date().toString();
next ();

)i

The tostring method creates a nice formatted date, a human-readable timestamp. Now
that we have our now variable in place, we can start creating the actual logger by calling
console.log.

Let's call console. log, passing in whatever I like. Let's pass in inside of ticks the now
variable with a colon after:

app.use((req, res, next) => {
var now = new Date () .toString();

console.log (" ${now}; ")
next () ;

)i

Now if I save my file, things are going to restart in the Terminal because nodemon is
running. When we make a request for the site again and we go into the Terminal, we should
see the log:

Server is up on port 3008

Sun Jan 21 2918 23:11:33 GMT+8530 (IST);

Currently it's just a timestamp, but we are on the right track. Now everything is working
because we called next, so after this console. log call prints to the screen, our application
continues and it serves up the page.

Inside middleware, we can add on more functionality by exploring the request object. On
the request object, we have access to everything about the request—the HTTP method, the
path, query parameters, and anything that comes from the client. Whether the client is an
app, a browser, or an iPhone, it is all going to be available in that request object. Two things
we'll pull off now are the HTTP method and the path.

[457]

Web Servers in Node

Chapter 8

If you want to look at a full list of the things you have access to, you can go to
expressis.com, and go to API reference:

® 0 ® /[some website % | o Expross - Node.js web applic. % a
« (D expressjs.com k4
:_X.O'()F‘}‘. Home Gettingstarted Guide APlreference Advanced topics Rescurces
4%
3.x (deprecated)
2.x (deprecated)
o~ -
() r(:}_l‘ O
KEYNO ' ™ xpress,
State of the Union
% npm install express --save
We happen to be using a 4.x version of Express, so we'll click that link:
® 0@ [some website X | &% Express 4.x - API Reference X [:]
< (@ expressjs.com/en/4x/ap 83
E}@fess Home Getting started Guide APl reference Advanced topics Resources
4.x API express()
I Application
Request
Response
express() Router

Creates an Express application. The express() function is a top-level function exported by the express module.

Cexpress’

var express require
var app - express

Methods
express.json([options])
This middleware is available in Express wd. 16.0 omwards.

This is a built-in middleware function in Express. It parses incoming requests with JSON payloads and is based on

Returns middleware that only parses JSON and only looks at requests where the Content-Type header matches the £ype option. This parser
accepts any Unicode encoding of the body and supports automatic inflation of gzip and deflate encodings.

A new bady object containing the parsed darta is populated on the request object after the middleware (l.e. req. bady). or an empty object
{{}}if there was no body to parse, the Content-Type Was not matched, or an error occurred.

[458]

Web Servers in Node

Chapter 8

On the right-hand side of this link, we have both Request and Response. We'll look for the
request objects, so we'll click that. This'll lead us to the following:

® 0@ [some website ¥ | ex Express 4. - AP| Reference X
< c o xjapi.hmi#req o
E}{press Home Getting started Guide APl reference Advanced topics Resources
Request
express()
s : . Application
The req object represents the HTTP request and has properties for the request query string, parameters, body, HTTP headers, and so on, In this
decumentation and by convention, the object is always referred to as reg (and the HTTP response is res) but its actual name is determined by Request
the parameters to the callback function in which you're working. Properties
For example: req.app
req baselrd
B e 2 req bo
app.get('/user/:id", function(req, res) { i _ﬁf
R iy i req.coakies
\res send('use + req.params.id); req.fresh
req hestname
req.ip
But you could just as well have: req.ips
req.method
app.get('/user/:id", function(request, response) | req.eriginallr
response.send('user ' + request.params.id); req.params
Ly - reg.path
reqprotocal
The req object is an enhanced version of Node's own request object and supports all built-in fields and methods. :{L:‘:'J:
row
. red.3eCUre
Properties req.signedCookies
req.stale
req.subdomaing
n Express 4, req. o longer available on ‘0 access uploaded files on the req. £iles object, use multipart-handling req.xhr
middieware like b ter, formidable, m 14 or ez, Cr— .

We'll be using two request properties: req.url and req.method. Inside Atom, we can start
implementing those, adding them into console. log. Right after the timestamp, we'll print
the HTTP method. We'll be using other methods later. For now we've only used the get
method. Right inside the console.log, I'll inject request .method printing it to the
console:

app.use((req, res, next) => {
var now = new Date().toString();

console.log(${now}: ${reg.method}")
next ();
)i

Next up we can print the path so we know exactly what page the person requested. I'll do
that by injecting another variable, req.url:

console.log(${now}: ${reqg.method} S${req.url}’);

[459]

Web Servers in Node Chapter 8

With this in place, we now have a pretty useful piece of middleware. It takes the request
object, it spits out some information and then it moves on, letting the server process that
request which was added. If we save the file and rerun the app from the browser, we
should be able to move into the Terminal and see this new logger printing to the screen, and
as shown following we get just that:

Server is up on port 3060
Sun Jan 21 2018 23:16:30 GMT+8530 (IST): BGET /

We have our timestamp, the HTTP method which is GET, and the path. If we change the
path to something more complicated, such as /about, and we move back into the Terminal,
we'll see the /about where we accessed req.url:

Server is up on port 3608

Sun Jan 21 2018 23:16:30 GMT+853@ (IST): GET /
Sun Jan 21 2018 23:17:22 GMT+853@ (IST): GET fabout

Now this is a pretty basic example of some middleware. We can take it a step further. Aside
from just logging a message to the screen, we'll also print the message to a file.

Printing message to file

To print the message to a file, let's load in £s up in the server. js file. We'll create a
constant. Call that const fs and set that equal to the return result from requiring the
module:

const express = require ('express');
const hbs = require('hbs');
const fs = require('fs');

Now we can implement this down following in the app . use. We'll take our template string,
which is currently defined inside console.log. We'll cut it out and instead store in a
variable. We'll make a variable called 1og, setting it equal to that template string as shown
here:

app.use((req, res, next) => {
var now = new Date () .toString();
var log = “S${now}: ${reqg.method} ${reqg.url}’;

[460]

Web Servers in Node Chapter 8

console.log();
next ();
)i

Now we can pass that 1og variable into both console.log and into an £s method to write
to our file system. For console. log, we will call log like this:

console.log(log);

For £s, I'1ll call £s.appendFile. Now as you remember, appendFile lets you add on to a
file. It takes two arguments: the file name and the thing we want to add. The file name we'll
use is server.log. We'll create a nice log file and the actual contents will just be the 1og
message. We will need to add one more thing: we also want to move on to the next line
after every single request gets logged, so I'll concatenate the new line character, which will
be \n:

fs.appendFile ('server.log', log + '\n');

If you're using Node V7 or greater, you will need to make a small tweak to
this line. As shown in the following code, we added a third argument to
fs.appendFile. This is a callback function. It's now required.

fs.appendFile ('server.log', log + '\n', (err) => {
if (err) {
console.log('Unable to append to server.log.')
}
}) i

If you don't have a callback function, you'll get a deprecation warning
over inside the console. Now as you can see, our callback function here
takes an error argument. If there is an error, we just print a message to the
screen. If you change your line to look like this, regardless of your Node
version, you'll be future proof. If you're on Node V7 or greater, the
warning in the console will go away. Now the warning is going to say
something such as deprecation warning. Calling an asynchronous function
without callback is deprecated. If you see that warning, make this change.

[461]

Web Servers in Node Chapter 8

Now that we have this in place, we can test things out. I save the file, which should be
restarting things inside of nodemon. Inside Chrome, we can give the page a refresh. If we
head back into the Terminal, we do still get my log, which is great:

Server is up on port 3008

Sun Jan 21 2918 23:26:08 GMT+0530 (IST): GET /about
Sun Jan 21 2018 23:26:18 GMT+8538 (IST): GET /

Notice we also have a request for a favicon. ico. This is usually the icon that's shown in
the browser tab. I have one cached from a previous project. There actually is no icon file
defined, which is totally fine. The browser still makes the request anyway, which is why
that shows up as shown in the previous code snippet.

Inside Atom, we now have our server. log file, and if we open it up, we have a log of all
the requests that were made:

® @ server.log — ~/Desktop/node-web-server
Project SErverjs x server.log o footer.n.. x neader.h... x about.hbs x home.hbs x nelp.html x
~ M node-web-server Sun Jan 21 2018 23:24:51 GMT+@53@ (IST): GET /
» B8 nodemodiles Sun Jan 21 2018 23:25:06 GMT+8530 (IST): GET /about|
~ Il public
B neip.ntmi
v I views
v M partials
E) footer.nbe
BE) header.nbs
B abouthos
B tome.hbs

We have timestamps, HTTP methods, and paths. Using app . use, we were able to create
some middleware that helps us keep track of how our server is working.

Now there are times where you might not want to call next. We learned that we could call
next after we do something asynchronous, such as a read from a database, but imagine
something goes wrong. You can avoid calling next to never move on to the next piece of
middleware. We would like to create a new view inside the views folder. We'll call this one
maintenance.hbs. This will be a handlebars template that will render when the site is in
maintenance mode.

[462]

Web Servers in Node Chapter 8

The maintenance middleware without the next
object

We'll start with making the maintenance.hbs file by duplicating home . hbs. Inside
maintenance.hbs, all we'll do is wipe the body and add a few tags:

<!DOCTYPE html>
<html>
<head>
<meta charset="utf-8">
<title>Some Website</title>
</head>
<body>

</body>
</html>

As shown in the following code, we'll add an h1 tag to print a little message to the user:
<body>
<hl></h1>
</body>
We're going to use something like We'11 be right back:
<body>

<h1>We'll be right back</hl1>
</body>

Next, I can add a paragraph tag:

<body>
<h1>We'll be right back</hl>
<p>

</p>
</body>

[463]

Web Servers in Node Chapter 8

Now we will be able to use p followed by the tab. This is a shortcut inside
Atom for creating an HTML tag. It works for all tags. We could type body
and hit enter or I could type p and press enter, and the tag will be created.

Inside the paragraph, I'll leave a little message: The site is currently being
updated:

<p>
The site is currently being updated.
</p>

Now that we have our template file in place, we can define our maintenance middleware.
This is going to bypass all of our other handlers, where we render other files and print
JSON, and instead it'll just render this template to the screen. We'll save the file, move into
server. js, and define that middleware.

Right next to the previously-defined middleware, we can call app . use passing in our
function. The function will take those three arguments: request (req), response (res), and
next:

app.use((req, res, next) => {
)

Inside the middleware, all we'll need to do is call res.render. We'll add
res.render passing in the name of the file we want to render; in this case, it's
maintenance.hbs:

app.use((req, res, next) => {
res.render ('maintenance.hbs');
)i

That is all you needed to do to set up our main middleware. This middleware will stop
everything after it from executing. We don't call next, so the actual handlers in the app.get
function, they will never get executed and we can test this.

[464]

Web Servers in Node

Testing the maintenance middleware

Inside the browser, we'll refresh the page, and we will get the following output:

® ® /[y some website X

&« ' | @ localhost:3000/about

We'll be right back

The site is currently being updated.

We get the maintenance page. We can go to the home page and we get the exact same thing;:

® ® /[y some website X

< C | @ localhost:3000

We'll be right back

The site is currently being updated.

Now there's one more really important piece to middleware we haven't discussed yet.
Remember inside the public folder, we have a help.html file as shown here:

[465]

Web Servers in Node Chapter 8

v Ml node-web-server

> M node_modules

E help.ntm

~ M views

v Il partials

@ footer.hbs

@ header.hbs
EI about.hbs
EI home.hbs
@ maintenance.hbs
package-lock.json
package.jscn

SEerver.js

o [oo [

server.log

If we visit this in the browser by going to 1ocalhost :3000/help.html, we'll still get the
help page. We'll not get the maintenance page:

@ ® [Help Page x

= C | ® localhost:3000/help.html

Help Page

Some text here

[466]

Web Servers in Node Chapter 8

That is because middleware is executed in the order you call app . use. This means the first
thing we do is we set up our Express static directory, then we set up our logger, and finally
we set up our maintenance.hbs logger:

app.use (express.static(__dirname + '/public'));
app.use((req, res, next) => {

var now = new Date () .toString();

var log = “S${now}: ${reqg.method} ${req.url}’;

console.log(log);
fs.appendFile ('server.log', log + '\n');
next () ;

)i

app.use((req, res, next) => {
res.render ('maintenance.hbs');

)i

This is a pretty big problem. If we also want to make the public directory files such

as help.html private, we'll have to reorder our calls to app . use because currently the
Express server is responding inside of the Express static middleware, so our maintenance
middleware doesn't get a chance to execute.

To resolve this, we'll take the app . use Express static call, remove it from the file, and add it
after we render the maintenance file to the screen. The resultant code is going to look like
this:

app.use((req, res, next) => {
var now = new Date () .toString();
var log = "${now}: ${reg.method} ${req.url};

console.log(log);
fs.appendFile ('server.log', log + '\n');
next () ;

}) i
app.use((req, res, next) => {
res.render ('maintenance.hbs');

)i

app.use (express.static(__dirname + '/public'));

[467]

Web Servers in Node Chapter 8

Now, everything will work as expected, no matter what we're going to log the request.
Then we'll check if we're in maintenance mode if the maintenance middleware function is in
place. If it is, we'll render the maintenance file. If it's not, we'll ignore it because it'll be
commented out or something like that, and finally we'll be using Express static. This is
going to fix all those problems. If I re-render the app now, I get the maintenance page on
help.html:

@ ® /[some website X

- C | @ localhost:3000/help.html

We'll be right back

The site is currently being updated.

If I go back to the root of the website, I still get the maintenance page:

® ' ® /[some website X

= C | @ localhost:3000

We'll be right back

The site is currently being updated.

Now once we're done with the maintenance middleware, we can always comment it out.
This will remove it from being executed, and the website will work as expected.

This has been a quick dive into Express middleware. We'll be using it a lot more throughout
the book. We'll be using middleware to check if our API requests are actually authenticated.
Inside the middleware, we'll be making a database request, checking if the user is indeed
who they say they are.

[468]

Web Servers in Node Chapter 8

Summary

In this chapter you learned about Express and how it can be used to easily create websites.
We looked at how we can set up a static web server, so when we have an entire directory of
JavaScript, images, CSS, and HTML. We can serve that up easily without needing to
provide routes for everything. This will let us create all sorts of applications, which we'll be
doing throughout the rest of the book.

Next, we continued on learning how to use Express. We took a look at how we can render
dynamic templates, kind of like we would with a PHP or Ruby on Rails file. We have some
variables and we rendered a template injecting those variables. Then we learned a little bit
about handlebars partials, which let us create reusable chunks of code like headers and
footers. We also learned about Handlebars helpers, which is a way to run some JavaScript
code from inside of your handlebars templates. Lastly, we moved back to talking about
Express and how it can customize our requests, responses, our server.

In the next chapter, we'll look into deploying applications to the web.

[469]

Deploying Applications to Web

In this chapter, we'll worry about adding version control and deploying our applications
because when it comes to creating real-world Node apps, deploying your app to the Web is
obviously a pretty big part of that. Now in the real world, every single company uses some
form of version control. It is essential to the software development process, and most of
them aren't using Git. Git has become really popular, dominating the market share for
version control. Git is also free and open source, and there is a ton of great educational
material. They have a book on how to learn Git. It's free and Stack Overflow is filled with
Git-specific questions and answers.

We'll be using Git to save our project. We'll also be using it to back up our work to a service
called GitHub, and finally we'll be using Git to deploy our project live to the Web. So we'll
be able to take our web server and deploy it for anybody to visit. It won't just be available
on localhost.

Specifically, we'll look into the following topics:

e Setting up and using Git

e Setting up GitHub and SSH keys

¢ Deploying Node app to the web

¢ The workflow of the entire development life cycle

Deploying Applications to Web Chapter 9

Adding version control

In this section, we'll learn how to set up and use Git, which is a version control system. Git
will let us keep track of the changes to our project over time. This is really useful when
something goes wrong and we need to revert to a previous state in the project where things
were working. It's also super useful for backing up our work.

Installing Git

To get started, we will need to install Git on the computer, but luckily for us it is a really
simple installation process. It's one of those installers where we just click on the Next button
through a few steps. So let's go ahead and do that.

1. We can grab the installer by heading over to the browser and going to git-

SCm.com.

Before we go ahead and install it, I want to show you the link to the book
called Pro Git (https://git-scm.com/book/en/v2). Itis a free book and
also available for online reading. It covers everything that Git has to offer.
We'll be looking at some of the more basic features in this chapter, but we
could easily create an entire course on Git. There actually are Udemy
courses just on Git and GitHub, so if you want to learn more than what we
cover in this book, I'd recommend reading this book or checking out a
course, whatever your preferred learning method is.

2. Click on the download button present on the right-hand side of the home page,
for all the operating systems, whether it's Windows, Linux, or macOS. This
should take us to the installer page and we should be able to get the installer
downloading automatically. If you see any problem with sourceForge.net, then
we may have to actually click on it to download manually in order to start the
download.

[471]

Deploying Applications to Web Chapter 9

3. Once the installer is downloaded, we can simply run it.
4. Next, move through the installer:

@ « Install git-2.15.1-intel-universal-mavericks

Welcome to the git-2.15.1-intel-universal-mavericks Installer

You will be guided through the steps necessary to install this

¢ Introduction
software.

Destination Select
Installation Type
Installation

Summary

Continue

[472]

Deploying Applications to Web Chapter 9

5. Click on Continue and install the package:

@ « Install git-2.15.1-intel-universal-mavericks
Standard Install on "Mac"

Eimacliscton This will take 61.3 MB of space on your computer.

Destination Select Click Install to perform a standard installation of this software
; on the disk "Mac".
¢ Installation Type
Installation

Summary

Change Install Location...

Go Back Install

[473]

Deploying Applications to Web Chapter 9

6. Once it's done, we can go ahead and actually test that things installed
successfully:

@ « Install git-2.15.1-intel-universal-mavericks
The installation was completed successfully.
@ Introduction

@ Destination Select

¢ Installation Type

¢ Installation

© Summary The installation was successful.

The software was installed.

Close

[474]

Deploying Applications to Web Chapter 9

Git on macQOS

If you're on macOS, you'll need to launch the package installer and you might get the
following message box saying that it's from an unidentified developer:

“git-2.15.1-intel-universal-mavericks.pkg"
. g can't be opened because it is from an
9 unidentified developer.

Your security preferences allow installation of only
apps from the App Store and identified developers.

"git-2.15.1-intel-universal-mavericks.pkg" is on the
disk image “git-2.15.1-intel-universal-mavericks.dmg"
Chrome downloaded this disk image today at 4:58 PM
from sourceforge.net.

? OK

This is because it is distributed via a third party as opposed to being in the macOS App
Store. We can go ahead and right-click on the package, then click on the Open button and
confirm that we do indeed want to open it.

Once you're at the installer, the process is going to be pretty simple. You can essentially
click on Continue and Next throughout every step.

[475]

Deploying Applications to Web Chapter 9

Git on Windows

If you're on Windows though, there is an important distinction. Inside the installer you're
going to see a screen just like this:

¢ Git 2.9.2 Setup - %

Select Components &
which components should be installed? ,

Select the components you want to install; dear the components you do not want to
Install. Click Next when you are ready to continue,

[] Additional lcons
[C]On the Desktop
[+] windows Explorer integration
[+] Git Bash Here
[+] Git GUT Here
[+] Associate .git* configuration files with the default text editor
[+*] Associate .sh files to be run with Bash
[Juse a TrueType font in &l console windows

Current selection requlres at least 190.6 MB of disk space.

oo e

It is really important that you also install Git Bash as shown in the screenshot. Git Bash is a
program that simulates a Linux-type Terminal, and it's going to be really essential when we
create our SSH keys in the next section to uniquely identify our machine.

Testing the installation

Now, let's move in to the Terminal to test the installation. From the Terminal we can go
ahead and run git --version. This is going to print a new version of Git we have
installed:

git —--version

[476]

Deploying Applications to Web Chapter 9

As shown in the following screenshot, we can see we have git version 2.14.3:

2] [] | node-web-server — -bash — 108x29

Gary:node-web-server Gary$ git —-version
git version 2.14.3 (Apple Git-98)
Gary:node-web-server Gary$

Now if you have your Terminal still open and you're getting an error like
git command not found, I'd recommend trying to restart your Terminal.
Sometimes that is required when you're installing new commands such as
the git command, which we just installed.

Turning the node-web-server directory into a Git
repository

With successful installation of Git, we are now ready to turn our node-web-server
directory into a Git repository. In order to do this, we'll the following command:

git init

The git init command needs to get executed from the root of our project, the folder that
has everything that we want to keep track of. In our case, node-web-server is that folder.
It has our server. js file, our package. json file, and all of our directories. So, from the
server folder, we'll run git init:

Gary:node-web-server Gary$ git init
Initialized empty Git repository in /Users/Gary/Desktop/node-web-server/.git/

Gary:node-web-server Gary$

This creates a . git directory inside that folder. We can prove that by running the 1s -a
command:

1ls —-a

[477]

Deploying Applications to Web Chapter 9

As shown in the following screenshot, we get all of the directories including the hidden
ones and right here I do indeed have .git:

Gary:node-web-server Gary$ 1ls -a
node_modules public
package-lock.json Server.js

.git package.json server.log
Gary:node-web-server Gary$ l

For Windows, go ahead and run these commands from the Git Bash.

Now this directory is not something we should be manually updating. We'll be using
commands from the Terminal in order to make changes to the Git folder.

You don't want to be going in there manually messing around with things
because there's a pretty good chance you're going to corrupt the Git
repository and all of your hard work is going to become useless. Now
obviously if it's backed up, it's not a big deal, but there really is no reason
to go into that Git folder.

Let's use the clear command to clear the Terminal output, and now we can start looking at
exactly how Git works.

Using Git

As mentioned earlier, Git is responsible for keeping track of the changes to our project, but
by default it doesn't actually track any of our files. We have to tell Git exactly which files we
want it to keep track of and there's a good reason for this. There are files in every project
that we're most likely not going to want to add to our Git repo, and we'll talk about which
ones and why later. For now let's go ahead and run the following command:

git status

Now all these commands need to get executed from inside of the root of the project. If you
try to run this outside a repository, you'll get an error like git repository not found. What
that means is that Git cannot find that . git directory in order to actually get the status of
your repository.

[478]

Deploying Applications to Web Chapter 9

When we run this command, we'll get some output that looks like this:

2] [] | node-web-server — -bash — 108x29

Gary:node-web-server Gary$ git status
On branch master

No commits yet

Untracked files:
(use "git add <file>..." to include in what will be committed)

nothing added to commit but untracked files present (use "git add" to track)

Gary:node-web-server Gary$ I

The important pieces for now is the Untracked files header and all of the files underneath
it. These are all of the files and folders that Git seized, but it's currently not tracking. Git
doesn't know if you want to keep track of the changes to these files or if you want to ignore
them from your repository.

Now the views folder, for example, is something we definitely want to keep track of. This
is going to be essential to the project and we want to make sure that whenever someone
downloads the repository, they get the views folder. The log file on the other hand doesn't
really need to be included in Git. In general our log files are not going to be committed,
since they usually contain information specific to a point in time when the server was
running.

As shown in the preceding code output, we have server. js, our public folder, and
package. json. These are all essential to the process of executing the app. These are
definitely going to be added to our Git repository, and the first one above we have is the
node_modules folder. The node_modules folder is what's called a generated folder.

[479]

Deploying Applications to Web Chapter 9

Generated folders are easily generated by running a command. In our case, we can
regenerate this entire directory using npm install. We're not going to want to add Node
modules to our Git repository because its contents differ depending on the version of npm
you have installed and depending on the operating system you're using. It's best to leave off
Node modules and let every person who uses your repository manually install the modules
on the machine they're actually going to be running the app.

Adding untracked files to commit

Now we have these six folders and files listed, so let's go ahead and add the four folders
and files we want to keep. To get started, we'll use any git add command. The git add
command lets us tell the Git we want to keep track of a certain file. Let's type the following
command:

git add package.json

After we do this, we can run it git status again, and this time we get something very
different:

[NON) " | node-web-server — -bash — 108x29

Gary:node-web-server Gary$ git add package.json
Gary:node-web-server Gary$ git status
On branch master

No commits yet

Changes to be committed:
(use "git rm --cached <file>..." to unstage)

Untracked files:
(use "git add <file>..." to include in what will be committed)

Gary:node-web-server Gary$ I

[480]

Deploying Applications to Web Chapter 9

Now we have an Initial commit header. This is new, and we have our old Untracked files
header. Notice under Untracked files, we don't have package. json anymore. That is
moved up to the Initial commit header. These are all of the files that are going to be saved,
also known as committed, when we make our first commit. Now we can move on adding
the 3 others. We'll use a git add command again to tell Git we want to track the public
directory. We canrun a git status command to confirm it was added as expected:

2] [] | node-web-server — -bash — 108x29

Gary:node-web-server Gary$ git add public/
Gary:node-web-server Gary$ git status
On branch master

No commits yet

Changes to be committed:
(use "git rm --cached <file>..." to unstage)

Untracked files:
(use "git add <file»..." to include in what will be committed)

Gary:node-web-server Gary$ I

As shown in the preceding screenshot, we can see the public/help.html file is now going to
be committed to Git once we run a commit.

Next up we can add server. js with git add server.js, and we can add the views
directory using git add views, just like this:

git add server.js

git add views/

[481]

Deploying Applications to Web Chapter 9

We'llrun a git status command to confirm:

0] [] | node-web-server — -bash — 108x29

Gary:node-web-server Gary$ git add server.js
Gary:node-web-server Gary$ git add views/
Gary:node-web-server Gary$ git status

On branch master

No commits yet

Changes to be committed:
(use "git rm --cached <file>..." to unstage)

Untracked files:
(use "git add <file>..." to include in what will be committed)

Gary:node-web-server Gary$ D

Everything looks good. Now the Untracked files are going to sit around here until we do
one of two things—we either add them to the Git repository or ignore them using a custom
file that we're going to create inside Atom.

Inside Atom, we'd like to make a new file called .gitignore, in our root of our project.
The gitignore file is going to be part of our Git repository and it tells get which folders
and files you want to ignore. In this case we can go ahead and ignore node_modules, just
like this:

® [] .gitignore — ~{Desktop/node-wab-server
Project server,s X .gitignore o
i Q node-web-server node_modules/

> M node_modules
> B p
> Bl views

E gitignora

[482]

Deploying Applications to Web Chapter 9

When we save the gitignore file and rerun git status from the Terminal, we'll now get
a really different result:

0] [] | node-web-server — -bash — 108x29

Gary:node-web-server Gary$ git status
On branch master

No commits yet

Changes to be committed:
(use "git rm --cached <file>..." to unstage)

Untracked files:
(use "git add <file>..." to include in what will be committed)

Gary:node-web-server Gary$ D

[483]

Deploying Applications to Web Chapter 9

As shown, we can see we have a new untracked file—. gitignore—but the
node_modules directory is nowhere in sight, and that's exactly what we want. We want to
remove this completely, making sure that it never ever gets added to the Git repo. Next up,
we can go ahead and ignore that server. log file by typing its name, server.log:

node modules/
server.log

We'll save gitignore, run git status from the Terminal one more time, and make sure
everything looks great:

[] [] "7 node-web-server — -bash — 108x29

Gary:node-web-server Gary$ git status
On branch master

Mo commits yet

Changes to be committed:
(use "git rm --cached <file>..." to unstage)

Untracked files:
(use "git add <file>..." to include in what will be committed)

Gary:node-web-server Gary$ D

As shown, we have a gitignore file as our only untracked file. The server. log file and
node_modules are nowhere in sight.

[484]

Deploying Applications to Web Chapter 9

Now that we have gitignore, we are going to be adding it to Git using git add
.gitignore and when we run git status, we should be able to see that all the files that
show up are under the initial commit:

git add .gitignore

git status

2] [] | node-web-server — -bash — 108x29

Gary:node-web-server Gary$ git add .gitignore
Gary:node-web-server Gary$ git status
On branch master

No commits yet

Changes to be committed:
(use "git rm --cached <file>..." to unstage)

Gary:node-web-server Gary$ I

So now it's time to make a commit. A commit really only requires two things. It requires
some change in the repository. In this case, we're teaching Git how to track a ton of new
files, so we are indeed changing something, and it requires a message. We've already
handled the file part of things. We've told Git what we want to save, we just haven't
actually saved it yet.

[485]

Deploying Applications to Web Chapter 9

Making a commit

In order to make our first commit and save our first thing into the Git repository, we'll run
git commit and provide one flag, the m flag, which is short message. After that inside
quotes, we can specify the message that we want to use for this commit. It's really important
to use these messages so when someone's digging through the commit history, the list of all
the changes to the project can be seen, which are actually useful. In this case, Initial
commit is always a good message for your first commit:

git commit -m 'Initial commit'

I'll go ahead and hit enter and as shown in the following screenshot, we see all of the
changes that happened to the repo:

9 files changed, 136 insertions(+)
create mode 1008644 .gitignore
create mode 180644 package.json
create mode 100644 public/help.html
create mode 188644 server.js

create mode 180644 views/about.hbs

create mode 1008644 views/home.hbs

create mode 108644 views/maintenance.hbs
create mode 100644 views/partials/footer.hbs
create mode 100644 views/partials/header.hbs
Gary:node-web-server Gary$

We have created a bunch of new files inside of the Git repository. These are all of the files
that we told Git we want to keep track of and this is fantastic.

[486]

Deploying Applications to Web Chapter 9

We now have our very first commit, which essentially means that we've saved the project at
its current state. If we make a big change to server. js, messing stuff up to not be able
figure out how to get it back to the way it was, we can always get it back because we made a
Git commit. Now we'll explore some more fancy Git things in the later sections. We'll be
talking about how to do most of the things you want to do with Git, including deploying to
Heroku and pushing to GitHub.

Setting up GitHub and SSH keys

Now that you have a local Git repository, we'll look at how we can take that code and push
it up to a third-party service called GitHub. GitHub is going to let us host our Git
repositories remotely, so if our machine ever crashes we can get our code back, and it also
has great collaboration tools, so we can open-source a project, letting others use our code, or
we can keep it private so only people we choose to collaborate with can see the source code.

Now in order to actually communicate between our machine and GitHub, we'll have to
create something called an SSH key. SSH keys were designed to securely communicate
between two computers. In this case, it will be our machine and the GitHub server. This will
let us confirm that GitHub is who they say they are and it will let GitHub confirm that we
indeed have access to the code we're trying to alter. This will all be done with SSH keys and
we'll create them first, then we'll configure them, and finally we'll push our code up to
GitHub.

Setting up SSH keys

The process of setting up SSH keys can be a real burden. This is one of those topics where
there's really small room for error. If you type any of the commands wrong, things are just
not going to work as expected.

Now if you're on Windows, you'll need to do everything in this section from a Git Bash as
opposed to the regular Command Prompt because we'll be using some commands that just
are not available on Windows. They are, however, available on Linux and macOS. So if
you're using either of those operating systems, you can continue using the Terminal you've
been using throughout the book.

[487]

Deploying Applications to Web Chapter 9

SSH keys documentations

Before we dive into the commands, I want to show you a quick guide that exists online in
case you get stuck or you have any questions. You can Google GitHub SSH keys, and this is
going to link you to an article called generating an SSH key: https://help.github.com/
articles/connecting-to-github-with-ssh/. Once you're here, you'll be able to click on
the SSH breadcrumb, and this is going to bring you back to all of their articles on SSH keys:

m

- C' £ https://help.github.com/categories/sshf

GitHub Help

» Generating an SSH key
» Checking fuhrxls'.lm: SSH keys
» Generating a new SSH key and adding it to the ssh-agent
» Adding a new SSH key to your GitHub account
» Testing your SSH connection
Keeping your SSH keys and application access tokens sale
What are GitHub's SSH key fingerprints?
* Working with SSH key passphrases
» Using SSH over the HTTPS port
» How do | recover my SSH key passphrase?
Error: Permission denied (publickey)
Error: Bad file number
» Error: Key already in use
» Error: Permission to userirepo denied to other-user
Error; Permission to userfrepo denied to user/other-repo
Error: Agent admitted failure to sign
» Error: SSL certificate problem, verify that the CA cert is OK

» Error: We're doing an SSH key audit

[488]

Deploying Applications to Web Chapter 9

Out of these articles, the nested four are the ones we'll be focusing on checking if we have a
key, generating a new key, adding the key to GitHub, and finally testing that everything
worked as expected. If you run into any problems along any of these steps, you can always
click on the guide for that step and you can pick the operating system you're using so you
can see the appropriate commands for that OS. Now that you know this exists, let's go
ahead and do it together.

Working on commands

The first command we'll run from the Terminal is going to check if we have an existing SSH
key. Now if you don't, that's fine. We'll go ahead and create one. If you do or you're not
sure you do, you can run the following command to confirm whether or not you have one:
1s with the al flag. This is going to print all the files in a given directory, and the directory
where SSH keys are stored by default on your machine is going to be at the user directory,
which you can use (~) as a shortcut for /. ssh:

1ls -al ~/.ssh

When you run the command, you'll see all of the contents inside of that SSH directory:

[NN node-web-server — -bash — 108x29

Gary:node-web-server Gary$ 1ls -al ~/.ssh
1s: /Users/Gary/.ssh: No such file or directory
Gary:node-web-server Gary$ l

In this case I've deleted all of my SSH keys so I have nothing inside my directory. I just have
paths for the current directory and the previous one. Now that we have this in place and
we've confirmed we don't have a key, we can go ahead and generate one. If you do already
have a key, a file like id_rsa, you can go ahead and skip the process of generating the key.

Generating a key

To make a key we'll use the ssh-keygen command. Now the ssh-keygen takes three
arguments. We'll pass in t setting it equal to rsa. We'll pass in b which is for bytes, setting
that equal to 4096. Make sure to match these arguments exactly, and we'll be setting a
capital C flag which will get set equal to your email:

ssh-keygen -t rsa -b 4096 -C 'garyngreig@gmail.com'

[489]

Deploying Applications to Web Chapter 9

Now the scope of what's actually happening behind the scenes is not part
of this book. SSH keys and setting up security, that could be an entire
course in and of itself. We'll be using this command to simplify the entire
process.

Now we can go ahead and hit enter, which will generate two new files in our . ssh folder.
When you run this command, you'll get greeted with a few steps. I want you to use the
default for all of them:

® ® node-web-server — ssh-keygen -t rsa -b 4096 -C garyngreig@gmail.com — 108x29

Gary:node-web-server Gary$ ssh-keygen -t rsa -b 4896 -C 'garyngreig@gmail.com'
Generating public/private rsa key pair.
Enter file in which to save the key (/Users/Gary/.ssh/id_rsa): I

Here they want to ask you if you want to customize the file name. I do not recommend
doing that. You can just hit enter:

Enter file in which to save the key (/Users/Gary/.sshfid_rsa):
Created directory '/Users/Gary/.ssh'.

Enter passphrase (empty for no passphrase): []

Next up they ask you for a passphrase, which we'll not use. I'll hit enter for no passphrase,
then I need to confirm the passphrase, so I'll just hit enter again:

Enter same passphrase again:
Your identification has been saved in /Users/Gary/.ssh/fid_rsa.
Your public key has been saved in /Users/Gary/.ssh/id_rsa.pub.
The key fingerprint is:
SHA256:xasul5xLViké69cxyblZx4VZuZeqyl7uyMEKPmAYBSLe garyngreig@gmail.com
The key's randomart image is:
+-——[RSA 4896]--—+
|

. -+

0 0 *%.|

o .o % o

+====[5HA256]
Gary:node-web-server Gary$ I

[490]

Deploying Applications to Web Chapter 9

As shown, we get a little message that our SSH key was properly created and that it was
indeed saved in our folder.

With this in place, I can now cycle back through my previous commands running the 1s
command, and what do I get?

L] [] | node-web-server — -bash — 108x29

Gary:node-web-server Gary$ 1ls -al ~/.ssh
total 16

staff 136 Jan 26 19:01 .
drwxr=-xr=-x+ 32 Gary staff 1888 Jan 26 18:59 ..

1 Gary staff 3243 Jan 26 19:01 id_rsa
-IW-I--T-- 1 Gary staff 746 Jan 26 19:01 id_rsa.pub
Gary:node-web-server Gary$ I

We get id_rsa and I get the id_rsa.pub file. The id_rsa file contains the private key.
This is the key you should never give to anyone. It lives on your machine and your machine
only. The . pub file, which is the public file. This one is the one you'll give to third-party
services such as GitHub or Heroku, which we'll be doing in the next several sections.

Starting up the SSH agent

Now that our keys are generated, the last thing we need to do is start up the SSH agent and
add this key so it knows that it exists. We'll do this by running two commands. These are:

® cval

® ssh-add

First up we'll run eval, and then we'll open some quotes and inside the quotes, we'll use
the dollar sign and open and close some parentheses just like this:

eval n$()n

[491]

Deploying Applications to Web Chapter 9

Inside our parentheses we'll type ssh-agent with the s flag:
eval "$(ssh-agent -s)"

This will start up the SSH agent program and it will also print the process ID to confirm it is
indeed running, and as shown, we get Agent pid 1116:

Gary:node-web-server Gary$ eval "$(ssh-agent -s)"
Agent pid 1116

Gary:node-web-server Gary$ I

The process ID is obviously going to be different for everyone. As long as you get
something back like this you are good to go.

Next up we have to tell the SSH agent where this file lives. We'll do that using ssh-add.
This takes the path to our private key file which we have in the user directory
/.ssh/id_rsa:

ssh-add ~/.ssh/id_rsa

When I run this, I should get a message like identity added:

Gary:node-web-server Gary$ ssh-add ~/.ssh/id_rsa
Identity added: /Users/Gary/.ssh/id_rsa (/Users/Gary/.ssh/id_rsa)

Gary:node-web-server Gary$ I

This means that the local machine now knows about this public/private key pair and it'll try
to use these credentials when it communicates with a third-party service such as GitHub.
Now that we have this in place, we are ready to configure GitHub. We'll make an account,
set it up, and then we'll come back and test that things are working as expected.

[492]

Deploying Applications to Web Chapter 9

Configuring GitHub

To configure GitHub, follow these steps:

1. First head into the browser and go to github.com.

2. Here log into your existing account or create a new one. If you need a new one,
sign up for GitHub. If you have an existing one, go ahead and sign into it.

3. Once signed in, you should see the following screen. This is your GitHub
dashboard:

« C @ GitHub, inc. [US] | https://github.com <

Pull requests Issues Marketplace Explore

Learn Git and GitHub without any code!

Using the Hello World quide, you'll create a repository, start a branch,
write comments, and open a pull request.

Read the guide Start a project

© 2018 GitHub, In¢. Terms Privacy Security Status Help Contact GitHub AP1 Training Shop Blog About

[493]

Deploying Applications to Web Chapter 9

4. From here, navigate to Settings, present at the top-left hand side, by the profile
picture. Go to Settings | SSH and GPG keys | SSH keys:

€« C | @ GitHub, Inc. [US] | https:/fgithub.com/settings/keys +r

Pull requests Issues Marketplace Explore

Peraanal settings SSH keys m

Profile
There are no S5H keys associated with your account,
Account Check out our guide to ganarating S5H keys or troubleshoot comman SSH Problems.
Emails
Maotifications GPG keys it
Billing e :
There are no GPG keys associated with your account,
S5H and GPG keys Learn how to generate a GPG key and add it to your account,
Security

Blocked users
Repositories
DOrganizations
Saved replies

Applications

Developer settings

5. From here we can add the public key, letting GitHub know that we want to
communicate using SSH.

[494]

Deploying Applications to Web Chapter 9

6. Add the new SSH key:

Pull requests Issues Marketplace Explore

Personal settings SSH keys ! Add new
Profile
Title
Account
Emails
Key

Natifications

Billing

S5H and GPG keys
Security

Blocked users
Hepositories

Organizations Add SSH key

Here, you need to do two things: give it a name, and add the key.

First add the name. The name can be anything you like. For example, I usually use
one that uniquely identifies my computer since I have a couple. I'll use MacBook
Pro, just like this.

Title

MacBook Pro

Next up, add the key.

[495]

Deploying Applications to Web Chapter 9

To add the key, we need to grab the contents of the id_rsa.pub file, we
generated in the previous sub-section. That file contains the information that
GitHub needs in order to securely communicate between our machine and their
machines. There are different methods to grab the key. In the browser, we have
the Adding a new SSH key to your GitHub account article for our reference.

& Secure | https://help.github.com/articles/adding-a-new-ssh-key-to-your-github-account/
GitHub Help Version~ Contact Support Retum to GitHub
Authenticating to GitHub / Adding ew SSH key to your GitHub account How can we help? q
Adding a new SSH key to your GitHub account Article versions
GitHub.com
5 GitHub Enterprise 2.12
e = - GitHub Enterprise 2.11
To configure your GitHub account to use your new (or existing) SSH key, you'll also need to add it to - =
_ ¥ GitHub Enterprise 2.10
your GitHub account ; 5 y
GitHub Enterprise 2.9

Before adding a new SSH key to your GitHub account, you should have:

* Checked for existing SSH keys

» Generated a new SSH key and added it to the ssh-agent

Note: DSA keys were deprecated in OpenSSH 7.0. If your operafing system uses OpenSSH. you'll need to use an alternate
type of key when setting up SSH, such as an RSA key. For instance, if your operating system is MacOS Sicrra, you can sect
up SSH using an RSA key.

1 Copy the SSH key to your clipboard.

If your SSH key file has a different name than the example code, modify the filename to match
your current setup. When copying your key, don't add any newlines or whitespace.

$ pbcopy < ~/.ssh/id_rsa.pub

Copies the contents of the id_rsa.pub file to your clipboard

7. This contains a command you can use to copy the contents of that file to your
clipboard from right inside the Terminal. Now obviously it is different for the
operating systems, macOS, Windows, and Linux, so run the command for your
operating system.

[496]

Deploying Applications to Web Chapter 9

8. Use the pbcopy command which is available for macOS.

Then, move into the Terminal and run it.
pbcopy < ~/.ssh/id_rsa.pub

This copies the contents of the file to the clipboard. You can also open the
command up with a regular text editor and copy the contents of the file. We can
use any method to copy the file. It doesn't matter how you do it. All that matters is
you do.

9. Now move back into GitHub, click on the text area and paste it in.

SSH keys / Add new

Title

MacBook Pro

Key

ssh-rsa
AAAAB3NzaClyc2EAAAADAQABAAACAQCIBLESILHSIbg1cd98nCLBhorlsHDV3q2EHBWwabUFCYS37Naz2
WijyOgevLSdGWaEtoZUhtY1TeG1PMKPXuXB8aWdj9ercwS7VoBiINsmENSBwuxm2ogtgo7kEmpMVBg2404v
vkCiyuvtb8dyo4 ArHhukPQ3i99K9SDpirv/ySEn/ZADdcSjiUvHWIKVZHPQUIXSONZTupQv4iS4pipdmz7Wa/3U
LgWO089XxWltwzosdnAYI5FYbwaMp12KIFKfrLMLGY ZkqjT2EJ5wf8LISijeVxzgSrTaSHusB4lcJUV3ndgghOno
w/hxbBZrp+xWbGEg6IxoQUXFom8UBIiIBMJDIIAuzRodn16JUaPGj/o3BFEbAPSSSPEhctkXVZ 3ic36FQIuSvYm
tH9frSa9Ql4v3LTjEzuM0OsBSav3RcNGgJeKA4C/y5rtQLRgSIWk2u1Y +xB6m5jElzepm0QM|FlgWxiw/8alvEkYFbH
KAoyvAkZHPSmM4b+rbxarloj9SsZAY0ogWOAsSUhNOD+f04d9VhrGYGvOyv2leC64FVEBIENnh8Na7g/NOADPQU
KM88gFCCnLdabgZqg+JwmbD4FgJ+btzUaz7psY Jp6nGkT7tQOcrSDJAEHBWBDeNMILNAGQkckKz1kaVu2zh

R2%RSW AWl vk AR Y flel 70K immmannfmantuw—— aarvnarain@amail com el

Add SSH key

The contents of id_rsa.pub should start with ssh-rsa and it should end with
that email you used.

[497]

Deploying Applications to Web Chapter 9

10. Once you're done, go ahead and click on Add SSH key.

SSH keys New SSH key

This is a list of SSH keys associated with your account. Remove any keys that you do not recognize.

MacBook Pro
ﬁ Fingerprint: bb:e3:71:81:c4:cc:22:97:c7:bb:Ba:63:7e:2d:44:56
SSH Added on 26 Jan 2018

Never used — Read/write

Delete

Check out our guide to generating SSH keys or troubleshoot common SSH Problems.

Now we can go ahead and test that things are working by running one command from the
Terminal. Once again this command can be executed from anywhere on your machine. You
don't need to be in your project folder to do this.

Testing the configuration

To test the working of our GitHub configuration, we'll use ssh, which tries to make a
connection. We'll use the T flag, followed by the URL we want to connect to you get at
git@github.com:

ssh -T git@github.com

This is going to test our connection. It will make sure that the SSH keys are properly set up
and we can securely communicate with GitHub. When I run the command I get a message
saying that The authenticity of host 'github.com (192.30.253.113)' can't be established.

Gary:node-web-server Gary$ ssh -T git@github.com
The authenticity of host 'github.com (192.38.253.113)' can't be established.
RSA key fingerprint is SHA256:nThbg6kXUpIWG17E1IGOCspRomTxdCARLViIKwWSESSYS.

Are you sure you want to continue connecting (yes/no)? i

[498]

Deploying Applications to Web Chapter 9

We know that we want to communicate with github.com. We're expecting that
communication to happen, so we can go ahead and enter yes:

Warning: Permanently added 'github.com,192.30.253.113' (RSA) to the list of known hosts.
Hi garygreig! You've succesgfully authenticated, but GitHub does not provide shell access.

Gary:node-web-server Gary$ |

From here, we get a message from the GitHub servers as shown in the preceding
screenshot. If you are seeing this message with your username then you are done. You're
ready to create your first repository and push your code up.

Now if you don't see this message, something went wrong along the way.
Maybe the SSH key wasn't generated correctly or it's not getting
recognized by GitHub.

Next, we'll move into GitHub, go back to the home page, and create a new repository.

Creating a new repository

To create a new repository, follow these steps:

1. On the GitHub home page, in the right-hand side corner, navigate to the New
repository button, which should look like this (click on Start New Project if it's a
new one):

Your repositories | Newn E y

All Public Private Sources Forks
El node-course-web-server
El Parkloco/attendant-app

B Parkloco/attendant-api

This will lead us to the new repository page:

[499]

Deploying Applications to Web Chapter 9

Create a new repository

A repository contains all the files for your project, including the revision history.

Owner Repository name

garygreig~ [‘

Great repository names are short and memorable. Need inspiration? How about stunning-telegram.,

Description (optional)

o) g Public
Anyone can see this repository. You choose who can commit.
(—* Private

J You choose who can see and commit to this repository,

Initialize this repository with a README
This will let you immediately clone the repository to your computer, Skip this step if you're importing an existing
rapasitary.

Add _gitignore: None Add a license: None = | (3)

2. Here, all we need to do is give it a name. I'm going to call this one node~
course-2-web-server:

Owner Repository name

garygreig = ,I’ node-course-2-web-server v

Great repository names are short and memorable. Meed inspiration? How about stunning-telegram.

Description (optional)

Once you have a name, you could give it an optional description and you can pick
whether you want to go with a public or private repository.

Now private repositories do put you on a $7 plan. I do recommend that if
you're creating projects with other companies.

[500]

Deploying Applications to Web Chapter 9

3. In this case though, we're creating pretty simple projects and it doesn't really
matter if someone else finds the code, so go ahead and use a public repository by
clicking that option.

o Public
L}

Anyone can see this repository. You choose who can commit.

— Private
= You choose who can sea and commit to this repository.

4. Once you have those two things filled out, click on the Create repository button:

Create a new repository

A repository contains all the files for your project, including the revision history.

Owner Repository name
garygreig~ [node-course-2-web-server
Great repository names are short and memorable. Need inspiration? How about stunning-telegram.

Description (optional)

(-] Public
Anyone can 52 this rapository. You choose who can commit.

L3 private
“— You choose who can see and commit to this repoasitory.

Initialize this repository with a README
This will let you immediately clone the repository to your computer. Skip this step if you're importing an existing

repository.

Add .gitignore: None Add a license: None - @

Create repository

[501]

Deploying Applications to Web Chapter 9

This is going to get brought to your repository page:

L] garygreig / node-course-2-web-server @Watch~ 0 | JStar 0 Yrork 0

<» Code Issues 0 Pull requests © Projects © Wikl Insights Settings

Quick setup — if you've done this kind of thing before
I SetupinDesktop or HTTPS 5SH https://github.com/garygreig/node-course-2-web-server.git =

We recommend every repository include a README, LICENSE, and .gitignore.

...Or create a new repository on the command line

echo "# node-course-2-web-server" >> README.md =]
git init

git add README.md

git commit -m “first commit™

git remote add origin https://github.com/garygreig/node-course-2-web-server.git

git push —u origin master

...or push an existing repository from the command line

git remote add origin https://github.com/garygreig/node-course-2-web-server.git B
git push -u origin master

It will give you a little setup because currently there is no code to view, so it will give you a
few instructions depending on which situation you're in.

Setting up the repository

Now, out of the preceding three setup instructions, we don't need the one for creating a
new repository. We are not going to use the one for importing our code from some other
URL. What we have is an existing repository and we want to push it from the command
line.

...Or push an existing repository from the command line

git remote add origin https://github.com/garygreig/node-course-2-web-server.git B
git push =-u origin master

[502]

Deploying Applications to Web Chapter 9

We'll run these two commands from inside our project:

¢ The first one adds a new remote to our Git repository
¢ The second command is going to push it up to GitHub

Remotes let Git know which third-party URLs you want to sync up with. Maybe I want to
push my code to GitHub to communicate with my co-workers. Maybe I also want to be able
to push up to Heroku to deploy my app. That means you would want two remotes. In our
case, we'll just add one, so I'll copy this URL, move into the Terminal, paste it, and hit enter:

git remote add origin
https://github.com/garygreig/node—-course—-2-web-server.git

Now that we have our git remote added, we can go ahead and run that second
command. We'll use the second command extensively throughout the book. In the
Terminal, we can copy and paste the code for second command, and run it:

git push -u origin master

Gary:node-web-server Gary$ git push -u origin master
Username for 'https://github.com': garygreig

Password for 'https://garygreig@github.com':

Counting objects: 14, done.

Delta compression using up to 4 threads.

Compressing objects: 188% (12/12), done.

Writing objects: 108% (14/14), 1.98 KiB | 676.088 KiB/s, done.

Total 14 (delta 1), reused @ (delta @)

remote: Resolving deltas: 1686% (1/1), done.

To https://fgithub.com/garygreig/node-course-2-web-server.git

* [new branch] master -> master

Branch master set up to track remote branch master from origin.
Gary:node-web-server Gary$

[503]

Deploying Applications to Web Chapter 9

As shown in the preceding screenshot, we can see everything went great. We were able to
successfully write all of our data up to GitHub, and if we go back into the browser and

refresh the page, we're no longer going to see those setup instructions. Instead, we're going
to see our repository, kind of like a tree view:

L] garygreig / node-course-2-web-server @Watch- 0 &Star 0 YFork 0
<> Code Issues 0 Pull requests 0 Projects O Wiki Insights Settings
No description, website, or topics provided. Edit
Add topics
{0 1 commit ¥ 1 branch 7> 0 releases 41 0 contributors

Branch: master = Mew pull request Create new file Upload files Find file Clone or download ~

Gary Greig Initial commit Latest commit 582@edb 5 hours ago
i public Initial commit 5 hours ago
B views Initial commit 5 hours ago
[.gitignore Initial commit 5 hours ago
[E) package.json Initial commit 5 hours ago
[£] server.js Initial commit & hours ago

Help people interested in this repository understand your project by adding a README. Add a README

Here we can see we have our server. js file, which is great. We don't see the log file or
node_module file, which is good, because we ignored that. I have my public directory.
Everything works really really well. We also have issues tracking, Pull requests. You can
create a Wiki page which lets you set up instructions for your repository. There's a lot of
really great features that GitHub has to offer. We'll be using just the very basic features.

[504]

Deploying Applications to Web Chapter 9

On our repository, we can see we have one commit and if we click on that one commit
button, you can actually go to the commits page and here we see the initial commit message
that we typed. We made that commit in the previous section:

E garygreig / node-course-2-web-server ©Watch 0 %Star 0 ¥Fork 0
<> Code Issues O Pull requests 0 Projects o Wiki Insights Settings
Initial commit Browse files
' master
Gary Greig (2 committed 5 hours ago 8 parents comnit 582@edb@c2Ge83Bd98c3a5c343881550dchaTd66
Showing 8 changed files with 136 additions and O deletions. Unified = Split
3 EEm .gitignore i

3@ -0, +1,3 @@
+node_modules,
+server. log
+package-lock. json

15 mEmEE package.json »
o -8,0 +1,15 @3
+{

+ "name": "web-server",

+ "wversion": "1.6.0",

This is going to let us keep track of all our code, revert if we make unwanted changes, and
manage our repository. Now that we have our code pushed up, we are done.

Deploying the node app to the Web

In this section, you'll deploy your Node app live to the Web using Heroku. By the end of the
section, you'll have the URL you can give anybody and they'll be able to go to that URL in
their browser to view the application. We'll do this via Heroku.

[505]

Deploying Applications to Web Chapter 9

Heroku is a website. It's a web app for managing web applications that are hosted in the
cloud. It's a really great service. They make it almost effortless to create new apps, deploy
your apps, update apps, and add cool add-on-things such as logging and error tracking, all
of that is built in. Now Heroku, like GitHub, does not require a credit card to sign up and
there is a free tier, which we'll use. They have paid plans for just about everything, but we
can get away with the free tier for everything we'll do in this section.

Installing Heroku command-line tools

To kick things off, we'll open up the browser and go to heroku.com. Here we can go ahead
and sign up for a new account. Take a quick moment to either log in to your existing one or
sign up for a new one. Once log in, it'll show you the dashboard. Now your dashboard will
look something like this:

“ & & Secure | https://dashboard.heroku.com/apps w
Mz
[5] eroku
(L
O Personal New *
@ @ a8 ® B
Ruby PHP Node.Js Python Java Go Clojure Scala
| Create New App

Although there might be a greeting telling you to create a new application, which you can
ignore. I have a bunch of apps. You might not have these. That is perfectly fine.

The next thing we'll do is install the Heroku command-line tools. This will let us create
apps, deploy apps, open apps, and do all sorts of really cool stuff from the Terminal,
without having to come into the web app. That will save us time and make development a
lot easier. We can grab the download by going to toolbelt.heroku.com.

[506]

Deploying Applications to Web Chapter 9

Support More

Heroku CLI

:= Table of Contents
Download and install
MacOs
Windows
Ubuntu Snap

Debian/Ubuntu

npm
Getting started

Staying up to date

L]
L]
L]
]
L]
® Standalone
L]
®
®
[]

Troubleshooting

Here we're able to grab the installer for whatever operating system, you happen to be
running on. So, let's start the download. It's a really small download so it should happen
pretty quickly.

[507]

Deploying Applications to Web Chapter 9

Once it's done, we can go ahead and run through the process:

@ & Install heroku-cli &
Standard Install on "Mac”

Emeliscton This will take 73 MB of space on your computer.

Destination Select Click Install to perform a standard installation of this software
: on the disk "Mac".
¢ Installation Type
Installation

Summary

Change Install Location...

Go Back Install

[508]

Deploying Applications to Web Chapter 9

This is a simple installer where you just click on Install. There is no need to customize
anything. You don't have to enter any specific information about your Heroku account.
Let's go ahead and complete the installer.

@ & Install heroku-cli fal
The installation was completed successfully.
Introduction

Destination Select

Installation Type

Installation
¢ Summary The installation was successful.

The software was installed.

Close

This will give us a new command from the Terminal that we can execute. Before we can do
that, we do have to log in locally in the Terminal and that's exactly what we'll do next.

Log in to Heroku account locally

Now we will start off the Terminal. If you already have it running, you might need to
restart it in order for your operating system to recognize the new command. You can test
that it got installed properly by running the following command:

heroku --help

[509]

Deploying Applications to Web Chapter 9

When you run this command, you'll see that it's installing the CLI for the first time and then
we'll get all the help information. This will tell us what commands we have access to and
exactly how they work:

0] [] | node-web-server — -bash — 108x29

drains
features

git

keys

labs

local

logs
maintenance
members
notifications
0Igs
outbound-rules
Pg

pipelines
plugins

regions
releases
run
sessions
spaces
stack
status
teams
twofactor
webhooks

Gary:node-web-server Gary$ D

Now we will need to log in to the Heroku account locally. This process is pretty simple. In
the preceding code output, we have all of the commands available and one of them happens
to be login. We can run heroku login just like this to start the process:

heroku login

[510]

Deploying Applications to Web Chapter 9

I'll run the 1ogin command and now we just use the email and password that we had set
up before:

@ ® | node-web-server — -bash — 108x29

Gary:node-web-server Gary$ heroku login
Enter your Heroku credentials:

garyngreig®gmail.com
Aeteokdokok ok

I'll type in my email and password. Typing for Password is hidden because it's secure. And
when I do that you see Logged in as garyngreig@gmail.com shows up and this is fantastic:

Logged in as garyngreig@gmail.com
Gary:node-web-server Gary$ I

Now we're logged in and we're able to successfully communicate between our machine's
command line and the Heroku servers. This means we can get started creating and
deploying applications.

Getting SSH key to Heroku

Now before going ahead, we'll use the clear command to clear the Terminal output and
get our SSH key on Heroku, kind of like what we did with GitHub, only this time we can do
it via the command line. So it's going to be a lot easier. In order to add our local keys to
Heroku, we'll run the heroku keys:add command. This will scan our SSH directory and
add the key up:

heroku keys:add

[511]

Deploying Applications to Web Chapter 9

Here you can see it found a key the id_rsa.pub file: Would you like to upload it to
Heroku?.

Gary node-web-server Gary$ heroku keys add
Found an SSH public key at / /

Would you like to upload it to Hernku? (Y/n

Type Yes and hit enter:

Would you like tu uplnad 1t to Heroku?
Uploading /User a rsa.pub S5H key... done

Gary: nude-weh-server GaryS I

Now we have our key uploaded. That is all it took. Much easier than it was to configure
with GitHub. From here, we can use the heroku keys command to print all the keys
currently on our account:

heroku keys

Gary: node-weh-server GaryS heroku keys

11 1 keys
ssh-rsa AAA zaC. ngfmaqlw::
Gary:node-web-server Gary$

We could always remove them using heroku keys:remove command followed by the
email related to that key. In this case, we'll keep the Heroku key that we have. Next up, we
can test our connection using SSH with the v flag and git@heroku.com:

ssh —-v git@heroku.com

[512]

Deploying Applications to Web Chapter 9

This will communicate with the Heroku servers:

[NN) node-web-server — ssh -v git@heroku.com — 108x29

debugl: key_load_public: No such file or directory

debugl: identity file /Users/Gary/.ssh/id_rsa-cert type -1

debugl: key_load_public: No such file or directory

debugl: identity file /Users/Gary/.ssh/id_dsa type -1

debugl: key_load_public: No such file or directory

debugl: identity file /Users/Gary/.ssh/id_dsa-cert type -1

debugl: key_load_public: No such file or directory

debugl: identity file /Users/Gary/.ssh/id_ecdsa type -1

debugl: key_load_public: No such file or directory

debugl: identity file /Users/Gary/.ssh/id_ecdsa-cert type -1

debugl: key_load_public: No such file or directory

debugl: identity file /Users/Gary/.ssh/id_ed25519 type -1

debugl: key_load_public: No such file or directory

debugl: identity file /Users/Gary/.ssh/id_ed25519-cert type -1

debugl: Local version string SSH-2.0-OpenSSH_7.6

debugl: Remote protocol version 2.8, remote software version endosome

debugl: no match: endosome

debugl: Authenticating to heroku.com:22 as 'git'

debugl: SSH2_MSG_KEXINIT sent

debugl: SSH2_MSG_KEXINIT received

debugl: kex: algorithm: curve25519-sha256@libssh.org

debugl: kex: host key algorithm: ssh-rsa

debugl: kex: server->client cipher: aesl28-ctr MAC: hmac-sha2-256-etm@openssh.com compression:
debugl: kex: client->server cipher: aesl28-ctr MAC: hmac-sha2-256-etm@openssh.com compression:
debugl: expecting SSH2_MSG_KEX_ECDH_REPLY

debugl: Server host key: ssh-rsa SHA256:8tFOwX2WquK45aGKs/BhldKmBXHO8vxUe8VCIIWOA/o
The authenticity of host 'heroku.com (50.19.85.154)' can't be established.

RSA key fingerprint is SHA256:8tFeOwX2WquK45aGKs/BhldKmBXH@BvxUe@VCIIWOA/o.

Are you sure you want to continue connecting (yes/no)? D

As shown, we can see it's asking that same question: The authenticity of the host
'heroku.com' can't be established, Are you sure you want to continue connecting? Type
Yes.

[513]

Deploying Applications to Web Chapter 9

You will see the following output:

Are you sure you want to continue connecting (yes/no)? Yes
Warning: Permanently added 'heroku.com,58.19.85.154' (RSA) to the list of known hosts.
debugl: rekey after 4294967296 blocks

debugl: SSH2_MSG_MNEWKEYS sent

debugl: expecting SSH2_MSG_NEWKEYS

debugl: SSH2_MSG_NEWKEYS received

debugl: rekey after 4294967296 blocks

debugl: SSH2_MSG_SERVICE_ACCEPT received

debugl: Authentications that can continue: publickey
debugl: MNext authentication method: publickey

debugl: Offering public key: RSA SHA256:xasul5xLVjk69cxyblZx4VZuZcqyl7uyMEKPmAYBSLc /Users/Gary/.sshfid_rsa
debugl: Server accepts key: pkalg ssh-rsa blen 535

debugl: Authentication succeeded (publickey).
Authenticated to heroku.com ([50.19.85.154]1:22).

debugl: channel @: new [client-session]

debugl: Entering interactive session.

debugl: pledge: network

debugl: Sending environment.

debugl: Sending env LC_CTYPE = UTF-8

PTY allocation reguest failed on channel @

shell request failed on channel @

Gary:node-web-server Gary$

Now when you run that command, you'll get a lot of cryptic output. What you're looking
for is authentication succeeded and then public key in parentheses. If things did not go
well, you'll see the permission denied message with public key in parentheses. In this case,
the authentication was successful, which means we are good to go. I'll run clear again,
clearing the Terminal output.

[514]

Deploying Applications to Web Chapter 9

Setting up in the application code for Heroku

Now we can turn our attention towards the application code because before we can deploy
to Heroku, we will need to make two changes to the code. These are things that Heroku
expects your app to have in place in order to run properly because Heroku does a lot of
things automatically, which means you have to have some basic stuff set up for Heroku to
work. It's not too complex—some really simple changes, a couple one-liners.

Changes in the server.js file

First up in the server. js file down at the very bottom of the file, we have the port and our
app.listen statically coded inside server. js:

app.listen (3000, () => {
console.log('Server is up on port 3000"');
P) i

We need to make this port dynamic, which means we want to use a variable. We'll be using
an environment variable that Heroku is going to set. Heroku will tell your app which port
to use because that port will change as you deploy your app, which means that we'll be
using that environment variable so we don't have to swap out our code every time we want
to deploy.

With environment variables, Heroku can set a variable on the operating system. Your Node
app can read that variable and it can use it as the port. Now all machines have environment
variables. You can actually view the ones on your machine by running the env command
on Linux or macOS or the set command on Windows.

[515]

Deploying Applications to Web Chapter 9

What you'll get when you do that is a really long list of key-value pairs, and this is all
environment variables are:

[NoN] | node-web-server — -bash — 108x29

Gary:node-web-server Gary$ env
SSH_AGENT_PID=1116
TERM_PROGRAM=Apple_Terminal
TERM=xterm-256color

SHELL=/bin/bash

TMPDIR=/var/folders/f8/fvqydlns@7741z1kétdnbfomaeeegn/T/
Apple_PubSub_Socket_Render=/private/tmp/com.apple.launchd.bDqlAfGo8I/Render
TERM_PROGRAM_VERSION=4088

TERM_SESSION_ID=937963CC-2B78-4D9E-AF49-99CA3D52AEF4

USER=Gary
SSH_AUTH_SOCK=/var/folders/f8/fvqgydlns@7741z1k6tdnbf9meaeegn/T//ssh-FvWL5KUGvI5n/agent.1115

PATH=/usr/bin:fbin:fusr/sbhin:/sbin:/usr/local/bin
PWD=/Users/Gary/Desktop/node-web-server
XPC_FLAGS=8x0

XPC_SERVICE_NAME=8

HOME=/Users/Gary

SHLVL=1

LOGNAME=Gary

LC_CTYPE=UTF-8

_=/usr/bin/env

Gary:node-web-server Gary$ I

Here, we have a LOGNAME environment variable set to Andrew. I have a HOME
environment variable set to my home directory, all sorts of environment variables
throughout my operating system.

One of these that Heroku is going to set is called PORT, which means we need to go ahead
and grab that port variable and use it in server. js instead of 3000. Up at the very top of
the server. js file, we'd to make a constant called port, and this will store the port that
we'll use for the app:

const express = require('express');.
const hbs = require('hbs');
const fs = require('fs');

const port

[516]

Deploying Applications to Web Chapter 9

Now the first thing we'll do is grab a port from process.env. The process.envis an
object that stores all our environment variables as key-value pairs. We're looking for one
that Heroku is going to set called PORT:

const port = process.env.PORT;

This is going to work great for Heroku, but when we run the app locally, the PORT
environment variable is not going to exist, so we'll set a default using the OR (| |) operator
in this statement. If process.env.port does not exist, we'll set port equal to 3000 instead:

const port = process.env.PORT || 3000;

Now we have an app that's configured to work with Heroku and to still run locally, just like
it did before. All we have to do is take the PORT variable and use that in app.listen
instead of 3000. As shown, I'm going to reference port and inside our message, I'll swap it
out for template strings and now I can replace 3000 with the injected port variable, which
will change over time:

app.listen(port, () => {
console.log (' Server is up on port ${port}’);
P) i

With this in place, we have now fixed the first problem with our app. I'll now run node
server.js from the Terminal, like we did in the previous chapter:

node server.js

We still get the exact same message: Server is up on port 3000, so your app will still works
locally as expected:

[NoN] node-web-server — node server.js — 108x29

Gary:node-web-server Gary$ node server.js
_§erver is up on port 36608

Changes in the package.json file

Next up, we have to specify a script in package . json. Inside package. json, you might
have noticed we have a scripts object, and in there we have a test script.

[517]

Deploying Applications to Web Chapter 9

This gets set by default for npm:

package.json ® SErVEr.js ® gitignore ®
{
2 "name": "web-server",
3 "version": "1.0@.0",
1 "description": "",
5 "main": "index.js",
6 "seripts": {
7 "test": "echo \"Error: no test specified\" && exit 1"
8 ks
9 T 8 1] L
"license": “ISC”J
11 "dependencies": {
12 "express": "~4.16.0",
13 Yhbs 540 1Y
15 %

We can create all sorts of scripts inside the scripts object that do whatever we like. A
script is nothing more than a command that we run from the Terminal, so we could take
this command, node server. js, and turn it into a script instead, and that's exactly what
we're going to do.

Inside the scripts object, we'll add a new script. The script needs to be called start:

"test": "echo \"Error: no test specified\" && exit 1",
8 Pstartits
9 }

This is a very specific, built-in script and we'll set it equal to the command that starts our
app. In this case, it will be node server.js:

"start": "node server.js"

This is necessary because when Heroku tries to start our app, it will not run Node with your
file name because it doesn't know what your file name is called. Instead, it will run the start

script and the start script will be responsible for doing the proper thing; in this case, booting
up that server file.

[518]

Deploying Applications to Web Chapter 9

Now we can run our app using that start script from the Terminal by using the following
command:

npm start

When I do that, we get a little output related to npm and then we get Server is up on port
3000, and if we visit the app in the browser, everything works exactly as it did in the
previous chapter:

@® [] node-web-server — node « npm SSH_AGENT_PID=1116 TERM_PROGRAM=Apple_Terminal — 108x29

Gary:node-web-server Gary$ npm start

> web-server@1.8.8 start /Users/Gary/Desktop/node-web-server
> node server.js

Server is up on port 3000

< C | ® localhost:3000

Home Page

Home
About
WELCOME TO MY WEBSITE

Created By Andrew Mead - Copyright 2018

The big difference is that we are now ready for Heroku. We could also run the test script
using from the Terminal npm test:

npm test

[519]

Deploying Applications to Web Chapter 9

Now, we have no tests specified and that is expected:

L] [] | node-web-server — -bash — 108x29

Gary:node-web-server Gary$ npm test

> web-server@1.8.8 test /Users/Gary/Desktop/node-web-server
> echo "Error: no test specified" && exit 1

Error: no test specified
npm Test failed. See above for more details.
Gary:node-web-server Gary$

Making a commit in Heroku

The next step in the process will be to make the commit and then we can finally start getting
it up on the Web. From the Terminal, we'll use some of the Git commands we explored
earlier in this chapter. First up, git status. When we run git status, we have
something a little new:

L] [] | node-web-server — -bash — 108x29

Gary:node-web-server Gary$ git status
On branch master
Your branch is up-to-date with 'origin/master’'.

Changes not staged for commit:
(use "git add <file>..." to update what will be committed)
(use "git checkout -- <file>..." to discard changes in working directory)

Untracked files:
(use "git add <file>..." to include in what will be committed)

no changes added to commit (use "git add" and/or "git commit -a")
Gary:node-web-server Gary$ clear

Instead of new files, we have modified files here as shown in the code output here. We have
a modified package. json file and we have a modified server. js file. These are not going
to be committed if we were torun a git commit just yet; we still have to use git add.
What we'll dois run git add with the dot as the next argument. Dot is going to add every
single thing showing up and get status to the next commit.

[520]

Deploying Applications to Web Chapter 9

Now I only recommend using the syntax of everything you have listed in the Changes not
staged for commit header. These are the things you actually want to commit, and in our
case, that is indeed what we want. If [run git add and then a rerun git status, we can
now see what is going to be committed next, under the Changes to be committed header:

L] [] | node-web-server — -bash — 108x29

Gary:node-web-server Gary$ git add .
Gary:node-web-server Gary$ git status

On branch master

Your branch is up-to-date with ‘'origin/master'.

Changes to be committed:
(use "git reset HEAD <file>..." to unstage)

Gary:node-web-server Gary$ I

Here we have our package. json file and the server. js file. Now we can go ahead and
make that commit.

IMMrunagit commit command with the m flag so we can specify our message, and a good
message for this commit would be something like Setup start script and heroku
port:

git commit -m 'Setup start script and heroku port'
Now we can go ahead and run that command, which will make the commit.

Now we can go ahead and push that up to GitHub using the git push command, and we
can leave off the origin remote because the origin is the default remote. I'll go ahead and
run the following command:

git push

[521]

Deploying Applications to Web Chapter 9

This will push it up to GitHub, and now we are ready to actually create the app, push our
code up, and view it over in the browser:

[NON) | node-web-server — -bash — 108x29

Gary:node-web-server Gary$ git push

Counting objects: 5, done.

Delta compression using up to &4 threads.

Compressing objects: 180% (5/5), done.

Writing objects: 100% (5/5), 613 bytes | 613.80 KiB/s, done.
Total 5 (delta 2), reused @ (delta @)

remote: Resolving deltas: 188% (2/2), completed with 2 local objects.

To https://github.com/garygreig/node-course-2-web-server.git
5020edb..Pec4®fc master -> master

Gary:node-web-server Gary$

Running the Heroku create command

The next step in the process will be to run a command called heroku create from the
Terminal. heroku create needs to get executed from inside your application:

heroku create

Just like we run our Git commands, when I run heroku create, a couple things are going
to happen:

e First up, it's going to make a real new application over in the Heroku web app
e It's also going to add a new remote to your Git repository

Now remember we have an origin remote, which points to our GitHub repository. We'll
have a Heroku remote, which points to our Heroku Git repository. When we deploy to the
Heroku Git repository, Heroku is going to see that. It will take the changes and it will
deploy them to the Web. When we run Heroku create, all of that happens:

L] [] | node-web-server — -bash — 108x29

Gary:node-web-server Gary$ heroku create
Creating app... done, @ na wil

Gary:node-web-server Gary$ I

[522]

Deploying Applications to Web Chapter 9

Now we do still have to push up to this URL in order to actually do the deploying process,
and we can do that using git push followed by heroku:

git push heroku

The brand new remote was just added because we ran heroku create. Now pushing it
this time around will go through the normal process. You'll then start seeing some logs.

These are logs coming back from Heroku letting you know how your app is deploying. It's
going through the entire process, showing you what happens along the way. This will take
about 10 seconds and at the very end we have a success message—Verifying deploy...
done:

0] [] | node-web-server — -bash — 108x29

remote:

remote: Restoring cache

remote: Skipping cache restore (not-found)
remote:

remote: Building dependencies

remote: Installing node modules (package.json)
remote: added 76 packages in 2.575s

remote:

remote: Caching build

remote: Clearing previous node cache

remote: Saving 2 cacheDirectories (default):
remote: - node_modules

remote: - bower_components (nothing to cache)
remote:

remote: Build succeeded!

remote: Discovering process types

remote: Procfile declares types -> (none)
remote: Default types for buildpack -> web
remote:

remote: Compressing...

remote: Done: 1B.9M

remote: Launching...

remote: Released v3

remote: https://nameless-wildwood-38477.herokuapp.com/ deployed to Heroku
remote:

remote: Verifying deploy... done.

To https://git.heroku.com/nameless-wildwood-38477.git
* [new branch] master -> master
Gary:node-web-server Gary$

[523]

Deploying Applications to Web Chapter 9

It also verified that the app was deployed successfully and that did indeed pass. From here
we actually have a URL we can visit (https://sleepy-retreat-32096.herokuapp.com/).
We can take it, copy it, and paste it in the browser. What I'll do instead is use the following
command:

heroku open

The heroku open will open up the Heroku app in the default browser. When I run this, it
will switch over to Chrome and we get our application showing up just as expected:

@ @ D Some website x N B Personal apps | Heroku x

- (¥ | @ Secure | https://nameless-wildwood-38477.herokuapp.com

Home Page

Home
About
WELCOME TO MY WEBSITE

Created By Andrew Mead - Copyright 2018

We can switch between pages and everything works just like it did locally. Now we have a
URL and this URL was given to us by Heroku. This is the default way Heroku generates
app URLs. If you have your own domain registration company, you can go ahead and
configure its DNS to point to this application. This will let you use a custom URL for your
Heroku app. You'll have to refer to the specific instructions for your domain registrar in
order to do that, but it can indeed be done.

Now that we have this in place, we have successfully deployed our Node applications live
to Heroku, and this is just fantastic. In order to do this, all we had to do is make a commit to
change our code and push it up to a new Git remote. It could not be easier to deploy our
code.

[524]

Deploying Applications to Web Chapter 9

You can also manage your application by going back over to the Heroku dashboard. If you
give it a refresh, you should see that brand new URL somewhere on the dashboard.
Remember mine was sleepy retreat. Yours is going to be something else. If I click on the
sleepy retreat, I can view the app page:

HEROKU

O Personal > . nameless-wildwood-3B477

Metrics Activity

€) If you use GitHub, you can link your deploys to the code diff on GitHub.

Activity Feed

>)

garyngrelg@gmail.com: Deployed Becddfc?

garyngreig@gmail.com: Build succesdead
4 minut o - View build log

garyngreig@gmail.com: Enable Logplex
5 rminute o - v2 - Roll back ta here

® ® o

garyngreig@gmail.com: Initial release
5 nut 1 - Roll back to here

Here we can do a lot of configuration. We can manage Activity and Access so we can
collaborate with others. We have metrics, we have Resources, all sorts of really cool stuff.
With this in place, we are now done with our basic deploying section.

In the next section, your challenge will be to go through that process again. You'll add some
changes to the Node app. You'll commit them, deploy them, and view them live in the Web.
We'll get started by creating the local changes. That means I'll register a new URL right here
using app.get.

[525]

Deploying Applications to Web Chapter 9

We'll create a new page/projects, which is why I have that as the route for my HTTP get
handler. Inside the second argument, we can specify our callback function, which will get
called with request and response, and like we do for the other routes above, the root route
and our about route, we'll be calling response. render to render our template. Inside the
render arguments list, we'll provide two.

The first one will be the file name. The file doesn't exist, but we can still go ahead and call
render. I'll call it projects.hbs, then we can specify the options we want to pass to the
template. In this case, we'll set page title, setting it equal to Projects with a capital P.
Excellent! Now with this in place, the server file is all done. There are no more changes
there.

What I'll do is go ahead and go to the views directory, creating a new file called
projects.hbs. In here, we'll be able to configure our template. To kick things off, I'm
going to copy the template from the about page. Since it's really similar, I'll copy it. Close
about, paste it into projects, and I'm just going to change this text to project page text would
go here. Then we can save the file and make our last change.

The last thing we want to do is update the header. We now have a brand new projects page
that lives at /projects. So we'll want to go ahead and add that to the header links list.
Right here, I'll create a new paragraph tag and then I'll make an anchor tag. The text for the
link will be Projects with a capital P and the href, which is the URL to visit when that
link is clicked. We'll set that equal to /projects, just like we did for about, where we set it
equal to /about.

Now that we have this in place, all our changes are done and we are ready to test things out
locally. I'll fire up the app locally using Node with server. js as the file. To start, we're up
on localhost 3000. So over in the browser, I can move to the localhost tab, as opposed to the
Heroku app tab, and click on Refresh. Right here we have Home, which goes to home, we
have About which goes to about, and we have Projects which does indeed go to
/projects, rendering the projects page. Project page text would go here. With this in place
we're now done locally.

We have the changes, we've tested them, now it's time to go ahead and make that commit.
That will happen over inside the Terminal. I'll shut down the server and run Git status. This
will show me all the changes to my repository as of the last commit. I have two modified
files: the server file and the header file, and I have my brand new projects file. All of this
looks great. I want to add all of this to the next commit, so I can use a Git add with the . to
do just that.

[526]

Deploying Applications to Web Chapter 9

Now before I actually make the commit, I do like to test that the proper things got added by
running Git status. Right here I can see my changes to be committed are showing up in
green. Everything looks great. Next up, we'll run a Git commit to actually make the commit.
This is going to save all of the changes into the Git repository. A message for this one would
be something like adding a project page.

With a commit made, the next thing you needed to do was push it up to GitHub. This will
back our code up and let others collaborate on it. I'll use Git push to do just that. Remember
we can leave off the origin remote as origin is the default remote, so if you leave off a
remote it'll just use that anyway.

With our GitHub repository updated, the last thing to do is deploy to Heroku and we do
that by pushing up the Git repository, using Git push, to the Heroku remote. When we do
this, we get our long list of logs as the Heroku server goes through the process of installing
our npm modules, building the app, and actually deploying it. Once it's done, we'll get
brought back to the Terminal like we are here, and then we can open up the URL in the
browser. Now I can copy it from here or run Heroku open. Since I already have a tab open
with the URL in place, I'll simply give it a refresh. Now you might have a little delay as you
refresh your app. Sometimes starting up the app right after a new app was deployed can
take about 10 to 15 seconds. That will only happen as you first visit it. Other times where
you click on the Refresh button, it should reload instantly.

Now we have the projects page and if I visit it, everything looks awesome. The navbar is
working great and the projects page is indeed rendering at /projects. With this in place,
we are now done. We've gone through the process of adding a new feature, testing it
locally, making a Git commit, pushing it up to GitHub, and deploying it to Heroku. We
now have a workflow for building real-world web applications using Node.js. This also
brings a close to this section.

[527]

Deploying Applications to Web Chapter 9

Summary

You also learned about Git, GitHub, and Heroku. These are the tools I prefer to use when
I'm creating applications. I like to use Git because it's super popular. It's basically the only
choice these days. I like to use GitHub because it has a great user interface. It has a ton of
awesome features and pretty much everyone else is using it too. There's a great community.
And I like to use Heroku because it is just dead simple to deploy new versions of your
application. You can swap out any of these tools with any other tools. You can use services
such Amazon Web Services to host. You could use Bitbucket as your GitHub alternative.
These are perfectly fine solutions. All that really matters is you have some tools that are
working for you, you have a Git repository backed up somewhere, whether it's GitHub or
Bitbucket, and you have an easy way to deploy so you can make changes quickly and get
them out to your users fast.

In different sections, we looked at how to add files to Git and how to make that first
commit. Next, we set up both GitHub and Heroku, then we looked at how to push our code
and deploy it. Then, we looked at how we can communicate with Heroku to deploy our
code. Then after that, we looked at some real-world workflows for creating new commits,
pushing to GitHub, and deploying to Heroku.

In the next chapter, we'll look into testing our applications.

[528]

10

Testing the Node Applications —
Part 1

In this chapter, we'll look at how we can test our code to make sure it's working as
expected. Now, if you've ever set up test cases for other languages, then you know how
hard it can be to get started. You have to set up the actual test infrastructure. Then you have
to write your individual test cases. Every time I didn't test an application, it was because the
setup process and the tools available to me were such a burden. Then you dig around for
information online and you get really simple examples, but not examples for testing real-
world things like asynchronous code. We'll be doing all of that in this chapter. I'll give you a
very simple setup for testing and writing your test cases.

We'll look at the best tools available so you'll actually be excited to write those test cases
and see all of those green checkmarks. We'll be testing from here on out as well, so let's dive
in looking at how we can test some code.

Testing the Node Applications — Part 1 Chapter 10

Basic testing

In this section, you'll create your very first test case so that you can test whether your code
is working as expected. By adding automatic testing to our project, we'll be able to verify
that a function does what it says it'll do. If we make a function that's supposed to add two
numbers together, we can automatically verify it's doing that. And if we have a function
that's supposed to fetch a user from the database, we can make sure it's doing that as well.

Now to get started in this section, we'll look at the very basics of setting up a testing suite
inside a Node.js project. We'll be testing a real-world function.

Installing the testing module

In order to get started, we will make a directory to store our code for this chapter. We'll
make one on the desktop using mkdir and we'll call this directory node-tests:

mkdir node-tests

Then we'll change directory inside it using cd, so we can go ahead and run npm init. We'll
be installing modules and this will require a package. json file:

cd node-tests

npm init

® [] node-tests — npm TERM_PROGRAM=Apple_Terminal TERM=xterm-256color — 108x29

Gary:Desktop Gary$ mkdir node-tests

Gary:Desktop Gary$ cd node-tests

Gary:node-tests Gary$ npm init

This utility will walk you through creating a package.json file.

It only covers the most common items, and tries to guess sensible defaults.

See “npm help json® for definitive documentation on these fields
and exactly what they do.

Use "npm install <pkg>’ afterwards to install a package and
save it as a dependency in the package.json file.

Press “C at any time to quit.
package name: (tests)

We'll run npm init using the default values for everything, simply hitting enter throughout
every single step:

[530]

Testing the Node Applications — Part 1 Chapter 10

® [] node-tests — npm TERM_PROGRAM=Apple_Terminal TERM=xterm-256color — 108x29

Use “npm install <pkg>" afterwards to install a package and
save it as a dependency in the package.json file.

Press *C at any time to quit.
package name: (tests)
version: (1.0.8)

description:

entry point: (index.js)

test command:

git repository:

keywords:

author:

license: (ISC)

About to write to /Users/Gary/Desktop/node-tests/package.json:

{
"name": "tests",
"version": "1.8.8",
"description":
"main": "index.js",
"seripts": {
"test": "echo \"Error: no test specified\" && exit 1"
}J’
"authox": "*,
"license": "ISC"

Is this ok? (yes) []

Now once that package. json file is generated, we can open up the directory inside Atom.
It's on the desktop and it's called node-tests.

From here, we're ready to actually define a function we want to test. The goal in this section
is to learn how to set up testing for a Node project, so the actual functions we'll be testing
are going to be pretty trivial, but it will help illustrate exactly how to set up our tests.

Testing a Node project

To get started, let's make a fake module. This module will have some functions and we'll
test those functions. In the root of the project, we'll create a brand new directory and I'll call
this directory utils:

[NN Project — ~/Desktop/node-tests
Project 4+ Enter the path for the new folder.
utils

@ package.json

[531]

Testing the Node Applications — Part 1 Chapter 10

We can assume this will store some utility functions, such as adding a number to another
number, or stripping out whitespaces from a string, anything kind of hodge-podge that
doesn't really belong to any specific location. We'll make a new file in the utils folder
called utils. js, and this is a similar pattern to what we did when we created the weather
and location directories in our weather app in the previous chapter:

| NoN] | Project — ~/Desktop/node-tests
Project + Enter the path for the new file.
v [l node-tests utils/utils.js

E package.json

You're probably wondering why we have a folder and a file with the same name. This will
be clear when we start testing.

Now before we can write our first test case to make sure something works, we need
something to test. I'll make a very basic function that takes two numbers and adds them
together. We'll create an adder function as shown in the following code block:

module.exports.add = () => {
}

This arrow function (=>) will take two arguments, a and b, and inside the function, we'll
return the value a + b. Nothing too complex here:

module.exports.add = () => {
return a + b;

bi

Now since we just have one expression inside our arrow function (=>) and we want to
return it, we can actually use the arrow function (=>) expression syntax, which lets us add
our expression as shown in the following code, a + b, and it'll be implicitly returned:

module.exports.add = (a, b) => a + b;

[532]

Testing the Node Applications — Part 1 Chapter 10

There's no need to explicitly add a return keyword on to the function. Now that we have
utils. js ready to go, let's explore testing.

We'll be using a framework called Mocha in order to set up our test suite. This will let us
configure our individual test cases and also run all of our test files. This will be really
important for creating and running tests. The goal here is to make testing simple and we'll
use Mocha to do just that. Now that we have a file and a function we actually want to test,
let's explore how to create and run a test suite.

Mocha - the testing framework

We'll be doing the testing using the super popular testing framework Mocha, which you
can find at mochajs.org. This is a fantastic framework for creating and running test suites.
It's super popular and their page has all the information you'd ever want to know about
setting it up, configuring it, and all the cool bells and whistles it has included:

® 0 ® /& Mocha - the fun, simple, flexil % e

« & & Secure | https://mochajs.ong k4

Mocha is a feature-rich JavaScript test framework running on MNode is and in the browser, making
asynchronous testing simple and fun. Mocha tests run serially, allowing for flexible and accurate
reporting, while mapping uncaught exceptions to the correct test cases. Hosted on GitHub.

[y son] bk @ o 3]

[533]

Testing the Node Applications — Part 1 Chapter 10

If you scroll down on this page, you'll be able to see a table of contents:

® O ® & pocha - the fun, simple, flext x e

- @ Secure | hitps://mochajs.ong 1

TABLE OF CONTENTS

Installation Dynamically Generating Tasts
Getting Started Timeouts

Detects Multiple Galls to donel) Diffs

Assertions Usage

Asynchronous Code Interfaces

Synchronous Code Reporters

Arrow Functions Bunning Mocha in the Browser
Hooks mocha, opts

Pending Tests The test/ Directory
Exglusive Tests Editor Pluging

Inclusive Tasts Examples

Retry Tests Testing Mocha

re Inf ion

Here you can explore everything Mocha has to offer. We'll be covering most of it in this
chapter, but for anything we don't cover, I do want to make you aware you can always
learn about it on this page.

Now that we've explored the Mocha documentation page, let's install it and start using it.
Inside the Terminal, we'll install Mocha. First up, let's clear the Terminal output. Then we'll
install it using the npm install command. When you use npm install, you can also use
the shortcut npm i. This has the exact same effect. I'll use npm i with mocha, specifying the
version @3.0. 0. This is the most recent version of the library as of this filming;:

npm i mocha@3.0.0

Now we do want to save this into the package. json file. Previously, we've used the save
flag, but we'll talk about a new flag, called save-dev. The save-dev flag is will save this
package for development purposes only—and that's exactly what Mocha will be for. We
don't actually need Mocha to run our app on a service like Heroku. We just need Mocha
locally on our machine to test our code.

[534]

Testing the Node Applications — Part 1 Chapter 10

When you use the save-dev flag, it installs the module much the same way:

npm i mocha@5.0.0 —--save-dev

[NoN] [[71 node-tests — -bash — 108x29

Gary:node-tests Gary$ npm i mocha@®5.8.8 --save-dev

npm mocha is being moved from dependencies to devDependencies
npm m tests@1.8.8 Mo description

npm [l tests@1.8.8 No repository field.

+ mocha@5.8.8
updated 1 package in 4.678s
Gary:node-tests Gary$ I

But if you explore package. json, you'll see things are a little different. Inside our
package. json file, instead of a dependencies attribute, we have a devDependencies
attribute:

[NON | package.json — ~/Desktop/node-tests
Project utils.js o package.json x
v Il node-tests {
n ", n n
> [l node_modules name": "tests",
n 3 n n "
version": "1.0.0
2 - Ul.lg n 3 3 L1 umn !
description": 2
B package-nck jsan "main": "index.js",
“"scripts": {
"test": "echo \"Error: no test specified\" && exit 1"
}#
Ilauthor.il: IIII,
"license": "ISC",

"dependencies": {},
"devDependencies": {
||m0cha||: ||A5.algll

}

=
T

package.json 12:23 F UTF-8 JSON @ 0 files

In there we have Mocha, with the version number as the value. The devDependencies are
fantastic because they're not going to be installed on Heroku, but they will be installed
locally. This will keep the Heroku boot times really, really quick. It won't need to install
modules that it's not going to actually need. We'll be installing both devDependencies and
dependencies in most of our projects from here on out.

[535]

Testing the Node Applications — Part 1 Chapter 10

Creating atest file for the add function

Now that we have Mocha installed, we can go ahead and create a test file. In the utils
folder, we'll make a new file called utils.test.js:

@ ® = Project — ~/Desktop/node-tests
Project + Enter the path for the new file.
v Bl node-tests utils/utils.test.js

* I node_modules

@ utils.js
@ package-lock.json

@ package.json

This file will store our test cases. We'll not store our test cases in utils. js. This will be our
application code. Instead, we'll make a file called utils.test.js. When we use this
test.Jjs extension, we're basically telling our app that this will store our test cases. When
Mocha goes through our app looking for tests to run, it should run any file with this
extension.

Now we have a test file, the only thing left to do is create a test case. A test case is a function
that runs some code, and if things go well, great, the test is considered to have passed. And
if things do not go well, the test is considered to have failed. We can create a new test case,
using it. It is a function provided by Mocha. We'll be running our project test files through
Mocha, so there's no reason to import it or do anything like that. We simply call it just like
this:

itO;
Now it lets us define a new test case and it takes two arguments. These are:

¢ The first argument is a string
¢ The second argument is a function

First up, we'll have a string description of what exactly the test is doing. If we're testing that
the adder function works, we might have something like:

it ('should add two numbers');

[536]

Testing the Node Applications — Part 1 Chapter 10

Notice here that it plays into the sentence. It should read like this, it should add two
numbers; describes exactly what the test will verify. This is called behavior-driven
development, or BDD, and that's the principles that Mocha was built on.

Now that we've set up the test string, the next thing to do is add a function as the second
argument:

it ('should add two numbers', () => {
}) i

Inside this function, we'll add the code that tests that the add function works as expected.
This means it will probably call add and check that the value that comes back is the
appropriate value given the two numbers passed in. That means we do need to import the
util. js file up at the top. We'll create a constant, call utils, setting it equal to the return
result from requiring utils. We're using . / since we will be requiring a local file. It's in the
same directory so I can simply type utils without the js extension as shown here:

const utils = require('./utils');

it ('should add two numbers', () => {

)i

Now that we have the utils library loaded in, inside the callback we can call it. Let's make a
variable to store the return results. We'll call this one results. And we'll set it equal to
utils.add passing in two numbers. Let's use something like 33 and 11:

const utils = require('./utils');

it ('should add two numbers', () => {
var res = utils.add (33, 11);
)i

We would expect it to get 44 back. Now at this point, we do have some code inside of our
test suites so we run it. We'll do that by configuring that test script we looked at in the
previous chapter inside a package. json.

[537]

Testing the Node Applications — Part 1 Chapter 10

Currently, the test script simply prints a message to the screen saying that no tests exist.
What we'll do instead is call Mocha. As shown in the following code, we'll be calling
Mocha, passing in as the one and only argument the actual files we want to test. We can use
a globbing pattern to specify multiple files. In this case, we'll be using ** to look in every
single directory. We're looking for a file called utils.test.js:

"scripts": {
"test": "mocha **/utils.test.js"
I

Now this is a very specific pattern. It's not going to be particularly useful. Instead, we can
swap out the file name with a star as well. Now we're looking for any file on the project that
has a file name ending in . test. js:
"scripts": {
"test": "mocha **/*.test.]js"

by

And this is exactly what we want. From here, we can run our test suite by saving
package. json and moving to the Terminal. We'll use the clear command to clear the
Terminal output and then we can run our test script using command shown as follows:

npm test

When we run this, we'll execute that Mocha command:

[NON) | node-tests — -bash — 108x29

Gary:node-tests Gary$ npm test

> tests@1.08.8 test /Users/Gary/Desktop/node-tests
> mocha *k/%.test.js

Gary:node-tests Gary$ I

It'll go off. It'll fetch all of our test files. It'll run all of them and print the results on the
screen inside Terminal as shown in the preceding screenshot. Here we can see we have a
green checkmark next to our test, should add two numbers. Next, we have a little
summary, one passing test, and it happened in 8 milliseconds.

[538]

Testing the Node Applications — Part 1 Chapter 10

Now in our case, we don't actually assert anything about the number that comes back. It
could be 700 and we wouldn't care. The test will always pass. To make a test fail what we
have to do is throw an error. That means we can throw a new error and we pass into the
constructor function whatever message we want to use as the error as shown in the
following code block. In this case, I could say something like Value not correct:

const utils = require('./utils');
it ('should add two numbers', () => {
var res = utils.add (33, 11);

throw new Error ('Value not correct')
)i

Now with this in place, I can save the test file and rerun things from the Terminal by
rerunning npm test, and when we do that now we have 0 tests passing and we have 1 test
failing:

[Garyinode-tests Gary$ npm test

> tests(l.9.9 test fUsers/Gary/Desktop/node-tests
> mocha *%/%.test.js

1) should add two numbers:

npm Test Tfailed. See above Tor more details.
Gary:node-tests Gary$ I

Next we can see the one test is should add two numbers, and we get our error message,
Value not correct. When we throw a new error, the test fails and that's exactly what we
want to do for add.

Creating the if condition for the test

Now, we'll create an i f statement for the test. If the response value is not equal to 44, that
means we have a problem on our hands and we'll throw an error:

const utils = require('./utils');

it ('should add two numbers', () => {

[539]

Testing the Node Applications — Part 1 Chapter 10

var res = utils.add (33, 11);
if (res != 44){
}

)i

Inside the i f condition, we can throw a new error and we'll use a template string as our
message string because I do want to use the value that comes back in the error message. I'll
say Expected 44, but got, then I'll inject the actual value, whatever happens to come
back:

const utils = require('./utils');
it ('should add two numbers', () => {
var res = utils.add (33, 11);
if (res != 44){
throw new Error (' Expected 44, but got ${res}.’);
}
)i

Now in our case, everything will line up great. But what if the add method wasn't working
correctly? Let's simulate this by simply tacking on another addition, adding on something
like 22 inutils. js:

module.exports.add = (a, b) => a + b + 22;

I'll save the file, rerun the test suite:

Gary:node-tests Gary$ npm test

> testsRl.08.8 test /Users/Gary/Desktop/node-tests
> mocha *%/%.test.js

1) should add two numbers:

npm Test failed. See above for more details.
Gary:node-tests Gary$ I

[540]

Testing the Node Applications — Part 1 Chapter 10

Now we get an error message: Expected 44, but got 66. This error message is fantastic. It
lets us know that something is going wrong with the test and it even tells us exactly what
we got back and what we expected. This will let us go into the add function, look for errors,
and hopefully fix them.

Creating test cases doesn't need to be something super complex. In this case, we have a
simple test case that tests a simple function.

Testing the squaring a number function

Now, we'll create a new function that squares a number and returns the result. We'll define
thatin the utils. js file using module.exports.square. We'll set that equal to an arrow
function (=>) that takes in one number, x, and we'll return x times x, x * x, just like this:

module.exports.add = (a, b) => a + b;
module.exports.square = (x) => x * x;

Now we have this brand new function square and we'll create a new test case that makes
sure square works as expected. Inutils.test.js, next to the if condition for add
function, we'll call the it function again:

const utils = require('./utils');

it ('should add two numbers', () => {
var res = utils.add (33, 11);
if (res != 44){

throw new Error (' Expected 44, but got ${res}.’);
}
)i

it();

Inside the it function, we'll add our two arguments, the string, and the callback function.
Inside the string, we'll create our message, should square a number:

it ('should square a number', () => {

P) i

[541]

Testing the Node Applications — Part 1 Chapter 10

And inside the callback function, we can actually go ahead and call square. Now we do
want to create a variable to store the result so we can check that the result is what we expect
it to be. Then we can call utils. square passing in a number. I'll go with 3 in this case,
which means I should expect 9 to come back:

it ('should square a number', () => {
var res = utils.square(3);

)i

In the next line, we can have an if statement, if the result does not equal 9, then we'll throw
a message because things went wrong;:

it ('should square a number', () => {
var res = utils.square(3);
if (res !== 9) {

}
)i

We can throw an error using throw new Error, passing in whatever message we like. We
can use a regular string, but I always prefer using a template string so we can inject values
easily. I'll say something like Expected 9, but got, followed by the value that's not
correct; in this case, that's stored in the response variable:

it ('should square a number', () => {
var res = utils.square(3);
if (res !== 9) {

throw new Error (' Expected 9, but got ${res}’);
}
)i

Now I can save this test case and run the test suite from the Terminal. Using the up arrow
key and the enter key, we can rerun the last command:

npm test

[542]

Testing the Node Applications — Part 1 Chapter 10

Gary:node-tests Gary$ npm test

> tests@1.08.8 test fUsers/Gary/Desktop/node-tests
> mocha **/%.test.js

Gary:node-tests Gary$ I

We get two tests passing, should add two numbers and should square a number both have
checkmarks next to them. And we ran both tests in just 14 milliseconds, which is fantastic.

Now the next thing, we want to do is mess up the square function to make sure our test
fails when the number is not correct. I'll add 1 on to the result in utils.js, which will
cause the test to fail:

module.exports.add = (a, b) => a + b;
module.exports.square = (x) => x * x + 1;
Then we can rerun things from the Terminal and we should see the error message:

Gary:node-tests Gary$ npm test

> tests@1.08.0 test fUsers/Gary/Desktop/node-tests
> mocha #%/%.test.js

1) should square a number:

npm Test failed. See above for more details.
Gary:node-tests Gary$ I

[543]

Testing the Node Applications — Part 1 Chapter 10

We get Expected 9, but got 10. This is fantastic. We now have a test suite capable of testing
both the add function and the square function. I'll remove that + 1, and we are done.

We now have a very, very basic test suite that we can execute with Mocha. Currently, we
have two tests and to create those tests we used the it method provided by Mocha. In the
upcoming sections, we'll be exploring more methods that Mocha gives us and we'll also be
looking at better ways to do our assertions. Instead of manually creating them, we'll be
using an assertion library to help with the heavy lifting.

Autorestarting the tests

Before we write more test cases, let's see an automatic way to rerun our test suite when we
change either our test code or our application code. We'll be doing that with nodemon.
Now, previously we used nodemon like this:

nodemon app.js

We would type nodemon and we would pass in a file like app . js. Whenever any code in
our app changed, it would rerun the app. js file as a Node application. What we can
actually do is specify any command in the world we want to run when our files change.
This means we can rerun npm test when the files change.

To do this, we'll use the exec flag. This flag tells nodemon that we'll specify a command to
run, and it might not necessarily be a Node file. As shown in the following command, we
can specify that command. It1ll be 'npm test':

nodemon —--exec 'npm test'

If you are using Windows, remember to use double quotes in place of
single quotes.

With this in place, we can now run the nodemon command. It'll kick off for the first time
running our test suite:

[544]

Testing the Node Applications — Part 1 Chapter 10

® ® node-tests — node Jusrflocal/bin/nodemon --exec npm test — 108x29

Gary:node-tests Gary$ nodemon --exec 'npm test'
[nodemon] 1.14.18

[nodemon] to tart any time, enter ‘rs’
[nodemon] watching:

> tests@1.08.8 test fUsers/Gary/Desktop/node-tests
> mocha *%/%.test.js

Here we see we have two tests passing. Let's go ahead into the app utils. js and make a
change to one of the functions, so it fails. We'll add 3 or 4 onto the result for ada:

module.exports.add = (a, b) => a + b + 4;
module.exports.square = (x) => x * x;

It automatically restarts over here:

> tests@1.8.0 test /Users/Gary/Desktop/node-tests
> mocha #*k/#.test.js

1) should add two numbers:

Test failed. See above for more details.

[545]

Testing the Node Applications — Part 1 Chapter 10

And now we see that we have a test suite where one test passes and one tests fails. I can
always go ahead and undo that error we added, save the file, and the test suite will
automatically rerun.

This will make testing your application that much easier. You won't have to switch to the
Terminal and rerun the npm test command every time we make a change to our
application. Now we have a command that we can run, we'll shut down nodemon and use
the up arrow key to show it again.

And we can actually move this into a script inside of package . json.

Inside package . json we'll make a new script right after the test script. Now we've used
the start script and the test script—these are built-in—we'll create a custom one called
test-watch, and we can run the test-watch script to kick things off. Inside of test-
watch, we'll have the exact same command we ran from Terminal. That means we'll be
rounding nodemon. We'll be using the exec flag and inside of quotes, we'll be running npm
test:

"scripts": {
"test": "mocha **/*.test.js",
"test-watch": "nodemon —--exec 'npm test'"

by

Now that we have this in place, we can run the script from the Terminal as opposed to
having to type out this command every single time we want to start up the autotest suite.

The script we have inside package. json currently will work on macOS
and Linux. It'll also work on Heroku, which uses Linux. But it will not
work on Windows. The following script will:

"test-watch": "nodemon --exec \"npm test\"".

As you can see here, we're escaping the quotes surrounding npm test
and we're using double quotes, which as we know are the only quotes
supported by Windows. This script will remove any errors you're seeing,
something like npm cannot be found, which you will get if you wrap npm
tests in single quotes and run the script on Windows. So use the above
script for cross-OS compatibility.

To run a script with a custom name, such as test-watch, in the Terminal all we need to do
is run npm run followed by the script name, test-watch, as shown in the following
command:

npm run test-watch

[546]

Testing the Node Applications — Part 1 Chapter 10

If I do this, it will start things off. We'll get our test suite and it's still waiting for changes, as
shown here:

® [] node-tests — node « npm TERM_PROGRAM=Apple_Terminal TERM=xterm-256color SHELL =/bin/bash — 108x29

Gary:node-tests Gary$ npm run test-watch

> testsPl.e.e test-watch /Users/Gary/Desktop/node-tests
> nodemon --exec 'npm test'

t at any time, enter “rs’

» testsP1.0.8 test /Users/Bary/Desktop/node-tests

mocha *%/*.test.js

Now, every time you start the test suite you can simply use npm run test-watch. That'll
start up the test-watch script, which starts up nodemon. Every time a change happens in
your project, it'll rerun npm test, showing the results of the test suite to the screen.

Now that we have a way to automatically restart our test suite, let's go ahead and get back
into the specifics of testing in Node.

Using assertion libraries in testing Node
modules

In the previous sections, we made two test cases to verify that utils.add and our
utils.square method work as expected. We did that using an if condition, that is, if the
value was not 44 that means something went wrong and we threw an error. In this section,
we'll learn how to use an assertion library, which will take care of all of the i f condition in
utils.test.js code for us:

if (res !== 44)
throw new Error (" Expected 44, but got ${res}.’)

[547]

Testing the Node Applications — Part 1 Chapter 10

Because when we add more and more tests, the code will end up looking pretty similar and
there's no reason to keep rewriting it. Assertion libraries let us make assertions about
values, whether it's about their type, the value itself, whether an array contains an element,
all sorts of things like that. They really are fantastic.

The one we'll be using is called expect. You can find it by going to Google and googling
mjackson expect. And this is the result we're looking for:

GO gle mjackson expect !; Q

All Videos MNews Images Maps More Settings Tools

About 2,04,000 results (0.34 seconds)

GitHub - mjackson/expect: Write better assertions
https:/fgithub.com/mjackson/expect
Write better assertions. Confribute to expect development by creaiing an account on GitHub.

How to test promises? LICENSE.md

Write better assertions. Contribute to mjackson/expect - Code Issues 11
expect development by .. Pull requests 0 Projects 0 ...
Mjackson/expect-element toBeA('array’)

Write better assertions for DOM mjackson/expect - Code Issues 12
nodes. Contribute to expect Pull requests 0 Projects 0

More results from github.com »

It's mjackson's repository, expect. It is a fantastic and super popular assertion library. This
library will let us pass in a value and make some assertions about it. On this page, we scroll
down past the introduction and the installation we can get down to an example:

® 0 @ () GitHub - mjacksonfexpect: Wi % =]
« | & GitHub, Inc. [US] | hitps://github.com/mjacksan/expect k4
Assertions
@ toExist
expect{object).toExist([message])

Asserts the given cbject is truthy.

expect('something truthy').toExist()

Aliases:

+ toBeTruthy

[548]

Testing the Node Applications — Part 1 Chapter 10

As shown in the preceding screenshot, we have our Assertions header and we have our
first assertion, toExist. This will verify that a value exists. In the next line, we have an
example, we pass in a string to expect:

expect('something truthy').toExist()

This is the value we want to make some assertions about. In the context of our application,
that would be the response variable in the utils.test.js, shown here:

const utils = require('./utils"');

it ('should add two numbers', () => {
var res = utils.add (33, 11);
if (res !== 44) {

throw new Error (' Expected 44, but got ${res}.’)
}
)i

We want to assert that it is equal to 44. After we call expect, we can start chaining on some
assertion calls. In the assertion example, next we check if it does exist:

expect ('something truthy') .toExist ()

This would not throw an error because a string is indeed truthy inside JavaScript. If we
passed in something like unde fined, which is not truthy, toExist would fail. It would
throw an error and the test case would not pass. Using these assertions, we can make it
really, really easy to check the values in our tests without having to write all of that code
ourselves.

Exploring assertion libraries

Let's go ahead and start exploring the assertion libraries. First up, let's install the module
inside the Terminal by running npm install. The module name itself is called expect and
we'll grab the most recent version, @1.20. 2. Once again, we'll be using the save-dev flag
like we did with Mocha. Because we do indeed want to save this dependency in

package. json, butit's a dev dependency, it's not required for the application to run
whether it's on Heroku or some other service:

npm install expect@l.20.2 —--save-dev

[549]

Testing the Node Applications — Part 1 Chapter 10

The expect library has been donated to a different organization. The
latest version, which is v21.1.0 is not compatible with the backward
version we are using here that is 1.20.2. What I like you to do is install the
1.20.2 version in the section that will make sure, you'll use in next several
sections.

Let's go ahead and install this dependency.

@ ® || node-tests — -bash — 108x29

le-tests Gary$ npm install expect@l.28.2 --save-dev
tests@1.8.8 Mo description
| tests@1.8.8 No repository field.

+ expect@l.20.2
added 21 packages in 7.32s
Gary:node-tests Gary$ i

Then we can move to the application, and check out the package. json file, as shown in the
following screenshot, it looks great:

[NON | package.json — ~/Desktop/node-tests
Project utils.js X utils.test.js x package.json x
v Il node-tests {
n L1 n n
> [l node_modules name®: "tests",
n 3 n n "
version": "1.0.0
¥ - Ul.ls n 3 3 L1 umn !
description": 2
B whisis "main": "index.js",
Bl utilstestjs "scripts": {
El package-lock.json "test": "mocha #ok/*.test.js",
"test-watch": "nodemon —exec 'npm test'"
}!
Ilauthor.ll. un
L]
"license": "ISC",
"dependencies": {},
"devDependencies": {
"expect": "~1.20.2",
"mocha": ""5.8.2\'1
}
}
package.json 15:22 LF UTF-8 JSON @ 0 files

[550]

Testing the Node Applications — Part 1 Chapter 10

We have both expect and Mocha. Now, inside our utils.test file, we can kick things off

by loading in the library and making our first assertions using expect. Up at the very top of
the file, we'll load in the library, creating a constant called expect and
require ('expect '), just like this:

const expect = require('expect');

Now, we can get started by swapping out the if condition in the utils.test.js code
with a call to expect instead:

const expect = require('expect');
const utils = require('./utils"');
it ('should add two numbers', () => {

var res = utils.add (33, 11);

// if(res !== 44) {
// throw new Error (" Expected 44, but got ${res}.’)

//}
P
As you saw in the example on assertion/expect page, we'll start all our assertions by calling

expect as a function passing in the value we want to make assertions about. In this case,
that is the res variable:

const expect = require('expect');
const utils = require('./utils');
it ('should add two numbers', () => {

var res = utils.add (33, 11);

expect (res)

// if (res !== 44) {
// throw new Error (" Expected 44, but got ${res}.’)

//}
)i

[551]

Testing the Node Applications — Part 1 Chapter 10

Now, we can assert all sorts of things. In this case, we want to assert that the value is equal
to 44. We'll make our assertion toBe. On the documentation page, it looks like this:

toBe

expect(object).toBe(value, [messagel)

Asserth that cbject is strictly equal to value using ===.

This asserts that a value equals another value and that's exactly what we want. We assert
that our value passed into expect equals another value using toBe, passing that value in as
the first argument. Back inside Atom, we can go ahead and use this assertion, . toBe, and
we're expecting the result variable to be the number 44, just like this:

const expect = require ('expect');
const utils = require('./utils');
it ('should add two numbers', () => {

var res = utils.add (33, 11);

expect (res) .toBe (44);

// if (res !== 44) {
// throw new Error (Expected 44, but got ${res}.’)

//}
)i

Now we have our test case and it should work exactly as it did with the i f condition.

To prove it does work, let's move into the Terminal and use the clear command to clear

the Terminal output. Now we can run that test-watch script as shown in the following
command line:

npm run test-watch

[552]

Testing the Node Applications — Part 1 Chapter 10

Gary:node-tests Gary$ npm run test-watch

> tests@1.08.8 test-watch /Users/Gary/Desktop/node-tests
> nodemon --exec 'npm test'

[nodemon] 1.14.18
[nodemon] to r art at any time, enter ‘rs’
[nodemon] watching: *.%

> tests@1.08.8 test /Users/Gary/Desktop/node-tests

> mocha *x/%.test.js

As shown in the preceding code output, we get our two tests passing just like they did
before. Now we were to change 44 to some other value that would throw an error like 40:

const expect = require ('expect');
const utils = require('./utils');

it ('should add two numbers', () => {
var res = utils.add (33, 11);

expect (res) .toBe (40) ;

// if (res !== 44) {
// throw new Error (Expected 44, but got ${res}.’)
//}

)i

[553]

Testing the Node Applications — Part 1 Chapter 10

We save the file, and we'll get an error and the expect library will generate useful error
messages for us:

> tests@1.08.8 test fUsers/Gary/Desktop/node-tests
> mocha *%/%.test.js

1) should add two numbers:

Test failed. See above for more details.

It's saying that we Expected 44 to be 40. Clearly that's not the case, so an error gets thrown.
I'll change this back to 44, save the file, and all of our tests will pass.

Chaining multiple assertions

Now we can also chain together multiple assertions. For example, we could assert that the
value that comes back from add is a number. This can be done using another assertion. So
let's head into the docs and take a look. Inside Chrome, we'll scroll down through the
assertion docs list. There are a lot of methods. We'll be exploring some of them. In this case,
we're looking for toBea, the method that takes a string:

toBeA(string)

expect(object).toBeA(string, [message])
expect{object).toBeAn(string, [message])

Asserts the typeof the given object is string .

expect(2).toBeA('number')

[554]

Testing the Node Applications — Part 1 Chapter 10

This takes the string type and it uses the t ypeof operator to assert that the value is of a
certain type. Here we're expecting 2 to be a number. We can do that exact same thing over
in our code. Inside Atom, right after t oBe, we can chain on another call, toBe, followed by
the type. This could be something like a string, it could be something like an object, or in
our case, it could be a number, just like this:

const expect = require ('expect');
const utils = require('./utils');
it ('should add two numbers', () => {

var res = utils.add (33, 11);

expect (res) .toBe (44) .toBeA ('number');

// if (res !== 44) {
// throw new Error (' Expected 44, but got ${res}.’)

!/}
P

We'll open up the Terminal so we can see the results. It's currently hidden. Save the file.
Our tests will rerun and we can see they're both passing;:

> tests@1.08.0 test fUsers/Gary/Desktop/node-tests
> mocha #**%/%.test.js

Let's use a different type, something that was going to cause the test to fail for example
string:

expect (res) .toBe (44) .toBeA('string');

[555]

Testing the Node Applications — Part 1 Chapter 10

We would then get an error message, Expected 44 to be a string;:

> testsP1.0.0 test /Users/Gary/Desktop/node-tests
> mocha #%/%.test.js

1) should add two numbers:

Test failed. See above for more details.

This is really useful. It'll help us clean up our errors really quickly. Let's change the code
back to number and we are good to go.

Multiple assertions for the square function

Now we'd like to do the same thing for our tests for square a number function. We'll use
expect to assert that the response is indeed the number 9 and that the type is a number.
We'll use these same two assertions we do with the add function. First, we need to do to
delete the current square if condition code, since we will not be using that anymore. As
shown in the following code, we'll make some expectations about the res variable. We'll
expect it to be the number 9, just like this:

it ('should square a number', () => {
var res = utils.square(3);

expect (res) .toBe (9);
I

[556]

Testing the Node Applications — Part 1 Chapter 10

We'll save the file and make sure the test passes, and it does indeed pass:

> tests@1.08.9 test fUsers/Gary/Desktop/node-tests
> mocha *%/%.test.js

Now, we'll assert the type using toBeA. Here, we're checking that the type of the return
value from the square method is a number:

it ('should square a number', () => {
var res = utils.square(3);

expect (res) .toBe (9) .toBeA ('number') ;
)i

When we save the file, we get both of our tests still passing, which is fantastic:

> testsPl.08.8 test /Users/Gary/Desktop/node-tests
> mocha *%/%.test.js

Now this is just a small test as to what expect can do. Let's create a bogus test case that will
explore a few more ways we can use expect. We'll not be testing an actual function. We'll
just play around with some assertions inside of the it callback.

[557]

Testing the Node Applications — Part 1 Chapter 10

Exploring usage of expect with bogus test

To create the bogus test, we'll make a new test using the it callback function:
it ('should expect some values');

We can put whatever we want in here, it's not too important. And we'll pass in an arrow
function (=>) as our callback function:

it ('should expect some values', () => {

)i

Now as we've seen already, one of the most fundamental assertions you'll make is you're
just going to check for equality. We want to check if something like the response variable
equals something else, like the number 44. Inside expect, we can also do the opposite. We
can expect that a value like 12 does not equal, using toNotBe. And then we can assert that
it doesn't equal some other value, like 11:

it ('should expect some values', () => {
expect (12) .toNotBe (11);
)i

The two aren't equal, so when we save the file over in the Terminal, all three tests should be
passing:

> tests@1.08.0 test fUsers/Gary/Desktop/node-tests
> mocha *%/%.test.js

If I set that equal to the same value, it'll not work as expected:

it ('should expect some values', () => {
expect (12) .toNotBe (12) ;
)i

[558 1]

Testing the Node Applications — Part 1 Chapter 10

We'll get an error, Expected 12 to not be 12:

> tests@1.08.0 test fUsers/Gary/Desktop/node-tests
> mocha #%/+%.test.js

1) should expect some values:

Test failed. See above for more details.

Now toBe and toNotBe work great for numbers, strings, and Booleans, but if you're trying
to compare arrays or objects, they will not work as expected and we can prove this.

Using toBe and toNotBe to compare array/objects

We'll start with removing the current code by commenting it out. We'll leave it around so
we use it later:

it ('should expect some values', () => {
// expect (12) .toNotBe (12);
P) i

We'll expect an object with the name property set to Andrew, toBe, and we'll assert that it
is another object where the name property is equal to Andrew, just like this:

it ('should expect some values', () => {
// expect (12) .toNotBe (12) ;
expect ({name: 'Andrew'})

1)

[559 1]

Testing the Node Applications — Part 1 Chapter 10

We'll use toBe, just like we did with number, checking if it is the same as another object
where name equals Andrew:

it ('should expect some values',6 () => {
// expect (12) .toNotBe (12) ;
expect ({name: 'Andrew'}) .toBe({name: 'Andrew'});

)i

Now when we save this, you might think the test will pass, but it doesn't:

> tests(@1.8.8 test /Users/Gary/Desktop/node-tests
> mocha *%/%.test.js

1) should cxpeet some values:

Test failed. See above for more details.

As shown in the preceding output, we see that we expected the two names to be equal.
When objects are compared for equality using the triple equals, which is what t oBe uses,
they'll not be the same because it's trying to see if they're the exact same object, and they're
not. We've created two separate objects with the same properties.

Using the toEqual and toNotEqual assertions

To check if the two names are equal, we'll have to use something different. It's called
toEqual as shown here:

it ('should expect some values', () => {
// expect (12) .toNotBe (12);
expect ({name: 'Andrew'}) .toEqual ({name: 'Andrew'});

b

[560]

Testing the Node Applications — Part 1 Chapter 10

If we save the file now, this will work. It'll rip into the object properties, making sure they
have the same ones:

> tests@l.08.0 test /Users/Gary/Desktop/node-tests
> mocha *%/%.test.js

The same thing goes for toNotEqual. This checks if two objects are not equal. To check this,
we'll go ahead and change the first object to have a lowercase a in andrew:

it ('should expect some values', () => {

// expect (12) .toNotBe (12) ;

expect ({name: 'andrew'}) .toNotEqual ({name: 'Andrew'});
}) i

Now, the test passes. They are not equal:

> testsR1.08.8 test /Users/Gary/Desktop/node-tests
> mocha **/%.test.js

This is how we do equality with our objects and arrays. Now another really useful thing we

have is toInclude.

[561]

Testing the Node Applications — Part 1 Chapter 10

Using tolnclude and toExclude

The toInclude assertion checks if an array or an object includes some things. Now if it's an
array, we can check if it includes a certain item in the array. If it's an object, we can check if
it includes certain properties. Let's run through an example of that.

We'll expect that an array with the numbers 2, 3, and 4 inside the it callback has the
number 5 inside and we can do that using toInclude:

it ('should expect some values',6 () => {
// expect (12) .toNotBe (12) ;
// expect ({name: 'andrew'}) .toNotEqual ({name: 'Andrew'});

expect ([2,3,4]) .toInclude(5);
)i

The toInclude assertion takes the item. In this case, we'll check if the array has 5 inside.
Now clearly it doesn't, so this test will fail:

> tests@1.8.8 test /Users/Gary/Desktop/node-tests
> mocha **/*.test.js

1) should expect some values:

Test Talled. See above Tor more details.

We get the message, Expected [2, 3, 4] to include 5. That does not exist. Now we change
this to a number that does exist, for example 2:

it ('should expect some values',6 () => {
// expect (12) .toNotBe (12);
// expect ({name: 'andrew'}).toNotEqual ({name: 'Andrew'});
expect ([2,3,4]) .toInclude(2);

)i

[562]

Testing the Node Applications — Part 1 Chapter 10

We'll rerun the test suite and everything will work as expected:

> tests®1.0.0 test /Users/Gary/Desktop/node-tests
> mocha *%/%.test.js

Now, along with toInclude, we have toExclude like this:

it ('should expect some values', () => {
// expect (12) .toNotBe (12);
// expect ({name: 'andrew'}) .toNotEqual ({name: 'Andrew'});
expect ([2,3,4]) .toExclude (1) ;

)i

This will check if something does not exist, for example the number 1, which is not in the
array. If we run this assertion, the test passes:

> testsR1.08.0 test /Users/Gary/Desktop/node-tests
> mocha *%/%.test.js

The same two methods, toInclude and toExclude, work with objects as well. We can
play with that right on the next line. I'll expect that the following object has something on

it:

it ('should expect some values',6 () => {
// expect (12) .toNotBe (12) ;

[563]

Testing the Node Applications — Part 1 Chapter 10

// expect ({name: 'andrew'}).toNotEqual ({name: 'Andrew'});
// expect ([2,3,4]) .toExclude(1);
expect ({
)
)i

Let's go ahead and create an object that has a few properties. These are:

e name: We'll set it equal to any name, let's say Andrew.
e age: We'll set that equal to age, say 25.

e location: We'll set that equal to any location, for example Philadelphia.

This will look like the following code block:

it ('should expect some values',6 () => {
// expect (12) .toNotBe (12) ;
// expect ({name: 'andrew'}).toNotEqual ({name: 'Andrew'});

// expect ([2,3,4]) .toExclude(1);
expect ({
name: 'Andrew',
age: 25,
location: 'Philadelphia'
})
P

Now let's say we want to make some assertions about particular properties, not necessarily
the entire object. We can use toInclude to assert that the object has some properties and
that those property values equals the value we pass in:

it ('should expect some values', () => {
// expect (12) .toNotBe (12);
// expect ({name: 'andrew'}) .toNotEqual ({name: 'Andrew'});
// expect ([2,3,4]) .toExclude (1);
expect ({
name: 'Andrew',
age: 25,

location: 'Philadelphia'
}) .toInclude ({

}
} i

[564]

Testing the Node Applications — Part 1 Chapter 10

For example, the age property. Let's say we only care about the age. We can assert that the
object has an age property equal to 25 by typing the following code:

it ('should expect some values',6 () => {
// expect (12) .toNotBe (12) ;
// expect ({name: 'andrew'}).toNotEqual ({name: 'Andrew'});

// expect ([2,3,4]) .toExclude(1);
expect ({
name: 'Andrew',
age: 25,
location: 'Philadelphia'
}) .toInclude ({
age: 25
)
}) i

It doesn't matter that there's a name property. The name property could be any value. That is
irrelevant in this assertion. Now let's use the value, 23:
.toInclude ({
age: 23
})

This test will fail as shown here since the value is not correct:

> tests@1.0.0 test /Users/Gary/Desktop/node-tests
> mocha #**/%.test.js

1) should expect some values:

Test failed. See above for more details.

[565]

Testing the Node Applications — Part 1 Chapter 10

We expected the age property to be 23, but it was indeed 25, so the test fails. The same
thing goes with the toExclude assertion.

Here we can save our test files. This checks if the object does not have a property age equal
to 23. It does indeed not have that, so the test passes:

> tests@1.8.0 test /Users/Gary/Desktop/node-tests
> mocha *x/%.test.js

This is just a quick taste as to what expect can do. For a full list of features, I recommend
diving through the documentation. There's a ton of other assertions you can use, things like
checking if a number is greater than another number, if a number is less than or equal to
another number, all sorts of math-related operations are included as well.

Testing the setName method

Now let's wrap up this section with some more testing. Over in utils. js, we can make a
new function, one that we'll be testing, module.exports.setName. The setName function
is will take two arguments. It'll take a user object, some fictitious user object with some
generic properties, and it'll take fullName as a string:

module.exports.add = (a, b) => a + b;
module.exports.square = (x) => x * x;

module.exports.setName (user, fullName)

[566]

Testing the Node Applications — Part 1 Chapter 10

The job of setName will be to rip apart ful1Name into two parts—the first name and the
last name—by splitting it on the space. We'll set the two properties, first name and last
name, and return the user object. We'll fill out the function then we'll write the test case.

The first thing we'll do is split the name into a names array, var names will be that array:

module.exports.add = (a, b) => a + b;
module.exports.square = (x) => x * x;
module.exports.setName (user, fullName) => {

var names

}i

It'1l have two values, assuming there's only one space inside of the name. We're assuming
someone types their first name, hits a space, and types their last name. We'll set this equal to
fullName.split and we'll split on the space. So I'll pass in an empty string with a space
inside it as the value to split:

module.exports.add = (a, b) => a + b;

module.exports.square = (x) => x * x;

module.exports.setName (user, fullName) => {
var names = fullName.split (' '");

Yi

Now we have a names array where the first item is the firstName and the last item is the
lastName. So we can start updating the user object. user. firstName will equal the first
item in the names array and we'll grab the index of 0, which is the first item. We'll do
something similar for last name, user. lastName equals the second item from the names
array:

module.exports.add = (a, b) => a + b;
module.exports.square = (x) => x * x;

module.exports.setName (user, fullName) => {
var names = fullName.split (' ');
user.firstName = names[0];
user.lastName = names[1];

Fi

[567]

Testing the Node Applications — Part 1 Chapter 10

Now we're all done, we have the names set, and we can return the user object using
return user, just like this:

module.exports.add = (a, b) => a + b;
module.exports.square = (x) => x * x;
module.exports.setName (user, fullName) => {
var names = fullName.split (' ');
user.firstName = names[0];
user.lastName = names[1];
return user;
bi

Inside the utils.test file, we can now kick things off. First, we'll comment out our
it ('should expect some values') handler:

const expect = require('expect');
const utils = require('./utils');
it ('should add two numbers', () => {

var res = utils.add (33, 11);

expect (res) .toBe (44) .toBeA ('number');
)i

it ('should square a number', () => {
var res = utils.square(3);

expect (res) .toBe (9) .toBeA ('number') ;
)i

// it ('should expect some values', () => {

// // expect (12) .toNotBe (12);

// // expect ({name: 'andrew'}) .toNotEqual ({name: 'Andrew'});
// // expect([2,3,4]) .toExclude (1);

// expect ({

// name: 'Andrew’',

// age: 25,

// location: 'Philadelphia’
// }) .toExclude ({

// age: 23

// })

/7 });

[568]

Testing the Node Applications — Part 1 Chapter 10

This is pretty great for documentation. You can always explore it later if you forget how
things work. We'll create a new test that should verify first and last names are set.

We'll create a user object. On that user object, we want to set some properties such as age
and location. Then we'll pass the variable user into the setName method. That'll be the
first argument defined in the utils. js file. We'll pass in a string. The string with
firstName followed by a space followed by lastName. Then we'll get the result back and
we'll make some assertions about it. We want to assert the returning object includes using
the toInclude assertion.

As shown in the following code, we'll call it to make the new test case. We'll be testing:

it ('should set firstName and lastName')

Inside it, we can now provide our second argument, which will be our callback function.
Let's set that to an arrow function (=>) and now we can make the user object:

it ('should set firstName and lastName', () => {

)i

The user object will have a few properties. Let's add something like 1ocation, setting that
equal to Philadelphia, and then set an age property, setting that equal to 25:

it ('should set firstName and lastName', () => {
var user = {location: 'Philadelphia', age: 25};

P i

Now we'll call the method we defined over in utils. js, the setName method. We'll do
that on the next line, creating a variable called res to store the response. Then we'll set that
equal to utils.setName passing in the two arguments, the user object and fullName,
Andrew Mead:

it ('should set firstName and lastName', () => {
var user = {location: 'Philadelphia', age: 25};
var res = utils.setName (user, 'Andrew Mead');

)i

Now at this point, the result should be what we expect. We should have the firstName
and lastName properties. We should have the 1ocation property and the age property.

[569]

Testing the Node Applications — Part 1 Chapter 10

Now if you know a lot about JavaScript, you might know that objects are passed by
reference, so the user variable has actually been updated as well. That is expected. Both
user and res will have the exact same value. We can actually go ahead and prove that
using an assertion. We'll expect that user equals using toEqual the res:

it ('should set firstName and lastName', () => {
var user = {location: 'Philadelphia', age: 25};
var res = utils.setName (user, 'Andrew Mead');

expect (user) .toEqual (res) ;
)i

Inside Terminal, we can see the test does indeed pass:

> tests@1.8.9 test /Users/Gary/Desktop/node-tests
> mocha *%/%.test.js

Let's delete expect (user) .toEqual (res) ;. Now, we want check if the user object or the
res object includes certain properties. We'll check using expect that the res variable has
some properties using toInclude:

it ('should set firstName and lastName', () => {
var user = {location: 'Philadelphia', age: 25};
var res = utils.setName (user, 'Andrew Mead');

expect (res) .toInclude ({
})
)i

The properties we're looking for are firstName equal to what we would expect that to be,
Andrew, and lastName equal to Mead:

it ('should set firstName and lastName',6 () => {
var user = {location: 'Philadelphia', age: 25};

[570]

Testing the Node Applications — Part 1 Chapter 10

var res = utils.setName (user, 'Andrew Mead');

expect (res) .toInclude ({
firstName: 'Andrew',
lastName: 'Mead’
)
P) i

These are the assertions that should be made in order to verify that setName is working as
expected. If I save the file, the test suite reruns and we do indeed get the passing tests as
shown here:

> tests@1.8.8 test fUsers/Gary/Desktop/node-tests
> mocha *%/%.test.js

We have three of them and it took just 10 milliseconds to run.

And with this in place, we now have an assertion library for our test suite. That's fantastic
because writing test cases just got way easier, and the whole goal of the chapter is to make
testing approachable and easy.

In the next section, we'll start looking at how we can test more complex asynchronous
functions.

The asynchronous testing

In this section, you'll learn how to test asynchronous functions. The process of testing
asynchronous functions isn't that different from synchronous ones, like what we've done
already, but it is a little different so it justifies its own section.

[571]

Testing the Node Applications — Part 1 Chapter 10

Creating the asyncAdd function using the
setTimeout object

To kick things off, we'll make a fake async function using set Timeout to simulate a delay
inside utils.js. Just below where we make our add function, let's make one called
asyncAdd. It'1l essentially have the same features, but it'll use setTimeout and it'll have a
callback to simulate a delay. Now in the real world, this delay might be a database request
or an HTTP request. We'll be dealing with that in the following chapters. For now though,
let's add module.exports.asyncAdd:

module.exports.add = (a, b) => a + b;
module.exports.asyncAdd = ()

This will take three arguments, as opposed to the two the add function took, a, b, and
callback:

module.exports.add = (a, b) => a + b;
module.exports.asyncAdd = (a, b, callback)

This is what's going to make the function asynchronous. Eventually, once the set Timeout
is up, we'll call the callback with the sum, whether it's one plus three being four, or five plus
nine being fourteen. Next up, we can put the arrow in arrow function (=>) and open and
close our curly braces:

module.exports.asyncAdd = (a, b, callback) => {
bi

Inside the arrow function (=>), as mentioned, we'll be using set Timeout to create the
delay. We'll pass in a callback and we'll pass in our setTimeout. Let's go with 1 second in
this case:

module.exports.asyncAdd = (a, b, callback) => {
setTimeout (() => {
}, 1000);

bi

[572]

Testing the Node Applications — Part 1 Chapter 10

Now, by default, if our tests take longer than 2 seconds, Mocha will assume that is not what
we wanted and it'll fail. That's why we're using 1 second in this case. Inside our callback, we
can call the actual callback argument with the sum a + b, just like this:

module.exports.asyncAdd = (a, b, callback) => {
setTimeout (() => {
callback(a + b);
}, 1000);
}i

We now have an asyncAdd function and we can start writing a test for it.

Writing the test for the asyncAdd function

Inside of the utils.test file, just under our previous test for utils.add, we'll add a new
one for asyncAdd. The test setup will look really similar. We will be calling it and passing
in a string as the first argument and a callback as the second argument. Then we'll add our
callback, just like this:

it ('should async add two numbers', () => {
1)

Inside the callback, we can get started calling utils.asyncAdd. We'll call it using
utils.asyncAdd and we'll pass in those three arguments. We'll use 4 and 3, which should
result in 7. And we'll provide the callback function, which should get called with that value,
the value being 7:

it ('should async add two numbers', () => {
utils.asyncAdd (4, 3, () => {

)i
)i

Inside the callback arguments, we would expect something like sum to come back:

it ('should async add two numbers', () => {
utils.asyncAdd (4, 3, (sum) => {

)i
)i

[573]

Testing the Node Applications — Part 1 Chapter 10

Making assertion for the asyncAdd function

Now we can start making some assertions about that sum variable using the expect object.
We can pass it into expect to make our assertions, and these assertions aren't going to be
new. It's stuff we've already done. We'll expect that the sum variable equals, using toBe,
the number 7. Then we'll check that it's a number, using toBes, inside quotes, number:

it ('should async add two numbers', () => {
utils.asyncAdd (4, 3, (sum) => {
expect (sum) .toBe (7) .toBeA ('number');

)i
)i

Now obviously if it is equal to 7 that means it is a number, but we're using both just to
simulate exactly how chaining will work inside of our expect calls.

Now that we have our assertions in place, let's save the file and run our test and see what
happens. We'll run it from Terminal, npm run test-watch to start up our nodemon
watching script:

npm run test-watch

Now our tests will run and the test does indeed pass:

> tests@1.8.8 test fUsers/Gary/Desktop/node-tests
> mocha **/#.test.js

[574]

Testing the Node Applications — Part 1 Chapter 10

The only problem is that it's passing for the wrong reasons. If we change 7 to 10 and save
the file:

it ('should async add two numbers', () => {
utils.asyncAdd (4, 3, (sum) => {
expect (sum) .toBe (10) .toBeA ('number') ;
1) i
1) i

In this case, the test is still going to pass. Right here, you see we have four tests passing:

> testsP1.0.0 test /Users/Gary/Desktop/node-tests
> mocha #%/%.test.js

Adding the done argument

Now the reason this test is passing is not because the assertion in utils.test.js is valid.
It's passing because we have an asynchronous action that takes 1 second. This function will
return before the async callback gets fired. When I say function returning, I'm referring to

the callback function, the second argument to it.

This is when Mocha thinks your test is done. This means that these assertions never run.
The Mocha output has already said our test passes before this callback ever gets fired. What
we need to do is tell Mocha this will be an asynchronous test that'll take time. To do this, all
we do is we provide an argument inside the callback function we pass to it. We'll call this
one done:

it ('should async add two numbers', (done) => {

[575]

Testing the Node Applications — Part 1 Chapter 10

When we have the done argument specified, Mocha knows that means we have an
asynchronous test and it'll not finish processing this test until done gets called. This means
we can call done after our assertions:

it ('should async add two numbers', (done) => {
utils.asyncAdd (4, 3, (sum) => {
expect (sum) .toBe (10) .toBeA ('number') ;
done () ;
)i
)i

With this in place, our test will now run. The function will return right after it calls
async.Add, but that's OK because we have done specified. About a second later, our
callback function will fire. Inside the asyncAdd callback function, we'll make our assertions.
This time the assertions will matter because we have done and we haven't called it yet.
After the assertions we call done, this tells Mocha that we're all done with the test. It can go
ahead and process the result, letting us know whether it passed or failed. This will fix that
error.

If I save the file in this state, it'll rerun the tests and we'll see that our test should async.Add
two numbers will indeed fail. Inside Terminal, let's open up the error message, we have
Expected 7 to be 10:

> testsR1.0.0 test /Users/Gary/Desktop/node-tests
> mocha **/%.test.js

1) should async add two numbers:

Test failed. See above for more details.

[576 1]

Testing the Node Applications — Part 1 Chapter 10

This is exactly what we thought would happen the first time around when we didn't use
done, but as we can see, we do need to use done when we're doing something
asynchronous inside of our tests.

Now we can change this expectation back to 7, save the file:

it ('should async add two numbers', (done) => {
utils.asyncAdd (4, 3, (sum) => {
expect (sum) .toBe (7) .toBeA ('number');
done () ;

This time around things should work as expected after 1 second delay as it runs this test:

> testsP1.8.0 test /Users/Gary/Desktop/node-tests
> mocha *%/%.test.js

It can't report right away because it has to wait for done to get called. Notice that our total
test time is now about a second. We can see that we have four tests passing. Mocha also
warns us when a test takes a long time because it assumes that's not expected. Nothing
inside Node, even a database or HTTP request, should take even close to a second, so it's
essentially letting us know that there's probably an error somewhere inside of your
function—it's taking a really, really long time to process. In our case though, the one second
delay was clearly set up inside of utils so there's no need to worry about that warning.

With this in place, we now have a test for our very first asynchronous method. All we had
to do is add a done as an argument and call it once we were done making our assertions.

[577]

Testing the Node Applications — Part 1 Chapter 10

The asynchronous testing for the square function

Now let's create an asynchronous version of the square method as we did with the
synchronous one. In order to get started, we'll define the function first and then we'll worry
about writing that test.

Creating the async square function

Inside the utils file, we can get started next to the square method creating a new one
called asyncSquare:

module.exports.square = (x) => x * x;
module.exports.asyncSquare

It'll take two arguments: the original argument which we called %, and the callback
function that'll get called after our 1-second delay:

module.exports.square = (x) => x * x;
module.exports.asyncSquare = (x, callback) => {
bi

Then we can finish up the arrow function (=>) and we can start working on the body of
asyncSquare. It'll look pretty similar to the asyncAdd one. We'll call setTimeout passing
in a callback and a delay. In this case, the delay will be the same; we'll go with 1 second:

module.exports.square = (x) => x * x;
module.exports.asyncSquare = (x, callback) => {
setTimeout (() => {
}, 1000);

bi

Now we can actually call the callback. This will trigger the callback function that got
passed in and we'll pass in the value x times x, which will properly square the number
passed in place of x:

module.exports.square = (x) => x * x;
module.exports.asyncSquare = (x, callback) => {
setTimeout (() => {

callback(x * x);

[578]

Testing the Node Applications — Part 1 Chapter 10

}, 1000);
bi

Writing test for asyncSquare

Now inside the test file, things are indeed passing, but we haven't added a test for the
asyncSquare function so let's do that. Inside the utils.test file, the next thing you
needed to do was call it. Next to it for testing the asyncAdd function, let's call it to make
a new test for this asyncSquare function:

it ('should sgquare a number', () => {
var res = utils.square(3);

expect (res) .toBe (9) .toBeA ('number');

})i
it ('should async square a number')

Next up, we'll provide the callback function that'll get called when the test actually
executes. And since we are testing an async function, we'll put done in the callback
function as shown here:

it ('should async square a number', (done) => {
)i

This will tell Mocha to wait until done is called to decide whether or not the test passed.
Next, we can now call utils.asyncSquare passing in a number of our choice. We'll use 5.
Next up, we can pass in a callback:

it ('should async square a number', (done) => {
utils.asyncSquare (5, () => {

})
)i

This will get the final result. In the arrow function (=>), we'll create a variable to store that
result:

utils.asyncSquare (5, (res) => {
)i

Now that we have this in place, we can start making our assertions.

[5791

Testing the Node Applications — Part 1 Chapter 10

Making assertions for the asyncSquare function

The assertions will be done using the expect library. We'll make some assertions about the
res variable. We'll assert that it equals, using t oBe, the number 25, which is 5 times 5.
We'll also use toBeA to assert something about the type of the value:

it ('should async square a number', (done) => {
utils.asyncSquare (5, (res) => {
expect (res) .toBe (25) .toBeA ('number') ;
)i
)i

In this case, we want to make sure that the square is indeed a number, as opposed to a
Boolean, string, or object. With this in place, we do need to call done and then save the file:

it ('should async square a number', (done) => {
utils.asyncSquare (5, (res) => {
expect (res) .toBe (25) .toBeA ('number') ;
done () ;
}) i
}) i

Remember, if you don't call done, your test will never finish. You might

find that every once in a while you'll get an error like this inside the
Terminal:

» tests®1.8.8 test /Users/Bary/Desktop/node-tests
> mocha #+*/#.test.js

1) should async square a numher:

Test failed. See sbove for more details.

[580]

Testing the Node Applications — Part 1 Chapter 10

You're getting an error timeout, the 2,000 milliseconds has exceeded. This is when Mocha
cuts off your test. If you see this, this usually means two things:

* You have an async function that never actually calls the callback, so you're call to
done never gets fired.
¢ You just never called done.

If you see this message, it usually means there's a small typo somewhere
in the async function. To overcome this, either fix things in the method
(utils.js) by making sure the callback is called, or fix things in the test
(utils.test.js) by calling done, and when you save the file you should
now see all of your tests are passing.

In our case, we have 5 tests passing and it took 2 seconds to do that. This is fantastic:

> tests@1.0.8 test /Users/Gary/Desktop/node-tests
> mocha **/%.test.js

We now have a way to test synchronous functions and asynchronous functions. This will
make testing a lot more flexible. It'll let us test essentially everything inside of our
applications.

Summary

In this chapter, we looked into testing the synchronous and asynchronous functions. We
looked into basic testing. We explored the testing framework, Mocha. Then, we look into
using assertion libraries in testing Node modules.

In the next chapter, we'll look at how we can test our Express apps.

[581]

11

Testing the Node Applications —
Part 2

In this chapter, we'll continue our journey of testing the Node applications. In the previous
chapter, we looked at the basic testing framework and worked on synchronous as well as
asynchronous Node application. In this chapter we'll move on to testing the Express
applications, then we'll look into a method to organize our test better in the result output,
and last but not least we'll get into some advanced methods of testing Node application.

Specifically, we'll look into the following topics:

e Setting up testing for Express app
¢ Testing Express application

¢ Organizing test with describe ()
o Test spies

Testing the Express application

In this section, we'll be setting up an Express app and then, we'll look at how we can test it
to verify that the data that comes back from our routes is what the user should be getting.
Now before we do any of that, we will need to create an Express server and that's the goal
of this section.

Testing the Node Applications — Part 2 Chapter 11

Setting up testing for the Express app

We'll start with installing Express. We'll use npm i, which is short for install, to install
Express. Remember, you could always replace install with i. We'll grab the most recent
version, @4.16.2. Now, we'll be using the save flag as opposed to the save dev flag that
we've used for testing in the previous chapter:

npm i express@4.16.2 —--save

This command is going to install Express as a regular dependency, which is exactly what
we want:

[] [] [node-tests — -bash — 108x29

Gary:node-tests Gary$ npm i express@4.16.2 --save
U tests@1.8.8 No description
npm [L:ll| tests@1.8.8 No repository field.

+ express@4.16.2
added 50 packages in 11.062s
Gary:node-tests Gary$ I

We need Express when we deploy to production, whether it's Heroku or some other
service.

Back inside the app, if we open up package. json, we can see we have dependencies
which we've seen before, and devDependencies which is new to us:

"devDependencies": {
"expect": "*1.20.2",
"mocha": "~3.0.0"

b

"dependencies": {
"express": "*4.14.0"

}

}

This is how we can break up the different dependencies. From here, we'll make a server
folder inside the root of the project where we can store the server example as well as the test
file. We'll make a directory called server. Then inside server, we'll make a file called

server.js.

[583]

Testing the Node Applications — Part 2 Chapter 11

The server. js file will contain the actual code that starts up our server. We'll define our
routes, we'll listen to a port, all that stuff is going to happen in here. This is what we had
before for the previous server chapter. In server.js, we'lladd const express, and this
will get equal to the require ('express') return result:

const express = require ('express');

Next up, we can make our application by creating a variable called app and setting it equal
to a call to express:

const express = require('express');
var app = express();
Then we can start configuring our routes. Let's set up just one for this section, app . get:
const express = require ('express');
var app = express|();
app.get

This will set up an HTTP GET handler. The URL will be just / (forward slash), the root of
the website. And when someone requests that, for the moment we'll specify a really simple
string as the return result. We get the request and the response object like we do for all of
our express routes. Yo respond, we'll call res. send, sending back the string Hello
World!:

app.get ('/', (req, res) => {
res.send('Hello world!"');
P

The last step in the process will be to listen on a port using app . 1isten. We'll bind to port
3000 by passing it in as the first and only argument:
app.get ('/', (req, res) => {
res.send('Hello world!"'");

)i

app.listen(3000);

[584]

Testing the Node Applications — Part 2 Chapter 11

With this in place, we are now done. We have a basic Express server. Before we move on to
explore how to test these routes, let's start it up. We'll do that by using the following
command:

node server/server.js

When we run this, we don't get any logs because we haven't added a callback function for
when the server starts, but it should indeed be up.

If we go over to Chrome and visit localhost:3000, we get Hello world! printing to the
screen:

® ® /[ocalhost:3000 x

C | O localhost:3000

Hello world!

Now, we are ready to move on to start testing our Express application.

Testing the Express app using SuperTest

Now, we'll learn an easy, no-nonsense way to test our Express applications. That means we
can verify that when we make an HTTP GET request to the / URL, we get the Hello
world! response back.

[585]

Testing the Node Applications — Part 2 Chapter 11

Now traditionally, testing HTTP apps has been one of the more difficult things to test. We
would have to fire up a server, like we did in the previous section. Then we would need
some code to actually make the request to the appropriate URL. And then we have to dig
through the response, getting what we want, and making assertions about it, whether it's
headers, the status code, the body, or anything else. It is a real burden. That is not the goal
for this section. Our goal here is to make testing easy and approachable, so we'll use a
library called SuperTest to test our Express applications.

SuperTest was created by the developers who originally created Express. It has built-in
support for Express and it makes testing your Express apps dead simple.

The SuperTest documentation

In order to get started, let's pull up the docs page so you know where it lives if you ever
want to look at any other features that it has to offer. If you Google supertest, it should be
the first result:

GO gle supertest L, Q

All Maps Images Videos News More Settings Tools

About 7,62,000 results (0.27 seconds)

GitHub - visionmedia/supertest: Super-agent driven library for testing ...
https://github.com/visionmedia/supertest v
supertest - Super-agent driven library for testing node.js HTTP servers using a fluent API.

supertest - npm

https:/fwww.npmjs.com/package/supertest v

Once installed it can now be referenced by simply calling require('supertest');. Example. You may pass
an http.Server , or a Function to request() - if the server is not already listening for connections then it is
bound to an ephemeral port for you so there is no need to keep track of ports. SuperTest works with
any test ...

[586]

Testing the Node Applications — Part 2 Chapter 11

It's the VisionMedia repository and the repository itself is called SuperTest. Let's switch
over to the repository page and we can take a quick look at what it has to offer. On this
page, we can find installation instructions and introduction stuff. We don't really need that.
Let's take a quick look at an example:

Example

You may pass an http.Server, or a Function to request() - Iif the server is not already listening for connections
then it is bound to an ephemeral port for you so there is no need to keep track of ports.

SuperTest works with any test framework, here is an example without using any test framework at all:

const request = reguire('supertest');
const express = require('express');

const app = express();

app.get('/user', function(req, res) {
res.status(2@@).json({ name: 'tobi' });
b;

request(app)
.get('/user')
.expect{'Content-Type', /json/)
.expect('Content-Length', '15')
.expect(200)
.end(function{err, res) {

if (err) throw err;

}:

As shown in the previous screenshot, we can see an example of how SuperTest works. We
create an Express application, just like we normally would, and we define a route. Then we
make a call to the request method, which is provided by SuperTest, passing in our Express
application. We say we want to make a get request to the / URL. Then we start making
assertions. There's no need to manually check either the headers, the status code, or the
body. It has built-in assertions for all of that.

Creating a test for the Express app

To get started, we'll install SuperTest in our application by running npm install from the
Terminal. We have the Node server still running. Let's shut that down and then install the
module.

[587]

Testing the Node Applications — Part 2 Chapter 11

We can use npm i, the module name is supertest and we'll be grabbing the most recent
version, @2.0.0. This is a test-specific module so we'll be installing it with save. We'll use
save—dev to add it to the devDependencies in package. json

npm i supertest@3.0.0 —--save-dev

Gary:node-tests Gary$ npm i supertest(®3.0.8 --save-dev
npm tests@1.9.8 No description
npm tests@1.8.8 No repository field.

+ supertest@3.90.0
added 16 packages in 7.629s
Gary:node-tests Gary$ I

With SuperTest installed, we are now ready to work on the server.test. js file. Asit
doesn't yet exist inside the server folder, so we can create it. It's going to sit just alongside
server.js:

+ Enter the path for the new file.

server/server.test.js

Now that we have server.test. js in place, we can start setting up our very first test.
First, we'll be creating a constant called request and setting that equal to the return result
from requiring supertest:

const request = require ('supertest');

This is the main method we'll be using to test our Express apps. From here, we can load in
the Express application. Now inside server. js, we don't have an export that exports the
app, so we'll have to add that. I'll add it next to the app . 1isten statement by creating
module.exports.app and setting that equal to the app variable:

app.listen(3000);
module.exports.app = app;

[588]

Testing the Node Applications — Part 2 Chapter 11

Now we have an export called app that we can access from other files. The server. js is
still going to run as expected when we start it from the Terminal, not in test mode. We just
added an export so if anyone happens to require it, they can get access to that app. Inside
server.test.js, we'll make a variable to import this. We'll call the variable app. Then
we'll require using require ('./server.js'), orjust server. Then we'll access the . app
property:

const request = require ('supertest');
var app = require('./server') .app;

With this in place, we now have everything we need to write our very first test.

Writing the test for the Express app

The first test we'll write is a test that verifies when we make an HTTP GET request to the /
URL, we get Hello world! back. To do this, we will be calling it just like we did for our
other tests in the previous chapter. We're still using mocha as the actual test framework.
We're using SuperTest to fill in the gaps:

var app = require('./server') .app;
it ('should return hello world response')

Now we'll set up the function as follows:

it ('should return hello world response', (done) => {

)i

This is going to be an asynchronous call so I are providing done as the argument to let
mocha know to wait before determining whether or not the test passed or failed. From here,
we can now make our very first call to request. To use SuperTest, we call request passing
in the actual Express application. In this case, we pass in the app variable:

it ('should return hello world response', (done) => {
request (app)
}) i

Then we can start chaining together all the methods we need to make the request, make our
assertions, and finally wrap things up. First up, you'll be using a method to actually make
that request, whether it's a get, put, delete, or a post.

[589]

Testing the Node Applications — Part 2 Chapter 11

For now, we'll be making a get request, so we will use .get. The . get request takes the
URL. So, we'll provide / (forward slash), just as we did in server. js:

it ('should return hello world response', (done) => {
request (app)
.get ('/")
}) i

Next up, we can make some assertions. To make assertions, we'll use . expect. Now
.expect is one of those methods that does different things depending on what you pass to
it. In our case, we'll be passing in a string. Let's pass in a string which will be the response
body that we assert, Hello world!:

it ('should return hello world response', (done) => {
request (app)
.get ('/")
.expect ('Hello world!")
P) i

Now that we're done and we've made our assertions, we can wrap things up. To wrap up a
request in SuperTest, all we do is we call . end passing in done as the callback:

it ('should return hello world response', (done) => {
request (app)
.get ('/")
.expect ('Hello world!")
.end (done) ;

P

This handles everything behind the scenes so you don't need to manually call done at a
later point in time. All of it is handled by SuperTest. With these four lines (in the previous
code), we have successfully tested our very first API request.

Testing our first API request
We'll kick things off in the Terminal by running our test-watch script:

npm run test-watch

[590]

Testing the Node Applications — Part 2 Chapter 11

The test script is going to start and as shown here, we have some tests:

®] node-tests — node « npm TERM_PROGRAM=Apple_Terminal TERM=xterm-256calor SHELL=/hin/bash — 108=29

Gary:node-tests Gary$ npm run test-watch

> tests@1.08.0 test-watch fUsers/Gary/Desktop/node-tests
> nodemon --exec 'npm test'

[nodemon] 1.14.18
[nodemon] to r t at any time, enter ‘rs’
[nodemon] watching: *.%

> testsR1.8.8 test fUsers/Gary/Desktop/node-tests
> mocha *%/%.test.js

(64ms)

We have our test, should return hello world response, showing up in the previous
screenshot.

Now we can take things a step further making other assertions about the data that comes
back. For example, we can use expect after the . get requestin server.test.js to make
an assertion about the status code. By default, all of our Express calls are going to return a
200 status code, which means that things went OK:

it ('should return hello world response', (done) => {
request (app)
.get ('/")
.expect (200)
.expect ('Hello world!")
.end (done) ;

1)

If we save the file, the test still passes:

[591]

Testing the Node Applications — Part 2 Chapter 11

> testsP1.0.8 test /Uscrs/Gary/Desktop/node—tests
> mocha *%/*.test.js

Now let's make some changes to the request to make these tests fail. First up, in server.js
we'll just add a few characters (ww) to the string, and save the file:

app.get ('/', (req, res) => {
res.send('Hello wwworld!");

)i

app.listen(3000);
module.exports.app = app;

This should cause the SuperTest test to fail and it does indeed do that:

> tests@1.0.9 test /Users/Gery/Desktop/node-tests
> mocha *%/*.test.js

1) should return hello world response:

[592]

Testing the Node Applications — Part 2 Chapter 11

As shown in the previous screenshot, we get a message, expected 'Hello world!'
response body, but we got 'Hello wwworld!'. Thisis letting us know exactly what
happened. Back inside server. js, we can remove those extra characters (ww) and try
something else.

Setting up custom status

Now we haven't talked about how to set a custom status for our response, but we can do
that with one method, .status. Let's add .status in server. js, chaining it on, before,
send ('Hello world! "), just like this:

app.get ('/', (req, res) => {
res.status () .send('Hello world!"');
)i

Then, we can pass in the numerical status code. For example, we could use a 404 for page
not found:

app.get ('/', (req, res) => {
res.status (404) .send('Hello world!"');
)i

If we save the file this time around, the body is going to match up, but inside the Terminal
we can see we now have a different error:

> testsPl.08.0 test /Users/Gary/Desktop/mode-tests
> mocha *%/%.test.js

1) should return hello world response:

[593 1]

Testing the Node Applications — Part 2 Chapter 11

We expected a 200, but we got a 404. Using SuperTest, we can make all sorts of assertions
about our application. Now the same thing is true for different types of responses. For
example, we can create an object as the response. Let's make a simple object and we'll create
a property called error. Then we'll set error equal to a generic error message for a 404,
something like Page not found:

app.get ('/', (req, res) => {
res.status (404) .send ({
error: 'Page not found.'
P i
P i

Now, we're sending back a JSON body, but currently we're not making any assertions about
that body so the test is going to fail:

> tests@1.08.0 test fUsers/Gary/Desktop/node-tests
> mocha #**%/%.test.js

1) should return hello world response:

We can update our tests to expect JSON to come back. In order to get that done, all we
have to do inside server.test is change what we pass to expect. Instead of passing in a
string, we'll pass in an object:

it ('should return hello world response', (done) => {
request (app)
.get ('/")
.expect (200)
.expect ({

[594]

Testing the Node Applications — Part 2 Chapter 11

H)

.end (done) ;
)i

Now we can match up that object exactly. Inside the object, we'll expect that the error
property exists and that it equals exactly what we have in server. js:

.expect ({
error: 'Page not found.'

H)
Then, we'll change the .expect call toa 404 from 200:

.expect (404)
.expect ({
error: 'Page not found.'

H)

With this in place, our assertions now match up with the actual endpoint we've defined
inside the Express application. Let's save the file and see if all the tests pass:

> testsP1.0.0 test /Users/Gary/Desktop/node-tests
> mocha #%/%.test.js

As shown in the previous screenshot, we can see it is indeed passing. The Should return
hello world response is passing. It took about 41ms (milliseconds) to complete, and that
is perfectly fine.

[595]

Testing the Node Applications — Part 2 Chapter 11

Adding flexibility to SuperTest

A lot of the built-in assertions do get the job done for the majority of cases. There are times
where you want a little more flexibility. For example, in the previous chapter, we learned
about all those cool assertions expect can make. We can use toInclude, toExclude, all of
that stuff is really handy and it's a shame to lose it. Luckily, there's a lot of flexibility with
SuperTest. What we can do instead of taking an object and passing it into expect, or a
number for the status code, we can provide a function. This function will get called by
SuperTest and it will get passed the response:

.expect ((res) => {
})

This means we can access headers, body, anything we want to access from the HTTP
response—it's going to be available in the function. We can pipe it through the regular
expect assertion library like we've done in the previous chapter.

Let's load it in, creating a constant called expect and setting it equal to require expect:

const express = require ('supertest');
const express = require ('express');

Now before we look at how it's going to work, we'll make a change in server. js. Here,
we'll add a second property on to the . status object. We'll add an error and then add
something else. Let's use name, setting it equal to the application name, Todo App v1.0:

app.get ('/', (req, res) => {
res.status (404) .send ({
error: 'Page not found.',
name: 'Todo App v1.0'
P
P

Now that we have this in place, we can take a look at how we can use those custom
assertions inside our test file. In the . expect object, we'll have access to the response and in
the response there is a body property. This will be a JavaScript object with key-value pairs,
which means we would expect to have an error property and a name property, which we
setin server. js.

[596]

Testing the Node Applications — Part 2 Chapter 11

Back inside our test file, we can make a custom assertion using expect. I'll expect
something about the body, res.body. Now we can use any assertion we like, not just the
equals assertion, which is the only one SuperTest supports. Let's use the toInclude
assertion:

.expect ((res) => {
)

expect (res.body) .toInclude ({

)i
})

Remember, toInclude lets you specify a subset of the properties on the object. As long as it
has those ones that's fine. It doesn't matter that it has extra ones. In our case, inside
toInclude, we can just specify the error message, leaving off the fact that name exists at
all. We want to check that error: Page not found, formatted exactly like we have it
inside of server.js:

.expect ((res) => {
expect (res.body) .toInclude ({
error: 'Page not found.'
P
)

Now when we save the file back inside the Terminal, things restart and all of my tests are
passing:

> tests@1.8.8 test fUsers/Gary/Desktop/node-tests
> mocha **/%.test.js

Using a combination of SuperTest and expect we can have super flexible test suites for our
HTTP endpoints. With this in place, we'll create another express route and we'll define a
test that makes sure it works as expected.

[597]

Testing the Node Applications — Part 2 Chapter 11

Creating an express route

There will be two sides to this express route, the actual setup in server. js and the test. We
can start inside server. js. In here, we'll make a new route. First, let's add a few comments
to specify exactly what we'll do. It's going to be an HTTP GET route. The route itself will be
/users and we can just assume this returns an array of users:

app.get ('/', (req, res) => {
res.status (404) .send ({
error: 'Page not found.',
name: 'Todo App v1.0'
P
P

// GET /users

We can pass an array back through the send method, just like we do an object in the
previous code. Now this array is going to be an array of objects where each object is a user.
For now, we want to give users a name property and an age prop:

// GET /users
// Give users a name prop and age prop

Then we'll create two or three users for this example. Now once we have this done, we'll be
responsible for writing a test that asserts it works as expected. That's going to happen in
server.test.js.Inside server.test.js, we'll make a new test:

it ('should return hello world response', (done) => {
request (app)
.get ('/")
.expect (404)
.expect ((res) => {

expect (res.body) .toInclude ({
error: 'Page not found.'

// Make a new test

[598]

Testing the Node Applications — Part 2 Chapter 11

And this test is going to assert a couple of things. First up, we assert that the status code that
comes back is a 200 and we want to make an assertion that inside of that array and we'll do
that using toInclude:

// Make a new test
// assert 200
// Assert that you exist in users array

Let's start with defining the endpoint first. Inside server. js, just following the comments,
we'll call app.get so we can register the brand new HTTP endpoint for our application.
This one is going to be at /users:

app.get ('/users'")
// GET /users
// Give users a name prop and age prop

Next up, we'll specify the callback that takes both request and response:

app.get ('/users', (req, res) => {

1)

// GET /users

// Give users a name prop and age prop

This will let us actually respond to the request, and the goal here is just to respond with an
array. In this case, I'll call response. send passing in an array of objects:

app.get ('/users', (req, res) => {
res.send ([{

1)
)i

The first object will be name. We'll set the name equal to Mike and we'll set his age equal to
27:

app.get ('/users', (req, res) => {
res.send ([{
name: 'Mike',
age: 27
1)
P) i

Then I can add another object. Let's add the second object to the array with a name equal to
Andrew and an age equal to 25:

app.get ('/users', (req, res) => {
res.send ([{

[599]

Testing the Node Applications — Part 2 Chapter 11

name: 'Mike',
age: 27
oo A
name: 'Andrew',
age: 25
1)
P) i

In the last one, we'll set the name equal to Jen and the age equal to 26:

app.get ('/users', (req, res) => {
res.send ([{
name: 'Mike',
age: 27
oo A
name: 'Andrew',
age: 25
oo A
name: 'Jen',
age: 26
D)
)i

Now that we have our endpoint done, we can save server. js, move into
server.test. js, and start worrying about actually creating our test case.

Writing the test for the express route

In server.test.js, just following the comments, we need to start things out by calling it.
it is the only way to make a new test:

// Make a new test

// assert 200

// Assert that you exist in users array
it ('should return my user object')

Then we'll specify the callback function. It will get past the done argument because this one
is going to be asynchronous:

// Make a new test

// assert 200

// Assert that you exist in users array

it ('should return my user object', (done) => {

)i

[600]

Testing the Node Applications — Part 2 Chapter 11

To kick things off inside the test case, we'll be calling requests just like we did in hello world
response, passing in the Express application:

it ('should return my user object', (done) => {
request (app)
}) i

Now we can set up the actual call. In this case, we're just making a call, a get request, to the
following URL, inside of quotes, /users:

it ('should return my user object', (done) => {
request (app)
.get ('/users"')

)i

Next up, we can start making our assertions and the first thing we're supposed to assert that
the status code is at 200, which is the default status code used by Express. We can assert
that by calling .expect and passing in the status code as a number. In this case, we'll pass
in 200:

it ('should return my user object', (done) => {
request (app)
.get ('/users"')
.expect (200)
P) i

After this, we'll use a custom expect assertion. This means that we'll call expect passing in
a function and use toInclude inside it to make the assertion that you exist in that users
array. We'll call expect the method passing in the function, and that function will get
called with the response:

it ('should return my user object', (done) => {
request (app)
.get ('/users"')
.expect (200)
.expect ((res) => {
})
}) i

This will let us make some assertions about the response. What we're actually going to do is
make an assertion using expect. We'll expect something about the response body. In this
case, we'll be checking that it includes using toInclude, our user object:

it ('should return my user object', (done) => {
request (app)
.get ('/users")

[601]

Testing the Node Applications — Part 2 Chapter 11

.expect (200)
.expect ((res) => {

expect (res.body)
)

.toInclude ()

)i

Now remember you can call toInclude on both arrays and objects. All we do is pass in the
item we want to confirm is in the array. In our case, it's an object where the name property
equals Andrew and the age property equals 25, which is what we used inside server. js:

expect (res.body) .toInclude ({
name: 'Andrew',
age: 25

)

Now that we have our custom expect call in place, at the very bottom we can call . end.
This is going to wrap up the request and we can pass in done as the callback so it can
properly fire off those errors if any actually occurred:

expect (res.body) .toInclude ({
name: 'Andrew',
age: 25
)
)

.end (done) ;
With this in place, we are ready to get going. We can save the file.

Inside the Terminal, we can see the tests are indeed rerunning:

> tests@1.08.0 test fUsers/Gary/Desktop/node-tests
> mocha #**/*.test.js

[602]

Testing the Node Applications — Part 2 Chapter 11

We have a test as shown in the previous screenshot, should return my user object.It
is passing.

Now we can confirm that we'll not go crazy and test the wrong thing by just messing up the
data. We will now add a lowercase a after the uppercase one in Andrew in server. js, as
shown here:

app.get ('/users', (req, res) => {
res.send ([{
name: 'Mike',
age: 27
oo A
name: 'Aandrew',
age: 25
oo A
name: 'Jen',
age: 26

The test is going to fail. We can see that in the Terminal:

> tests@1.8.8 test fUsers/Gary/Desktop/nnde-tests
> mocha *%/*.test.js

1) should return my user object:

We have done testing for our Express apps. We'll now talk about one more way we can test
our Node code.

[603]

Testing the Node Applications — Part 2 Chapter 11

Organizing test with describe()

In this section, we will learn how to use describe (). describe is a function injected into
our test files, just like the it function is. It comes from mocha and it's really fantastic.
Essentially, it lets us group tests together. That makes it a lot easier to scan the test output. If
we run our npm test command in the Terminal, we get our tests:

Gary:node-tests Gary$ npm test

> testsR1.0.0 test /Users/Gary/Desktop/node-tests
> mocha **/%.test.js

We have seven tests and currently they're all grouped together. It's really hard to look for
the tests in the uti1s file and it's impossible to find the tests for asyncadd without
scanning all of the text. What we'll do is call describe (). This will let us make groups of
tests. We can give that group a name. It will make our test output much more readable.

In the utils.test.js file, right after the utils constant, we'll call describe ():

const expect = require('expect');
const utils = require('./utils');
describe ()

The describe object takes two arguments, just like it. The first one is the name and the
other is the callback function. We'll use Ut ils. This will be the describe block that
contains all of the tests in the utils.test file. Then we'll provide the function. This is the
callback function:

describe ('Utils', () => {

1)

[604]

Testing the Node Applications — Part 2 Chapter 11

Inside the callback function, we'll be defining tests. Any test defined in the callback function
will be a part of the ut i1s block. That means we can take our existing tests, cut them out of
the file, paste them in there, and we'll have a describe block called utils with all of the
tests for this file. So, let's do just that.

We'll grab all the tests, excluding the ones that are just playground tests where we play
around with various expect functionality. We'll then paste them right into the callback
function. The resultant code is going to look like this:

describe ('Utils', () => {
it ('should add two numbers', () => {
var res = utils.add (33, 11);

expect (res) .toBe (44) .toBeA ('number');
)i

it ('should async add two numbers', (done) => {
utils.asyncAdd (4, 3, (sum) => {
expect (sum) .toBe (7) .toBeA ('number');

done () ;
}) i
}) i
it ('should square a number', () => {
var res = utils.square(3);

expect (res) .toBe (9) .toBeA ('number"') ;
)i

it ('should async square a number', (done) => {
utils.asyncSquare (5, (res) => {
expect (res) .toBe (25) .toBeA ('number"') ;

done () ;

These are four tests for add, asyncAdd, square, and asyncSquare respectively. Now we'll
save the file and we can start up the test-watch script from the Terminal and check the
output:

npm run test-watch

[605]

Testing the Node Applications — Part 2 Chapter 11

The script will start and run through our tests, and as shown in the following screenshot,
we'll have different outputs:

> tests@1.8.8 test fUsers/Gary/Desktop/node-tests
> mocha **/%.test.js

We have a Utils section and under Utils, we have all of the tests in that describe block.
This makes reading and scanning your tests much, much easier. We can do the same thing
for the individual methods.

Adding describe() for individual methods

Now, in the case of utils.test. js (refer to the previous screenshot), we have one test per
method, but if you have a lot of tests that are targeting a complex method, it's best to wrap
that in its own describe block. We can nest describe blocks and tests in any way we like.
For example, right inside utils just after the describe statement, we can call describe
again. We can pass a new description. Let's use # (pound sign) followed by add:

describe ('Utils', () => {
describe ('#add"')

The # (pound sign) followed by the method name is the common syntax for adding a
describe block for a specific method. Then we can provide that callback function:

describe ('Utils', () => {
describe ('#add', () => {

})

[606]

Testing the Node Applications — Part 2 Chapter 11

Then, we can take any tests we want to add into that group, cut them out, and paste them
in:

describe ('Utils', () => {
describe ('"#add', () => {
it ('should add two numbers', () => {

var res = utils.add (33, 11);

expect (res) .toBe (44) .toBeA ('number');
P i
P i

Then I can save the file. This will rerun the test suite and now we have test output that's
even more scannable:

> tests@1.08.0 test fUsers/Gary/Desktop/node-tests
> mocha #**%/%.test.js

It's super easy to find the ut i1s add method tests because they're clearly labelled. Now you
could go as crazy or as uncrazy with this as you want. There really is no hard-and-fast rule
for how often to use describe to structure your tests. It's really up to you to figure out
what makes sense given the amount of tests you have for a method or a file.

In this case, we have quite a few tests in the file so it definitely makes sense to add that
utils block. And I just wanted to show you you could nest them, so I added it for add as
well. If I was writing this code, I probably wouldn't add a second layer of tests, but if I had
more than one test per method, I definitely would add a second describe block.

[607]

Testing the Node Applications — Part 2 Chapter 11

Adding the route describe block for the
server.test.js file

Now, let's create some describe blocks in the server.test file. We'll create a route
describe block called server. Then we'll create describe blocks for both the route URL
and for /users. We'll have GET/. That will have the test case in there, some test case.
Then alongside //, we'll have GET /users, and that will have its own test case, some test
case as explained in the comments next:

const request = require ('supertest');
const expect = require ('expect');
var app = require('./server') .app;

// Server
// GET /
// some test case
// GET / user
// some test case

Now the test cases are obviously already defined. All we need to do is call describe three
times to generate the previously explained structure.

We'll start with calling describe () once following the comments part, and this description
will be for the route, so we'll call this one Server:

// Server
// GET /
// some test case
// GET / user
// some test case
describe ('Server')

This is going to contain all the tests in our server file. We can add the callback function
next and we can move on:

describe ('Server', () => {

H)

[608]

Testing the Node Applications — Part 2 Chapter 11

Next up, we'll call describe again. This time we're creating a describe block for tests that
test the GET / route and add the callback function:

describe ('Server', () => {

describe ('GET /', () => {
)
)

Now we can simply take our test, cut it out, and paste it right inside the describe callback.
The resultant code is going to look like this:

describe ('Server', () => {
describe ('GET /', () => {
it ('should return hello world response', (done) => {
request (app)
.get ('/")
.expect (404)
.expect ((res) => {

expect (res.body) .toInclude ({
error: 'Page not found.'

Next up, we'll call describe the third time. We'll be calling describe passing in as the
description GET /users:

describe ('GET /users')

We'll have our callback function as always and then we can copy and paste our test right
inside:

describe ('GET /users'), () => {
it ('should return my user object', (done) => {
request (app)
.get ('/users"')
.expect (200)
.expect ((res) => {
expect (res.body) .toInclude ({
name: 'Andrew',
age: 25

[609]

Testing the Node Applications — Part 2 Chapter 11

)i
})

.end (done) ;
)i
)i

With this in place, we are now done. We have a much better structure for our tests and
when we rerun the test suite by saving the file, we'll be able to see that in the Terminal:

> testsP1.0.0 test /Users/Gary/Desktop/node-tests
> mocha #%/%.test.js

Server
GET /

GET /users

As shown in the previous code, we have a much more scannable test suite. We can see our
server tests right away. We can create groups of tests for each feature. Since we have static
data right now, we really don't need more than one test per feature. But down the line, we
will have multiple tests for each of our HTTP requests, so it's a good idea to get into that
habit of creating describe blocks early. And that's it for this one!

Test spies

In this section, which is the final section for the testing chapter, we'll learn some pretty
advanced testing techniques. We'll be using these techniques as we build real-world apps,
but for now let's start off with an example. We'll worry about the vocabulary for what we're
about to do in just a second.

[610]

Testing the Node Applications — Part 2 Chapter 11

For the moment, we'll close all our current files and create a new directory in the root of the
project. We'll make a new folder called spies. We'll talk about what exactly spies are and
how they relate to testing in just a moment. Inside spies, we'll make two files: app. js (this
is the file that we'll be testing) and a second one, called db. js. In our example, we can just
assume that db. js is a file that has all sorts of methods for saving and reading data from
the database.

Inside db. js, we'll create one function using module.exports. Let's create a function
called saveUser. The saveUser function will be a really simple function, and it will take a
user object like this:

module.exports.saveUser = (user) => {

}

Now, we'll just print it to the screen using the console. log statement. We'll print it a little
message, Saving the user, and we'll also print out the object as shown here:

module.exports.saveUser = (user) => {
console.log('Saving the user', user);

}

Now obviously, this is not a real saveUser function. We do not interact with any sort of
database, but it will illustrate exactly how we will be using spies to test our code.

Next up, we will fill our app. js, and this is the file we'll actually be testing. Inside app. js,
we'll create a new function: module.exports.handleSignup. In the context of an
application with authentication, handleSignup might take an email and a password;
maybe it goes ahead and checks if the email already exists. If it doesn't, great; it saves the
user and then it sends some sort of a welcome email. We can simulate that by creating an
arrow function (=>) that takes in email and a password:

module.exports.handleSignup = (email, password) => {

Yi

[611]

Testing the Node Applications — Part 2 Chapter 11

Inside the arrow function (=>), we'll leave three comments. These will be things that the
function is supposed to do. It will check if the email already exists; it will save the user to
the database; and finally, we'll send that welcome email:

module.exports.handleSignup = (email, password) => {
// Check if email already exists
// Save the user to the database
// Send the welcome email

bi

Now, these three things are just an example of what a handleSignup method might
actually do. When we go through the real process, you'll see how it pans out. Now, we
already have one of these in place. We just created saveUser, so we'll do is call saveUser
instead of having this second comment:

// Check if email already exists
db.saveUser ()
// Send the welcome email

It's not imported just yet, but that's not going to stop us from calling it; we'll add the import
in just a second, and we'll pass in what it expects, the user object. Now, we don't have a
user object; we have an email and a password. We can create that user object by setting
email equal to the email argument and setting password equal to the password
argument:

db.saveUser ({
email: email,
password: password

)i

Now one important thing to note: inside ES6, if the property name in an object you're
setting is the same as the variable name, you can actually define it like this:

db.saveUser ({
email,
password

)i

In this example, since we're setting a password property equal to whatever on the
password variable, there's no need to have both. This ES6 syntax also allows us to create a
much simpler-looking call. There's no need to have it on multiple lines since it's pretty
reasonable in length.

[612]

Testing the Node Applications — Part 2 Chapter 11

Now, at the top, we can load in db by creating a variable, calling it db, and setting it equal
to require ('db.js"'). Thatis alocal file, so we'll start it with a . / to grab it from the
current directory:

var db = require('./db.js"');

Now, this is an example of something that we'll want to test inside our code. We have a
handleSignup method. It takes an email and a password, and we need to make sure that
db.saveUser works as well. That is a big problem, and this means that we're not just
testing handleSignup, we are also testing the following:

e We're testing handleSignup
e We're testing our code that checks if an email exists

Maybe that allows another function

We're checking if the saveUser function works as expected

we're checking if the welcome email is sent

This is a real pain. What we'll do instead is fake the saveUser function. It's never actually
going to execute the code inside it db, but it will let us verify that when we run
handleSignup, saveUser gets called. We're going to do this with something called spies.

The spies function let you swap out a real function such as saveUser for a testing utility.
When that test function gets called we can create various assertions about it, making sure it
was called with certain arguments. Let's start exploring that.

Creating a test file for spies

We'll start it with creating a new file. Inside the spies directory, we'll make a new file
called app.test. js, and we can start playing around with spies. Now, spies comes
built-in with expect, so all we have to do is load it in:

const expect = require('expect');

From here we can create our very first test. We'll put this in a describe block so it's easier
to find over in our test output:

const expect = require ('expect');

describe('")

[613]

Testing the Node Applications — Part 2 Chapter 11

We'll call this describe block App and we'll add my callback function:
describe ('App', () => {
P

Now we can add individual test cases. First up, we'll call it and make a new test where we
can just play around with spies:

describe ('App', () => {
it(ll)
P i

We won't be calling the function in our app. js file just yet. We'll add in the it object a
string say, Should call the spy correctly:

describe ('App', () => {

it ('should call the spy correctly', () => {
}) i
}) i

In order to visualize how spies work, we'll go through the most basic example we can.
First up, creating a spy.

Creating a spy

To create a spy, we'll call a function expect .createSpy inside the it callback function:

it ('should call the spy correctly', () => {
expect.createSpy () ;
P) i

The createspy is going to return a function, and that is the function that we'll swap out for
the real one, which means we do want to store that in a variable. I'll create a variable called
spy, setting it equal to the returned result:

it ('should call the spy correctly', () => {
var spy = expect.createSpy();
P

[614]

Testing the Node Applications — Part 2 Chapter 11

And now we would inject spy into our code, whether it's app . js or some other function,
and we would wait for it to get called. We can call it directly just like this:

it ('should call the spy correctly', () => {
var spy = expect.createSpy();

spy () ;
P

Setting up spies assertions

Next up, we can set up a series of assertions using expect's spies assertions by heading over
to the browser and going to the expect documentation, mjackson expect
(https://github.com/mjackson/expect).

On this page, we can scroll down to the spies section, where they talk about all the
assertions we have access to. We should start seeing spies in the method names, and that's
when we know we've gotten there:

>

(spy) toHaveBeenCalled
expect(spy).toHaveBeenCalled([message])

Asserts the given spy function has been called at least once.
expect(spy).toHaveBeenCalled()
@ (spy) toNotHaveBeenCalled

expect(spy).toNotHaveBeenCalled([messagel)

Asserts the given spy function has not been called.

expect(spy).toNotHaveBeenCalled()

(spy) toHaveBeenCalledWith
expect(spy).toHaveBeenCalledWith(...args)

Asserts the given spy function has been called with the expected arguments.

expect(spy).toHaveBeenCalledWith('foo', 'bar')

[615]

Testing the Node Applications — Part 2 Chapter 11

As shown in the previous code, we have the toHaveBeenCalled function and this is our
first assertion with spies. We can assert that our spy was indeed called. Inside Atom, we'll
do that by calling expect and passing in the spy, just like this:

it ('should call the spy correctly', () => {
var spy = expect.createSpy();
spy ()7

expect (spy)
}) i

Then, we'll add the assertion, t oHaveBeenCalled:
expect (spy) .toHaveBeenCalled() ;

This will cause the test to pass if spy was called, which it was, and it'll cause the test to fail
if the spy was never called. We can run the test suite inside the Terminal using the npm run
test-watch command, and this is going to kick off the tests using nodemon:

> tests@1.08.0 test fUsers/Gary/Desktop/node-tests
> mocha #%/%.test.js

Server
GET /

GET /users

App

Utils

As shown in the previous screenshot, we have all our test cases, and under the App one, we
have should call the spy correctly.Itdid indeed pass, which is fantastic.

[616]

Testing the Node Applications — Part 2 Chapter 11

Now let's comment out the line where I call spy:

it ('should call the spy correctly', () => {
var spy = expect.createSpy();
// spy();

expect (spy) .toHaveBeenCalled() ;
)i

And this time around, the test should fail because spy was never actually called, and as
shown in the following screenshot, we see spy was not called:

Server
GET /
GET /users

App

Utils

1) App
should call the spy correctly:

More details out of spy assertion

Now, checking if a spy was called or not called is great, but we can get even more detail out
of our assertions. For example, what if I call the spy with the name Andrew and the age 25:

it ('should call the spy correctly', () => {
var spy = expect.createSpy();
spy ("Andrew', 25);

expect (spy) .toHaveBeenCalled() ;

1)

[617]

Testing the Node Applications — Part 2 Chapter 11

Now, we want to verify if the spy was not just called but was called with these arguments?
Well, luckily, we have an assertion for that too. Instead of toHaveBeenCalled, we can call
toHaveBeenCalledWith, and this lets us pass in some arguments and verify the spy was
indeed called with those arguments.

As shown in the following code, we'll assert that my spy was called with Andrew and the
number 25:

expect (spy) .toHaveBeenCalledWith ('Andrew', 25);

When we save the file and the test cases restart, we should see all the tests passing, and
that's exactly what we get:

> tests@1.8.8 test fUsers/Gary/Desktop/node-tests
» mocha **x/=x.test.]js

Server
GET /

GET /fusers

App

Now, if the spy was not called with the mentioned data, I'll remove 25:

it ('should call the spy correctly', () => {

var spy = expect.createSpy();

spy ('Andrew') ;
expect (spy) .toHaveBeenCalledWith ('Andrew', 25);
P i

Now if we rerun the test suite, the test will fail. It will give you an error message letting you
know that spy was never called with ['Andrew', 25].This is causing the test to
fail, which is fantastic.

[618]

Testing the Node Applications — Part 2 Chapter 11

There are plenty of other assertions we can use with our spies. You can
find them in the expect docs. We have toHaveBeenCalled, which we
used; toNotHaveBeenCalled, verifying that a spy was not called. Then
we have toHaveBeenCalledWith, which we also used. You can see
there's a lot more to spies as well: how to create spies, which we've already
done, and a few other methods.

Swapping of the function with spy

For our purposes, we need a spy so we can simulate that function inside of app. js
(saveUser). We need a way to replace saveUser function with a spy. Then we can verify
that when handlesignup gets called, it does indeed call saveUser. It doesn't need to
actually go through the process over in db. js; this is not important to our tests. The only
thing that is important is that the function was called with the correct arguments.

To do that, we'll look at an npm module called rewire, which lets us swap out variables for
our tests. In our case, in our test file, we'll be able to replace the db object with something
else completely. Then, when the code runs, instead of calling db . saveUser as defined in
app. Jjs, it will be calling db . saveUser, which will be a spy.

Installing and setting up the rewire function

To get started, we do need to install rewire in the Terminal. It's a fantastic test utility. It's
pretty essential for testing functions with side effects, like the one we have seen in this
section. Let's run npm install. The module name itself is called rewire, and we'll be
grabbing the most recent version as of this filming, version @3. 0. 2. This is a test-specific
module. We'll not need it for our application to run regularly, so we will be using the —-
save-dev flag to add it to our package . json dependencies list:

npm install rewire@3.0.2 —--save-dev

@ ® || node-tests — -bash — 108x29

de-tests Gary$ npm install rewire@3.8.2 --save-dev
tests@1.0.0 No description
tests@1.8.8 No repository field.

+ rewire@3.e.2
added 45 packages in 13.009s
Gary:node-tests Gary$ i

[619]

Testing the Node Applications — Part 2 Chapter 11

Once the module is installed we can get started using it, and it's pretty simple to set up.
Inside app . test . js we can start by loading it in. Up at the very top, we'll create a new
constant. This one will be called rewire, and we'll set it equal to the returned result from
requiring rewire:

const expect = require('expect');
const rewire = require('rewire');

Replacing db with the spy

Now, the way that rewire works is it requires you to use rewire instead of require when
you're loading in the file that you want to mock out. For this example, we want to replace
db with something else, so when we load an app we have to load it in in a special way.
We'll make a variable called app, and we'll set it equal to rewire followed by what we
would usually put inside of require. In this case it's a relative file, a file that we created

. /app will get the job done:

const expect = require ('expect');
const rewire = require('rewire');
var app = rewire('./app');

Now rewire loads your file through require, but it also adds two methods onto app. These
methods are:

® app.__set_
® app.__get_
We can use these to mock out various data inside of app. js. That means we'll make a

simulation of the db object, the one that comes back from db. js, but we'll swap out the
function with a spy.

[620]

Testing the Node Applications — Part 2 Chapter 11

Inside our describe block, we can kick things off by making a variable. This variable is
going to be called db, and we'll set it equal to an object:

describe ('App', () => {
var db = {

}

The only thing we need to mock out in our case is saveUser. Inside the object, we'll define
saveUser and then I'll set it equal to a spy by creating one using expect .createspy, just
like this:

describe ('App', () => {
var db = {
saveUser: expect.createSpy ()

bi

Now we have this db variable, and the only thing left to do is replace it. We do that using
app.__set__, and this is going to take two arguments:

describe ('App', () => {
var db = {
saveUser: expect.createSpy ()
bi
app.__set___();

The first one is the thing you want to replace. We're trying to replace db, and we're trying to
replace it with the db variable, which is our object that has the saveUser function:

describe ('App', () => {
var db = {
saveUser: expect.createSpy ()
bi
app.__set___ ('db', db);

With that in place, we can now write a test that verifies that handleSignup does indeed
call saveUser.

Writing a test to verify swapping of the function

To verify if handleSignup calls saveUser, inside app.test.js, we'll call it:

describe ('App', () => {
var db = {
saveUser: expect.createSpy ()

[621]

Testing the Node Applications — Part 2 Chapter 11

}i
app.__set___('db', db);

it ('should call the spy correctly', () => {

var spy = expect.createSpy();

spy ('Andrew', 25);
expect (spy) .toHaveBeenCalledWith ('Andrew', 25);
P) i

it ('should call saveUser with user object')

Then we can pass in our function, and this is what will actually run when the test gets
executed, and there's no need to use any asynchronous done arguments. This will be a
synchronous test for now:

it ('should call saveUser with user object', () => {
}) i

Inside the callback function, we can come up with an email and a password that we'll pass
in to handleSignup in db. js. We'll make a variable called email setting it equal to some
email andrew@example.com, and we can do the same thing with the password, var
password; we'll set that equal to 123abc:

it ('should call saveUser with user object', () => {
var email = 'andrewlexample.com';
var password = 'l1l23abc';

})i

Next up, we will call handleSignup. This is the function we want to test. We'll call
app.handleSignup, passing in our two arguments, email and password:

it ('should call saveUser with user object', () => {
var email = 'andrew(@example.com';
var password = '123abc';

app.handleSignup (email, password);

)i

Now at this point, handleSignup will get executed. This means that the code over here will
run and it will fire db . saveUser, but db. saveUser is not the method in db. js; it's a spy
instead, which means we can now use those assertions we just learned about.

[622]

Testing the Node Applications — Part 2 Chapter 11

Inside of the test case, we'll use expect to expect something about db; the variable
.saveUser, which we set equal to a spy:

app.handleSignup (email, password);
expect (db.saveUser)

We'll call . toHaveBeenCalledwith with an object because that is what db . js should have
been called with. We'll use that same ES6 shortcut: email, password:

app.handleSignup (email, password);
expect (db.saveUser) .toHaveBeenCalledWith ({email, password});
P

This creates an email attribute set to the email variable, and a password attribute set to
the password variable. With this in place, we can now save our test file, and in the
Terminal we can restart the test-watch script by using the up arrow key twice to rerun
our npm run test-watch command. This is going to kick off our test suite, starting up all
of our tests:

> tests@1.9.8 test /Users/Gary/Desktop/node-tests
> mocha ##/+#.test.js

Server
GET /

GET /users

App

As shown in the previous screenshot, we see should call the spy correctly passes.
Also, the test case we just created also passes. We can see should call saveUser with
the user object, and this is fantastic. We now have a way to test pretty much anything
inside Node. We can even test functions that call other functions, verifying that the
communication happens as expected. All of this can be done using spies.

[623]

Testing the Node Applications — Part 2 Chapter 11

Summary

In this chapter, we looked into testing the Express applications as we did with the
synchronous and async Node applications in the previous chapter. Then, we worked on
organizing our tests with the describe () object so that we can see our different test
methods right away.

In the last section we explored one more way we can test our Node applications, that is,
spies. We created test files for spies, looked into the spy assertions and swapping of a
function with spy.

Conclusion

That's the end of the book! Through the course of is book, you learned the fundamentals of
Node.js so that you test and deploy Node.js applications on the web. We hope that you
liked the journey this book has taken you through. We wish you all the success and hope
that you continue to better your Node.js applications.

[624]

Another Book You May Enjoy

If you enjoyed this book, you may be interested in another book by Packt:

David Mark Clements. Mathias Buus.
Matteo Collina, Peter Elger

Node
Cookbook

Node Cookbook - Third Edition
David Mark Clements, Mathias Buus, Matteo Collina, Peter Elger

ISBN: 978-1-78588-008-7

e Debug Node.js programs
e Write and publish your own Node.js modules
e Detailed coverage of Node.js core API's

¢ Use web frameworks such as Express, Hapi and Koa for accelerated web
application development

¢ Apply Node.js streams for low-footprint data processing
e Fast-track performance knowledge and optimization abilities

e Persistence strategies, including database integrations with MongoDB,
MySQL/MariaDB, Postgres, Redis, and LevelDB

e Apply critical, essential security concepts

¢ Use Node with best-of-breed deployment technologies: Docker, Kubernetes and
AWS

Another Book You May Enjoy

Leave areview - let other readers know what
you think

Please share your thoughts on this book with others by leaving a review on the site that you
bought it from. If you purchased the book from Amazon, please leave us an honest review
on this book's Amazon page. This is vital so that other potential readers can see and use
your unbiased opinion to make purchasing decisions, we can understand what our
customers think about our products, and our authors can see your feedback on the title that
they have worked with Packt to create. It will only take a few minutes of your time, but is
valuable to other potential customers, our authors, and Packt. Thank you!

[626]

.help command
calling 233,234

_.isString utility
using 109, 110
_.uniq
using 111, 112

A

actual URL

exploring, for code 343, 344
add command

working 145,147, 148
address

printing, to screen 315

pulling, out of argv 317, 319
advanced promises

input, providing 374
advanced yargs

.help command, calling 233, 234

about 230

chaining syntax, used 232

options object, adding 234

read command 240

remove command 240
API working

exploring, in browser 338, 339, 340, 341, 342
app.js

refactoring, into geocode.js file 328
app

used, as an object 163
application code

setting up, for Heroku 515

Index

arguments array
exploring 252, 254
arrow function
about 245
arguments array, exploring 252, 254
exploring, difference between regular function
249,250, 252
using 246,247,248
assertion libraries
exploring 549, 550, 551, 552, 554
used, in testing Node modules 547, 548, 549
asyncAdd function
assertion, creating 574, 575
creating, setTimeout object used 572, 573
done argument, adding 575, 576, 577
test, writing 573
asynchronous program
async code, executing 275, 276, 278, 279
callback queue 273
concept 257, 258
event loop 274
example 270,271
illustrating 258, 259, 260, 262
node APl 272,273
asynchronous testing
about 571
asyncAdd function creating, setTimeout object
used 572, 573
asyncSquare function, creating 578
asyncSquare, test writing 579
for square function 578
asyncSquare function
assertions, creating 580, 581
creating 578
Atom 54
axios documentations
about 389

reference link 389
axios request

creating 392, 393

error handling 394, 395, 396
axios

installing 391

B

behavior-driven development (BDD) 537
blocking 1/10
working 36, 37
body status property
checking, to add if else statement 324, 325
testing 325, 326, 327
bodyOption variables
adding 241
bogus test
array/objects comparing, toBe used 559, 560
array/objects comparing, toNotBe used 559, 560
toEqual assertions, used 560, 561
toExclude, used 562, 563, 566
tolnclude, used 562, 563, 566
toNotEqual assertions 561
toNotEqual assertions, used 560
usage, exploring 558, 559

C

call stack 262, 263
callback errors
about 320, 321
error, checking in Google APl request 321, 322
callback function
about 280
adding, to geocodeAddress 333
creating 281, 282, 283
delay simulating, setTimeout used 284
error handling 347, 348, 349
executing 284
implementing, in geocode.js file 334, 335
setting up, in geocodeAddress function in app.js
333,334
testing, in geocode.js file 337
callbacks
abstracting 327, 328

[628]

app.js, refactoring into geocode.js file 328
chaining 351
code, refactoring into geocode.js file 328
request call, refactoring in weather.js file 352
catch method 381
chaining syntax
used, on yargs 232
code block
catching 176,177, 178
trying 176,177,178
code
refactoring, into geocode.js file 328
commands
working 489
commit
creating 486, 487
creating, in Heroku 520, 521, 522

D

data
formatted address, printing 305, 306
latitude, printing 306
longitude, printing 306
printing, from body object 305
debugging
about 213
notes application, debugger used 222, 224, 225
program, executing in debug mode 214, 215,
216,218
working 219, 220, 221, 222
describe()
adding, for individual methods 606, 607
route describe block, adding for server.test.js file
608, 609
test, organizing 604, 606
Document Object Model (DOM) 28
Don't Repeat Yourself (DRY) 210, 337
DRY principle
about 209
logNote function, used 210, 211, 212

E

error handling
about 349, 350

in callback function 347, 348, 349
testing, in callback function 350, 351
error
checking, in Google API request 321, 322
if else statement, adding to check body status
property 324, 325
if statement, adding 323
ES6 promises
about 364, 365, 366
error handling 370, 371
example, creating 366, 368
example, executing in Terminal 369, 370
merits 372, 374
promise method then 369
promise method then, calling 368
event loop 262
exports object
working, example 88, 90
Express application
API request, testing 590, 591, 593
custom status, setting up 593, 594
flexibility, adding to SuperTest 596, 597
test, creating 587, 588, 589
test, writing 589, 590
testing 582
testing, setting up 583, 584, 585
testing, SuperTest used 585, 586
Express middleware
about 453, 454
exploring 454, 455
logger, creating 456, 457, 458, 459, 460
maintenance, testing 465, 467, 468
maintenance, without object 463, 464
message, printing to file 460, 462
express route
creating 598, 599
test, writing 600, 601, 603
Express
about 404, 405
configuring 405, 407
docs website 407
installing 408, 409, 410
JSON data back, sending 416, 417,418,419

[629]

F

fetching command 157, 158
fetchNotes
working 186, 187, 188
File System module 68
files
content, reading 166, 167, 168, 170
creating, to load other files 84, 86

exporting, from note.js to use app.js 87, 88

exports object, working example 88, 90
function, exporting 90, 91, 92, 93
requisite 83
writing, in playground folder 166
Finder 55
flag 14
function
adding, to export object 93
exporting 90, 91, 92, 93
fetchNotes, working 186, 187, 188
functionality, moving 186
saveNotes, working 188, 189
solution, to exercise 94, 95, 96
functionality
testing 189, 190, 191, 192, 193, 194

G

geocode.js file
app.js, refactoring 328
code, refactoring 328
creating 330, 331, 333
request statement, working 328, 329
geocodeAddress
callback function, adding 333
chaining 359
Geolocation API
about 280
request, creating 285, 286
getAll function
using 225,227,229
getNote function
executing 208, 209
using 205, 207
getWeather callback
about 359

chaining, testing 362 Heroku account

console.log calls, changing into callback calls logging in 509, 510, 511
357, 359 Heroku command-line tools
dynamic latitude, adding 356 installing 506, 508, 509
dynamic longitude, adding 356 SSH key, obtaining 511, 512, 513, 514
implementing, in weather.js file 356 Heroku create command
moving, into geocodeAddress function 360 executing 522, 523, 524, 525, 526, 527
static coordinates, replacing with dynamic Heroku
coordinates 361 commit, creating 520, 521, 522
getWeather function package.json file, changesin 517, 518, 519,
arguments, passing 354, 355 520
defining, in weather.js file 352 server js file, changesin 515, 516, 517
error message, printing 355 HTML page
Git repository app.listen, calling 427, 428
node-web-server directory, turning 477, 478 body tag 424, 425
Git creating 423
commit, creating 486, 487 head tag 424
installation, testing 476, 477 serving, in Express app 425, 426, 427
installing 471, 472,473, 474 HTTPs requests
on macOS 475 creating 297
on Windows 476 data, printing from body object 305
untracked files, adding to commit 480, 481, 482, error argument 303, 304
484, 485 response object 298,299, 300, 301
using 478, 479, 480 Hypertext Transfer Protocol (HTTP) 298
GitHub
configuration, testing 498, 499 |
configuring 493, 494, 495, 496, 497, 498 if else statement
repository, creating 499, 500, 501, 502 adding, to check body status property 324, 325
repository, setting up 502, 503, 504, 505
setting up 487 J
Google Maps APl data JavaScript Object Notation (JSON)
request package, installing 288, 289 about 160

request, executing 292
request, used as function 290, 291
used, in code 287

app, used as an object 163
object, converting into string 161, 162
object, converting into strings 160

H string, converting to an object 163
string, converting to object 164
handlebars helpers string, defining 163
about 448, 449, 450, 451 string, storing in file 165
arguments 451, 452, 453 JetBrains 55
handlebars JSON data back
configuring 430 sending 416,417,418, 419
hbs module JSON request
installing 429 error handling 420, 421, 422

header partial 444, 445, 446, 447

[630]

K

key
generating 489, 490, 491

L

list command
working 149
lodash module
_.isString utility, using 109, 110
_.unig, using 111, 112
installing 104, 105
installing, inapp 103, 104
utilities, using 106, 108, 109
logger
creating 456, 457, 458, 459, 460
logNote function
using 210,211, 212

M

make directory 65
message

printing, to file 460, 462
Mocha framework

testing 533, 534, 535
module basics

about 64

require(), using 65
multiple assertions

chaining 554, 555, 556

for square function 556, 557

N

node app
application code, setting up for Heroku 515
commit, creating in Heroku 520, 521, 522
deploying, to Web 505, 506
Heroku command-line tools, installing 506, 508,
509
Heroku create command, executing 522, 523,
524,525,526, 527
Node application
creating 55, 56, 57
executing 55, 58, 59, 60, 62

[631]

Node modules
testing, assertion libraries used 547, 548, 549
Node package manager 97
Node project
Mocha framework, testing 533, 534, 535
squaring, testing 541, 542, 544
test file, creating for add function 536, 537, 538,
539
testing 531, 533
node-web-server directory
turning, into Git repository 477, 478

Node.js API

reference link 68
Node.js

installation 7

version confirmation 9, 10
Node

about 15, 16, 18, 20, 21
installation 11, 12
installation, verifying 13, 14
JavaScript coding, difference in browser 22, 23,
25,27,28,29
open source libraries, issues solving 50, 52, 53
software development, blocking 34
software development, non-blocking 34
terminal, used for blocking example 45, 47, 49
terminal, used for non-blocking example 45, 47,
49
used, for difference between JavaScript coding
22,23,25,27,28,29, 31
using 32, 33
non-blocking 1/0
working 39, 40, 43, 44
note
DRY principle 209
getAll function, used 225, 227, 229
getNote function, using 205, 207
listing 225
reading 204
removeNote function, using 197, 198, 199
removing 196
removing, for printing message 200, 201, 203
notes
adding 170,171
adding, to notes array 171,172, 173,174

code block, catching 176, 177, 178 request library 381, 382, 383, 384, 385

code block, trying 176,177, 178 request library, testing 385, 386, 387
fetching 174, 175 returning 376
saving 170 weather app 387

title unique, creating 179, 180, 182, 183, 184,
185 R
npm modules _ read command 151, 240
used, for creating projects 97 Read Evaluate Print Loop 219

O refactoring
about 185, 186
object functionality, moving into functions 186
body argument, used 294, 296, 297 functionality, testing 189, 190, 191, 192, 193,
converting, into string 160, 161, 162 194
printing 293 remove command
open source libraries about 155,157, 240
issues, solving 50, 52, 53 testing 243, 244, 245
options object removeNote function
adding 234 using 196, 198, 199
body, adding 237, 238, 239, 240 repository
title, adding 235, 236 creating 499, 500, 501, 502
setting up 502, 503, 504, 505
P request call
package.json file refactoring, in weather.js file 352
changesin 517,518, 519, 520 request statement
parsing command working 328, 329
errors, dealing 153 require()
partials application, initialization 65
adding 439, 440, 441 application, initializing 66, 67
header partial 444, 445, 446, 447 built-in module 68
working 441, 443 files, appending in File System module 69, 70,
promise calls 72,73, 74
chaining 400, 401 files, creating in File System module 69, 70, 72,
promise chaining 73,74
about 378,379 OS module 75, 76,77, 79
catch method 381 template strings, using 81, 82, 83
error handling 379, 380 user.username, concatenating 80
promise method then using 65
calling 368, 369 rewire function
promises installing 619
about 374 setting up 619
axios documentations 389
axios, installing 391 S
calls, creating in app-promise file 391, 392 saveNotes
input, providing 375 working 188, 189

[632]

server.js file

changesin 515,516, 517

setName method

testing 566, 567, 568, 569, 570
software development

blocking 34, 38

blocking I/0, working 36, 37
non-blocking 34, 38

non-blocking 1/0, working 39, 40, 43, 44
spies

assertions, settingup 615, 616, 617
spy, creating 614

test file, creating 613

testing 610, 611, 612, 613

spy assertion 617, 618

Spy

db, replacing 620, 621

function, swapping 619

rewire function, installing 619

rewire function, setting up 619

test, writing for verifying function swapping 622,
623

squaring

testing 541, 542, 544
SSH agent

starting up 491, 492
SSH keys

commands, working 489
documentations 488, 489
reference link 488

setting up 487

static coordinates

replacing, with dynamic coordinates 361

static server

about 422
HTML page, creating 423

static URL

used, for creating request for weather app 345,
346, 347

string

converting, to an object 163, 164

defining 163

storing, in file 165

URI component, decoding 317

URI component, encoding 316

[633]

Sublime Text 54
SuperTest

documentation 586, 587

used, for testing Express application 585, 586
synchronous program

example 263,266,267, 268,269

executing 264, 265, 266

T

templates
about 430, 431, 439
data, injecting 433, 434, 435, 436
handlebars helpers 448, 449, 450, 451
handlebars, configuring 430
hbs module, installing 429
partials, adding 439, 440, 441
rendering 428
rendering, for website 436, 437, 439
static page, obtaining for rendering 431, 432
terminal
used, for blocking example 45, 47, 48, 49
used, for non-blocking example 45, 47, 49
test file
creating, for add function 536, 537, 538, 539
if condition, creating 540, 541
test
autorestarting 544, 546, 547
organizing, with describe() 604, 606
testing 530
testing module
installing 530
text editors
for node applications 54
third-party modules
about 97
lodash module, installing in app 103, 104
projects creating, npm modules used 97, 99,
100, 102
title unique
creating 179, 180, 181, 182, 183, 184, 185
titleOption
adding 241

U

untracked files
adding, to commit 480, 481, 482, 484, 485
URI component
decoding 317
encoding 316
user input
address, printing to screen 315
address, pulling out of argv 317, 319
encoding 310
strings, decoding 316
strings, encoding 316
yargs, configuring 312, 314
yargs, installing 310, 311

V

variable app
creating 410, 411, 412
developer tools, exploring in browser for app
request 413, 414, 415
HTML, passing to res.send 415
version control
adding 471
Git, installing 471, 472, 473, 474
Git, used 478, 479, 480
node-web-server directory, turning into Git
repository 477, 478
Visual Studio Code 54

W

weather app
axios documentations 389

code, fetching from app.js file 387
weather directory
providing, in app.js 353, 354
weather search
API working, exploring in browser 338, 339,
340, 341, 342
error handling, in callback function 347, 348,
349
static URL, used for creating request for weather
app 345, 346, 347
wiring up 338
weather URL
generating 399, 400
weather.js file
arguments, passing in getWeather function 354,
355
getWeather callback, implementing 356
getWeather function, defining 352
weather directory, providing in app.js 353, 354

Y

yargs
about 137, 138
add command, working 145, 147, 148
configuring 312, 314
executing 139, 141, 142, 144
fetching command 157
installing 138, 139, 310, 311
list command, working 149

Z

ZERO_RESULT body status
error handling 397, 399

	Cover
	Title Page
	Copyright and Credits
	Packt Upsell
	Contributor
	Table of Contents
	Preface
	Chapter 1: Getting Set Up
	Node.js installation
	Node.js version confirmation
	Installing Node
	Verifying installation

	What is Node?
	Differences between JavaScript coding using Node and in the browser

	Why use Node
	Blocking and non-blocking software development
	The working of blocking I/O
	The working non-blocking I/O

	Blocking and non-blocking examples using Terminal
	Node community – problem solving open source libraries

	Different text editors for node applications
	Hello World – creating and running the first Node app
	Creating the Node application
	Running the Node application

	Summary

	Chapter 2: Node Fundamentals – Part 1
	Module basics
	Using case for require()
	Initialization of an application
	The built-in module to use require()
	Creating and appending files in the File System module
	The OS module in require()
	Concatenating user.username
	Using template strings

	Require own files
	Making a new file to load other files
	Exporting files from note.js to use in app.js
	A simple example of the working of the exports object
	Exporting the functions
	Exercise – adding a new function to the export object
	Solution to the exercise

	Third-party modules
	Creating projects using npm modules
	Installing the lodash module in our app
	Installation of lodash
	Using the utilities of lodash
	Using the _.isString utility
	Using _.uniq

	The node_modules folder

	Global modules
	Installing the nodemon module
	Executing nodemon

	Getting input
	Getting input from the user inside the command line
	Accessing the command-line argument for the notes application
	Adding if/else statements
	Exercise – adding two else if clauses to an if block
	Solution to the exercise

	Getting the specific note information

	Summary

	Chapter 3: Node Fundamentals – Part 2
	yargs
	Installing yargs
	Running yargs
	Working with the add command
	Working with the list command
	The read command
	Dealing with the errors in parsing commands
	The remove command

	Fetching command

	JSON
	Converting objects into strings
	Defining a string and using in app as an object
	Converting a string back to an object
	Storing the string in a file
	Writing the file in the playground folder
	Reading out the content in the file

	Adding and saving notes
	Adding notes
	Adding notes to the notes array
	Fetching new notes

	Trying and catching code block
	Making the title unique

	Refactoring
	Moving functionality into individual functions
	Working with fetchNotes
	Working with saveNotes

	Testing the functionality

	Summary

	Chapter 4: Node Fundamentals – Part 3
	Removing a note
	Using the removeNote function
	Printing a message of removing notes

	Reading note
	Using the getNote function
	Running the getNote function

	The DRY principle
	Using the logNote function

	Debugging
	Executing a program in debug mode
	Working with debugging
	Using debugger inside the notes application

	Listing notes
	Using the getAll function

	Advanced yargs
	Using chaining syntax on yargs
	Calling the .help command
	Adding the options object
	Adding the title
	Adding the body

	Adding support to the read and remove commands
	Adding the titleOption and bodyOption variables
	Testing the remove command

	Arrow functions
	Using the arrow function
	Exploring the difference between regular and arrow functions
	Exploring the arguments array

	Summary

	Chapter 5: Basics of Asynchronous Programming in Node.js
	The basic concept of asynchronous program
	Illustrating the async programming model

	Call stack and event loop
	A synchronous program example
	The call stack
	Running the synchronous program
	A complex synchronous program example

	An async program example
	The Node API in async programming
	The callback queue in async programming
	The event loop
	Running the async code

	Callback functions and APIs
	The callback function
	Creating the callback function
	Running the callback function

	Simulating delay using setTimeout

	Making request to Geolocation API
	Using Google Maps API data in our code
	Installing the request package
	Using request as a function
	Running the request

	Pretty printing objects
	Using the body argument

	Making up of the HTTPS requests
	The response object
	The error argument
	Printing data from the body object
	Printing the formatted address
	Printing latitude and longitude

	Summary

	Chapter 6: Callbacks in Asynchronous Programming
	Encoding user input
	Installing yargs
	Configuring yargs
	Printing the address to screen

	Encoding and decoding the strings
	Encoding URI component
	Decoding URI component

	Pulling the address out of argv

	Callback errors
	Checking error in Google API request
	Adding the if statement for callback errors
	Adding if else statement to check body status property
	Testing the body status property

	Abstracting callbacks
	Refactoring app.js and code into geocode.js file
	Working on request statement
	Creating geocode file

	Adding callback function to geocodeAddress
	Setting up the function in geocodeAddress function in app.js
	Implementing the callback function in geocode.js file
	Testing the callback function in geocode.js file

	Wiring up weather search
	Exploring working of API in the browser
	Exploring the actual URL for code

	Making a request for the weather app using the static URL
	Error handling in the the callback function
	Another way of error handling
	Testing the error handling in callback

	Chaining callbacks together
	Refactoring our request call in weather.js file
	Defining the new function getWeather in weather file
	Providing weather directory in app.js
	Passing the arguments in the getWeather function
	Printing errorMessage in the getWeather function

	Implementing getWeather callback inside weather.js file
	Adding dynamic latitude and longitude
	Changing console.log calls into callback calls

	Chaining the geocodeAddress and getWeather callbacks together
	Moving getWeather call into geocodeAddress function
	Replacing static coordinates with dynamic coordinates
	Testing the chaining of callbacks

	Summary

	Chapter 7: Promises in Asynchronous Programming
	Introduction to ES6 promises
	Creating an example promise
	Calling the promise method then

	Running the promise example in Terminal
	Error handling in promises
	Merits of promises

	Advanced promises
	Providing input to promises
	Returning the promises

	Promise chaining
	Error handling in promises chaining
	The catch method

	The request library in promises
	Testing the request library

	Weather app with promises
	Fetching weather app code from the app.js file
	Axios documentations
	Installing axios
	Making calls in the app-promise file
	Making axios request
	Error handling in axios request
	Error handling with ZERO_RESULT body status

	Generating the weather URL
	Chaining the promise calls

	Summary

	Chapter 8: Web Servers in Node
	Introducing Express
	Configuring Express
	Express docs website
	Installing Express

	Creating an app
	Exploring the developer tools in the browser for the app request
	Passing HTML to res.send

	Sending JSON data back
	Error handling in the JSON request

	The static server
	Making an HTML page
	The head tag
	The body tag

	Serving the HTML page in the Express app
	The call to app.listen

	Rendering templates
	Installing the hbs module
	Configuring handlebars
	Our first template
	Getting the static page for rendering
	Injecting data inside of templates
	Rendering the template for the root of the website

	Advanced templates
	Adding partials
	Working of partial
	The Header partial

	The Handlebars helper
	Arguments in Helper

	Express Middleware
	Exploring middleware
	Creating a logger
	Printing message to file

	The maintenance middleware without the next object
	Testing the maintenance middleware

	Summary

	Chapter 9: Deploying Applications to Web
	Adding version control
	Installing Git
	Git on macOS
	Git on Windows
	Testing the installation

	Turning the node-web-server directory into a Git repository
	Using Git
	Adding untracked files to commit
	Making a commit

	Setting up GitHub and SSH keys
	Setting up SSH keys
	SSH keys documentations
	Working on commands
	Generating a key

	Starting up the SSH agent

	Configuring GitHub
	Testing the configuration

	Creating a new repository
	Setting up the repository

	Deploying the node app to the Web
	Installing Heroku command-line tools
	Log in to Heroku account locally
	Getting SSH key to Heroku

	Setting up in the application code for Heroku
	Changes in the server.js file
	Changes in the package.json file

	Making a commit in Heroku
	Running the Heroku create command

	Summary

	Chapter 10: Testing the Node Applications – Part 1
	Basic testing
	Installing the testing module
	Testing a Node project
	Mocha – the testing framework
	Creating a test file for the add function
	Creating the if condition for the test

	Testing the squaring a number function

	Autorestarting the tests

	Using assertion libraries in testing Node modules
	Exploring assertion libraries
	Chaining multiple assertions
	Multiple assertions for the square function

	Exploring usage of expect with bogus test
	Using toBe and toNotBe to compare array/objects
	Using the toEqual and toNotEqual assertions
	Using toInclude and toExclude

	Testing the setName method

	The asynchronous testing
	Creating the asyncAdd function using the setTimeout object
	Writing the test for the asyncAdd function
	Making assertion for the asyncAdd function
	Adding the done argument

	The asynchronous testing for the square function
	Creating the async square function
	Writing test for asyncSquare
	Making assertions for the asyncSquare function

	Summary

	Chapter 11: Testing the Node Applications – Part 2
	Testing the Express application
	Setting up testing for the Express app
	Testing the Express app using SuperTest
	The SuperTest documentation
	Creating a test for the Express app
	Writing the test for the Express app
	Testing our first API request
	Setting up custom status
	Adding flexibility to SuperTest

	Creating an express route
	Writing the test for the express route

	Organizing test with describe()
	Adding describe() for individual methods
	Adding the route describe block for the server.test.js file

	Test spies
	Creating a test file for spies
	Creating a spy
	Setting up spies assertions
	More details out of spy assertion

	Swapping of the function with spy
	Installing and setting up the rewire function
	Replacing db with the spy
	Writing a test to verify swapping of the function

	Summary
	Conclusion

	Another Book You May Enjoy
	Leave a review - let other readers know what you think

	Index

