


Learning Node.js Development

Andrew Mead

BIRMINGHAM - MUMBAI



Learning Node.js Development
Copyright  2018 Packt Publishing

All rights reserved. No part of this book may be reproduced, stored in a retrieval system, or transmitted in any form
or by any means, without the prior written permission of the publisher, except in the case of brief quotations
embedded in critical articles or reviews.

Every effort has been made in the preparation of this book to ensure the accuracy of the information presented.
However, the information contained in this book is sold without warranty, either express or implied. Neither the
author, nor Packt Publishing or its dealers and distributors, will be held liable for any damages caused or alleged to
have been caused directly or indirectly by this book.

Packt Publishing has endeavored to provide trademark information about all of the companies and products
mentioned in this book by the appropriate use of capitals. However, Packt Publishing cannot guarantee the accuracy
of this information.

Acquisition Editor: Ben Renow-Clarke
Content Development Editor: Monika Sangwan
Technical Editors: Anupam Tiwari, Gaurav Gavas
Copy Editors: Safis Editing, Tom Jacob
Project Editor: Suzanne Coutinho
Proofreader: Safis Editing
Indexer: Pratik Shirodkar
Production Coordinator: Nilesh Mohite

First published: January 2018

Production reference: 1300118

Published by Packt Publishing Ltd.
Livery Place
35 Livery Street
Birmingham
B3 2PB, UK.

ISBN 978-1-78839-554-0



Mapt is an online digital library that gives you full access to over 5,000 books and videos, as
well as industry leading tools to help you plan your personal development and advance
your career. For more information, please visit our website.

Why subscribe?
Spend less time learning and more time coding with practical eBooks and Videos
from over 4,000 industry professionals

Improve your learning with Skill Plans built especially for you

Get a free eBook or video every month

Mapt is fully searchable

Copy and paste, print, and bookmark content

PacktPub.com
Did you know that Packt offers eBook versions of every book published, with PDF and
ePub files available? You can upgrade to the eBook version at  and as a
print book customer, you are entitled to a discount on the eBook copy. Get in touch with us
at  for more details.

At , you can also read a collection of free technical articles, sign up for a
range of free newsletters, and receive exclusive discounts and offers on Packt books and
eBooks.



Contributor

About the author
Andrew Mead is a full-stack developer living in beautiful Philadelphia! He launched his
first Udemy course in 2014 and had a blast teaching and helping others. Since then, he has
launched 3 courses with over 21,000 students and over 1,900 5-star reviews.

Andrew currently teaches Node, Gulp, and React. Before he started teaching, he created a
web app development company. He has helped companies of all sizes launch production
web applications to their customers. He has had the honor of working with awesome
companies such as Siemens, Mixergy, and Parkloco. He has a Computer Science degree
from Temple University, and he has been programming for just over a decade. He loves
creating, programming, launching, learning, teaching, and biking.



Packt is searching for authors like you
If you're interested in becoming an author for Packt, please visit  and
apply today. We have worked with thousands of developers and tech professionals, just
like you, to help them share their insight with the global tech community. You can make a
general application, apply for a specific hot topic that we are recruiting an author for, or
submit your own idea.



Table of Contents
Preface 1

Chapter 1: Getting Set Up 7

Node.js installation 7
Node.js version confirmation 9
Installing Node 11

Verifying installation 12
What is Node? 15

Differences between JavaScript coding using Node and in the browser 22
Why use Node 32

Blocking and non-blocking software development 34
The working of blocking I/O 36
The working non-blocking I/O 39

Blocking and non-blocking examples using Terminal 45
Node community – problem solving open source libraries 50

Different text editors for node applications 54
Hello World – creating and running the first Node app 55

Creating the Node application 55
Running the Node application 58

Summary 62

Chapter 2: Node Fundamentals – Part 1 63

Module basics 64
Using case for require() 65

Initialization of an application 65
The built-in module to use require() 68

Creating and appending files in the File System module 69
The OS module in require() 75
Concatenating user.username 80
Using template strings 81

Require own files 83
Making a new file to load other files 84
Exporting files from note.js to use in app.js 87

A simple example of the working of the exports object 88
Exporting the functions 90

Exercise – adding a new function to the export object 93
Solution to the exercise 94

Third-party modules 97



Table of Contents

[ ii ]

Creating projects using npm modules 97
Installing the lodash module in our app 103

Installation of lodash 104
Using the utilities of lodash 106

Using the _.isString utility 109
Using _.uniq 111

The node_modules folder 114
Global modules 115

Installing the nodemon module 115
Executing nodemon 118

Getting input 121
Getting input from the user inside the command line 121

Accessing the command-line argument for the notes application 125
Adding if/else statements 125
Exercise – adding two else if clauses to an if block 128
Solution to the exercise 129

Getting the specific note information 132
Summary 136

Chapter 3: Node Fundamentals – Part 2 137

yargs 137
Installing yargs 138
Running yargs 139

Working with the add command 145
Working with the list command 148

The read command 151
Dealing with the errors in parsing commands 153
The remove command 155

Fetching command 157
JSON 159

Converting objects into strings 160
Defining a string and using in app as an object 163
Converting a string back to an object 163
Storing the string in a file 165

Writing the file in the playground folder 165
Reading out the content in the file 166

Adding and saving notes 170
Adding notes 170

Adding notes to the notes array 171
Fetching new notes 174

Trying and catching code block 176
Making the title unique 179

Refactoring 185



Table of Contents

[ iii ]

Moving functionality into individual functions 186
Working with fetchNotes 186
Working with saveNotes 188

Testing the functionality 189
Summary 195

Chapter 4: Node Fundamentals – Part 3 196

Removing a note 196
Using the removeNote function 196
Printing a message of removing notes 200

Reading note 204
Using the getNote function 205

Running the getNote function 208
The DRY principle 209

Using the logNote function 210
Debugging 213

Executing a program in debug mode 214
Working with debugging 218
Using debugger inside the notes application 222

Listing notes 225
Using the getAll function 225

Advanced yargs 230
Using chaining syntax on yargs 232

Calling the .help command 233
Adding the options object 234

Adding the title 235
Adding the body 237

Adding support to the read and remove commands 240
Adding the titleOption and bodyOption variables 241
Testing the remove command 242

Arrow functions 245
Using the arrow function 246
Exploring the difference between regular and arrow functions 249

Exploring the arguments array 252
Summary 254

Chapter 5: Basics of Asynchronous Programming in Node.js 256

The basic concept of asynchronous program 257
Illustrating the async programming model 258

Call stack and event loop 262
A synchronous program example 263

The call stack 263



Table of Contents

[ iv ]

Running the synchronous program 264
A complex synchronous program example 266

An async program example 270
The Node API in async programming 272
The callback queue in async programming 273
The event loop 274
Running the async code 275

Callback functions and APIs 280
The callback function 280

Creating the callback function 280
Running the callback function 284

Simulating delay using setTimeout 284
Making request to Geolocation API 285

Using Google Maps API data in our code 287
Installing the request package 288
Using request as a function 290
Running the request 292

Pretty printing objects 293
Using the body argument 294

Making up of the HTTPS requests 297
The response object 298
The error argument 303
Printing data from the body object 305

Printing the formatted address 305
Printing latitude and longitude 306

Summary 308

Chapter 6: Callbacks in Asynchronous Programming 309

Encoding user input 310
Installing yargs 310
Configuring yargs 312

Printing the address to screen 315
Encoding and decoding the strings 316

Encoding URI component 316
Decoding URI component 317

Pulling the address out of argv 317
Callback errors 320

Checking error in Google API request 321
Adding the if statement for callback errors 323
Adding if else statement to check body status property 324

Testing the body status property 325
Abstracting callbacks 327

Refactoring app.js and code into geocode.js file 328



Table of Contents

[ v ]

Working on request statement 328
Creating geocode file 330

Adding callback function to geocodeAddress 333
Setting up the function in geocodeAddress function in app.js 333
Implementing the callback function in geocode.js file 334
Testing the callback function in geocode.js file 337

Wiring up weather search 338
Exploring working of API in the browser 338

Exploring the actual URL for code 343
Making a request for the weather app using the static URL 345
Error handling in the the callback function 347

Another way of error handling 349
Testing the error handling in callback 350

Chaining callbacks together 351
Refactoring our request call in weather.js file 352

Defining the new function getWeather in weather file 352
Providing weather directory in app.js 353
Passing the arguments in the getWeather function 354

Printing errorMessage in the getWeather function 355
Implementing getWeather callback inside weather.js file 356

Adding dynamic latitude and longitude 356
Changing console.log calls into callback calls 357

Chaining the geocodeAddress and getWeather callbacks together 359
Moving getWeather call into geocodeAddress function 360
Replacing static coordinates with dynamic coordinates 361
Testing the chaining of callbacks 362

Summary 363

Chapter 7: Promises in Asynchronous Programming 364

Introduction to ES6 promises 364
Creating an example promise 366

Calling the promise method then 368
Running the promise example in Terminal 369
Error handling in promises 370
Merits of promises 372

Advanced promises 374
Providing input to promises 374

Returning the promises 376
Promise chaining 378

Error handling in promises chaining 379
The catch method 381

The request library in promises 381
Testing the request library 385



Table of Contents

[ vi ]

Weather app with promises 387
Fetching weather app code from the app.js file 387
Axios documentations 389
Installing axios 391
Making calls in the app-promise file 391

Making axios request 392
Error handling in axios request 394

Error handling with ZERO_RESULT body status 397
Generating the weather URL 399
Chaining the promise calls 400

Summary 403

Chapter 8: Web Servers in Node 404

Introducing Express 404
Configuring Express 405

Express docs website 407
Installing Express 408

Creating an app 410
Exploring the developer tools in the browser for the app request 413
Passing HTML to res.send 415

Sending JSON data back 416
Error handling in the JSON request 420

The static server 422
Making an HTML page 423

The head tag 424
The body tag 424

Serving the HTML page in the Express app 425
The call to app.listen 427

Rendering templates 428
Installing the hbs module 429
Configuring handlebars 430
Our first template 430

Getting the static page for rendering 431
Injecting data inside of templates 433
Rendering the template for the root of the website 436

Advanced templates 439
Adding partials 439

Working of partial 441
The Header partial 444

The Handlebars helper 448
Arguments in Helper 451

Express Middleware 453



Table of Contents

[ vii ]

Exploring middleware 454
Creating a logger 456
Printing message to file 460

The maintenance middleware without the next object 463
Testing the maintenance middleware 465

Summary 469

Chapter 9: Deploying Applications to Web 470

Adding version control 471
Installing Git 471

Git on macOS 475
Git on Windows 476
Testing the installation 476

Turning the node-web-server directory into a Git repository 477
Using Git 478

Adding untracked files to commit 480
Making a commit 486

Setting up GitHub and SSH keys 487
Setting up SSH keys 487

SSH keys documentations 488
Working on commands 489

Generating a key 489
Starting up the SSH agent 491

Configuring GitHub 493
Testing the configuration 498

Creating a new repository 499
Setting up the repository 502

Deploying the node app to the Web 505
Installing Heroku command-line tools 506

Log in to Heroku account locally 509
Getting SSH key to Heroku 511

Setting up in the application code for Heroku 515
Changes in the server.js file 515
Changes in the package.json file 517

Making a commit in Heroku 520
Running the Heroku create command 522

Summary 528

Chapter 10: Testing the Node Applications – Part 1 529

Basic testing 530
Installing the testing module 530
Testing a Node project 531

Mocha – the testing framework 533



Table of Contents

[ viii ]

Creating a test file for the add function 536
Creating the if condition for the test 539

Testing the squaring a number function 541
Autorestarting the tests 544

Using assertion libraries in testing Node modules 547
Exploring assertion libraries 549
Chaining multiple assertions 554

Multiple assertions for the square function 556
Exploring usage of expect with bogus test 558

Using toBe and toNotBe to compare array/objects 559
Using the toEqual and toNotEqual assertions 560
Using toInclude and toExclude 562

Testing the setName method 566
The asynchronous testing 571

Creating the asyncAdd function using the setTimeout object 572
Writing the test for the asyncAdd function 573

Making assertion for the asyncAdd function 574
Adding the done argument 575

The asynchronous testing for the square function 578
Creating the async square function 578
Writing test for asyncSquare 579

Making assertions for the asyncSquare function 580
Summary 581

Chapter 11: Testing the Node Applications – Part 2 582

Testing the Express application 582
Setting up testing for the Express app 583
Testing the Express app using SuperTest 585

The SuperTest documentation 586
Creating a test for the Express app 587
Writing the test for the Express app 589

Testing our first API request 590
Setting up custom status 593
Adding flexibility to SuperTest 596

Creating an express route 598
Writing the test for the express route 600

Organizing test with describe() 604
Adding describe() for individual methods 606
Adding the route describe block for the server.test.js file 608

Test spies 610
Creating a test file for spies 613
Creating a spy 614
Setting up spies assertions 615



Table of Contents

[ ix ]

More details out of spy assertion 617
Swapping of the function with spy 619

Installing and setting up the rewire function 619
Replacing db with the spy 620
Writing a test to verify swapping of the function 621

Summary 624
Conclusion 624

Another Book You May Enjoy 625

Leave a review - let other readers know what you think 626

Index 627



Preface
Welcome to Learning Node.js Development. This book is packed with a ton of content,
projects, challenges and real-world examples, all designed to teach you Node by doing. This
means you'll be getting your hands dirty early on in the upcoming chapters writing some
code, and you'll be writing code for every project. You will be writing every line of code
that powers our applications. Now, we would require a text editor for this book. We have
various text editor options that you can use. I always recommend using Atom, which you
can find at . It's free, open-source, and it's available for all operating systems,
namely Linux, macOS, and Windows. It's created by the folks behind GitHub.

All the projects in the book are fun to build and they were designed to teach you everything
required to launch your own Node app, from planning to development and testing to
deploying. Now, as you launch these different Node applications and move through the
book, you will run into errors, which is bound to happen. Maybe something doesn't get
installed as expected, or maybe you try to run an app and instead of getting the expected
output, you get a really long obscure error message. Don't worry, I am there to help. I'll
show you tips and tricks to get pass through those errors in the chapters. Let's go ahead and
get to it.

Who this book is for
This book targets anyone looking to launch their own Node applications, switch careers, or
freelance as a Node developer. You should have a basic understanding of JavaScript in
order to follow this book.

What this book covers
, Getting Set Up, talks about what Node is and why you want to use it. In this

chapter, you'll learn Node installation and by the end of the chapter, you'll be able to run
your first Node application.

, Node Fundamentals - Part 1, talks about building Node applications. The Node
Fundamentals topic has been divided into 3 parts. Part 1 of this topic includes module basics,
requiring own files, and third-party NPM modules. 



Preface

[ 2 ]

, Node Fundamentals - Part 2, continues our discussion on some more Node
fundamentals. This chapter explores yargs, JSON, the addNote function, and refactor,
moving functionality into individual  functions and testing the functionality. 

, Node Fundamentals - Part 3, includes things such as read and write from the file
system. We'll look into advanced yargs configuration, debugging broken apps, and some
new ES6 functions.

, Basics of Asynchronous Programming in Node.js, covers basic concepts, terms, and
technologies related to the async programming, making it super-practical and using it in
our weather application. 

, Callbacks in Asynchronous Programming, is the second part of async programming
in Node. We'll look into callbacks, HTTPS requests, and error handling inside of our
callback functions. We'll also look into the forecast API and fetching real-time weather data
for our address.

, Promises in Asynchronous Programming, is the third and last part of async
programming in Node. This chapter focuses on Promises, how it works, why they are
useful, and so on. At the end of this chapter, we'll use Promises in our weather app.

, Web Servers in Node, talks about Node web servers and integrating version
control into Node applications. We'll also introduce a framework called Express, one of the
most important NPM libraries. 

, Deploying Applications to Web, talks about deploying the applications to the Web.
We'll be using Git, GitHub, and deploy our live app to the Web using these two services. 

, Testing the Node Applications- Part 1, talks about how we can test our code to
make sure it is working as expected. We'll work on setting up for testing and then writing
our test cases. We'll look into the basic testing framework and asynchronous testing. 

, Testing the Node Application - Part 2, continues our journey of testing Node
applications. In this chapter, we'll work on testing the Express applications and look into
some advanced methods of testing.



Preface

[ 3 ]

To get the most out of this book
A web browser, we'll be using Chrome throughout the course book but any browser will
do, and Terminal, sometimes known as the command line on Linux or the Command
Prompt on Windows. Atom as the text editor. The following list of modules will be used
throughout the course of this book:

lodash
nodemon
yargs
request
axios
express
hbs
heroku
rewire

Download the example code files
You can download the example code files for this book from your account at

. If you purchased this book elsewhere, you can visit
 and register to have the files emailed directly to you.

You can download the code files by following these steps:

Log in or register at .1.
Select the SUPPORT tab.2.
Click on Code Downloads & Errata.3.
Enter the name of the book in the Search box and follow the onscreen4.
instructions.

Once the file is downloaded, please make sure that you unzip or extract the folder using the
latest version of:

WinRAR/7-Zip for Windows
Zipeg/iZip/UnRarX for Mac
7-Zip/PeaZip for Linux



Preface

[ 4 ]

The code bundle for the book is also hosted on GitHub at
. We also have

other code bundles from our rich catalog of books and videos available at 
. Check them out!

Conventions used
There are a number of text conventions used throughout this book.

: Indicates code words in text, database table names, folder names, filenames,
file extensions, pathnames, dummy URLs, user input, and Twitter handles. Here is an
example: "Mount the downloaded  disk image file as another disk in
your system."

A block of code is set as follows:

When we wish to draw your attention to a particular part of a code block, the relevant lines
or items are set in bold:

console.log('Process', process.argv);

Any command-line input or output is written as follows:

cd hello-world
node app.js



Preface

[ 5 ]

Bold: Indicates a new term, an important word, or words that you see onscreen. For
example, words in menus or dialog boxes appear in the text like this. Here is an example:
"Select System info from the Administration panel."

Warnings or important notes appear like this.

Tips and tricks appear like this.

Get in touch
Feedback from our readers is always welcome.

General feedback: Email  and mention the book title in the
subject of your message. If you have questions about any aspect of this book, please email
us at .

Errata: Although we have taken every care to ensure the accuracy of our content, mistakes
do happen. If you have found a mistake in this book, we would be grateful if you would
report this to us. Please visit , selecting your book,
clicking on the Errata Submission Form link, and entering the details.

Piracy: If you come across any illegal copies of our works in any form on the Internet, we
would be grateful if you would provide us with the location address or website name.
Please contact us at  with a link to the material.

If you are interested in becoming an author: If there is a topic that you have expertise in
and you are interested in either writing or contributing to a book, please visit

.



Preface

[ 6 ]

Reviews
Please leave a review. Once you have read and used this book, why not leave a review on
the site that you purchased it from? Potential readers can then see and use your unbiased
opinion to make purchase decisions, we at Packt can understand what you think about our
products, and our authors can see your feedback on their book. Thank you!

For more information about Packt, please visit .



11
Getting Set Up

In this chapter, you'll get your local environment set up for the rest of the book. Whether
you're on macOS, Linux, or Windows, we'll install Node and look at exactly how we can
run Node applications.

We'll talk about what Node is, why you would ever want to use it, and why you would
want to use Node as opposed to something like Rails, C++, Java, or any other language that
can accomplish similar tasks. By the end of this chapter, you will be running your very first
Node application. It's going to be simple, but it is going to get us to the path to creating real-
world production Node apps, which is the goal of this book.

More specifically, we'll cover the following topics:

Node.js installation
What Node is
Why use Node
Atom
Hello World

Node.js installation
Before we start talking about what Node is and why it's useful, you need to first install
Node on your machine, because in the next couple of sections, we'll want to run a little bit
of Node code.

Now, to get started, we just need two programs a browser, I'll be using Chrome
throughout the book, but any browser will do, and Terminal. I'll use Spotlight to open up
Terminal, which is what it's known as on my operating system.



Getting Set Up Chapter 1

[ 8 ]

If you're on Windows, look for the Command Prompt, you can search using the Windows
key and then by typing , and on Linux, you're looking for the command
line, although depending on your distribution it might be called Terminal or Command
Prompt.

Now, once you have that program open, you'll see a screen, as shown in the following
screenshot:

Essentially, it's waiting for you to run a command. We'll run quite a few commands from
Terminal throughout the book. I'll discuss it in a few sections later, so if you've never used
this before, you can start navigating comfortably.



Getting Set Up Chapter 1

[ 9 ]

Node.js version confirmation
In the browser, we can head over to  to grab the installer for the latest version of
Node(as shown here). In this book, we'll use the most recent version, version 9.3.0:

It is important that you install a V8 version of Node.js. It doesn't have to be
4.0, it could be 1.0, but it is important it's on that V8 branch, because there
is a ton of new features that come along with V8, including all of the
features you might have come to love in the browser using ES6.



Getting Set Up Chapter 1

[ 10 ]

ES6 is the next version of JavaScript and it comes with a lot of great enhancements we'll be
using throughout the book. If you look at the following image, Node.js Long Term Support
Release Schedule ( ), you can see that the current Node
version is V8, out in April 2017:

Before going further, I would like to talk about the Node release cycle. What I have in the
preceding image is the official release cycle, this is released by Node. You'll notice that only
next to the even Node numbers do you find the active LTS, the blue bar, and the
maintenance bar. Now, LTS stands for long-term support, and this is the version that's
recommended for most users. I'd recommend that you stick with the currently offered LTS
option (Node v 8.9.4 LTS), though anything on the left-hand side will do, this is shown as
the two green buttons on .

Now, as you can see, the major version numbers, bump every six months. Regardless of any
sort of big overarching change, this happens like clockwork even if nothing drastic has
changed. It's not like Angular where jumping from 1.0 to 2.0 was almost like using a
completely different library. This is just not the case with Node, what you're getting from
this book is the latest and greatest Node has to offer.



Getting Set Up Chapter 1

[ 11 ]

Installing Node
Once the version is confirmed and selected, all we have to do is to click the required version
button on the Node website ( ) and download the installer. The installer is one of
those basic click Next a few times and you're done type of installers, there's no need to run any
fancy commands. I'll start the installer. As shown in the following screenshot, it'll just ask a
few questions, then let's click on Next or Continue through all of them:

You might want to specify a custom destination, but if you don't know what that means,
and you don't usually do it when installing programs, skip that step too. Here, in the next
screenshot, you can see that I'm using just 58.6 MB, no problem.



Getting Set Up Chapter 1

[ 12 ]

I'll run the installer by entering my password. And once I enter my password, it should
really only take a couple of seconds to get Node installed:

As shown in the following screenshot, we have a message that says The installation was
completed successfully, which means we are good to go:



Getting Set Up Chapter 1

[ 13 ]

Verifying installation
Now that Node has been installed successfully, we can go ahead and verify that by running
Node from Terminal. Inside Terminal, I'll shut it down by going to Quit Terminal and open
it up again:

The reason I'm opening it up is because we've installed a new command,
and some Terminals require a restart before they will be able to run that
new command.

In our case, we restarted things and we can run our brand new command so, we'll type it:

node -v



Getting Set Up Chapter 1

[ 14 ]

What we're doing in this command is we're running the Node command, and we're passing
in what's called a flag, a hyphen sign followed by a letter. It could be , it could be , or in
our case it's . This command will print the version of Node currently installed.

We might get an error like this:

If you try to run a command that doesn't exist, such as , you'll see command not
found. If you see this, it usually means the Node installer didn't work correctly, or you
haven't run it in the first place.

In our case though, running Node with the  flag should result in a number. In our case, it's
version 9.3.0. If you do have Node installed, and you see something like the following
screenshot, then you are done. In the next section, we'll start exploring exactly what Node
is.



Getting Set Up Chapter 1

[ 15 ]

What is Node?
Node came about when the original developers took JavaScript, something you could
usually only run inside the browser, and they let it run on your machine as a standalone
process. This means that we could create applications using JavaScript outside the context
of the browser.

Now, JavaScript previously had a limited feature set. When I used it in the browser, I could
do things such as update the URL and remove the Node logo, adding click events or
anything else, but I couldn't really do much more.



Getting Set Up Chapter 1

[ 16 ]

With Node, we now have a feature set that looks much more similar to other languages,
such as Java, Python, or PHP. Some of these are as follows:

We can write Node applications using the JavaScript syntax
You can manipulate your filesystem, creating and removing folders
You can create query databases directly
You can even create web servers using Node

These were things that were not possible in the past, and they are because of Node.

Now, both Node and the JavaScript that gets executed inside of your browser, they're both
running on the exact same engine. It's called the V8 JavaScript runtime engine. It's an open
source engine that takes JavaScript code and compiles it into much faster machine code.
And that's a big part of what makes Node.js so fast.

Machine code is low-level code that your computer can run directly without needing to
interpret it. Your machine only knows how to run certain types of code, for example, your
machine can't run JavaScript code or PHP code directly without first converting it into low-
level code.

Using this V8 engine, we can take our JavaScript code, compile it to much quicker machine
code, and execute that. This is where all those new features come in. The V8 engine is
written in a language called C++. So if you want to extend the Node language, you don't
write Node code, you write C++ code that builds off of what V8 already has in place.

Now, we'll not be writing any C++ code in this book. This book is not
about adding onto Node, it is about using Node. So, we will only be
writing JavaScript code.

Speaking of JavaScript code, let's start writing some inside Terminal. Now, throughout the
book, we'll be creating files and executing those files, but we can actually create a brand
new Node process by running the  command.



Getting Set Up Chapter 1

[ 17 ]

Referring to the following screenshot, I have a little right caret, which is waiting for
JavaScript Node code, not a new command-prompt command:

This means that I can run something like , which, as you probably already
know, logs a message to the screen.  is a function, so I'll call it as such, opening and
closing my parentheses, and passing in a string inside two single quotes, a message 

 as shown in the following command line:

console.log('Hello world!');



Getting Set Up Chapter 1

[ 18 ]

This will print Hello world to the screen. If I hit enter, Hello world! prints just like you'd
expect, as shown in the following code output:

Now, what actually happened behind the scenes? Well, this is what Node does. It takes
your JavaScript code, it compiles it into machine code, and executes it. In the preceding
code, you can see it executed our code, printing out Hello world!. Now, the V8 engine is
running behind the scenes when we execute this command, and it's also running inside the
Chrome browser.



Getting Set Up Chapter 1

[ 19 ]

If I open up the developer tools in Chrome by going to Settings | More Tools | Developer
Tools:



Getting Set Up Chapter 1

[ 20 ]

I can ignore most of the things. I'm just looking for the Console tab, as shown in the
following screenshot:



Getting Set Up Chapter 1

[ 21 ]

The preceding screenshot showing the console is a place where we can run some JavaScript
code. I can type the exact same command,  and run it:

As you can see in the preceding screenshot, Hello world! prints to the screen, which is the
exact same result we got when we ran it up earlier using Terminal. In both cases, we're
running it through the V8 engine, and in both cases the output is the same.

Now, we already know that the two are different. Node has features such as filesystem
manipulation, and the browser has features such as manipulating what's shown inside the
window. Let's take a quick moment to explore their differences.



Getting Set Up Chapter 1

[ 22 ]

Differences between JavaScript coding using
Node and in the browser
Inside the browser, you've probably used  if you've done any JavaScript
development:



Getting Set Up Chapter 1

[ 23 ]

Window is the global object, it stores basically everything you have access to. In the
following screenshot, you can see things such as array, we have all sorts of CSS
manipulation and Google Analytics keywords; essentially every variable you create lives
inside Window:



Getting Set Up Chapter 1

[ 24 ]

We have something similar inside Node called , as shown here:



Getting Set Up Chapter 1

[ 25 ]

It's not called  because there is no browser window in Node, thus it is called
. The  object stores a lot of the same things as . In the following

screenshot, you can see methods that might be familiar, such as  and
:



Getting Set Up Chapter 1

[ 26 ]

If we look at this code screenshot, we have most of the things that are defined inside the
window, with some exceptions, as shown in the following screenshot:



Getting Set Up Chapter 1

[ 27 ]

Now, inside the Chrome browser, I also have access to :



Getting Set Up Chapter 1

[ 28 ]

The  object stores a reference to the Document Object Model (DOM) in the Node
website. The  object shows exactly what I have inside the browser's viewport, as 
shown in the following screenshot:



Getting Set Up Chapter 1

[ 29 ]

I can make changes to the document to update what gets shown up on the browser's
viewport. Now, obviously we don't have this HTML  inside Node, but we do
have something similar, which is called . You can view it by running process from
Node, and in the following screenshot, we have a lot of information about the specific Node
process that's being executed:

There's also methods available here to shut down the current Node process. What I'd like
you to do is run the  command, passing in as an argument the number zero,
to say that things exited without error:

process.exit(0);



Getting Set Up Chapter 1

[ 30 ]

When I run this command, you can see I'm now back at the command prompt, as shown in
the following screenshot:

I've left Node, and I'm at a place where I can run any regular command prompt command,
such as checking my Node version. I can always get back into Node by running , and I
can leave it without using the  command by using control + C twice.



Getting Set Up Chapter 1

[ 31 ]

Now, I'm back at my regular command prompt. So, these are the notable differences,
obviously inside the browser you have the viewable area, window gets changed to global,
and a document basically becomes process. Now, obviously that's a generalization, but
those are some of the big picture changes. We'll be exploring all the minutiae throughout
the book.

Now, when someone asks you what is Node? You can say Node's a JavaScript runtime that
uses the V8 engine. When they ask you what the V8 engine is, you can say the V8 engine is an
open source JavaScript engine written in C++ that takes JavaScript code and compiles it to machine
code. It's used inside Node.js and it's used in the Chrome browser.



Getting Set Up Chapter 1

[ 32 ]

Why use Node
In this section, we'll cover the why behind Node.js. Why is it so good at creating backend
apps? And why is it becoming so popular with companies such as Netflix, Uber and
Walmart, who are all using Node.js in production?

As you might have noticed since you're taking this course, when people want to learn a new
backend language, more and more they're turning to Node as the language they want to
learn. The Node skillset is in hot demand, for both frontend developers who need to use
Node day to day to do things such as compile their applications, to engineers who are
creating applications and utilities using Node.js. All of this has made Node the backend
language of choice.

Now, if we look at the homepage of Node, we have three sentences, as shown in the
following screenshot:



Getting Set Up Chapter 1

[ 33 ]

In the previous section, we addressed the first sentence. We took a look at what Node.js is.
There's only three sentences in the image, so in this section, we'll take a look at the second
two sentences. We'll read them now, then we'll break it down, learning exactly why Node is
so great.

The first sentence, Node.js uses an event-driven, non-blocking I/O model that makes it
lightweight and efficient; we'll explore all of this now. The second sentence we'll explore at
the end of the section Node.js' packaged ecosystem, npm, is the largest ecosystem of
open source libraries in the world. Now, these two sentences have a ton of information
packed into them.

We'll go over a few code examples, we'll dive into some charts and graphs, and we'll
explore what makes Node different and what makes it so great.

Node is an event-driven, non-blocking language. Now, what is I/O? I/O is something that
your application does all of the time. When you're reading or writing to a database, that is
I/O, which is short form for input/output.

This is the communication from your Node application to other things inside of the Internet
of Things. This could be a database read and write request, you may be changing some files
on your filesystem, or you may be making an HTTP request to a separate web server, such
as a Google API for fetching a map for the user's current location. All of these use I/O, and
I/O takes time.

Now, the non-blocking I/O is great. That means while one user is requesting a URL from
Google, other users can be requesting a database file read and write access, they can be
requesting all sorts of things without preventing anyone else from getting some work done.



Getting Set Up Chapter 1

[ 34 ]

Blocking and non-blocking software development
Let's go ahead and take a look at the differences between blocking and non blocking
software development:

In the preceding screenshot, I have two files that we'll be executing. But before going to
that, first let's explore how each of these files operates, the steps that are required in order to
finish the program.

This will help us understand the big differences between blocking, which I have on the left
side of the image, which is not what Node uses, and non-blocking is on the right side,
which is exactly how all of our Node applications in the book are going to operate.

You don't have to understand the individual details, such as what require is, in order to
understand what's going on in this code example. We'll be breaking things down in a very
general sense. The first line on each code is responsible for fetching a function that gets
called. This function will be our simulated I/O function that is going to a database, fetching
some user data and printing it to the screen.



Getting Set Up Chapter 1

[ 35 ]

Refer to the preceding code image. After we load in the function, both files try to fetch a
user with an ID of . When it gets that user, it prints it to the screen with the  string
first, and then it goes on and it fetches the user with  as the ID. And it prints that to the
screen. And finally both files add up , storing the result, which is 3, in the 
variable and print it to the screen.

Now, while they all do the same thing, they do it in very different ways. Let's break down
the individual steps. In the following code image, we'll go over what Node executes and
how long it takes:

You can consider the seconds shown in the preceding screenshot; it doesn't really matter,
it's just to show the relative operating speed between the two files.



Getting Set Up Chapter 1

[ 36 ]

The working of blocking I/O
The blocking example can be illustrated as follows:

The first thing that happens inside our blocking example, as shown in the preceding
screenshot, is that we fetch the user on line 3 in the code:

Now, this request requires us to go to a database, which is an I/O operation to fetch that
user by ID. This takes a little bit of time. In our case, we'll say it takes three seconds.



Getting Set Up Chapter 1

[ 37 ]

Next, on line 4 in the code, we print the user to the screen, which is not an I/O operation and
it runs right away, printing  to the screen, as shown in the following code:

As you can see in the following screenshot, it takes almost no time at all:



Getting Set Up Chapter 1

[ 38 ]

Next up, we wait on the fetching of :

When  comes back, as you might expect, we print it to the screen, which is exactly
what happens on line 7:

Finally, we add up our numbers and we print it to the screen:

None of this is I/O, so right here we have our sum printing to the screen in barely any time.



Getting Set Up Chapter 1

[ 39 ]

This is how blocking works. It's called blocking because while we're fetching from the
database, which is an I/O operation, our application cannot do anything else. This means
our machine sits around idle waiting for the database to respond, and can't even do
something simple like adding two numbers and printing them to the screen. It's just not
possible in a blocking system.

The working non-blocking I/O
In our non-blocking example, this is how we'll be building our Node applications.

Let's break this code example down line by line. First up, things start much the same way as
we discussed in the blocking example. We'll start the  function for , which is
exactly what we did earlier:

But we're not waiting, we're simply kicking off that event. This is all part of the event loop
inside Node.js, which is something we'll be exploring in detail.



Getting Set Up Chapter 1

[ 40 ]

Notice it takes a little bit of time; we're just starting the request, we're not waiting for that
data. The next thing we do might surprise you. We're not printing  to the screen
because we're still waiting for that request to come back, instead we start the process of
fetching our  with the ID of :

In this part of the code, we're kicking off another event, which takes just a little bit of time to
do-it is not an I/O operation. Now, behind the scenes, the fetching of the database is I/O, but
starting the event, calling this function is not, so it happens really quickly.



Getting Set Up Chapter 1

[ 41 ]

Next up, we print the sum. The sum doesn't care about either of the two user objects.
They're basically unrelated, so there's no need to wait for the users to come back before I
print that  variable, as shown in the following screenshot:



Getting Set Up Chapter 1

[ 42 ]

What happens after we print the sum? Well, we have the dotted box, as shown in the
following screenshot:



Getting Set Up Chapter 1

[ 43 ]

This box signifies the simulated time it takes for our event to get responded to. Now, this
box is the exact same width as the box in the first part of the blocking example (waiting on
user1), as shown here:

Using non-blocking doesn't make our I/O operations any faster, but what it does do is it lets
us run more than one operation at the same time.



Getting Set Up Chapter 1

[ 44 ]

In the non-blocking example, we start two I/O operations before the half second mark, and
in between three and a half seconds, both come back, as shown in the following screenshot:

Now, the result here is that the entire application finishes much quicker. If you compare the
time taken in executing both the files, the non-blocking version finishes in just over three
seconds, while the blocking version takes just over six seconds. A difference of 50%. This
50% comes from the fact that in blocking, we have two requests each taking three seconds,
and in non-blocking, we have two requests each taking three seconds, but they run at the
same time.

Using the non-blocking model, we can still do stuff like printing the sum without having to
wait for our database to respond. Now, this is the big difference between the two; blocking,
everything happens in order, and in non-blocking we start events, attaching callbacks, and
these callbacks get fired later. We're still printing out  and , we're just doing it
when the data comes back, because the data doesn't come back right away.



Getting Set Up Chapter 1

[ 45 ]

Inside Node.js, the event loop attaches a listener for the event to finish, in this case for that
database to respond back. When it does, it calls the callback you pass in the non-blocking
case, and then we print it to the screen.

Now, imagine this was a web server instead of the preceding example.
That would mean if a web server comes in looking to query the database,
we can't process other users' requests without spinning up a separate
thread. Now, Node.js is single threaded, which means your application
runs on one single thread, but since we have non-blocking I/O, that's not a
problem.

In a blocking context, we could handle two requests on two separate threads, but that
doesn't really scale well, because for each request we have to beef up the amount of CPU
and RAM resources that we're using for the application, and this sucks because those
threads, are still sitting idle. Just because we can spin up other threads doesn't mean we
should, we're wasting resources that are doing nothing.

In the non-blocking case, instead of wasting resources by creating multiple threads, we're
doing everything on one thread. When a request comes in, the I/O is non-blocking so we're
not taking up any more resources than we would be if it never happened at all.

Blocking and non-blocking examples using
Terminal
Let's run these examples in real time and see what we get. And we have the two files
(  and  files) that we saw in the previous section.

We'll run both of these files, and I'm using the Atom editor to edit my text files. These are
things we'll be setting up later in the section, this is just for your viewing purpose, you don't
need to run these files.

Now, the  and  files, will both get run and they'll do similar things
to those we did in the previous section, just in a different way. Both use I/O operations,

 and , that take five seconds apiece. The time is no different, it's just
the order they execute in that makes the non-blocking version much quicker.

Now, to simulate and show how things work, I'll add a few  statements as
shown in the following code example, ,

.



Getting Set Up Chapter 1

[ 46 ]

This will let us visualize how things work inside Terminal. By running 
, this is how we run files. We type  and we specify the filename, as

shown in the following code:

 node blocking.js

When I run the file, we get some output. starting user1 prints to the screen and then it sits
there:



Getting Set Up Chapter 1

[ 47 ]

Now, we have the user1 object printing to the screen with the name Andrew, and starting
user2 prints to the screen, as shown in the following code output:

After that, the user2 object comes back around five seconds later with the name of Jen.

As shown in the preceding screenshot, our two users have printed to the screen, and at the
very end our sum, which is 3, prints to the screen; everything works great.

Notice that starting user1 was immediately followed by the finishing of user1, and starting
user2 was immediately followed by the finishing of user2 because this is a blocking
application.



Getting Set Up Chapter 1

[ 48 ]

Now, we'll run the non-blocking file, which I've called . When I run this
file, starting user1 prints, starting user2 prints, then the sum prints all back to back:

Around 5 seconds later, at basically the same time, user1 and user2 both print to the screen.

This is how non-blocking works. Just because we started an I/O operation doesn't mean we
can't do other things, such as starting another one and printing some data to the screen, in
this case just a number. This is the big difference, and this is what makes non-blocking apps
so fantastic. They can do so many things at the exact same time without having to worry
about the confusion of multi-threading applications.



Getting Set Up Chapter 1

[ 49 ]

Let's move back into the browser and take a look at those sentences again in the Node
website:

Node.js uses an event-driven, non-blocking I/O model that makes it lightweight and
efficient, and we saw that in action.

Because Node is non-blocking, we were able to cut down the time our application took by
half. This non-blocking I/O makes our apps super quick, this is where the lightweight and
efficient comes into play.



Getting Set Up Chapter 1

[ 50 ]

Node community  problem solving open source
libraries
Now, let's go to the last sentence on the Node website, as shown in the following
screenshot:

Node.js' package ecosystem, npm, is the largest ecosystem of open-source libraries in the
world. This is what really makes Node fantastic. This is the cherry on top-the community,
the people every day developing new libraries that solve common problems in your Node.js
applications.

Things such as validating objects, creating servers, and serving up content live using
sockets. There's libraries already built for all of those so you don't have to worry about this.
This means that you can focus on the specific things related to your application without
having to create all this infrastructure before you can even write real code, code that does
something specific to your apps use case.



Getting Set Up Chapter 1

[ 51 ]

Now, npm, which is available on , is the site we'll be turning to for a lot of third-
party modules:

If you're trying to solve a problem in Node that sounds generic, chances are that someone's
already solved it. For example, if I want to validate some objects, let's say I want to validate
that a name property exists and that there's an ID with a length of three. I could go into
Google or go into npm; I usually choose Google, and I could Google search 

.



Getting Set Up Chapter 1

[ 52 ]

When I google that, I'll just look for results from , and you can find the first three
or so are from that:

I can click the first one, and this will let me explore the documentation and see if it's right
for me:



Getting Set Up Chapter 1

[ 53 ]

This one looks great, so I can add it to my app without any effort.

Now, we'll go through this process. Don't worry, I'm not going to leave you high and dry
on how to add third-party modules. We'll be using a ton of them in the book because this is
what real Node developers do. They take advantage of the fantastic community of
developers, and that's the last thing that makes Node so great.

This is why Node has come to the position of power that it currently sits at, because it's non-
blocking, meaning it's great for I/O applications, and it has a fantastic community of
developers. So, if you ever want to get anything done, there's a chance someone already
wrote the code to do it.

This is not to say you should never use Rails or Python or any other blocking language
again, that is not what I'm getting at. What I'm really trying to show you is the power of
Node.js and how you can make your applications even better. Languages like Python have
things such as the library Twisted, which aims to add non-blocking features to Python.
Though the big problem is all of the third-party libraries, as they are still written in a
blocking fashion, so you're really limited as to which libraries you can use.



Getting Set Up Chapter 1

[ 54 ]

Since Node was built non-blocking from the ground up, every single library on 
is non-blocking. So you don't have to worry about finding one that's non blocking versus
blocking; you can install a module knowing it was built from the ground up using a non
blocking ideology.

In the next couple of sections, you'll be writing your very first app and running it from
Terminal.

Different text editors for node applications
In this section, I want to give you a tour of the various text editors you can use for this book.
If you already have one you love using, you can keep using the one you have. There's no
need to switch editors to get anything done in this book.

Now, if you don't have one and you're looking for a few options, I always recommend
using Atom, which you can find at . It's free, open source, and it's available on all
operating systems, Linux, macOS, and Windows. It's created by the folks behind GitHub
and it's the editor that I'll be using inside of this book. There's an awesome community of
theme and plug-in developers so you really can customize it to your liking.

Now, aside from Atom there are a few other options. I've heard a lot of people talking about
Visual Studio Code. It is also open source, free, and available on all operating systems. If
you don't like Atom, I highly recommend you check this out, because I've heard so many
good things by word of mouth.

Next up, we always have Sublime Text, which you can find at . Now,
Sublime Text is not free and it's not open source, but it's a text editor that a lot of folks do
enjoy using. I prefer Atom because it's very similar to Sublime Text, though I find it
snappier and easier to use, plus it's free and open source.



Getting Set Up Chapter 1

[ 55 ]

Now, if you are looking for a more premium editor with all of the bells and whistles in IDE
as opposed to a text editor, I always recommend JetBrains. None of their products are free,
though they do come with a 30-day free trial, but they really are the best tools of the trade.
If you find yourself in a corporate setting or you're at a job where the company is willing to
pay for an editor, I always recommend that you go with JetBrains. All of their editors come
with all of the tools you'd expect, such as version control integration, debugging tools, and
deploying tools built in.

So, take a moment, download the one you want to use, play around with it, make sure it fits
your needs, and if not, try another one.

Hello World  creating and running the first
Node app
In this section, you will be creating and running your very first Node app. Well, it will be a
simple one. It'll demonstrate the entire process, from creating files to running them from
Terminal.

Creating the Node application
The first step will be to create a folder. Every project we create will go live inside of its own
folder. I'll open up the Finder on macOS and navigate to my desktop. What I'd like you to
do is open up the desktop on your OS, whether you're on Linux, Windows, or macOS, and
create a brand new folder called .

I don't recommend using spaces in your project file or folder names, as it
only makes it more confusing to navigate inside of Terminal. Now, we
have this  folder and we can open it up inside of our editor.



Getting Set Up Chapter 1

[ 56 ]

Now I'll use command + O (Ctrl + O for Windows users) to open up, and I'll navigate to the
desktop and double-click my hello-world folder, as shown here:

On the left I have my files, which are none. So, let's create a new one. I'll make a new file in
the root of the project, and we'll call this one , as shown here:



Getting Set Up Chapter 1

[ 57 ]

This will be the only file we have inside our Node application, and in this file we can write
some code that will get executed when we start the app.

In the future, we'll be doing crazy stuff like initializing databases and starting web servers,
but for now we'll simply use , which means we're accessing the log property
on the console object. It's a function, so we can call it with parentheses, and we'll pass in one
argument as string, . I'll toss a semicolon on the end and save the file, as
shown in the following code:

This will be the first app we run.

Now, remember, there is a basic JavaScript requirement for this course, so
nothing here should look too foreign to you. I'll be covering everything
new and fresh inside of this course, but the basics, creating variables,
calling functions, those should be something you're already familiar with.



Getting Set Up Chapter 1

[ 58 ]

Running the Node application
Now that we have our  file, the only thing left to do is to run it, and we'll do that
over in Terminal. Now, to run this program, we have to navigate into our project folder. If
you're not familiar with Terminal, I'll give you a quick refresher.

You can always figure out where you are using  on Linux or macOS, or the 
command on Windows. When you run it, you'll see something similar to the following
screenshot:

I'm in the  folder, and then I'm in my user folder, and my user name happens to be
.

When you open Terminal or Command Prompt, you'll start in your user
directory.



Getting Set Up Chapter 1

[ 59 ]

We can use  to navigate into the desktop, and here we are:

Now we're sitting in the desktop. The other command you can run from anywhere on your
computer is . And this will navigate to your desktop, no matter
what folder you're located in. The command , requires you to be in the user
directory to work correctly.

Now we can start by cd-ing into our project directory, which we called  as
shown in the following command:

cd hello-world



Getting Set Up Chapter 1

[ 60 ]

With the following screenshot:

Once we're in this directory, we can run at the  command on Linux or Mac (which is the
 command on Windows) to see all of our files, and in this case we just have one, we

have :



Getting Set Up Chapter 1

[ 61 ]

This is the file we'll run.

Now, before you do anything else, make sure you are in the  folder and you
should have the  file inside. If you do, all we'll do is run the  command
followed by a space so we can pass in an argument, and that argument will be the filename,

 as shown here:

node app.js



Getting Set Up Chapter 1

[ 62 ]

Once you have this in place, hit enter and there we go, Hello world! prints to the screen, as
shown here:

And that is all it takes to create and run a very basic Node application. While our app
doesn't do anything cool, we'll be using this process of creating folders/files and running
them from Terminal throughout the book, so it's a great start on our way to making real-
world Node apps.

Summary
In this chapter, we touched base with the concept of Node.js. We took a look at what Node
is and we learned that it's built on top of the V8 JavaScript engine. Then we explored why
Node has become so popular, its advantages and its disadvantages. We took a look at the
different text editors we can choose from and, at the end, you created your very first Node
application.

In the next chapter, we'll dive in and create our first app. I am really excited to start writing
real-world applications.



22
Node Fundamentals – Part 1

In this chapter, you'll learn a ton about building Node applications, and you'll actually
build your first Node application. This is where all the really fun stuff is going to start.

We'll kick things off by learning about all of the modules that come built in to Node. These
are objects and functions that let you do stuff with JavaScript you've never been able to do
before. We'll learn how to do things, such as reading and writing from the filesystem, which
we'll use in the Node's application to persist our data.

We'll also be looking at third-party npm modules; this is a big part of the reason that Node
became so popular. The npm modules give you a great collection of third-party libraries
you can use, and they also have really common problems. So you don't have to rewrite that
boilerplate code over and over again. We'll be using a third-party module in this chapter to
help with fetching input from the user.

The chapter will specifically cover the following topics:

Module basics
Require own files
Third-party modules
Global modules
Getting input



Node Fundamentals – Part 1 Chapter 2

[ 64 ]

Module basics
In this section, you will finally learn some Node.js code, and we'll kick things off by talking
about modules inside Node. Modules are units of functionality, so imagine I create a few
functions that do something similar, such as a few functions that help with math problems,
for example, add, subtract, and divide. I could bundle those up as a module, call it Andrew-
math, and other people could take advantage of it.

Now, we'll not be looking at how to make our own module; in fact, we will be looking at
how we can use modules, and that will be done using a function in Node, called

. The  function will let us do three things:

First, it'll let us load in modules that come bundled with Node.js. These include
the HTTP module, which lets us make a web server, and the  module, which
lets us access the filesystem for our machine.

We will also be using  in later sections to load in third-party
libraries, such as Express and Sequelize, which will let us write less code.

We'll be able to use prewritten libraries to handle complex problems, and all we
need to do is implement  by calling a few methods.
We will use  to require our very own files. It will let us break up our
application into multiple, smaller files, which is essential for building real-world
apps.

If you have all of your code in one file, it will be really hard to test, maintain, and update.
Now,  isn't that bad. In this section, we'll explore the first use case for

.



Node Fundamentals – Part 1 Chapter 2

[ 65 ]

Using case for require()
We'll take a look at two built-in modules; we'll figure out how to require them and how to
use them, and then we'll move on to starting the process of building that Node application.

Initialization of an application
The first step we'll take inside of the Terminal is that we'll make a directory to store all of
these files. We'll navigate from our home directory to the desktop using the 
command:

cd Desktop

Then, we'll make a folder to store all of the lesson files for this project.

Now, these lesson files will be available in the resources section for every
section, so if you get stuck or your code just isn't working for some reason,
you can download the lesson files, compare your files, and figure out
where things went wrong.

Now, we'll make that folder using the  command, which is the short form for make
directory. Let's call the folder , as shown in the following code:

mkdir notes-node

We'll make a note app in Node so that  seems appropriate. Then we'll  into
, and we can get started playing around with some of the built-in modules:

cd notes-node

These modules are built in, so there's no need to install anything in Terminal. We can
simply require them right inside of our Node files.



Node Fundamentals – Part 1 Chapter 2

[ 66 ]

The next step in the process is to open up that directory inside the Atom text editor. So open
up the directory we just created on the Desktop, and you will find it there, as shown in the
following screenshot:

Now, we will need to make a file, and we'll put that file in the root of the project:



Node Fundamentals – Part 1 Chapter 2

[ 67 ]

We'll call this file , and this is where our application will start:



Node Fundamentals – Part 1 Chapter 2

[ 68 ]

We will be writing other files that get used throughout the app, but this is the only file we'll
ever be running from Terminal. This is the initialization file for our application.

The built-in module to use require()
Now, to kick things off, the first thing I will do is to use  to print 

, as shown in the following code:

The only reason we'll do this is to keep track of how our files are
executing, and we'll do this only for the first project. Down the line, once
you're comfortable with how files get loaded and how they run, we'll be
able to remove these  statements, as they won't be necessary.

After we call the  starting app, we'll load in a built-in module using
.

We can get a complete list of all of the built-in modules in the Node.js API
docs.

To view Node.js API docs, go to . When you go to this URL, you'll be
greeted with a long list of built-in modules. Using the File System module we'll create a
new file and the OS module. The OS module will let us fetch things such as the username
for the currently logged-in user.



Node Fundamentals – Part 1 Chapter 2

[ 69 ]

To kick things off though, we will start with the File System module. We'll go through the
process of creating a file and appending to it:

When you view a docs page for a built-in module, whether it's File System or a different
module, you'll see a long list of all the different functions and properties that you have
available to you. The one we'll use in this section is .



Node Fundamentals – Part 1 Chapter 2

[ 70 ]

If you click on it, it will take you to the specific documentation, and this is where we can
figure out how to use , as shown in the following screenshot:

Now,  is pretty simple. We'll pass to it two string arguments (shown in the
preceding screenshot):

One will be the file name
The other will be the data we want to append to the file

This is all we need to provide in order to call . Before we can call
, we need to require it. The whole point of requiring is to let us load in

other modules. In this case, we'll load in the  module from .



Node Fundamentals – Part 1 Chapter 2

[ 71 ]

Let's create a variable that will be a constant, using .

Since we'll not be manipulating the code the module sends back, there's no
need to use the  keyword; we will use the  keyword.

Then we'll give it a name,  and set it equal to , as shown in the following code:

Here,  is a function that's available to you inside any of your Node.js files. You
don't have to do anything special to call it, you simply call it as shown in the preceding
code. Inside the argument list, we'll just pass one string.

Now, every time you call , whether you're loading a built-in
module, a third-party module, or your own file, you just pass in one
string.

In our case, we'll pass in the module name, which is  and toss in a semicolon at the end,
as shown in the following code:

This will tell Node that you want to fetch all of the contents of the  module and store
them in the  variable. At this point, we have access to all of the functions available on the

 module, which we explored over in the docs, including .

Back in Atom, we can call the  by calling , passing in the two
arguments that we'll use; the first one will be the filename, so we add , and
the second one will be the text you want to append to the file. In our case, we'll append

, as shown in the following code:



Node Fundamentals – Part 1 Chapter 2

[ 72 ]

Let's save the file, as shown in the preceding command, and run it from Terminal to see
what happens.

Warning when running the program on Node v7
If you're running Node v7 or greater, you'll get a little warning when you
run the program inside Terminal. Now, on v7, it'll still work, it's just a
warning, but you can get rid of it using the following code:

In the preceding code, we have the original line that we have inside our program.

In  here is to add a callback as the third argument to the append file. This
callback will get executed when either an error occurs or the file successfully gets written
too. Inside option one, we have an  statement; if there is an error, we simply print a
message to the screen, .

Now, our second option in the preceding code, , is to call ,
which is a synchronous method (we'll talk more about that later); this function does not take
the third argument. You can type it as shown in the preceding code and you won't get the
warning.

So, pick one of these two options if you see the warning; both will work much the same.

If you are on v6, you can stick with the the original line, shown at the top of the preceding
code, although you might as well use one of the two options below that line to make your
code a little more future proof.



Node Fundamentals – Part 1 Chapter 2

[ 73 ]

Fear not, we'll be talking about asynchronous and synchronous functions, as well as
callback functions, extensively throughout the book. What I'm giving you here in the code is
just a template, something you can write in your file to get that error removed. In a few
chapters, you will understand exactly what these two methods are and how they work.

If we do the appending over in Terminal, , we'll see something pretty cool:

As shown in the preceding code, we get our one  statement, .
So we know the app started correctly. Also, if we head over into Atom, we'll actually see
that there's a brand new  file, as shown in the following code. This is the 
text file that was created by :



Node Fundamentals – Part 1 Chapter 2

[ 74 ]

Here,  tries to append  to a file; if the file doesn't exist, it
simply creates it:

You can see that we have our message,  in the  file, printing
to the screen. In just a few minutes, we were able to load in a built-in Node module and call
a function that lets us create a brand new file.

If we call it again by rerunning the command using the up arrow key and the enter key, and
we head back into the contents of , you can see this time around that we
have  twice, as shown here:



Node Fundamentals – Part 1 Chapter 2

[ 75 ]

It appended  one time for each time we ran the program. We have an
application that creates a brand new file on our filesystem, and if the file already exists, it
simply adds to it.

Once we have created and appended the  file, we'll customize this
 file. To do this, we'll explore one more built-in module. We'll be using more

than just  in the future. We'll be exploring other methods. For this section, the
real goal is to understand . The  function lets us load in the module's
functionality so that we can call it.



Node Fundamentals – Part 1 Chapter 2

[ 76 ]

The second module that we'll be using is OS, and we can view it in the documentation. In
the OS module, we'll use the method defined at the very bottom, os.userInfo([options]):

The os.userInfo([options]) method gets called and returns various information about the
currently logged-in user, such as the username, and this is what we'll pull off:



Node Fundamentals – Part 1 Chapter 2

[ 77 ]

Using the username that comes from the OS, we can customize the  file so
that instead of  it can say .

To get started, we have to require OS. This means that we'll go back inside Atom. Now, just
below where I created my  constant, I'll create a new constant called , setting it equal to

; this gets called as a function and passes one argument, the module name, ,
as shown here:



Node Fundamentals – Part 1 Chapter 2

[ 78 ]

From here, we can start calling methods available on the OS module, such as
os.userInfo([optional]).

Let's make a new variable called  to store the result. The variable user will get set equal
to , and we can call  without any arguments:

Now, before we do anything with the  line, I'll comment it out and print
the contents of the user variable using :

This will let us explore exactly what we get back. Over in Terminal, we can rerun our
program using the up arrow key and enter key, and right here in the following code, you
see that we have an object with a few properties:



Node Fundamentals – Part 1 Chapter 2

[ 79 ]

We have , , , , and . Depending on your OS, you'll not have
all of these, but you should always have the  property. This is the one we care
about.

This means that back inside Atom, we can use  inside of . I'll
remove the  statement and uncomment our call to :

Now, where we have  in the , we'll swap it with .
There are two ways we can do this.



Node Fundamentals – Part 1 Chapter 2

[ 80 ]

The first way is to remove  and concatenate . Then we can
concatenate another string using the  (plus) operator, as shown in the following code:

Now if we run this, everything is going to work as expected. Over in Terminal, we can
rerun our app. It prints :

Over in the  file, you should see something like  printing to
the screen, as shown here:



Node Fundamentals – Part 1 Chapter 2

[ 81 ]

Using the  module and the  module, we were able to grab the user's username, create a
new file, and store it.

The second way to swap  with  in the  is, using an
ES6 feature known as template strings. Template strings start and end with the  (tick)
operator, which is available to the left of the 1 key on your keyboard. Then you type things
as you normally would.

This means that we'll first type , then we'll add a space with the  (exclamation)
mark, and just before , we will put the name:



Node Fundamentals – Part 1 Chapter 2

[ 82 ]

To insert a JavaScript variable inside your template string, you use the  (dollar) sign
followed by opening and closing curly braces. Then we will just reference a variable such as

:

Notice that the Atom editor actually picks up on the syntax of curly
braces.

This is all it takes to use template strings; it's an ES6 feature available because you're using
Node v6. This syntax is much easier to understand and update than the
string/concatenation version we saw earlier.

If you run the code, it will produce the exact same output. We can run it, view the text file,
and this time around, we have  twice, which is what we want here:



Node Fundamentals – Part 1 Chapter 2

[ 83 ]

With this in place, we are now done with our very basic example and we're ready to start
creating our own files for our notes application and requiring them inside  in the
next section.

First up, you learned that we can use  to load in modules. This lets us take existing
functionality written by either the Node developers, a third-party library, or ourselves, and
load it into a file so that it can be reusable. Creating reusable code is essential for building
large apps. If you have to build everything in an app every time, no one would ever get
anything done because they would get stuck at building the basics, things such as HTTP
servers and web servers. There are already modules for such stuff, and we'll be taking
advantage of the great npm community. In this case, we used two built-in modules,  and

. We loaded them in using require and we stored the module results inside two variables.
These variables store everything available to us from the module; in the case of , we use
the  method, and in the case of OS, we use the  method. Together, we
were able to grab the username and save it into a file, which is fantastic.

Require own files
In this section, you will learn how to use  to load in other files that you created
inside your project. This will let you move functions outside  into more specific files;
this will make your application easier to scale, test, and update. To get started, the first
thing we'll do is to make a new file.



Node Fundamentals – Part 1 Chapter 2

[ 84 ]

Making a new file to load other files
In the context of our notes app, the new file will store various functions for writing and
reading notes. As of now, you don't need to worry about that functionality, as we'll get into
the detail later in the section, but we will create the file where it will eventually live. This
file will be , and we'll save it inside the root of our application, right alongside

 and , as shown here:

For the moment, all we'll do inside  is to use  to print a little log
showing the file has been executed using the following code:

Now, we have  on the top of  and one on the top of . I'll change
 in the  from  to . With this in

place, we can now require the notes file. It doesn't export any functionality, but that's fine.

By the way, when I say export, I mean the notes file doesn't have any
functions or properties that another file can take advantage of.



Node Fundamentals – Part 1 Chapter 2

[ 85 ]

We'll look at how to export stuff later in the section. For now though, we'll load our module
in much the same way we loaded in the built-in Node modules.

Let's make ; I'll call this one notes and set it equal to the return result from
:

Inside the parentheses, we will pass in one argument that will be a string, but it will be a
little different. In the previous section, we typed in the module name, but what we have in
this case is not a module, but a file, . What we need to do is to tell Node where
that file lives using a relative path.

Now, relative paths start with  (a dot forward slash), which points to the current
directory that the file is in. In this case, this points us to the  directory, which is the
root of our project . From here, we don't have to go into any other folders to
access , it's in the root of our project, so we can type its name, as shown in the
following code:



Node Fundamentals – Part 1 Chapter 2

[ 86 ]

With this in place, we can now save  and see what happens when we run our
application. I'll run the app using the  command:

As shown in the preceding code output, we get our two logs. First, we get 
 and then we get . Now,  comes from the

 file, and it only runs because we required the file inside of .

Comment out this command line from the  file, as shown here:

Save the file, and rerun it from Terminal; you can see the  file never executes
because we never explicitly touch it.

We never call it inside Terminal as we do in the preceding example, and we never require.



Node Fundamentals – Part 1 Chapter 2

[ 87 ]

For now though, we will be requiring it, so I'll uncomment that line.

By the way, I'm using command / (forward slash) to comment and
uncomment lines quickly. This is a keyboard shortcut available in most
text editors; if you're on Windows or Linux, it might not be command, it
might be Ctrl or something else.

Exporting files from note.js to use in app.js
For now though, the focus will be to export something from  which we can use in

. Inside  (actually, inside all of our Node files), we have access to a
variable called . I'll use  to print  to the screen so that we can
explore it over in Terminal, as shown here:

Let's rerun the file to explore it. As shown in the following screenshot, we get a pretty big
object, that is, different properties related to the  file:



Node Fundamentals – Part 1 Chapter 2

[ 88 ]

Now, to tell the truth, we'll not be using most of these properties. We have things such as
, , , and . The only one property we'll ever use in this book is

.

The  object on the  property and everything on this object gets exported.
This object gets set as the  variable, . This means that we can set properties on
it, they will get set on notes, and we can use them inside .

A simple example of the working of the exports object
Let's take a quick look at how that works. What we'll do is to define an  property using

, the object we just explored over in Terminal. Also, we know that it's an
object because we can see it in the preceding screenshot ( ); this means that I
can add a property, , and set it equal to my age, which is , as shown here:

Then I can save this file and move into  to take advantage of this new  property.
The  variable notes will be storing all of my exports, in the present case, just age.

In , after the  file, I'll add  followed by the age.
Inside template strings, we will use  with curly braces, , and a period at the
end, as shown here:



Node Fundamentals – Part 1 Chapter 2

[ 89 ]

Now our greeting should say . It's getting the  value from
our separate file (that is, ), which is fantastic.

Let's take a quick moment to rerun the program over in Terminal using the up arrow key
and enter keys:



Node Fundamentals – Part 1 Chapter 2

[ 90 ]

Back inside the app, we can open , and as shown in the following
screenshot, we have :

Using , we were able to require a file that we created, and this file stored some
properties that were advantageous to the rest of the project.

Exporting the functions
Now, obviously, the preceding example is pretty contrived. We'll not be exporting static
numbers; the real goal of exports is to be able to export functions that get used inside

. Let's take a quick moment to export two functions. In the  file, I'll set
 equal to a function; the  keyword followed by

opening and closing parentheses, which is followed by the curly braces:



Node Fundamentals – Part 1 Chapter 2

[ 91 ]

Now, throughout the course, I'll be using arrow functions where I can, as shown in the
preceding code. To convert a regular ES5 function into an arrow function, all you do is
remove the  keyword and replace it with an  sign right between the
parentheses and the opening curly braces, as shown here:

Now, there are some more subtleties to arrow functions that we'll be
talking about throughout the book, but if you have an anonymous
function, you can swap it with an arrow function without any problems.
The big difference is that the arrow function is not going to bind the 

 keyword or the arguments array, which we'll be exploring throughout
the book. So if you do get some errors, it's good to know that the arrow
function could be the cause.

For now though, we'll keep things really simple, using  to print .
This will let us know that the  function was called. We'll return a string, 

, as shown here:

Now, the  function is being defined in , but we can take advantage of it
over in .

Let's take a quick second to comment out both the  and user line in :



Node Fundamentals – Part 1 Chapter 2

[ 92 ]

I'll add a variable, call the result, (  for short), and set it equal to the return result from
:

Now, the  function is a dummy function for the moment. It doesn't take any
arguments and it doesn't actually do anything, so we can call it without any arguments.

Then we'll print the result variable, as shown in the following code, and we would expect
the result variable to be equal to the  string:

If I save both of my files (  and ) and rerun things from Terminal, you can
see that  prints to the screen at the very end and just before  prints:



Node Fundamentals – Part 1 Chapter 2

[ 93 ]

This means that we successfully required the notes file we called , and its return
result was successfully returned to .

Using this exact pattern, we'll be able to define our functions for adding and removing
notes over in our  file, but we'll be able to call them anywhere inside of our app,
including in .

Now it's time for a quick challenge. What I'd like you to do is make a new function in
 called . This  function will get set on the  object.

Remember,  is an object, so you can set multiple properties.



Node Fundamentals – Part 1 Chapter 2

[ 94 ]

This  function will take two arguments,  and ; it'll add them together and return the
result. Then over in , I'd like you to call that  function, passing in two numbers,
whatever you like, such as  and , then print the result to the screen and make sure it
works correctly.

You can get started by removing the call to  since this will not be
needed for the challenge.

So, take a moment, create that  function inside , call it inside , and
make sure the proper result prints to the screen. How'd it go? Hopefully, you were able to
make that function and call it from .

The first step in the process will be to define the new function. In , I'll set
 equal to that function, as shown here:

Let's set it equal to an arrow function. If you used a regular function, that is perfectly fine, I
just prefer using the arrow function when I can. Also, inside parentheses, we will be getting
two arguments, we'll be getting  and , as shown here:



Node Fundamentals – Part 1 Chapter 2

[ 95 ]

All we need to do is return the result, which is really simple. So we'll enter :

Now, this was the first part of your challenge, defining a utility function in ; the
second part was to actually use it over in .

In , we can use our function by printing the  result with a colon  (this
is just for formatting). As the second argument, we'll print the actual results, .
Then, we'll add up two numbers; we'll add  and , as shown in this code:



Node Fundamentals – Part 1 Chapter 2

[ 96 ]

The result in this case should be . If we run the program you can see that we get just that, 
prints to the screen:

If you were able to get this, congratulations, you successfully completed one of your first
challenges. These challenges will be sprinkled throughout the book and they'll get
progressively more complex. But don't worry, we'll keep the challenges pretty explicit; I'll
tell you exactly what I want and exactly how I want it done. Now, you can play around
with different ways to do it, the real goal is to just get you writing code independent of
following someone else's lead. That is where the real learning happens.

In the next section, we will explore how to use third-party modules. From there, we'll start
building the notes application.



Node Fundamentals – Part 1 Chapter 2

[ 97 ]

Third-party modules
You now know two out of the three ways to use , and in this section, we'll
explore the last way, which is to require a package you've installed from npm. As I
mentioned in the first chapter, npm is a big part of what makes Node so fantastic. There is a
huge community of developers that have created thousands of packages that already solve
some of the most common problems in Node applications. We will be taking advantage of
quite a few packages throughout the book.

Creating projects using npm modules
Now, in the npm packages, there's nothing magical, it's regular Node code that aims to
solve a specific problem. The reason you'd want to use it is so you don't have to spend all
your time writing these utility functions that already exist; not only do they exist, they've
been tested, they've been proven to work, and others have used them and documented
them.

Now, with all that said, how do we get started? Well, to get started, we actually have to run
a command from the Terminal to tell our application we want to use npm modules. This
command will be run over in the Terminal. Make sure you've navigated inside your project
folder and inside the  directory. Now, when you installed Node, you also
installed something called npm.

At one point, npm stood for Node package manager, but that's now a
running joke because there are plenty of things on npm that are not
specific to Node. A lot of frontend frameworks, such as jQuery and react,
now live on npm as well, so they've pretty much ditched the Node
package manager explanation and now on their site, they cycle through a
bunch of hilarious things that happen to match up with npm.



Node Fundamentals – Part 1 Chapter 2

[ 98 ]

We will be running some npm commands and you can test that you have it installed by
running , a space, and  (we're running npm with the  flag). This should print the
version, as shown in the following code:

It's okay if your version is slightly different, that's not important; what is important is that
you have npm installed.



Node Fundamentals – Part 1 Chapter 2

[ 99 ]

Now, we'll run a command called  in Terminal. This command will prompt us to
fill out a few questions about our npm project. We can run the command and we can cycle
through the questions, as shown in the following screenshot:



Node Fundamentals – Part 1 Chapter 2

[ 100 ]

In the preceding screenshot, at the top is a quick description of what's happening, and
down below it'll start asking you a few questions, as shown in the following screenshot:

The questions include the following:

name: Your name can't have uppercase characters or spaces; you can use 
, for example. You can hit enter to use the default value, which is in

parentheses.
version: 1.0.0 works fine too; we will leave most of these at their default value.
description: We can leave this empty at the moment.
entry point: This will be , make sure that shows up properly.



Node Fundamentals – Part 1 Chapter 2

[ 101 ]

test command: We'll explore testing later in the book, so for now, we can leave
this empty.
git repository: We'll leave that empty for now as well.
keywords: These are used for searching for modules. We'll not be publishing this
module so we can leave those empty.
author: You might as well type your name.
license: For the license, we'll stick with ISC at the moment; since we're not
publishing it, it doesn't really matter.

After answering these questions, if we hit enter, we'll get the following on our screen and a
final question:



Node Fundamentals – Part 1 Chapter 2

[ 102 ]

Now, I want to dispel the myth that this command is doing anything magical. All this
command is doing is creating a single file inside your project. It'll be in the root of the
project and it's called , and the file will look exactly like the preceding
screenshot.

To the final question, as shown down below in the preceding image, you can hit enter or
type  to confirm that this is what you want to do:

Now that we have created the file, we can actually view it inside our project. As shown in
the following code, we have the  file:

And this is all it is, it's a simple description of your application. Now, as I mentioned, we'll
not be publishing our app to npm, so a lot of this information really isn't important to us.
What is important, though, is that  is where we define the third-party
modules we want to install in our application.



Node Fundamentals – Part 1 Chapter 2

[ 103 ]

Installing the lodash module in our app
To install a module in the app, we will run a command over in the Terminal. In this chapter,
we'll be installing a module called . The  module comes with a ton of utility
methods and functions that make developing inside Node or JavaScript a heck of a lot
easier. To take a look at what exactly we're getting into, let's move into the browser.

We'll to go to . Then we'll search for the package, , and you
can see it comes up, as shown in the following screenshot:



Node Fundamentals – Part 1 Chapter 2

[ 104 ]

When you click on it, you should be taken to the package page, and the package page will
show you a lot of statistics about the module and the documentation, as shown here:

Now, I use the  package page when I'm looking for new modules; I like to see how
many downloads it has and when it was last updated. On the package page, you can see it
was updated recently, which is great it means the package is most likely compatible with
the latest versions of Node, and if you go further down the page, you can see this is actually
one of the most popular npm packages, with over a million downloads a day. We will be
using this module to explore how to install npm modules and how to actually use them in a
project.

Installation of lodash
To install , the first thing you need to grab is just a module name, which is .
Once you have that information, you're ready to install it.

Coming to Terminal, we'll run the  command. After installing, we'll specify
the module, . Now, this command alone would work; what we'll also do, though, is
provide the  flag.



Node Fundamentals – Part 1 Chapter 2

[ 105 ]

The  command will install the module, and the  flag,  (two)
hyphens followed by the word , will update the contents of the  file.
Let's run this command:

npm install loadsh --save

The preceding command will go off to the npm servers and fetch the code and install it
inside your project, and any time you install an npm module, it'll live in your project in a

 folder.

Now, if you open that  folder, you'll see the  folder as shown in the
following code. This is the module that we just installed:

As you can see over in  in the preceding figure, we've also had some
updates automatically take place. There's a new  attribute that has an object
with key value pairs, where the key is the module we want to use in our project and the
value is the version number, in this case, the most recent version, version . With this
in place, we can now require our module inside the project.

Over inside , we can take advantage of everything that comes in  by going
through the same process of requiring it. We'll make a , we'll name that ,
(which is a common name for the  utility library), and we'll set it equal to

. Inside the require parentheses, we'll pass in the module name exactly as it
appears in the  file. This is the same module name you used when you ran

. Then, we'll type , as shown here:



Node Fundamentals – Part 1 Chapter 2

[ 106 ]

Now, the order of operations is pretty important here. Node will first look for a core
module with the name . It'll not find one because there is no core module, so the
next place it will look is the  folder. As shown in the following code, it will
find  and load that module, returning any of the exports it provides:

Using the utilities of lodash
With the exports in place, we can now take advantage of some of the utilities that come with
Lodash. We'll quickly explore two in this section, and we'll be exploring more throughout
the book since Lodash is basically just a set of really handy utilities. Before we do, we
should take a look at the documentation so we know exactly what we're getting into.



Node Fundamentals – Part 1 Chapter 2

[ 107 ]

This is a really common step when you're using an npm module: first, you
install it; second, you've got to look at those docs and make sure that you
can get done what you want to get done.

On the npm page, click the lodash link given there, or go to  and click the API
Documentation page, as shown here:



Node Fundamentals – Part 1 Chapter 2

[ 108 ]

You can view all of the various methods you have available to you, as shown in the
following screenshot:

In our case, we'll be using command + F (Ctrl + F for Windows users) to search for
. Then in the docs, we can click on it, opening it up in the main page, as shown

in the following screenshot:



Node Fundamentals – Part 1 Chapter 2

[ 109 ]

The  is a utility that comes with , and it returns  if the variable you
pass in is a string, and it returns  if the value you pass in is not a string. And we can
prove that by using it over in Atom. Let's use this.

To use the  utility, we'll add  in  to show the result to the
screen and we'll use , passing in a couple of values. Let's pass in  first,
then we can duplicate this line and we'll pass in a string such as , as shown here:



Node Fundamentals – Part 1 Chapter 2

[ 110 ]

We can run our project over in the Terminal using the same command we've used
previously, , to run our file:

When we run the file, we get our two prompts that we've started both files, and we get
 and then .  comes because the Boolean is not a string, and  comes up

because  is indeed a string, so it passes the test of . This is one of the many
utility functions that comes bundled with .

Now,  can do a lot more than simple type checking. It comes with a bunch of other
utility methods we can take advantage of. Let's explore one more utility.



Node Fundamentals – Part 1 Chapter 2

[ 111 ]

Back inside the browser, we can use command + F again to search for a new utility, which is
:

This unique method, simply takes an array and it returns that array with all duplicates
removed. That means if I have the same number a few times or the same string, it'll remove
any duplicates. Let's run this.

Back inside Atom, we can add this utility into our project, we'll comment out our
 calls and we will make a variable called . This will be the

array without the duplicates, and what we'll do is call, after the equal sign, .

Now, as we know, this takes an array. And since we're trying to use the unique function,
we'll pass in an array with some duplicates. Use your name twice as a string; I'll use my
name once, followed by the number , followed by my name again. Then I can use , , ,
and  as shown here:



Node Fundamentals – Part 1 Chapter 2

[ 112 ]

Now, if things go as planned, we should get an array with all the duplicates removed,
which means we'll have one instance of , one instance of , and then , , and , which
don't have duplicates.

The last thing to do is to print that using  so we can view it inside the
Terminal. I'll pass in this  variable to our  statement as
shown in the following code:

From here, we can run our project inside Node. I'll use the last command, then I can press
the enter key, and you can see we get our array with all duplicates removed, as shown in
the following code output:



Node Fundamentals – Part 1 Chapter 2

[ 113 ]

We have one instance of the string , one instance of the number , and then we have ,
, , exactly what we expected.

The  utility really is endless. There are so many functions that it can be kind of
overwhelming to explore at first, but as you start creating more JavaScript and Node
projects, you'll find yourself solving a lot of the same problems over and over again when it
comes to sorting, filtering, or type checking, and in that case, it's best to use a utility such as

 to get that lifting done. The  utility is great for the following reasons:

You don't have to keep rewriting your methods
It is well tested and it has been tried in production

If there were any issues, they've been sorted out by now.



Node Fundamentals – Part 1 Chapter 2

[ 114 ]

The node_modules folder
Now that you know how to use a third-party module, there is one more thing I want to
discuss. That is the  folder in general. When you take your Node project and
you put it on GitHub, or you're copying it around or sending it to a friend, the

 folder really shouldn't be taken with you.

The  folder contains generated code. This is not code you've written and you
should never make any updates to the files inside Node modules because there's a pretty
good chance they'll get overwritten next time you install some modules.

In our case, we've already defined the modules and the versions inside  as
shown in the following code because we used that handy  flag:

This actually means we can delete the  folder completely. Now, we can copy
the folder and give it to a friend, we can put it on GitHub, or whatever we want to do.
When we want to get that  folder back, all we have to do inside the Terminal
is run the  command without any module names or any flags.



Node Fundamentals – Part 1 Chapter 2

[ 115 ]

This command, when run without any names or flags, is going to load in your
 file, grab all of the dependencies and install them. After running this

command, the  folder is going to look exactly as it looked before we deleted
it. Now, when you are using Git and GitHub, instead of deleting the  folder,
you'll just ignore it from your repository.

Now, what we have explored so far is a process we'll be going through a lot more
throughout the book. So if npm still seems foreign or you're not quite sure why it's even
useful, it will become clear as we do more with our third-party modules, rather than just
type checking or looking for unique items in an array. There's a ton of power behind the
npm community and we'll be harnessing that to our fullest as we make real-world apps.

Global modules
One of the major complaints I get is the fact that students have to restart the app from the
Terminal every time they want to see the changes they just made inside their text editor. So,
in this section, we'll take a look at how we can automatically restart our app as we make
changes to the file. That means if I change from  to  and save it, it will
automatically restart over in the Terminal.

Installing the nodemon module
Now, to automatically restart our app as we make changes to a file, we have to install a
command-line utility, and we'll do this using npm. To get started, we'll go to Google
Chrome (or the browser you are using) and head over to , as we
did previously in the Installing the lodash module in our app section, and the module we're
looking for is called nodemon.



Node Fundamentals – Part 1 Chapter 2

[ 116 ]

The nodemon will be responsible for watching our app for changes and restarting the app
when those changes occur. Right here, as we see in the following screenshot, we can view
the docs for nodemon as well as various other things such as current version numbers and
so on:

You will also notice that it's a really popular module, with over 30,000 downloads a day.
Now, this module is a little different from the one we used in the last section, that is,

. The  got installed and added into our project's  file as
shown in the following code block:



Node Fundamentals – Part 1 Chapter 2

[ 117 ]

That means it went into our  folder and we were able to require it in our
 file (refer to the previous section for more detail). Nodemon, however, works a

little differently. It's a command-line utility that gets executed from the Terminal. It will be
a completely new way of starting our application, and to install modules to be run from the
command line, we have to tweak the  command that we used in the last section.

For now, we can start off much the same way, though. We'll use  and type the
name just like we did in the Installing the lodash module in our app section, but instead of
using the  flag, we'll use the  flag, which is short for global, as shown here:

npm install nodemon -g

This command installs  as a global utility on your machine, which means it'll not
get added to your specific project and you'll never require . Instead, you'll be
running the  command from Terminal, as shown here:



Node Fundamentals – Part 1 Chapter 2

[ 118 ]

When we install  using the preceding command, it'll go off to npm and fetch all of
the code that comes with .

And it'll add it into the installation where Node and npm live on your machine, outside the
project you're working on.

The  command could be executed from anywhere in your
machine; it does not need to be executed from the project folder since it doesn't actually
update the project at all. With this in place, though, we now have a brand new command on
our machine, .

Executing nodemon
Nodemon will get executed as Node did, where we type the command and then we type
the file we want to start. In our case,  is the root of our project. When you run it,
you'll see a few things, as shown here:



Node Fundamentals – Part 1 Chapter 2

[ 119 ]

We'll see a combination of our app's output, along with  logs that show you what's
happening. As shown in the preceding code, you can see the version  is using, the
files it's watching, and the command it actually ran. Now, at this point, it's waiting for more
changes; it already ran through the entire app and it'll keep running until another change
happens or until you shut it down.

Inside Atom, we'll make a few changes to our app. Let's get started by changing  to
 in , and then we'll change the  variable to 

, as shown in the following code:

Now, I'll be saving the file. In the Terminal window, you can see the app automatically
restarted, and within a split second, the new output is shown on the screen:



Node Fundamentals – Part 1 Chapter 2

[ 120 ]

As shown in the preceding screenshot, we now have our array with one item of string,
. And this is the real power of .

You can create your applications and they will automatically restart over in the Terminal,
which is super useful. It'll save you a ton of time and a ton of headaches. You won't have to
switch back and forth every time you make a small tweak. This also prevents a ton of errors
where you are running a web server, you make a change, and you forget to restart the web
server. You might think your change didn't work as expected because the app is not
working as expected, but in reality, you just never restarted the app.

For the most part, we will be using  throughout the book since it's super useful. It's
only used for development purposes, which is exactly what we're doing on our local
machine. Now, we'll move forward and start exploring how we can get input from the user
to create our notes application. That will the topic of the next few sections.

Before we get started, we should clean up a lot of the code we've already written in this
section. I'll remove all of the commented-out code in . Then, I'll simply remove ,
where we have ,  and , since we'll not be using it throughout the project. I'll
also be adding a space between the third-party and Node modules and the files I've written,
which are as follows:

I find this to be a good syntax that makes it a lot easier to quickly scan for either third-party
or Node modules, or the modules that I've created and required.

Next up, over in , we'll remove the  function; this was only added for
demonstration purposes, as shown in the following figure. Then we can save both the

 and  files, and  will automatically restart:



Node Fundamentals – Part 1 Chapter 2

[ 121 ]

Now we can remove the  file. That was used to demonstrate how the 
module works, and since we already know how it works, we can wipe that file. And last but
not least, we can always shut down  using Ctrl + C. Now we're back at the regular
Terminal.

And with this in place, now we should move on, figuring out how we can get input from
the user, because that's how users can create notes, remove notes, and fetch their notes.

Getting input
If a user wants to add a note, we need to know the note's title as well as the body of the
note. If they want to fetch a note, we need to know the title of the note they want to fetch,
and all this information needs to come into our app. And note apps, don't really do
anything cool until they get this dynamic user input. This is what makes your scripts useful
and awesome.

Now, throughout the book, we'll be creating note apps that get input from the user in a lot
of different ways. We'll be using socket I/O to get real-time info from a web app, we'll be
creating our own API so other websites and servers can make Ajax requests to our app, but
in this section, we'll start things off with a very basic example of how to get user input.

We'll be getting input from the user inside the command line. That means when you run the
app in the command line, you'll be able to pass in some arguments. These arguments will be
available inside Node, and then we can do other things with them, such as create a note,
delete a note, or return a note.

Getting input from the user inside the command
line
To start things off, let's run our app from the Terminal. We'll run it pretty similarly to how
we ran it in the earlier sections: we'll start with  (I'm not using  since we'll be
changing the input), then we'll use , which is the file we want to run, but then we
can still type other variables.



Node Fundamentals – Part 1 Chapter 2

[ 122 ]

We can pass all sorts of command-line arguments in. We could have a
command, and this would tell the app what to do, whether you want to
add a note, remove a note, or list a note.

If we want to add a note, that might look as a command shown in the following code:

node app.js add

This command will add a note; we can remove a note using the  command, as
shown here:

node app.js remove

And we could list all of our notes using the  command:

node app.js list

Now, when we run this command, the app is still going to work as expected. Just because
we passed in a new argument doesn't mean our app is going to crash:



Node Fundamentals – Part 1 Chapter 2

[ 123 ]

And we actually have access to the  argument already, we're just not using it inside the
application.

To access the command-line arguments your app was initialized with, you'll want to use
that  object that we explored in the first chapter.

We can log out all of the arguments using  to print them to the screen; it's on
the process object, and the property we're looking for is .

The  object is short for arguments vector, or in the case of JavaScript,
it's more like an arguments array. This will be an array of all the
command-line arguments passed in, and we can use them to start creating
our application.

Now save  and it'll look like the following:



Node Fundamentals – Part 1 Chapter 2

[ 124 ]

Then we'll rerun this file:

Now, as shown in the preceding command output, we have three items which are as
follows:

The first one points to the executable for Node that was used.
The second one points to the app file that was started; in this case, it was .
The third one is where our command-line arguments start to come into play. In it,
we have our  showing up as a string.

That means we can access that third item in the array, and that will be the command for our
notes application.



Node Fundamentals – Part 1 Chapter 2

[ 125 ]

Accessing the command-line argument for the notes
application
Let's access the command-line argument in the array now. We'll make a variable called

, and set it equal to , and we'll grab the item in the third position
(which is , as shown in the preceding command output), which is the index of two as
shown here:

Then we can log that out to the screen by logging out  the string. Then, as the
second argument, I'll pass in the actual command that was used:

And this is just a simple log to keep track of how the app is getting executed. The cool stuff
is going to come when we add if statements that do different things depending on that
command.

Let's create an  block below the . We'll
add , as shown here:

In this case, we'll go through the process of adding a . Now, we're not specifying
the other arguments here, such as the title or the body (we'll discuss that in later sections).
For now,  the  does equal , we'll use  to print 

, as shown in the following code:



Node Fundamentals – Part 1 Chapter 2

[ 126 ]

And we can do the exact same thing with a command such as . We'll add 
, as shown here:

If the command does equal the string , we'll run the following block of code using
 to print . We can also add an  clause if there is no

command, which is , as shown here:



Node Fundamentals – Part 1 Chapter 2

[ 127 ]

With this in place, we can now rerun our app for a third time, and this time around, you'll
see we have the command equal to list, and listing all notes shows up, as shown in the
following code:

This means we were able to use our argument to run different code. Notice that we didn't
run  and we didn't run . We could,
however, switch the  command from  to , and in that case, we'll get

 printing, as shown in the following screenshot:



Node Fundamentals – Part 1 Chapter 2

[ 128 ]

And if we run a command that doesn't exist, for example , you can see 
 prints as shown in the following screenshot:

Now, what I'd like you to do is add two more  clauses to our  block, which will
be as follows:

One will be for the  command, which will be responsible for getting an
individual note back
Another one called  will be responsible for removing the note

All you have to do is add the  statement for both of them, and then just put a quick
 printing something like  or .

Take a moment to knock that out as your challenge for this section. Once you add those two
 clauses, run both of them from the Terminal and make sure your log shows up. If

it does show up, you are done, you can move ahead with this section.



Node Fundamentals – Part 1 Chapter 2

[ 129 ]

For the solution, the first thing I'll do is to add an  for . I'll open and close my
curly braces and hit enter right in the middle so everything gets formatted correctly.

In the  statement, I'll check whether the  variable equals the string ,
as shown here:

In the future, we'll be calling methods that update our local database with
the notes.

For now, we'll use  to print :



Node Fundamentals – Part 1 Chapter 2

[ 130 ]

The next thing you need to do is add an  clause that checks whether the 
equals . In the , I'll open and close my condition and hit enter just as I did in
the previous  clause; this time, I'll add  the  equals , we want to
remove the note. And in that case, all we'll do is to use  to print 

, as shown in the following code:



Node Fundamentals – Part 1 Chapter 2

[ 131 ]

And with this in place, we are done. If we refer to the code block, we've added two new
commands we can run over in the Terminal, and we can test those:

First up, I'll run  with the  command, and  shows up:



Node Fundamentals – Part 1 Chapter 2

[ 132 ]

Then I'll rerun the command; this time, I'll be using . And when I do that, 
 prints to the screen, as shown in this screenshot:

I'll wrap up my testing using a command that doesn't exist, and when I run that, you can
see  shows up.

Getting the specific note information
Now, what we did in the previous subsection is step 1. We now have support for various
commands. The next thing we need to figure out is how we'll get more specific information.
For example, which note do you want to remove? Which note do you want to read? And
what do you want the note text to be in the case of adding a note? This is all information we
need to get from the Terminal.

Now, getting it is going to be pretty similar to what we did earlier, and to show you what it
looks like, we'll print the entire  object once again, using the following command:



Node Fundamentals – Part 1 Chapter 2

[ 133 ]

Over in the Terminal, we can now run a more complex command. Let's say we want to
remove a note using the  command, and we'll do that by its title. We
might use the  argument, which looks like the following code:

node app.js remove --title

In this  argument, we have  (two) hyphens followed by the argument name, which
is , followed by the  (equals) sign. Then we can type our note title. Maybe the note
title is . This will pass the title argument into our application.

Now, there are a couple of different ways you could format the  argument, which are
as follows:

You could have the title  like the one in the preceding command
You could have title equals secrets inside quotes, which will let us use spaces in
the title:

      node app.js remove --title=secrets

You can remove the  (equals) sign altogether and simply put a space:

      node app.js remove --title="secrets 2"

No matter how you choose to format your argument, these are all valid ways to pass in the
title.

As you see in the preceding screenshot, I am using double quotes when
wrapping my string. Now, if you switch to single quotes, it will not break
on Linux or OS X, but it will break on Windows. That means when you're
passing in command-line arguments such as the title or the note body,
you'll want to wrap your strings, when you have spaces, in double quotes,
not single. So, if you are using Windows and you're getting some sort of
unexpected behavior with your arguments, make sure you're using double
quotes instead of single; that should fix the issue.

For the moment, I'll keep the  (equals) sign and the quotes and rerun the command:

node app.js remove --title="secrets 2"



Node Fundamentals – Part 1 Chapter 2

[ 134 ]

When I run the command, you can see in the following code output that we have our two
arguments:

These are the arguments that we don't need, then we have our  command, which is
the third one, and we now have a new fourth string, the title that is equal to .
And our argument was successfully passed into the application. The problem is that it's not
very easy to use. In the fourth string, we have to parse out the key, which is , and the
value, which is .

When we used the command, which was the third argument in the previous section, it was
a lot easier to use inside our app. We simply pulled it out of the arguments array and we
referenced it by using the command variable and checking whether it equaled , ,

, or .



Node Fundamentals – Part 1 Chapter 2

[ 135 ]

Things get a lot more complex as we use different styles for passing in the arguments. If we
rerun the last command with a space instead of an  (equals) sign, as shown in the
following code, which is perfectly valid, our arguments array now looks completely
different:

In the preceding code output, you can see that we have the title as the fourth item, and we
have the value, which is , as the fifth, which means we have to add other
conditions for parsing. And this turns into a pain really quickly, which is why we will not
do it.

We'll use a third-party module called yargs in the next chapter to make parsing the
command-line arguments effortless. Instead of having strings, as shown in this one or the
one we discussed earlier, we'll get an object where the title property equals the 
string. That will make it super easy to implement the rest of the notes application.

Now, parsing certain types of command-line arguments, such as key value pairs, becomes a
lot more complex, which is why, in the next chapter, we'll be using yargs to do just that.



Node Fundamentals – Part 1 Chapter 2

[ 136 ]

Summary
In this chapter, we learned how to use require to load in modules that come with Node.js.
We created our files for our notes application and required them inside . We
explored how to use built-in modules and we explored how to use modules we defined. We
found out how to require other files that we created, and how to export things such as
properties and functions from those files.

We explored npm a little bit, how we can use  to generate a  file,
and how we can install and use third-party modules. Next, we explored the 
module, using it to automatically restart our app as we make changes to a file. Last, we
learned how to get input from the user, which is needed to create the notes application. We
learned that we can use command-line arguments to pass data into our app.

In the next chapter, we'll explore some more interesting Node fundamental concepts,
including yargs, JSON, and Refactor.



33
Node Fundamentals – Part 2

In this chapter, we'll continue our discussion on some more node fundamentals. We'll
explore yargs, and we'll see how to parse command-line arguments using 
and yargs. After that, we'll explore JSON. JSON is nothing more than a string that looks
kind of like a JavaScript object, with the notable differences being that it uses double quotes
instead of single quotes and all of your property names like  and , in this
case require quotes around them. We'll look into how to convert an object into a string,
then define that string, use it, and convert it back to an object.

After we've done that, we'll fill out the  function. Finally, we'll look into refactor,
moving the functionality into individual functions and testing the functionality.

More specifically, we'll go through following topics:

yargs
JSON
Adding note
Refactor

yargs
In this section, we will use yargs, a third-party npm module, to make the process of parsing
much easier. It will let us access things such as title and body information without needing
to write a manual parser. This is a great example of when you should look for an npm
module. If we don't use a module, it would be more productive for our Node application to
use a third-party module that has been tested and thoroughly vetted.



Node Fundamentals – Part 2 Chapter 3

[ 138 ]

To get started, we'll install the module, then we'll add it into the project, parsing for things
such as a title of the body, and we'll call all the functions that will get defined over in

. If the command is , we'll call , so on.

Installing yargs
Now, let's view the documents page for yargs. It's always a good idea to know what you're
getting yourself into. If you search for  on Google, you should find the GitHub page
as your first search result. As shown in the following screenshot, we have the GitHub page
for the yargs library:

Now, yargs is a very complex library. It has a ton of features for validating all sorts of input,
and it has different ways in which you can format that input. We will start with a very basic
example, although we will be introducing more complex examples throughout this chapter.



Node Fundamentals – Part 2 Chapter 3

[ 139 ]

If you want to look at any other features that we don't discuss in the
chapter, or you just want to see how something works that we have talked
about, you can always find it in the .

We'll now move into Terminal to install this module inside of our application. To do this,
we'll use  followed by the module name, , and in this case, I'll use the 
sign to specify the specific version of the module I want to use, 11.0.0, which is the most
recent version at the time of writing. Next, I'll add the  flag, which, as we know,
updates the  file:

npm install yargs@11.0.0 --save

If I leave off the  flag, yargs will get installed into the 
folder, but if we wipe that  folder later and run 

, yargs won't get reinstalled because it's not listed in the
 file. This is why we use the  flag.

Running yargs
Now that we've installed yargs, we can move over into Atom, inside of , and get
started with using it. The basics of yargs, the very core of its feature set, is really simple to
take advantage of. The first thing we'll do is to  it up, as we did with  and

 in the previous chapter. Let's make a constant and call it , setting it equal to
, as shown here:

const yargs = require('yargs');



Node Fundamentals – Part 2 Chapter 3

[ 140 ]

From here, we can fetch the arguments as yargs parses them. It will take the same
 array that we discussed in the previous chapter, but it goes behind the

scenes and parses it, giving us something that's much more useful than what Node gives us.
Just above the  variable, we can make a  variable called , setting it equal
to , as shown here:

const argv = yargs.argv;



Node Fundamentals – Part 2 Chapter 3

[ 141 ]

The  module is where the yargs library stores its version of the arguments that
your app ran with. Now we can print it using , and this will let us take a look
at the  and  variables; we can also compare them and see how
yargs differs. For the command where we use  to print , I'll
make the first argument a string called  so that we can differentiate it in Terminal.
We'll call  again. The first argument will be the  string, and the second
one will be the actual  variable, which comes from yargs:

console.log('Process', process.argv);
console.log('Yargs', argv);

Now we can run our app (refer to the preceding code block) a few different ways and see
how these two  statements differ.

First up, we'll run at  with the  command, and we can run this very basic
example:

node app.js add



Node Fundamentals – Part 2 Chapter 3

[ 142 ]

We already know what the  array looks like from the previous chapter. The
useful information is the third string inside of the array, which is 'add'. In the fourth string,
Yargs gives us an object that looks very different:

As shown in the preceding code output, first we have the underscore property, then
commands such as add are stored.

If I were to add another command, say , and then I were to add a modifier, say
, you would see that add would be the first argument and encrypted the second,

as shown here:

node app.js add encrypted



Node Fundamentals – Part 2 Chapter 3

[ 143 ]

So far, yargs really isn't shining. This isn't much more useful than what we have in the
previous example. Where it really shines is when we start passing in key-value pairs, such
as the title example we used in the Getting input section of Node Fundamentals - Part 1 in

. I can set my  flag equal to , press enter, and this time around, we
get something much more useful:

node app.js add --title=secrets



Node Fundamentals – Part 2 Chapter 3

[ 144 ]

In the following code output, we have the third string that we would need to parse in order
to fetch the value and the key, and in the fourth string, we actually have a title property
with a value of secrets:

Also, yargs has built-in parsing for all the different ways you could specify this.

We can insert a space after , and it will still work just as it did before; we can add
quotes around , or add other words, like , and it will still
parses it correctly, setting the  property to the  string, as
shown here:

node app.js add --title "secrets from Andrew"



Node Fundamentals – Part 2 Chapter 3

[ 145 ]

This is where yargs really shines! It makes the process of parsing your arguments a lot
easier. This means that inside our app, we can take advantage of that parsing and call the
proper functions.

Working with the add command
Let's work with the  command, for example, for parsing your arguments and calling the
functions. Once the  command gets called, we want to call a function defined in ,
which will be responsible for actually adding the note. The  function will
get the job done. Now, what do we want to pass to the  function? We want to pass
in two things: the title, which is accessible on , as we saw in the preceding
example; and the body, :



Node Fundamentals – Part 2 Chapter 3

[ 146 ]

notes.addNote(argv.title, argv.body);

Currently, these command-line arguments,  and , aren't
required. So technically, the user could run the application without one of
them, which would cause it to crash, but in future, we'll be requiring both
of these.

Now that we have  in place, we can remove our  statement,
which was just a placeholder, and we can move into the notes application .

Inside , we'll get started by making a variable with the same name as the method
we used over  and , and we will set it equal to an anonymous arrow
function, as shown here:

Now, this alone isn't too useful, because we're not exporting the  function. Below
the variable, we can define  in a slightly different way. In previous
sections, we added properties onto  to export them. We can actually define an
entire object that gets set to , and in this case, we can set  equal to the

 function defined in preceding code block:



Node Fundamentals – Part 2 Chapter 3

[ 147 ]

In ES6, there's actually a shortcut for this. When you're setting an object
attribute and a value that's a variable and they're both exactly the same,
you can actually leave off the colon and the value. Either way, the result
identical.

In the preceding code, we're setting an object equal to , and that object has
a property, , which points to the  function we defined as a variable in the
preceding code block.

Once again,  and  are identical inside of ES6. We will be using the ES6
syntax for everything throughout this book.

Now I can take my two arguments,  and , and actually do something with them.
In this case, we'll call  and , passing in the two arguments as the
second and third argument to ,  and , as shown here:

Now we're in a pretty good position to run the  command with  and  and see
if we get exactly what we'd expect, which is the  statement shown in the
preceding code to print.

Over in Terminal, we can start by running the app with , and then specify the
filename. We'll use the  command; which will run the appropriate function. Then, we'll
pass in , setting it equal to , and then we can pass in , which will be our
second command-line argument, setting that equal to the string, :

node app.js add --title=secret --body="This is my secret"

In this command, we specified three things: the  command the  argument, which
gets set to ; and the  argument, which gets set to . If all
goes well, we'll get the appropriate log. Let's run the command.



Node Fundamentals – Part 2 Chapter 3

[ 148 ]

In the following command output, you can see Adding note secret, which is the title; and
This is my secret, which is the body:

With this in place, we now have one of our methods set up and ready to go. The next thing
that we'll do is convert the other commands we have the , , and 
commands. Let's look into one more command, and then you'll do the other two by yourself
as exercises.

Working with the list command
Now, with the  command, I'll remove the  statement and call

, as shown here:



Node Fundamentals – Part 2 Chapter 3

[ 149 ]

notes.getAll();

At some point,  will return all of the notes. Now,  doesn't take any
arguments since it will return all of the notes regardless of the title. The  command will
require a title, and  will also require the title of the note you want to remove.

For now, we can create the  function. Inside , we'll go through that
process again. We'll start by making a variable, calling it , and setting it equal to an
arrow function, which we've used before. We start with our arguments , then we set
up the arrow ( ), which is the equal sign and the greater than sign. Next, we specify the
statements we want to run. Inside our code block, we'll run 

, as shown here:

The last step to the process after adding that semicolon will be to add  to the
, as shown in the following code block:

Remember that in ES6, if you have a property whose name is identical to
the value, which is a variable, you can simply remove the value variable
and the colon.



Node Fundamentals – Part 2 Chapter 3

[ 150 ]

Now that we have  in  in place, and we've wired it up in , we can
run things over in Terminal. In this case, we'll run the  command:

node app.js list

In the preceding code output, you can see at the bottom that Getting all notes prints to the
screen. Now that we have this in place, we can remove 

 from the  variable in . The resultant code will look like the
following code block:



Node Fundamentals – Part 2 Chapter 3

[ 151 ]

We will keep the yargs log around since we'll be exploring the other ways and methods to
use yargs throughout the chapter.

Now that we have the  command in place, next, I'd like you to create a method for the
 and  commands.

When the  command is used, we want to call , passing in .
Now,  will get passed in and parsed using yargs, which means that we can use

 to fetch it. And that's all we have to do when it comes to calling the function:

notes.getNote(argv.title);



Node Fundamentals – Part 2 Chapter 3

[ 152 ]

The next step is to define , because currently it doesn't exist. Over in ,
right below the  variable, we can make a variable called , which will be a
function. We'll use the arrow function, and it will take an argument; it will take the 
title. The  function takes the title, then it returns the body for that note:

Inside , we can use  to print something like , followed
by the title of the note you will fetch, which will be the second argument to :

This is the first command, and we can now test it before we go on to the second one, which
is .

Over in Terminal, we can use  to run the file. We'll be using the new 
command, passing in a  flag. I'll use a different syntax, where  gets set equal to
the value outside of quotes. I'll use something like :

node app.js read --title accounts

This  value will read the accounts note in the future, and it will print it to the
screen, as shown here:



Node Fundamentals – Part 2 Chapter 3

[ 153 ]

As you can see in the preceding code output, we get an error, which we'll debug now.

Getting an error is not the end of the world. Getting an error usually means that you have a
small typo or you forgot one step in the process. So, we'll first figure out how to parse
through these error messages, because the error messages you get in the code output can be
pretty daunting. Let's refer to the code output error here:



Node Fundamentals – Part 2 Chapter 3

[ 154 ]

As you can see, the first line shows you where the error occurred. It's inside of our 
file, and the number 19 after the colon is the line number. It shows you exactly where things
went bad. The  line is telling you
pretty clearly that the  function you tried to run doesn't exist. Now we can take this
information and debug our app.

In , we see that we call . Everything looks great, but when we move
into , we realize that we never actually exported . This is why when we
try to call the function, we get . All we have to do to fix that
error message is export , as shown here:

getNote

Now when we save the file and rerun the app from Terminal, we'll get what we
expect Getting note followed by the title, which is accounts, as shown here:



Node Fundamentals – Part 2 Chapter 3

[ 155 ]

This is how we can debug our error messages. Error messages contain really useful
information. For the most part, the first couple of lines are code that you've written, and the
other ones are internal Node code or third-party modules. In our case, the first line of the
stack trace is important, as it shows exactly where the error occurred.

Now, since the  command is working, we can move on to the last one, which is the
 command. Here, I'll call , passing in the title, which as we

know is available in :



Node Fundamentals – Part 2 Chapter 3

[ 156 ]

notes.removeNote(argv.title);

Next up, we'll define the  function over inside of our notes API file, right below
the  variable:

Now,  will work much the same way as . All it needs is the title; it can
use this information to find the note and remove it from the database. This will be an arrow
function that takes the  argument.

In this case, we'll print the  statement, ; then, as the second
argument, we'll simply print  back to the screen to make sure that it's going through
the process successfully. This time around, we'll export our  function; we'll
define it using the ES6 syntax:

removeNote

The last thing to do is test it and make sure it works. We can reload the last command using
the up arrow key. We change  to , and that is all we need to do. We're still
passing in the  argument, which is great, because that is what  needs:

node app.js remove --title accounts



Node Fundamentals – Part 2 Chapter 3

[ 157 ]

When I run this command, we get exactly what we expected. Removing note prints to the
screen, as shown in the following code output, and then we get the title of the note that
we're supposed to be removing, which is accounts:

This looks great! That is all it takes to use yargs to parse your arguments.

With this, we now have a place to define all of that functionality, for saving, reading, listing,
and removing notes.

Fetching command
The last thing I want to discuss before we wrap up this section is how we fetch .



Node Fundamentals – Part 2 Chapter 3

[ 158 ]

As we know,  is available in the  property as the first and only item. This means
that in the ,  statement, we can set  equal to , then ,
and then we'll use  to grab the first item in the array, as shown in the following code:

var command = argv._[0];

With this in place, we now have the same functionality, but we'll use yargs everywhere. If I
rerun the last command, we can test that the functionality still works. And it does! As
shown in the following command output, we can see that Command: remove shows up:



Node Fundamentals – Part 2 Chapter 3

[ 159 ]

Next, we'll look into filling out the individual functions. We'll take a look first at how we
can use JSON to store our notes inside our file system.

JSON
Now that you know how to parse command-line arguments using  and
yargs, you've solved the first piece to the puzzle for the  application. Now, how do
we get that unique input from the user? The second piece to the puzzle is to solve how we
store this information.



Node Fundamentals – Part 2 Chapter 3

[ 160 ]

When someone adds a new note, we want to save it somewhere, preferably on the
filesystem. So the next time they try to fetch, remove, or read that note, they actually get the
note back. To do this, we'll need to introduce something called JSON. If you're already
familiar with JSON, you probably know it is super popular. It stands for JavaScript Object
Notation, and it's a way to represent JavaScript arrays and objects using a string. Now, why
would you ever want to do that?

Well, you might want to do that because strings are just text, and that's pretty much
supported anywhere. I can save JSON to a text file, and then I can read it later, parse it back
into a JavaScript array or object, and do something with it. This is exactly what we'll take a
look at in this section.

To explore JSON and how it works, let's go ahead and make a new folder inside our project
called .

Throughout the book, I'll create the  folders and various
projects, which store simple one-off files that aren't a part of the bigger
application; they're just a way to explore a new feature or learn a new
concept.

In the  folder, we'll make a file called , this is where we can explore
how JSON works. To get started, let's make a very simple object.

Converting objects into strings
Let's first make a variable called , setting it equal to an object. On this object, we'll just
define one property, , and set it equal to your first name; I'll set this one equal to

, as shown here:



Node Fundamentals – Part 2 Chapter 3

[ 161 ]

Now, let's assume that we want to take this object and work on it. Let's say we want to, for
example, send it between servers as a string and save it to a text file. To do this, we'll need
to call one JSON method.

Let's take a moment to define a variable to store the result, , and we'll set it equal
to , as shown here:

The  method takes your object, in this case, the  variable, and returns
the JSON-stringified version. This means that the result stored in  is actually a
string. It's no longer an object, and we can take a look at that using . I'll use

 twice. First up, we'll use the  operator to print the type of the string
object to make sure that it actually is a string. Since  is an operator, it gets typed in
lowercase, there is no camel casing. Then, you pass in the variable whose type you want to
check. Next up, we can use  to print the contents of the string itself, printing
out the  variable, as shown here:

What we've done here is we've taken an object, converted it into a JSON string, and printed
it onto the screen. Over in Terminal, I'll navigate into the  folder using the
following command:

cd playground

For now, it doesn't matter where you run the command, but in future it
will matter when we are in the  folder, so take a moment to
navigate into it.



Node Fundamentals – Part 2 Chapter 3

[ 162 ]

We can now use  to run our  file. When we run the file, we see two things:

As shown in the preceding code output, first, we will get our type, which is a string, and
this is great, because remember, JSON is a string. Next, we will get our object, which looks
pretty similar to a JavaScript object, but there are a few differences. These differences are as
follows:

First up, your JSON will have its attribute names automatically wrapped in
double quotes. This is a requirement of the JSON syntax.
Next up, you'll notice your strings are also wrapped in double quotes as opposed
to single quotes.

Now, JSON doesn't just support string values, you can use an array, a Boolean, a number,
or anything else. All of those types are perfectly valid inside of your JSON. In this case, we
have a very simple example where we have a  property and it's set to .

This is the process of taking an object and converting it into a string. Next up, we'll define a
string and convert that into an object we can actually use in our app.



Node Fundamentals – Part 2 Chapter 3

[ 163 ]

Defining a string and using in app as an object
Let's get started by making a variable called , and we'll to set it equal to a
string using single quotes since JSON uses double quotes inside of itself, as shown here:

Then we'll define our JSON in the quotes. We'll start by opening and closing some curly
braces. We'll use double quotes to create our first attribute, which we'll call , and we'll
set that attribute equal to . This means that after the closing quote, we'll add ; then
we'll open and close double quotes again and type the value , as shown here:

Next up, we can add another property. After the value, , I'll create another property
after the comma, called , which will be set equal to a number. I can use my colon and
then define the number without the quotes, in this case, :

You can go ahead and use your name and your age, obviously, but make sure the rest looks
identical to what you see here.

Now, let's say we get the earlier-defined JSON from a server or we grab it from a text file.
Currently, it's useless; if we want to get the  value, there is no good way to do that
because we're using a string, so  doesn't exist. What we need to do is
take the string and convert it back into an object.

Converting a string back to an object
To convert the string back to object, we'll use the opposite of , which is

. Let's make a variable to store the result. I'll create a  variable and it
will be set equal to , passing in as the one and only argument the string you
want to parse, in this case, the  string, which we defined earlier:

Now, this variable takes your JSON and converts it from a string back into its original form,
which could be an array or an object. In our case, it converts it back into an object, and we
have the  variable as an object, as shown in the preceding code. Also, we can prove
that it's an object using the  operator. I'll use  twice, just like we did
previously.



Node Fundamentals – Part 2 Chapter 3

[ 164 ]

First up, we'll print , and then we'll print the actual  variable,
:

With this in place, we can now rerun the command in Terminal; I'll actually start 
and pass in :

nodemon json.js

As shown in the following code output, you can now see that we're working with an object,
which is great, and we have our regular object:

We know that  is an object because it's not wrapped in double quotes; the values
don't have any quotes, and we use single quotes for , which is valid in JavaScript,
but it's not valid in JSON.

This is the entire process of taking an object, converting it to a string, and then taking the
string and converting it back into the object, and this is exactly what we'll do in the 
app. The only difference is that we'll be taking the following string and storing it in a file,
then later on, we'll be reading that string from the file using  to convert it back
to an object, as shown in the following code block:



Node Fundamentals – Part 2 Chapter 3

[ 165 ]

Storing the string in a file
With the basics in place, let's take it just one step further, that is, by storing the string in a
file. Then, we want to read the contents of that file back by using the  module and
printing some properties from it. This means that we'll need to convert the string that we
get back from  into an object using .

Writing the file in the playground folder
Let's go ahead and comment out all the code we have so far and start with a clean slate.
First up, let's go ahead and load in the  module. The  variable  will be set equal
to , and we'll pass the  module that we've used in the past, as shown here:



Node Fundamentals – Part 2 Chapter 3

[ 166 ]

The next thing we'll do is define the object. This object will be stored inside of our file, and
then will be read back and parsed. This object will be a variable called , and
we'll call it  because later on, we'll load it back in and call that variable .

Now,  will be a regular JavaScript object with two properties. We'll have the
 property, which we'll set equal to , and the  property, which we

will set equal to , as shown here:

The next step that you will need to do is take the original note and create a variable called
, and set that variable equal to the JSON value of the object we

defined earlier. This means that you'll need to use one of the two JSON methods we used
previously in this section.

Now, once you have that  variable, we can write a file to the
filesystem. I'll write that line for you, . The  method,
which we used before, takes two arguments. One will be the filename, and since we're using
JSON, it's important to use the JSON file extension. I'll call this file . The other
arguments will be text content, , which is not yet defined, as shown
in this code block:

This is the first step to the process; this is how we'll write that file into the 
folder. The next step to the process will be to read out the contents, parse it using the JSON
method earlier, and print one of the properties to the screen to make sure that it's an object.
In this case, we'll print the title.

Reading out the content in the file
The first step to print the title is to use a method we haven't used yet. We'll use the 
method available on the filesystem module to read the contents. Let's make a variable called

. The  variable will be set equal to .



Node Fundamentals – Part 2 Chapter 3

[ 167 ]

Now,  is similar to  except that it doesn't take the text
content, since it's getting the text content back for you. In this case, we'll just specify the first
argument, which is the filename, :

Now that we have the string, it will be your job to take that string, use one of the preceding
methods, and convert it back into an object. You can call that variable . Next up, the
only thing left to do is to test whether things are working as expected, by printing with the
help of . Then, below this, we'll use  to print
the title, :

Now, over in Terminal, you can see (refer to the following screenshot) that I have saved the
file in a broken state and it crashed, and that's expected when you're using :

To resolve this, the first thing I'll do is fill out the  variable, which we
had commented out earlier. It will now be a variable called , and
we'll set it equal to the return value from .



Node Fundamentals – Part 2 Chapter 3

[ 168 ]

Now, we know  takes our regular object and it converts the object into a
string. In this case, we'll take the  object and convert it into a string. The next
line, which we already have filled out, will save that JSON value into the  file.
Then we will read that value out:

The next step will be to create the  variable. The  variable will be set equal to
.

The  method takes the string JSON and converts it back into a regular
JavaScript object or array, depending on whatever you save. Here we will pass in

, which we'll get from the file:

With this in place, we are now done. When I save this file,  will automatically
restart and we would expect to not see an error. Instead, we expect that we'll see the object
type as well as the note title. Right inside Terminal, we have object and Some title printing
to the screen:

With this in place, we've successfully completed the challenge. This is exactly how we will
save our notes.



Node Fundamentals – Part 2 Chapter 3

[ 169 ]

When someone adds a new note, we'll use the following code to save it:

When someone wants to read their note, we'll use the following code to read it:

Now, what if someone wants to add a note? This will require us to first read all of the notes,
then modify the notes array, and then use the code (refer to the previous code block) to save
the new array back into the filesystem.

If you open up that  file, you can see right here that we have our JSON code
inside the file:



Node Fundamentals – Part 2 Chapter 3

[ 170 ]

 is actually a file format that's supported by most text editors, so I actually already
have some nice syntax highlighting built in. Now, in the next section, we'll be filling out the

 function using the exact same logic that we just used inside of this section.

Adding and saving notes
In the previous section, you learned how to work with JSON inside Node.js, and this is the
exact format we'll be using for the  application. When you first run a command,
we'll load in all the notes that might already exist. Then we'll run the command, whether it's
adding, removing, or reading notes. Finally, if we've updated the array, like we will when
we add and remove notes, we'll save those new notes back into the JSON file.

Now, this will all happen inside of the  function, which we defined in the
 application, and we already wired up this function. In earlier sections, we ran the

app  command, and this function executed with the  and  arguments.

Adding notes
To get started with adding notes, the first thing we'll do is create a variable called ,
and for the moment, we'll set it equal to an empty array, just as in the following, using our
square brackets:

Now that we have the empty array, we can go ahead and make a variable called ,
which is the individual note. This will represent the new note:



Node Fundamentals – Part 2 Chapter 3

[ 171 ]

On that note, we'll have the two properties: a  and a . Now,  can be set
equal to the  variable, but, as we know, inside ES6, we can simply remove it when
both values are the same; so we'll add  and  as shown here:

Now we have the  and the  array.

Adding notes to the notes array
The next step in the process of adding notes will be to add the  to the  array. The

 method will let us do just that. The  method on an array lets you pass in
an item, which gets added to the end of the array, and in this case, we'll pass in the 
object. So we have an empty array, and we add our one item, as shown in the following
code; next, we push it in, which means that we have an array with one item:

The next step in the process will be to update the file. Now, we don't have a file in place, but
we can load an  function and start creating the file.



Node Fundamentals – Part 2 Chapter 3

[ 172 ]

Up above the  function, let's load in the  module. I'll create a  variable
called  and set it equal to the return result from , and we'll require the 
module, which is a core node module, so there's no need to install it using NPM:

With this in place, we can take advantage of  inside the  function.

Right after we push our item on to the  array, we'll call , which
we've used before. We know we need to pass in two things: the file name and the content
we want to save. For the file, I'll call, , and then we'll pass in the content
to save, which in this case will be the  notes array, which means we can call

 passing in :

We could have broken  out into its own variable
and referenced the variable in the above statement, but since we'll only be
using it in one place, I find this is the better solution.

At this point, when we add a new note, it will update the  file, which
will be created on the machine since it does not exist, and the note will sit inside it. Now, it's
important to note that currently every time you add a new note, it will wipe all existing
ones because we never load in the existing ones, but we can get started testing that this note
works as expected.

I'll save the file, and over inside of Terminal, we can run this file using . Since
we want to add a , we will be using that  command which we set up, then we'll
specify our title and our body. The  flag can get set equal to , and for the 
flag, I'll set it equal to the  string, as shown here:

node app.js add --title=secret --body="Some body here"



Node Fundamentals – Part 2 Chapter 3

[ 173 ]

Now, when we run this command from Terminal, we'll see what we'd expect:



Node Fundamentals – Part 2 Chapter 3

[ 174 ]

As shown in the preceding screenshot, we see a couple of the file commands we added: we
see that the  command was executed, and we have our Yargs arguments. The title and
body arguments also show up. Inside Atom, we also see that we have a new 

 file, and in the following screenshot, we have our note, with the  title
and the  body:

This is the first step in wiring up that  function. We have an existing  file and
we do want to take advantage of these notes. If notes already exist, we don't want to simply
wipe them every time someone adds a new note. This means that in , earlier at
the beginning of the  function, we'll fetch those notes.

Fetching new notes
I'll add code for fetching new notes where I define the  and  variables. As shown
in the following code, we'll use , which we've already explored. This will
take the filename, in our case, . Now, we will want to store the return
value from  on a variable; I'll call that variable, :



Node Fundamentals – Part 2 Chapter 3

[ 175 ]

Since this is the string version, we haven't passed it through the  method. So, I
can set  (the variable we defined earlier in  function) equal to the return
value from the  method. Then  will take the string from the file we
read and it will parse it into an array; we could pass in  just like this:

With this in place, adding a new note is no longer going to remove all of the notes that were
already there.

Over in Terminal, I'll use the up arrow key to load in the last command, and I'll navigate
over to the  flag and change it to  and rerun the command:

node app.js add --title=secret2 --body="Some body here"

In Atom, this time you can see we now have two notes inside of our file:

We have an array with two objects; the first one has the title of  and the second one
has the title of , which is brilliant!



Node Fundamentals – Part 2 Chapter 3

[ 176 ]

Trying and catching code block
Now, if the  file does not exist, which it won't when the user first runs
the command, the program will crash, as shown in the following code output. We can prove
this by simply rerunning the last command after deleting the  file:

Right here, you can see we're actually getting a JavaScript error, no such file or directory;
it's trying to open up the  file, but without much success. To fix this,
we'll use a -  statement from JavaScript, which hopefully you've seen in the past.
To brush up this, let's go over it really quick.



Node Fundamentals – Part 2 Chapter 3

[ 177 ]

To create a -  statement, all you do is you type , which is a reserved keyword,
and then you open and close a set of curly braces. Inside the curly braces is the code that
will run. This is the code that may or may not throw an error. Next, you'll specify the 
block. Now, the  block will take an argument, an error argument, and it also has a
code block that runs:

This code will run if and only if one of your errors in  actually occurs. So, if we load the
file using  and the file exists, that's fine,  block will never run. If it
fails,  block will run and we can do something to recover from that error. With this in
place, all we'll do is move the  variable and the  statements into

, as shown here:

That's it; nothing else needs to happen. We don't need to put any code in , although
you do need to define the  block. Now, let's take a look at what happens when we run
the whole code.

The first thing that happens is that we create our static variables nothing special
there then we try to load in the file. If the  function fails, that is fine because
we already defined  to be an empty array. If the file doesn't exist and it fails, then we
probably want an empty array for  anyways, because clearly there are no , and
there's no file.

Next up, we'll parse that data into notes. There is a chance that this will fail if there's invalid
data in the  file, so the two lines can have problems. By putting them in

- , we're basically guaranteeing that the program isn't going to work
unexpectedly, whether the file does or doesn't exist, but it contains corrupted data.



Node Fundamentals – Part 2 Chapter 3

[ 178 ]

With this in place, we can now save  and rerun that previous command. Note that I
do not have the  file in place. When I run the command, we don't see any
errors, everything seems to run as expected:

When you now visit Atom, you can see that the  file does indeed exist, and the
data inside it looks great:



Node Fundamentals – Part 2 Chapter 3

[ 179 ]

This is all we need to do to fetch the notes, update the notes with the new note, and finally
save the notes to the screen.

Now, there is still a slight problem with . Currently,  allows for duplicate
titles; I could already have a note in the JSON file with the title of . I can come along
and try to add a new note with the title of  and it will not throw an error. What I'd
like to do is to make the title unique, so that if there's already a note with that title, it will
throw an error, letting you know that you need to create a note with a different title.

Making the title unique
The first step to make the title unique will be to loop through all of the notes after we load
them in and check whether there are any duplicates. If there are duplicates, we'll not call the
following two lines:



Node Fundamentals – Part 2 Chapter 3

[ 180 ]

If there are no duplicates then it's fine, we will call both of the lines shown in the preceding
code block, updating the  file.

Now, we'll be refactoring this function down the line. Things are getting a little wonky and
a little out of control, but for the moment, we can add this functionality right into the
function. Let's go ahead and make a variable called .

The  variable will eventually store an array with all of the notes that
already exist inside the  array that have the title of the note you're trying to create.
Now, this means that if the  array has any items, that's bad. This means
that the note already exists and we should not add the note. The  variable
will get set equal to a call to , which is our array of :

The  method is an array method that takes a callback. We'll use an arrow function,
and that callback will get called with the argument. In this case, it will be the singular
version; if I have an array of notes, it will be called with an individual note:

This function gets called once for every item in the array, and you have the opportunity to
return either true or false. If you return true, it will keep that item in the array, which will
eventually get saved into . If you return false, the new array it generates
will not have that item inside  variable. All we want to do is to return true
if the titles match, which means that we can return , as shown
here:

If the titles are equal, then the preceding  statement will result as true and the item
will be kept in the array, which means that there are duplicate notes. If the titles are not
equal, which is most likely the case, the statement will result as false, which means that
there are no duplicate notes. Now, we can simplify this a little more using arrow functions.



Node Fundamentals – Part 2 Chapter 3

[ 181 ]

Arrow functions actually allow you to remove the curly braces if you only
have one statement.

I'll use the arrow function, as shown here:

Here, I have deleted everything except  and added this in front of
the arrow function syntax.

This is perfectly valid using ES6 arrow functions. You have your arguments on the left, the
arrow, and on the right, you have one expression. The expression doesn't take a semicolon
and it's automatically returned as the function result. This means that the code we have here
is identical to the code we had earlier, only it's much simpler and it only takes up one line.

Now that we have this in place, we can go ahead and check the length of the
 variable. If the length of  is greater than , this means

that we don't want to save the note because a note already exists with that title. If it is ,
we'll save the note.

Here, inside the  condition, we're comparing the notes length with the number zero. If
they are equal, then we do want to push the note onto the  array and save the file. I'll
cut the following two lines:

Let's paste them right inside of the  statement, as shown here:

If they're not equal, that's okay too; in that case we'll do nothing.



Node Fundamentals – Part 2 Chapter 3

[ 182 ]

With this in place, we can now save our file and test this functionality out. We have our
 file, and this file already has a note with a title of . Let's rerun

the previous command to try to add a new note with that same title:

node app.js add --title=secret2 --body="Some body here"



Node Fundamentals – Part 2 Chapter 3

[ 183 ]

You're in Terminal, so we'll head back into our JSON file. You can see right here that we still
just have one note:

Now all the titles inside of our application will be unique, so we can use these titles to fetch
and delete notes.



Node Fundamentals – Part 2 Chapter 3

[ 184 ]

Let's go ahead and test that other notes can still be added. I'll change the  flag from
 to , and run that command:

node app.js add --title=secret --body="Some body here"



Node Fundamentals – Part 2 Chapter 3

[ 185 ]

Inside our  file, you can see both notes show up:

As I mentioned earlier, next we will be doing some refactoring, since the code that loads the
file, and the code that saves the file, will both be used in most of the functions we have
defined and/or will define (that is, the ,  and  functions).

Refactoring
In the previous section, you created the  function, which works well. It starts by
creating some static variables, then we fetch any existing notes, we check for duplicates, and
if there are none, we push it onto the list, and then we save the data back into the filesystem.



Node Fundamentals – Part 2 Chapter 3

[ 186 ]

The only problem is that we'll be doing a lot of these steps over and over again for every
method. For example, with , the idea is to fetch all of the notes, and send them back
to  so it can print them to the screen for the user. The first thing we'll to do inside of
the  statement is have the same code; we'll have our -  block to fetch the
existing notes.

Now, this is a problem because we'll be repeating code throughout the application. It will
be best to break out the fetching of notes and the saving of notes into separate functions that
we can call in multiple locations.

Moving functionality into individual functions
To resolve the problem, I'd like to get started by creating two new functions:

The first function, , will be an arrow function, and it will not to take any
arguments since it will be fetching notes from the filesystem, as shown here:

The second function, , will need to take an argument. It will need to take the
 array you want to save to the filesystem. We'll set it equal to an arrow function, and

then we'll provide our argument, which I will name , as shown here:

Now that we have these two functions, we can go ahead and start moving some of the
functionality from  up into the individual functions.

Working with fetchNotes
First up, let's do , which will need the following -  block.



Node Fundamentals – Part 2 Chapter 3

[ 187 ]

I'll actually cut it out of  and paste it in the  function, as shown here:

This alone is not enough, because currently we don't return anything from the function.
What we want to do is to return the notes. This means that instead of saving the result from

 onto the  variable, which we haven't defined, we'll simply return it to
the calling function, as shown here:

return JSON.parse(notesString);

So, if I call  in the  function, shown as follows, I will get the 
array because of the  statement in the preceding code.

Now, if there are no notes, maybe there's no file at all; or there is a file, but the data isn't
JSON, we can return an empty array. We'll add a  statement inside of , as
shown in the following code block, because remember,  runs if anything inside 
fails:

return [];



Node Fundamentals – Part 2 Chapter 3

[ 188 ]

Now, this lets us simplify  even further. We can remove the empty space and we
can take the array that we set on the  variable and remove it and instead call

, as shown here:

var notes = fetchNotes();

With this in place, we now have the exact same functionality we had before, but we have a
reusable function, , which we can use in the  function to handle the
other commands that our app will support.

Instead of copying code and having it in multiple places in your file, we've broken it into
one place. If we ever want to change how this functionality works, whether we want to
change the filename or some of the logic such as the -  block, we can change it
once instead of having to change it in every function we have.

Working with saveNotes
Now, the same thing will go for  just as in the case of the  function.
The  function will take the  variable and it will say this using

. I will cut out the line in  that does this (that is,
) and paste it in

the  function, as shown here:

Now,  doesn't need to return anything. In this case, we'll copy the line in
 and then call  in the  statement of the  function, as

shown in the following code:

saveNotes();

This might seem like overkill, we've essentially taken one line and replaced it with a
different line, but it is a good idea to start getting in the habit of creating reusable functions.



Node Fundamentals – Part 2 Chapter 3

[ 189 ]

Now, calling  with no data is not going to work, we want to pass in the 
variable, which is our  array defined earlier in the  function:

saveNotes(notes);

With this in place, the  function should now work as it did before we did any of
our refactoring.

Testing the functionality
The next step in the process will be to test this out by creating a new note. We already have
two notes, with a title of  and a title of  in , let's make a
third one using the  command in Terminal. We'll use the  command and
pass in a title of  and a body of , as shown here:

node app.js add --title="to buy" --body="food"

This should create a new note, and if I run the command, you can see we don't have any
obvious errors:



Node Fundamentals – Part 2 Chapter 3

[ 190 ]

Inside of our  file, if I scroll to the right, we have our brand new note as a
title of  and a body of :

So, everything is working as expected even though we've refactored the code. Now, the
next thing I want to do inside  is take a moment to return the note that's being
added, and that will happen right after  comes back. So we'll return :

return note;



Node Fundamentals – Part 2 Chapter 3

[ 191 ]

This  object will get returned to whoever called the function, and in this case, it will get
returned to , where we called it in the  block of the  command in the

 file. We can make a variable to store this result and we can call it :

If  exists, then we know that the note was created. This means that we can go ahead
and print a message, like , and we can print the  title and the 
body. Now, if  does not exist, if it's undefined, this means that there was a duplicate
and that title already exists. If that's the case, I want you to print an error message such as

.

There's a ton of different ways you could do this. The goal, though, is to
print two different messages depending on whether or not a note was
returned.

Now, inside , if the   statement never runs, we don't have an
explicit call to return. But as you know, in JavaScript, if you don't call , then

 automatically is returned. This means that if  is not
equal to zero, undefined will be returned and we can use that as the condition for our
statement.

The first thing I'll do here is to create an  statement, right next to the  variable we
defined in :

This will be an object if things went well, and it will be undefined if things went poorly.
This code in here is only ever going to run if it's an object. The  result will fail
the condition inside of JavaScript.

Now, if the  was created successfully, what we'll do is to print a little message to the
screen, using the following  statement:



Node Fundamentals – Part 2 Chapter 3

[ 192 ]

If things went poorly, inside the  clause, we can call , and we can print
something like , as shown here:

Now, the other thing that we want to do if things went well is print the  content. I'll
do this by first using  to print a couple of hyphens. This will create a little
space above my note. Then I can use  twice: the first time we'll print the title,
I'll add  as a string to show you what exactly you're seeing, then I can concatenate
the title, which we have access to in , as shown in this code:

Now, the preceding syntax uses an ES5 syntax; we can swap this out with an ES6 syntax
using what we've already talked about: template strings. We'll add , a colon, and then
we can use our dollar sign with our curly braces to inject the  variable, as
shown here:

Similarly, I'll add  after this to print out the body of the note. With this in place,
the code should look like:



Node Fundamentals – Part 2 Chapter 3

[ 193 ]

Now, we should be able to run our app and see both of the title and body notes printed. In
Terminal, I'll rerun the previous command. This will try to create a note with to buy, which
already exists, so we should get an error message, and right here you can see Note title
taken:



Node Fundamentals – Part 2 Chapter 3

[ 194 ]

Now, we can rerun the command, changing the title to something else, such as 
. This is a unique  title so the note should get created without any

problems:

node app.js add --title="to buy from store" --body="food"

As shown in the preceding output, you can see that we get just that: we have our Note
created message, our little spacer, and our title along with the body.

The  command is now complete. We have an output when the command actually
finishes, and we have all the code that runs behind the scenes to add the note to the data
that gets stored in our file.



Node Fundamentals – Part 2 Chapter 3

[ 195 ]

Summary
In this chapter, you learned that parsing in  can be a real pain. We would
have to write a lot of manual code to parse out those hyphens, the equal signs, and the
optional quotes. However, yargs can do all of that for us and it puts it on a really simple
object we can access. You also learned how to work with JSON inside Node.js.

Next, we filled out the  function. We're able to add notes using the command line,
and we're able to save those notes into a JSON file. Finally, we pulled out a lot of the code
from  into separate functions,  and , which are now
separate, and they're able to be reused throughout the code. When we start filling out the
other methods, we can simply call  and  instead of having to copy
the contents over and over again to every new method.

In the next chapter, we'll continue our journey on node fundamentals. We'll explore some
more concepts related to node, such as debugging; we'll work on the  and 
notes commands. Apart from this, we'll also learn about the advanced features of yargs and
the arrow function.



44
Node Fundamentals – Part 3

We start adding support for all the other commands inside of the notes application. We'll
take a look at how we can create our  command. The  command will be
responsible for fetching the body of an individual note. It will fetch all the notes and print
them to the screen. Now, aside from all of that, we'll be looking at debugging broken apps,
and we'll look at some new ES6 features. You'll learn how to use the built-in Node

.

Then, you will learn a little bit more about how we can configure yargs for the command-
line interface applications. We'll learn how to set up the commands, their descriptions, and
the arguments. We'll be able to set various properties on the arguments, for example,
whether or not they're required, and others.

Removing a note
In this section, you will write the code for removing a note when someone uses that 
command, and they pass in the title of the note they want to remove. In the previous
chapter, we already created some utility functions that help us with fetching and saving
notes, so the code should actually be pretty simple.

Using the removeNote function
The first step in the process is to fill out the  function, which we defined in the
previous chapters, and this will be your challenge. Let's remove  from the

 function in the  file. You only need to write three lines of code to get
this done.



Node Fundamentals – Part 3 Chapter 4

[ 197 ]

Now, the first line will fetch the notes, then the job will be to filter out the notes, removing
the one with title of argument. That means we want to go through all of the notes in the
notes array, and if any of them have a title that matches the title we want to remove, we
want to get rid of them. And this can be done using the  function we used
earlier. All we have to do is switch the equality statement in the  function
from equals to not equals, and this code will do just that.

It will go through the notes array. Every time it finds a note that doesn't match the title it
will keep it, which is what we want, and if it does find the title it will return  and
remove it from the array. And then we will add the third line, which is to save the new
notes array:

The preceding code lines are the only three lines you need to fill out. Don't worry about
returning anything from  or filling out anything inside of .

The first thing we will do for the  line is to create a variable called , just
like we did in  in the previous chapter, and we'll set it equal to the return result
from :

var notes = fetchNotes();

At this point our notes variable stores an array of all of the notes. The next thing we need to
do is filter our notes.

If there is a note that has this title, we want to remove it. This will be done by creating a new
variable, and I'll call this one . Here we'll set  equal to the
result that will come back from , which we already used up previously:

var filteredNotes = notes.filter();



Node Fundamentals – Part 3 Chapter 4

[ 198 ]

We know that  takes a function as its one and only argument, and that
function gets called with the individual item in the array. In this case it would be a .
And we can do this all on one line using the ES6 arrow syntax.

If we have only one statement, we don't need to open and close curly
braces.

That means right here we can return  if  does not equal the title that's
passed into the function:

This will populate  with all of the notes whose titles do not match the one
passed in. If the title does match the title passed in, it will not be added to 
because of our filter function.

The last thing to do is to call . Right here, we'll call  passing in the
new notes array which we have under the  variable:

saveNotes(filteredNotes);

If we were to pass in notes, it wouldn't work as expected; we're filtering the notes out but
we're not actually saving those notes, so it will not get removed from the JSON. We need to
pass  as shown in the preceding code. And we can test these by saving the
file and trying to remove one of our notes.

I'll try to remove  from the  file. That means all we need to do is
run the command, which we called , that is specified over in , (refer to the
following code image, and then it will call our function).



Node Fundamentals – Part 3 Chapter 4

[ 199 ]

I'll run Node with , and we'll pass in the  command. The only argument we
need to provide for remove is the title; there's no need to provide the body. I'll set this equal
to :

node app.js remove --title=secret2

As shown in the screenshot, if I hit enter you can see we don't get any output. Although we
do have the command remove printing, there is no message saying whether or not a note
was removed, but we'll add that later in the section.



Node Fundamentals – Part 3 Chapter 4

[ 200 ]

For now, we can check the data. And right here you can see  is nowhere in sight:

This means our remove method is indeed working as expected. It removed the note whose
title matched and it kept all the notes whose title was not equal to , exactly what
we wanted.

Printing a message of removing notes
Now, the next thing we'll do is print a message depending on whether or not a note was
actually removed. That means , which calls the  function, will need to
know whether or not a note was removed. And how do we figure that out? How can we
possibly return that given the information we have in  function?

Well, we can, because we have two really important pieces of information. We have the
length of the original notes array and we have the length of the new notes array. If they're
equal then we can assume that no note was removed. If they are not equal, we'll assume
that a note was removed. And that is exactly what we'll do.



Node Fundamentals – Part 3 Chapter 4

[ 201 ]

If the  function returns , that means a note was removed; if it returns
, that means a note was not removed. In the  function we can add

return, as shown in the following code. We'll check if  does not equal
:

  return notes.length !== filteredNotes.length;

If they're not equal it will return , which is what we want because a note was removed.
If they're equal it will return , which is great.

Now, inside of  we can add a few lines in the ,  block to make
the output for this command a little nicer. The first thing to do is to store that Boolean. I'll
make a variable called  and we'll set that equal to the return, result as shown
in the following code, which will either be  or :

On the next line, we can create our message, and I'll do this all on one line using the ternary
operator. Now, the ternary operator lets you specify a condition. In our case, we'll use a var
message and it will be set equal to the condition , which will be  if a note
was removed and  if it wasn't.

Now, the ternary operator can be a little confusing, but it's really useful
inside JavaScript and Node.js. The format for the ternary operator is first
we add the condition, question mark, the truthy expression to run, colon,
and then the falsy expression to run.

After the condition, we'll put a space with a question mark and a space; this is the statement
that will run if it's true. If the  condition passes, what we want to do is set
message equal to :

Now, if  is , we can specify that condition right after the colon in the
previous statement. Here, if there is no note removed we'll use the text :



Node Fundamentals – Part 3 Chapter 4

[ 202 ]

Now with this in place, we can test out our message. The last thing to do is print the
message to the screen using  passing in message:

This lets us avoid  statements that make our  clause to remove unnecessarily
complex.

Back inside of Atom we can rerun the last command, and in this case no note will get
removed because we already deleted it. And when I run it, you can see that 

 prints to the screen:



Node Fundamentals – Part 3 Chapter 4

[ 203 ]

Now I'll remove a note that does exist; in  I have a note with a title of
secret as shown here:

Let's rerun the command removing the  from the title in Terminal. When I run this
command, you can see  prints to the screen:



Node Fundamentals – Part 3 Chapter 4

[ 204 ]

That is it for this section; we now have our  command in place.

Reading note
In this section, you will be responsible for filling out the rest of the  command. Now,
the  command does have an else-if block to find in  where we call :

 is defined over inside , even though currently it just prints out some
dummy text:

What you'll need to do in this section is wire up both of these functions.

First up, you will need to do something with the return value from . Our 
function will return the note object if it finds it. If it doesn't, it will return undefined just like
we do for  discussed in the section Adding and saving note, in the previous chapter.

After you store that value, you'll do some printing using , similar to what we
have here:



Node Fundamentals – Part 3 Chapter 4

[ 205 ]

Obviously,  will be something like  and  will
be something like , but the general flow is going to be exactly the same.
Now, once you have that wired up inside of , you can move on to , filling
out the function.

Now, the function inside of  isn't going to be that complex. All you need to do is
fetch the notes, like we've done in previous methods, then you're going to use

, which we explored to only return notes whose title matches the title passed
in as the argument. Now, in our case this is either going to be zero notes, which means the
note is not found, or it's going to be one note, which means we've found the note that the
person wants to return.

Next, we do need to return that note. It's important to remember the return value from
 is always going to be an array, even if that array only has one item. What

you're going to need to do is return the first item in the array. If that item doesn't exist that's
fine, it'll return undefined, as we want. If it does exist, great, that means we found the note.
This method only requires three lines of code, one for fetching, one for filtering, and the
return statement. Now, once you have all that done we'll test it out.

Using the getNote function
Let's work on this method. Now, the first thing I'll do is fill out, inside of , a variable
called note which is going to store the return value from :

Now, this could be an individual note object or it could be undefined. In the next line, I can
use an  statement to print the message if it exists, or if it does not exist. I'll use  note,
and I am going to attach an  clause:



Node Fundamentals – Part 3 Chapter 4

[ 206 ]

This  clause will be responsible for printing an error if the note is not found. Let's get
started with that first since it's pretty simple, , , as shown
here:

Now that we have our  clause filled out we can fill out the if statement. For this, I'll
print a little message,  will get the job done. Then we can
move on to printing the actual note details, and we already have that code in place. We are
going to add the hyphenated spacer, then we have our note title and our note body as
shown here:

Now that we're done with the inside of , we can move into the  file and
fill out the  method because currently it doesn't do anything with the title that gets
passed in.

Inside notes, what you needed to do was fill out those three lines. The first one is going to
be responsible for fetching the notes. We already have did that before with the 
function in the previous section:



Node Fundamentals – Part 3 Chapter 4

[ 207 ]

Now that we have our notes in place we, can call , returning all of the notes.
I'll make a variable called , setting it equal to . Now, we
know that the filter method takes a function, I'll define an arrow function ( ) just like this:

Inside the arrow function ( ), we'll get the individual note passed in, and we'll return 
when the note title, the title of the note we found in our JSON file, equals, using triple
equals, title:

This will return  when the note title matches and false if it doesn't. Alternatively, we
can use arrow functions, and we only have one line, as shown following, where we return
something; we can cut out our condition, remove the curly braces, and simply paste that
condition right here:

This has the exact same functionality, only it's a lot shorter and easier to look at.

Now that we have all of the data, all we need to do is return something, and we'll return the
first item in the  array. Next, we'll grab the first item, which is the index of
zero, and then we just need to return it using the  keyword:

Now, there is a chance that , the first item, doesn't exist, and that's fine, it's
going to return undefined, in which case our else clause will run, printing 

. If there is a note, great, that's the note we want to print, and over in  we do
just that.



Node Fundamentals – Part 3 Chapter 4

[ 208 ]

Running the getNote function
Now that we have this in place we can test out this brand new functionality inside of
Terminal by running our app using . I'll use the  command, and I'll pass
in a title equal to some string that I know does not exist inside of a title in the 

 file:

node app.js read --title="something here"

When I run the command, we get , as shown here, and this is exactly
what we want:

Now, if I do try to fetch a note where the title does exist, I would expect that note to come
back.



Node Fundamentals – Part 3 Chapter 4

[ 209 ]

In the data file I have a note with a title of ; let's try to fetch that one. I'll use the up
arrow key to populate the previous command and replace the title with , buy,
and hit enter:

As shown in the previous code, you can see  prints to the screen, which is
fantastic. Following  we have our spacers and following that we have the title,
which is , and the body, which is , exactly as it appears inside of the data file.
With this in place, we are done with the  command.

The DRY principle
Now, there is one more thing I want to tackle before we wrap up this section. Inside 
we now have the same code in two places. We have the space or title body in the 
command as well as in the  command:



Node Fundamentals – Part 3 Chapter 4

[ 210 ]

When you find yourself copying and pasting code, it's probably best to break that out into a
function that both locations call. This is the DRY principle, which stands for Don't Repeat
Yourself.

Using the logNote function
In our case, we are repeating ourselves. It would be best to break this out into a function
that we can call from both places. In order to do this, all we're going to do is make a
function in  called .

Now, in , down following the  function, we can make that brand
new function a variable called . This is going to be a function that takes one
argument. This argument will be the note object because we want to print both the title and
the body. As shown here, we'll expect the note to get passed in:



Node Fundamentals – Part 3 Chapter 4

[ 211 ]

Now, filling out the  function is going to be really simple, especially when you're
solving a DRY issue, because you can simply take the code that's repeated, cut it out, and
paste it right inside the  function. In this case the variable names line up already, so
there is no need to change anything:

Now that we have the  function in place, we can change things over in . In
, where we have removed the  statements we can call

, passing in the note object just like this:

notes.logNote(note);

And we can do the same thing in case of the  command  block. I can remove these
three  statements and call , passing in note:

notes.logNote(note);

And now that we have this in place, we can rerun our program and hopefully what we see
is the exact same functionality.

The last thing to do before we rerun the program is export the  function in
 module in  file.  is going to get exported and we're using the

ES6 syntax to do that:



Node Fundamentals – Part 3 Chapter 4

[ 212 ]

logNote

With this in place, I can now rerun the previous command from Terminal using up and hit
enter:

node app.js read --title="to buy"

As shown, we get  printing to the screen, with the title and the body just like
we had before. I'm also going to test out the  command to make sure that one's working,

; we will use a title of things to do and a body of go to post office:

node app.js add --title="things to do" --body="go to post office"



Node Fundamentals – Part 3 Chapter 4

[ 213 ]

Now, when I hit enter, we would expect the same log to print as it did before for the 
command, and that's exactly what we get:

Note created prints, we get our spacer, and then we get our title and our body.

In the next section, we're going to cover one of the most important topics in the book; which
is debugging. Knowing how to properly debug programs is going to save you literally
hundreds of hours over your Node.js career. Debugging can be really painful if you don't
have the right tools, but once you know how it's done, it really isn't that bad and it can save
you a ton of time.

Debugging
In this section, we're going to use the built-in , which can look a little complex
because it's run inside of the command line. That means that you have to use the command-
line interface, which is not always the most pleasant thing to look at. In the next section,
though, we are going to be installing a third-party tool that uses Chrome DevTools in order
to debug your Node app. That one looks great because the Chrome DevTools are fantastic.



Node Fundamentals – Part 3 Chapter 4

[ 214 ]

Executing a program in debug mode
Before going ahead, we will learn that we do need to create a place to play around with
debugging and that's going to happen in a playground file, since the code we're going to
write is not going to be important to the  app itself. Inside the notes app I'll make a
new file called :

In  we're going to start off with a basic example. We're going to make an
object called , and on that object for the moment, we're going to set one property
name. Set it equal to your name, I'll set mine equal to the string  as shown:

Next up we're going to set another property, but in the next line, . I'll set mine
equal to my age, :



Node Fundamentals – Part 3 Chapter 4

[ 215 ]

Then we're going to add another statement that changes the name,  equals
something like :

Finally, we're going to  the  object, the code is going to look like this:

Now, we actually already have a form of debugging in this example, we have a
 statement.

As you're going through the Node application development process, you may or may not
have used  to debug your app. Maybe something's not working as expected
and you want to figure out exactly what that variable has stored inside of it. For example, if
you have a function that solves a math problem, maybe at one part in the function the
equation is wrong and you're getting a different result.

Using  can be a pretty great way to do that, but it's super limited. We can
view that by running it from Terminal, I'll run the following command for this:

node playground/debugging.js

When I run the file, I do get my object printed out to the screen, which is great, but, as you
know, if you want to debug something besides the  object you have to add another

 statement in order to do that.



Node Fundamentals – Part 3 Chapter 4

[ 216 ]

Imagine you have something like our  file, you want to see what command equals,
then you want to see what  equals, it could take a lot of time to add and remove those

 statements. There is a better way to debug. This is using the Node .
Now, before we make any changes to the project, we'll take a look at how the 
works inside of Terminal, and as I warned you in the beginning of the section, the built-in
Node , while it is effective, is a little ugly and hard to use.

For now, though, we are going to run the app much the same way, only this time we're
going to type . Node debug is going to run our app completely differently
from the regular Node command. We're running the same file in the playground folder, it's
called :

node inspect playground/debugging.js

When you hit enter, you should see something like this:

In the output, we can ignore the first two lines. This essentially means that the 
was set up correctly and it's able to listen to the app running in the background.



Node Fundamentals – Part 3 Chapter 4

[ 217 ]

Next, we have our very first line break in playground debugging on line one, and right
following to it you can see line one with a little caret ( ) next to it. When you first run your
app in debug mode, it pauses before it executes the first statement. When we're paused on a
line like line one, that means the line has not executed, so at this point in time we don't even
have the  variable in place.

Now, as you can see in the preceding code, we haven't returned to the command line, Node
is still waiting for input, and there are a few different commands we can run. For example,
we can run , which is short for next. You can type , hit enter, and this moves on to the
next statement.

The next statement we have, the statement on line one, was executed, so the 
variable does exist. Then I can use  again to go to the next statement where we declare the

 property, updating it from  to :

Notice, at this point, age does exist because that line has already been executed.



Node Fundamentals – Part 3 Chapter 4

[ 218 ]

Now, the  command goes statement by statement through your entire program. If you
realize that you don't want to do that through the whole program, which could take a lot of
time, you can use . The  command is short for Continue, and that continues to the very
end of the program. In the following code, you can see our  statement runs
the name  and the age :

This is that's a quick example of how to use the  keyword.

Now, we actually didn't do any debugging, we just ran through the program since it is a
little foreign in terms of writing these commands, such as next and continue, I decided to do
a dry run once with no debugging. You can use control + C to quit the  and get
returned back to Terminal.

I'll use  to clear all the output. Now that we have a basic idea about how we can
execute the program in  mode, let's take a look at how we can actually do some
debugging.



Node Fundamentals – Part 3 Chapter 4

[ 219 ]

Working with debugging
I'll rerun the program using the up arrow key twice to return to the Node  command.
Then, I'll run the program, and I'll hit next twice,  and :

At this point in time, we are on line seven, that is where the line break currently is. From
here we can do some debugging using a command called , which stands for Read
Evaluate Print Loop. The  command, in our case, brings you to an entirely separate
area of the . When you hit it you're essentially in a Node console:



Node Fundamentals – Part 3 Chapter 4

[ 220 ]

You can run any Node commands, for example, I can use  to print something
like , and test prints up right there.

I can make a variable  that is equal to  plus , then I can reference  and I can see it's
equal to  as shown:

More importantly, we have access to the current program as it sits, meaning as it was before
line seven was executed. We can use this to print out , and as shown in the
following code, you can see the person's name is  because line seven hasn't executed
and the age is , exactly as it appears in the program:

This is where debugging gets really useful. Being able to look at the program paused at a
certain point in time is going to make it really easy to spot errors. I could do anything I
want, I could print out the  name property, and that prints  to the screen, as
shown here:

Now, once again, we still have this problem. I have to hit next through the program. When
you have a really long program, there could literally be hundreds or thousands of
statements that need to run before you get to the point you care about. Obviously that is not
ideal, so we're going to look at a better way.

Let's quit  using control + C; now we're back at the .

From here we are going to make a quick change to our application in .



Node Fundamentals – Part 3 Chapter 4

[ 221 ]

Let's say we want to pause line seven between the person age property update and the
person name property update. In order to pause, what we're going to do is run the
statement :

debugger;

When you have a  statement exactly like previous, it tells the Node  to
stop here, which means instead of using  (next) to go statement by statement, you can use

 (continue), which is going to continue until either the program exits or it sees one of the
 keywords.

Now, over in Terminal, we're going to rerun the program exactly like we did before. This
time around, instead of hitting  twice, we're going to use  to continue:



Node Fundamentals – Part 3 Chapter 4

[ 222 ]

Now, when we first used , it went to the end of the program, printing out our object. This
time around it's going to continue until it finds that  keyword.

Now, we can use , access anything we like, for example, , shown in this
code:

Once we're done debugging, we can quit and continue through the program. Again, we can
use control + C to quit  and the .

All real debugging pretty much happens with the  keyword. You put it wherever
you want on your program, you run the program in debug mode, eventually it gets to the

 keyword and you do something. For example you explore some variable values,
you run some functions, or you play around with a code to find the error. No one really
uses  to print through the program, finding the line that causes the problem. That takes
way too much time and it's just not realistic.

Using debugger inside the notes application
Now that you know a little bit about the , I want you to use it inside our notes
application. What we will do inside  is add the  statement in 
function as the first line of the function. Then I will run the program in debug mode,
passing in some arguments that will cause  to run; for example, reading a note,
after the note gets fetched, it's going to call .

Now, once we have the  keyword in the  function and run it in debug
mode with those arguments, the program should stop at this point. Once the program starts
in debug mode, we'll use  to continue, and it'll pause. Next, we'll print out the note object
and make sure it looks okay. Then, we can quit  and quit the .



Node Fundamentals – Part 3 Chapter 4

[ 223 ]

Now, first we are adding the  statement right here:

We can save the file, and now we can move into Terminal; there's no need to do anything
else inside our app.

Inside Terminal we're going to run our  file, , because we want
to run the program in debug mode. Then we can pass in our arguments, let's say the 
command, and I'll pass in a title,  as shown here:

node debug app.js read --title="to buy"

In this case I have a note with the title , as shown here:



Node Fundamentals – Part 3 Chapter 4

[ 224 ]

Now, when I run the preceding command, it's going to pause before that first statement
runs, this is expected:

I can now use  to continue through the program. It's going to run as many statements as it
takes for either the program to end or for the  keyword to be found, and as shown
in the following code, you can see the  was found and our program has stopped
on line  of :



Node Fundamentals – Part 3 Chapter 4

[ 225 ]

This is exactly what we wanted to do. Now, from here, I'll go into  and print out note
argument, and as shown in the following code, you can see we have the note with the title
of  and the body :

Now, if there was an error in this statement, maybe the wrong thing was printing to the
screen, this would give us a pretty good idea as to why. Whatever gets passed into the 
is clearly being used inside of the  statements, so if there was an issue with
what's printing, it's most likely an issue with what gets passed into the  function.

Now that we've printed the  variable, we can shut down , and we can use control
+ C or  to quit the .

Now we're back at the regular Terminal and we have successfully completed the debugging
inside the Node application. In the next section, we're going to look at a different way to do
the same thing, a way with a much nicer graphic user interface that I find a lot easier to
navigate and use.

Listing notes
Now that we've made some awesome progress on debugging, let's go back to the
commands for our app, because there is only one more to fill out (we have covered the ,

, and  commands in the , Node Fundamentals - Part 2, and this
chapter, respectively). It's the  command, and it's going to be really easy, there is
nothing complex going on in the case of the  command.

Using the getAll function
In order to get started, all we need to do is fill out the list notes function, which in this case
we called . The  function is responsible for returning every single note. That
means it's going to return an array of objects, an array of all of our notes.



Node Fundamentals – Part 3 Chapter 4

[ 226 ]

All we have to do that is to return , as shown here:

There's no need to filter, there's no need to manipulate the data, we just need to pass the
data from  back through . Now that we have this in place, we can fill
out the functionality over inside of .

We have to create a variable where we can store the notes, I was going to call it notes, but I
probably shouldn't because we already have a notes variable declared. I'll create another
variable, called , setting it equal to the return value from , which we know
because we just filled out returns all the notes:

Now I can use  to print a little message and I'll use template strings so I can
inject the actual number of notes that are going to be printed.

Inside the template strings, I'll add , then the number of notes using the  (dollar)
sign and the curly braces, : that's the length of the array followed by
notes with the  in parenthesis to handle both singular and plural cases, as shown in the
following code block:

So, if there were six notes, it would say printing six notes.

Now that we have this in place, we have to go about the process of actually printing each
note, which means we need to call  once for every item in the  array. To
do, this we'll use , which is an array method similar to filter.



Node Fundamentals – Part 3 Chapter 4

[ 227 ]

Filter lets you manipulate the array by returning  or  to keep items or remove
items;  simply calls a callback function once for each item in the array. In this case
we can use it using , passing in a callback function. Now, that callback
function will be an arrow function ( ) in our case, and it will get called with the 
variable just like filter would have. And all we'll call is , passing in the

 argument, which is right here:

And now that we have this in place, we can actually simplify it by adding the  call,
as shown in here:

This is the exact same functionality, only using the expression syntax. Now that we have
our arrow function ( ) in place, we are calling  once for each item in the
all notes array. Let's save the  file and test this out over in Terminal.

In order to test out the  command, all I'll use is  with the command .
There is no need to pass in any arguments:

node app.js list



Node Fundamentals – Part 3 Chapter 4

[ 228 ]

When I run this, I do get  and then I get my , 
, and , as shown in the following code output, which is

fantastic:

With this in place, all of our commands are now working. We can add notes, remove notes,
read an individual note, and list all of the notes stored in our JSON file.

Moving on to the next section, I want to clean up some of the commands. Inside 
and , we have some  statements that are printing out a few things
we no longer need.

At the very top of , I am going to remove the 
statement, making the constant  the first line.

I'll also remove the two statements:  and
 that print the command and the  variable value.



Node Fundamentals – Part 3 Chapter 4

[ 229 ]

Inside , I will also remove the  statement
at the very top of that file, since it is no longer necessary, putting constant  at the top.

It was definitely useful when we first started exploring different files, but now we have
everything in place, there's no need. If I rerun the  command, this time you can see it
looks a lot cleaner:

 is the very first line showing up. With this in place, we have done
our commands.

In the next section, we're going to take a slightly more in-depth look at how we can
configure yargs. This is going to let us require certain arguments for our commands. So if
someone tries to add a note without a title, we can warn the user and prevent the program
from executing.



Node Fundamentals – Part 3 Chapter 4

[ 230 ]

Advanced yargs
Before we get into the advanced discussion of yargs, first, I want to pull up the yargs docs
so that you at least know where the information about yargs is coming from. You can get it
by Googling . We're going to go to the yargs package page on npm. This has the
documentation for yargs, as shown here:

Now there is no table of contents for the yargs docs, which makes it kind of difficult to
navigate. It starts off with some examples that don't go in any particular order, and then
eventually it gets into a list of all the methods you have available, and that's what we're
looking for.



Node Fundamentals – Part 3 Chapter 4

[ 231 ]

So I'll use command + F (Ctrl + F) to search the page for methods, and as shown in the
following screenshot, we get the methods header, which is the one we're looking for:

If you scroll down on the page, we start to see an alphabetical list of all the methods you
have access to inside of yargs. We're specifically looking for ; this is the method
we can use to configure all four of our commands: the , ,  and  notes:

We're going to specify which options they require, if any, and we can also set up things like
descriptions and help functionality.



Node Fundamentals – Part 3 Chapter 4

[ 232 ]

Using chaining syntax on yargs
Now in order to get started, we need to make some changes inside of . We're going
to start with the  command (for more information, please refer to the Adding and saving
notes section in the previous chapter).

We want to add a few helpful pieces of information in  function inside , that
will:

Let yargs verify the  command is ran appropriately, and
Let the user know how the  command is meant to be executed

Now we are going to be chaining property calls, which means right before I access  I
want to call , and then I'll call  on the return value from command as
shown here:

Now this chaining syntax probably looks familiar if you've used jQuery, a lot of different
libraries are supported. Once we call  on , we're going to pass in three
arguments.

The first one is the command name, exactly how the user is going to type it in Terminal, in
our case it's going to be :

Then we're going to pass another string in, and this is going to be a description of what the
command does. It is going to be some sort of English readable description that a user can
read to figure out weather that's the command that they want to run:

The next one is going to be an object. This is going to be the options object that lets us
specify what arguments this command requires.



Node Fundamentals – Part 3 Chapter 4

[ 233 ]

Calling the .help command
Now before we get into the options object, let's add one more call right after command.
We're going to call , which is a method, so we're going to call it as a function, and we
don't need to pass in any arguments:

When we add on this help call, it sets up  to return some really useful information
when someone runs the program. For example, I can run the  command with
the  flag. The  flag is added because we called that help method, and when I run
the program, you can see all of the options we have available:

node app.js --help



Node Fundamentals – Part 3 Chapter 4

[ 234 ]

As shown in the preceding output, we have one command, , and a
 option for the current command, . And the same thing holds true if we run the

 command with  as shown here:

node app.js add --help

In this output, we can view all of the options and arguments for  command, which in
this case happens to be none because we haven't set those up:

Adding the options object
Let's add options and arguments back inside Atom. In order to add properties, we're going
to update the options object, where the key is the property name, whether it's title or body,
and the value is another object that lets us specify how that property should work, as shown
here:



Node Fundamentals – Part 3 Chapter 4

[ 235 ]

In the case of title, we would add the title on the left-hand side, and we would put our
options object on the right-hand side. Inside the title, we're going to configure three
properties , , and :

The  property will be set equal to a string, and this is going to describe what is
supposed to be passed in for the title. In this case, we can just use :

describe: 'Title of note'

Next we configure . It is going to tell yarg whether or not this argument is required.
 is  by default, we'll set it to :

demand: true



Node Fundamentals – Part 3 Chapter 4

[ 236 ]

Now if someone tries to run the add command without the title, it's going
to fail, and we can prove this. We can save , and in Terminal, we
can rerun our previous command removing the  flag, and when I do
that, you see we get a warning, 
as shown here:

Notice that in the output the title argument, is , which is
the describe string we used, and it's  on the right side, letting
you know that you have to provide a title when you're calling that 
command.

Along with  and  we are going to provide a third option, this is called
. The  lets you provide a shortcut so you don't have to type ; you can

set the alias equal to a single character like :

alias: 't'

When you have done that, you can now run the command in Terminal using the new
syntax.



Node Fundamentals – Part 3 Chapter 4

[ 237 ]

Let's run our add command, , instead of . We're going to use 
, which is the flag version, and we can set that equal to whatever we like, for example,

 will be the title, and  will get set equal to  , as shown in the
following code. Note that we haven't set up the body argument yet so there is no :

node app.js add -t="flag title" --body="body"

If I run this command, everything works as expected. The flag title shows up right where it
should, even though we used the alias version which is the letter , as shown here:

Now that we have our title configured, we can do the exact same thing for the body. We'll
specify our options object and provide those three arguments: , , and

 for :

body: {
    }



Node Fundamentals – Part 3 Chapter 4

[ 238 ]

The first one is  and that one's pretty easy.  is going to get set equal to a
string, and in this case  will get the job done:

describe: 'Body of note'

The next one will be , and to add a note we are going to need a . So we'll set
 equal to , just like we do up previous for :

demand: true

And last but not least is the . The  is going to get set equal to a single letter, I'll
use the letter  for :



Node Fundamentals – Part 3 Chapter 4

[ 239 ]

alias: 'b'

With this in place, we can now save  and inside Terminal, we can take a moment to
rerun  with the  flag:

node app.js add --help

When we run this command, we should now see the body argument showing up, and you
can even see it shows the flag version, as shown in the following output, the alias  (

), and it is required:

Now I'll run  passing in two arguments . I'll set that equal to , and 
setting it equal to .



Node Fundamentals – Part 3 Chapter 4

[ 240 ]

When I run the command, everything works as expected:

node app.js add -t=t -b=b

As shown in the preceding output screenshot, a new note was created with a title of  and a
body of . With this in place, we've now successfully completed the setup for the 
command. We have our  command title, a description, and the block that specifies the
arguments for that command. Now we do have three more commands to  support for,
so let's get started doing that.

Adding support to the read and remove
commands
On the next line, I'll call  again, passing in the command name. Let's do the 
command first because this one is really easy, no arguments are required. Then we'll pass in
the description for the  command, , as shown here:

.command('list', 'List all notes')

Next up, we'll call command again. This time we'll do the command for . The 
command reads an individual note, so for the description for the  command, we'll use
something like :

.command('read', 'Read a note')



Node Fundamentals – Part 3 Chapter 4

[ 241 ]

Now the  command does require the title argument. That means we are going to need
to provide that options object. I'll take  from  command, copy it, and paste it in
the  command options object:

As you probably just noticed, we have repeated code. The title configuration just got copied
and pasted into multiple places. It would be pretty nice if this was DRY, if it was in one
variable we could reference in both locations, in  and  commands.

Will call command for , just following where we called the command for .
Now, the  command will have a description. We'll stick with something simple like

, and we will be providing an options object:

Now I can add the options object identical to the  command. However, in that options
object, I'll set title equal to , as shown here, to avoid the repetition of code:

Adding the titleOption and bodyOption variables
Now I don't have the  object created yet so the code would currently fail, but
this is the general idea. We want to create the  object once and reference it in
all the locations we use it, for ,  and  command. I can take ,
and add it for  as well as for  command, as shown here:



Node Fundamentals – Part 3 Chapter 4

[ 242 ]

Now, just previous the constant , I can create a constant called , and I
can set it equal to that object that we defined for  and  command earlier, which is

, , and , as shown here:

We now have the  in place, and this will work as expected. We have the
exact same functionality we did before, but we now have the  in a separate
object, which follows the DRY principle we discussed in the Reading note section.

Now, we could also do the same thing for body. It might seem like overkill since we're only
using it in only one location, but if we're sticking to the pattern of breaking them out into
variables, I'll do it in the case of the body as well. Just following the 
constant, I can create the constant , setting it equal to the options object we
defined in the body, for  command in the previous subsection:

With this in place, we are now done. We have , , and , all with their
arguments set up referencing the  and  variables defined.



Node Fundamentals – Part 3 Chapter 4

[ 243 ]

Testing the remove command
Let's test out the  command in Terminal. I'll list out my notes using 

, so I can see which notes I have to remove:

node app.js list

I'll  the note with the title , using the  command and our
flag :

node app.js remove -t="t"



Node Fundamentals – Part 3 Chapter 4

[ 244 ]

We'll remove the note with the title , and as shown previous,  prints to
the screen. And if I use the up arrow key twice, I can list the notes out again, and you can
see the note with the title  has indeed gone:

Let's remove one more note using the  command. This time we're
going to use , which is the argument name, and the note we're going to  has
the title flag title, as shown in this code:



Node Fundamentals – Part 3 Chapter 4

[ 245 ]

When I remove it, it says , and if I rerun the  command, I can see
that we have three notes left, the note was indeed removed , as shown here:

And that is it for the notes application.

Arrow functions
In this section, you're going to learn the ins and outs of the arrow function. It's an ES6
feature, and we have taken a little look at it. Inside  we used it in a few basic
examples to create methods such as  and , and we also passed it
into a few array methods like filter, and for each array, we used it as the callback function
that gets called once for every item in the array.

Now if you try to swap out all of the functions in a program with arrow functions, it's most
likely not going to work as expected because there are some differences between the two,
and it's really important to know what those differences are, so you can make the decision
to use a regular ES5 function or an ES6 arrow function.



Node Fundamentals – Part 3 Chapter 4

[ 246 ]

Using the arrow function
The goal in this section is to give you the knowledge to make that choice, and we'll kick
things off by creating a new file in the playground folder called :

Inside this file, we're going to play around with a few examples, going over some of the
subtleties to the arrow function. Before we type anything inside of the file, I'll start up this
file with , so every time we make a change it automatically refreshes over in
Terminal.

If you remember,  is the utility we installed in , Node Fundamentals - Part
1. It was a global npm module. The  is the command to run, and then we just pass
in the file path like we would for any other Node command. As we're going into the

 folder, and the file itself is called , we'll run the
following command:

nodemon playground/arrow-function.js

We'll run the file, and nothing prints to the screen, as shown in the following output,
besides the  logs because we have nothing in the file:



Node Fundamentals – Part 3 Chapter 4

[ 247 ]

To get started, in the  file, we'll create a function called square, by
making a variable called square and setting it equal to an arrow function.

To make our arrow function ( ), we'll first provide the arguments inside parentheses.
Since we'll be squaring a number, we just need one number, and I'll refer to that number as

. If I pass in 3, I should expect 9 back, and if I pass in 9, I would expect 81 back.

After the arguments list, we have to put the arrow in arrow function ( ) by putting the
equal sign and the greater than symbol together, creating our nice little arrow. From here
we can provide, inside curly braces, all the statements we want to execute:

Next, we might create a variable called result, setting that equal to  times , then we might
return the result variable using the  keyword, as shown here:

Now, obviously this can be done on one line, but the goal here is to illustrate that when you
use the statement arrow function ( ), you can put as many lines as you want in between
those curly braces. Let's call a square, we'll do that using  so we can print the
result to the screen. I'll call square; and we'll call square with , the square of  would be ,
so we would expect  to print to the screen:



Node Fundamentals – Part 3 Chapter 4

[ 248 ]

I'll save the arrow function ( ) file, and in Terminal,  shows up just as we expect:

Now the syntax we used in the previous example is the statement syntax for the arrow
function ( ). We've also explored the expression syntax earlier, which lets you simplify
your arrow functions when you return some expressions. In this case all we need to do is
specify the expression we want to return. In our case that's  times :

You don't need to explicitly add the  keyword. When you use an arrow function
( ) without your curly braces, it's implicitly provided for you. That means we can save the
function as shown previous and the exact same result is going to print to the screen, 
shows up.

This is one of the great advantages of arrow functions when you use them in cases like filter
or for those which we did in the  file. It lets you simplify your code keeping
everything on one line and making your code a lot easier to maintain and scan.

Now, there is one thing I want to note: when you have an arrow function
( ) that has just one argument, you can actually leave off the parentheses.
If you have two or more arguments, or you have zero arguments, you are
going to need to provide the parentheses, but if you just have one
argument, you can reference it with no parentheses.



Node Fundamentals – Part 3 Chapter 4

[ 249 ]

If I save the file in this state,  still prints to the screen; and this is great we have an even
simpler version of our arrow function ( ):

Now that we have a basic example down, I want to move on to a more complex example
that's going to explore the nuances between regular functions and arrow functions.

Exploring the difference between regular and
arrow functions
To illustrate the difference, I'll make a variable called , which will be an object. On this
object we'll specify one property, name. Set name equal to the string, your name, in this case
I'll set it equal to the string :

Then we can define a method on the  object. Right after name, with my comma at the
end of the line, I'll provide the method , setting it equal to an arrow function ( ) that
doesn't take any arguments. For the moment, we'll keep the arrow function really simple:



Node Fundamentals – Part 3 Chapter 4

[ 250 ]

All we'll do inside  is use  to print to the screen, inside of template
strings :

We're not using template strings yet, but we will later so I'll use them here. Down following
the user object, we can test out  by calling it, :

I'll call it then save the file, and we would expect that  prints to the screen because all our
arrow function ( ) does is use  to print a static string. Nothing in this case
will cause any problems; you'd be able to swap out a regular function for an arrow function
( ) without issue.

Now the first issue that will arise when you use arrow functions is the fact that arrow
functions do not bind a  keyword. So if you are using  inside your function, it's
not going to work when you swap it out for an arrow function ( ). Now,  binding;
refers to the parent binding, in our case there is no parent, function so this would refer to
the global  keyword. Now we have our  that does not use , I'll swap
it out for a case that does.

We'll put a period after , and I'll say I'm, followed by the name, which we would usually
be able to access via :



Node Fundamentals – Part 3 Chapter 4

[ 251 ]

If I try to run this code, it is not going to work as expected; we're going to get  I'm
undefined printing to the screen, as shown here:

In order to fix this, we'll look at an alternative syntax to arrow functions that's great when
you're defining object literals, as we are in this case.

After , I'll make a new method called  using a different ES6 feature. ES6
provides us a new way to make methods on objects; you provide the method name,

, then you go right to the parentheses skipping the colon. There's also no need for
the function keyword, even though it is a regular function it's not an arrow function ( ).
Then we move on to our curly braces as shown here:

Inside here I can have the exact same code we have in the  function, but it is going to
work as expected. It's going to print . I'll call  down following
instead of the regular  method:

user.sayHiAlt();



Node Fundamentals – Part 3 Chapter 4

[ 252 ]

And in Terminal, you can see , prints to the screen:

The  syntax is a syntax that you can use to solve  problem when you create
functions on object literals. Now that we know that the  keyword does not get bound,
let's explore one other quirk that arrow functions have, it also does not bind the arguments
array.

Exploring the arguments array
Regular functions, like , are going to have an arguments array that's accessible
inside of the function:

console.log(arguments);

Now, it's not an actual array, it's more like an object with array; like properties, but the
arguments object is indeed specified in a regular function. If I pass in one, two, and three
and save the file, we'll get that back when we log out arguments:

user.sayHiAlt(1, 2, 3);



Node Fundamentals – Part 3 Chapter 4

[ 253 ]

Inside , it's taking a quick second to restart, and right here we have our object:

We have one, two, and three, we have the index for each as the property name, and this
works because we're using a regular function. If we were to switch to the arrow function
( ) though, it is not going to work as expected.

I'll add  inside of my arrow function ( ), and I'll switch from
calling  back to the original method , as shown here:

console.log(arguments);

user.sayHi(1, 2, 3);

When I save the file in , we'll get something a lot different from what
we had before. What we'll actually get is the global arguments variable, which is the
arguments variable for that wrapper function we explored:



Node Fundamentals – Part 3 Chapter 4

[ 254 ]

In the previous screenshot, we have things like the require function, definition, our modules
object, and a couple of string paths to the file and to the current directory. These are
obviously not what we're expecting, and that is another thing that you have to be aware of
when you're using arrow functions; you're not going to get the  keyword, you're
not going to get the  binding (defined in  syntax) that you'd expect.

These problems mostly arise when you try to create methods on an object and use arrow
functions. I would highly recommend that you switch to  syntax which we
discussed, in those cases. You get a simplified syntax, but you also get the disk binding and
you get your arguments variable as you'd expect.

Summary
In this chapter, we were able to reuse the utility functions that we already made in previous
chapters, making the process of filling out a remove note that much easier. Inside ,
we worked on how the  function is executed, if it was executed successfully,
we print a message; if it didn't, we print a different message.



Node Fundamentals – Part 3 Chapter 4

[ 255 ]

Next, we were able to successfully fill out the  command and we also created a really
cool utility function that we can take advantage of in multiple places. This keeps our code
DRY and prevents us from having the same code in multiple places inside of our
application.

Then we discussed a quick introduction to debugging. Essentially, debugging is a process
that lets you stop the program at any point in time and play around with the program as it
exists at that moment. That means you can play around with variables that exist, or
functions, or anything inside of Node. We learned more about yargs, its configuration,
setting up commands, their description, and arguments.

Last, you explored a little bit more about arrow functions, how they work, when to use
them, and when not to use them. In general, if you don't need this keyword, or the
arguments keyword you can use an arrow function without a problem, and I always prefer
using arrow functions over regular functions when I can.

In the next chapter, we will explore asynchronous programming and how we can fetch data
from third-party APIs. We'll use both regular functions and arrow functions a lot more, and
you'll be able to see firsthand how to choose between one over the other.



55
Basics of Asynchronous
Programming in Node.js

If you've read any article about Node, you'd have probably come across four terms:
asynchronous, non-blocking, event-based, and single-threaded. All of those are accurate
terms to describe Node; the problem is it usually stops there, and it's really abstract. The
topic of asynchronous programming in Node.js has been divided into three chapters. The
goal in these upcoming three chapters is to make asynchronous programming super
practical by putting all these terms to use in our weather application. That's the project
we're going to be building in these chapters.

This chapter is all about the basics of asynchronous programming. We'll look into the basic
concepts, terms, and technology related to async programming. We'll look into making
requests to Geolocation APIs. We'll need to make asynchronous HTTP requests. Let's dive
in, looking at the very basics of async programming in Node.

Specifically, we'll look into the following topics:

The basic concept of asynchronous program
Call stack and event loop
Callback functions and APIs
HTTPS requests



Basics of Asynchronous Programming in Node.js Chapter 5

[ 257 ]

The basic concept of asynchronous program
In this section, we're going to create our first asynchronous non-blocking program. This
means our app will continue to run while it waits for something else to happen. In this
section, we'll look at a basic example; however, in the chapter, we'll be building out a
weather app that communicates with third-party APIs, such as the Google API and a
weather API. We'll need to use asynchronous code to fetch data from these sources.

For this, all we need to do is make a new folder on the desktop for this chapter. I'll navigate
onto my desktop and use  to make a new directory, and I'll call this one 

. All I need to do is navigate into the weather app:

Now, I'll use the  command to clear the Terminal output.

Now, we can open up that new  directory inside of Atom:



Basics of Asynchronous Programming in Node.js Chapter 5

[ 258 ]

This is the directory we'll use throughout this entire chapter. In this section, we'll not be
building out the weather app just yet, we'll just play around with the async features. So
inside  we'll make the  folder.

This code is not going to be a part of the weather app, but it will be really useful when it
comes to creating the weather app in the later sections. Now inside , we can
make the file for this section. We'll name it  as shown here:

Illustrating the async programming model
To illustrate how the asynchronous programming model works, we'll get started with a
simple example using . Let's get started by adding a couple of 
statements in a synchronous way. We'll create one  statement at the beginning
of the app that will say , and we will add a second one to the end, and the
second one will print , as shown here:

Now these are always going to run synchronously. No matter how many times you run the
program,  is always going to show up before .



Basics of Asynchronous Programming in Node.js Chapter 5

[ 259 ]

In order to add some asynchronous code, we'll take a look at a function that Node provides
called . The  function is a great method for illustrating the basics
of non-blocking programming. It takes two arguments:

The first one is a function. This will be referred to as callback function, and it will
get fired after a certain amount of time.
The second argument is a number, which tells the number of milliseconds you
want to wait. So if you want to wait for one second, you would pass in a
thousand milliseconds.

Let's call , passing in an arrow function ( ) as our first argument. This will be
callback function. It will get fired right away; that is, it will get fired after the timeout is up,
after our two seconds. And then we can set up our second argument which is the delay,

 milliseconds, which equals those two seconds:

Inside the arrow function ( ), all we'll do is use a  statement so that we can
figure out exactly when our function fires, because the statement will print to the screen.
We'll add  and then inside callback to get the job done, as shown here:

With this in place, we're actually ready to run our very first async program, and I'll not use
 to execute it. I'll run this file from the Terminal using the basic Node command;

 and the file inside the  folder which is :

node playground/async-basics.js

Now pay close attention to exactly what happens when we hit enter. We'll see two messages
show up right away, then two seconds later our final message, ,
prints to the screen:



Basics of Asynchronous Programming in Node.js Chapter 5

[ 260 ]

The sequence in which these messages are shown is: first we got ; almost
immediately after this,  prints to the screen and finally (two seconds later),

 was printed as shown in the previous code. Inside the file, this is not
the order in which we wrote the code, but it is the order the code executes in.

The  statement prints to the screen as we expect. Next, we call ,
but we're not actually telling it to wait two seconds. We're registering a callback that will
get fired in two seconds. This will be an asynchronous callback, which means that Node can
do other things while these two seconds are happening. In this case, the other thing it
moves down to the  message. Now since we did register this callback by
using , it will fire at some point in time, and two seconds later we do see

 printing to the screen.

By using non-blocking I/O, we're able to wait, in this case two seconds, without preventing
the rest of the program from executing. If this was blocking I/O, we would have to wait two
seconds for this code to fire, then the  message would print to the screen,
and obviously that would not be ideal.

Now this is a pretty contrived example, we will not exactly use  in our real-
world apps to create unnecessary arbitrary delays, but the principles are the same. For
example, when we fetch data from the Google API we'll need to wait about 100 to 200
milliseconds for that data to come back, and we don't want the rest of the program to just be
idle, it will continue. We'll register a callback, and that callback will get fired once the data
comes back from the Google servers. The same principles applies even though what's
actually happening is quite different.



Basics of Asynchronous Programming in Node.js Chapter 5

[ 261 ]

Now, we want to write another  right here. We want to register a 
function that prints a message; something like . This will be
inside the callback, and we want to register a delay of  milliseconds, no delay at all. Let's
fill out the async basics . I'll call  with my arrow function ( ),
passing in a delay of  milliseconds, as shown in the following code. Inside the arrow
function ( ), I'll use  so I can see exactly when this function executes, and I'll
use  as the text:

Now that we have this in place, we can run the program from the Terminal, and it's really
important to pay attention to the order in which the statements print. Let's run the program:

node playground/async-basics.js

Right away we get three statements and then at the very end, two seconds later, we get our
final statement:

We start with , which makes sense, it's at the top. Then we get 
. After  we get , which seems weird, because we

clearly told Node we want to run this function after  milliseconds, which should run it
right away. But in our example,  printed after .



Basics of Asynchronous Programming in Node.js Chapter 5

[ 262 ]

Finally,  printed to the screen. This behavior is completely expected.
This is exactly how Node.js is supposed to operate, and it will become a lot clearer after the
next section, where we'll go through this example exactly, showing you what happens
behind the scenes. We'll get started with a more basic example showing you how the call
stack works, we'll talk all about that in the next section, and then we'll go on to a more
complex example that has some asynchronous events attached to it. We'll discuss the reason
why  comes up after the  message after the next
section.

Call stack and event loop
In the last section, we ended up creating our very first asynchronous application, but
unfortunately we ended up asking more questions than we got answers. We don't exactly
know how async programming works even though we've used it. Our goal for this section
is to understand why the program runs the way it does.

For example, why does the two-second delay in the following code not prevent the rest of
the app from running, and why does a  second delay cause the function to be executed
after  prints to the screen?

These are all questions we'll answer in this section. This section will take you behind the
scenes into what happens in V8 and Node when an async program runs. Now let's dive
right into how the async program runs. We'll start with some basic synchronous examples
and then move on to figuring out exactly what happens in the async program.



Basics of Asynchronous Programming in Node.js Chapter 5

[ 263 ]

A synchronous program example
The following is example number one. On the left-hand side we have the code, a basic
synchronous example, and on the right-hand side we have everything that happens behind
the scenes, the Call Stack, our Node APIs, the Callback Queue, and the Event Loop:

Now if you've ever read an article or watched any video lesson on how Node works, you've
most likely heard about one or more of these terms. In this section, we'll be exploring how
they all fit together to create a real-world, working Node application. Now for our first
synchronous example, all we need to worry about is the Call Stack. The Call Stack is part
of a V8, and for our synchronous example it's the only thing that's going to run. We're not
using any Node APIs and we're not doing any asynchronous programming.

The call stack
The Call Stack is a really simple data structure that keeps track of program execution inside
of a V8. It keeps track of the functions currently executing and the statements that are fired.
The Call Stack is a really simple data structure that can do two things:

You can add something on top of it
You can remove the top item



Basics of Asynchronous Programming in Node.js Chapter 5

[ 264 ]

This means if there's an item at the bottom of the data structure and there's an item above it,
you can't remove the bottom item, you have to remove the top item. If there's already two
items and you want to add something on to it, it has to go on because that's how the Call
Stack works.

Think about it like a can of Pringles or a thing of tennis balls: if there's already an item in
there and you drop one in, the item you just dropped will not be the bottom item, it's going
to be the top item. Also, you can't remove the bottom tennis ball from a can of tennis balls,
you have to remove the one on top first. That's exactly how the Call Stack works.

Running the synchronous program
Now when we start executing the program shown in the following screenshot, the first
thing that will happen is Node will run the main function. The main function is the wrapper
function we saw over in nodemon (refer to, Installing the nodemon module section in 

, Node Fundamentals Part-1) that gets wrapped around all of our files when we run them
through Node. In this case, by telling V8 to run the main function we are starting the
program.

As shown in the following screenshot, the first thing we do in the program is create a
variable , setting it equal to , and that's the first statement that's going to run:



Basics of Asynchronous Programming in Node.js Chapter 5

[ 265 ]

Notice it comes in on top of main. Now this statement is going to run, creating the variable.
Once it's done, we can remove it from the Call Stack and move on to the next statement,
where we make the variable , which gets set equal to , which is  plus . That means  is
going to be equal to :

As shown in the previous screenshot, we do that and move on to the next line. The next line
is our  statement. The  statement will print  is  to the screen.
We use template strings to inject the  variable:



Basics of Asynchronous Programming in Node.js Chapter 5

[ 266 ]

When we run this line it gets popped on to the Call Stack, as shown here:

Once the statement is done, it gets removed. At this point, we've executed all the statements
inside our program and the program is almost ready to be complete. The main function is
still running but since the function ends, it implicitly returns, and when it returns, we
remove main from the Call Stack and the program is finished. At this point, our Node
process is closed. Now this is a really basic example of using the Call Stack. We went into
the main function, and we moved line by line through the program.

A complex synchronous program example
Let's go over a slightly more complex example, our second example. As shown in the
following code, we start off by defining an  function. The  function takes arguments

 and , adds them together storing that in a variable called , and returns .
Next, we add up  and , which is , storing it in the  variable. Then, we print out the
response using the  statement, as shown here:



Basics of Asynchronous Programming in Node.js Chapter 5

[ 267 ]

That's it, nothing synchronous is happening. Once again we just need the Call Stack. The
first thing that happens is we execute the main function; this starts the program we have
here:

Then we run the first statement where we define the  variable. We're not actually
executing the function, we're simply defining it here:



Basics of Asynchronous Programming in Node.js Chapter 5

[ 268 ]

In the preceding image, the  variable gets added on to the Call Stack, and we define
. The next line, line , is where we call the  variable storing the return value on the

response variable:

When you call a function, it gets added on top of the Call Stack. When
you return from a function, it gets removed from the Call Stack.

In this example, we'll call a function. So we're going to add  on to the Call Stack, and
we'll start executing that function:



Basics of Asynchronous Programming in Node.js Chapter 5

[ 269 ]

As we know, when we add main we start executing main and, when we add  we start
executing add. The first line inside  sets the  variable equal to , which
would be . We then return from the function using the  statement. That's
the next statement, and when this runs,  gets removed:

So when  finishes,  gets removed, then we move on to the final line in
the program, our  statement, where we print  to the screen:

The  statement will run, print  to the screen and finish the execution, and
now we're at the end of the main function, which gets removed from the stack when we
implicitly return. This is the second example of a program running through the V8 Call
Stack.



Basics of Asynchronous Programming in Node.js Chapter 5

[ 270 ]

An async program example
So far we haven't used Node APIs, the Callback Queue, or the Event Loop. The next
example will use all four (Call Stack, the Node APIs, the Callback Queue, and the Event
Loop). As shown on the left-hand side of the following screenshot, we have our async
example, exactly the same as we wrote it in the last section:

In this example, we will be using the Call Stack, the Node APIs, the Callback Queue, and
the Event Loop. All four of these are going to come into play for our asynchronous
program. Now things are going to start off as you might expect. The first thing that happens
is we run the main function by adding it on to the Call Stack. This tells a V8 to kick off the
code we have on the left side in the previous screenshot, shown here again:



Basics of Asynchronous Programming in Node.js Chapter 5

[ 271 ]

The first statement in this code is really simple, a  statement that prints
 to the screen:

This statement runs right away and we move on to the second statement. The second
statement is where things start to get interesting, this is a call to , which is
indeed a Node API. It's not available inside a V8, it's something that Node gives us access
to:



Basics of Asynchronous Programming in Node.js Chapter 5

[ 272 ]

The Node API in async programming
When we call the  function, we're actually registering the event
callback pair in the Node APIs. The event is simply to wait two seconds, and the callback is
the function we provided, the first argument. When we call , it gets registered
right in the Node APIs as shown here:

Now this statement will finish up, the Call Stack will move on, and the  will
start counting down. Just because the  is counting down, it doesn't mean the
Call Stack can't continue to do its job. The Call Stack can only run one thing at a time, but
we can have events waiting to get processed even when the Call Stack is executing. Now
the next statement that runs is the other call to :



Basics of Asynchronous Programming in Node.js Chapter 5

[ 273 ]

In this, we register a  callback function with a delay of  milliseconds, and the
exact same thing happens. It's a Node API and it's going to get registered as shown in the
following screenshot. This essentially says that after zero seconds, you can execute this
callback:

The  statement gets registered and the Call Stack removes that
statement.

The callback queue in async programming
At this point let's assume that , the one that has a zero second delay, finishes.
When it finishes, it's not going to get executed right away; it's going to take that callback
and move it down into the Callback Queue, as shown here:



Basics of Asynchronous Programming in Node.js Chapter 5

[ 274 ]

The Callback Queue is all the callback functions that are ready to get fired. In the previous
screenshot, we move the function from Node API into the Callback Queue. Now the
Callback Queue is where our callback functions will wait; they need to wait for the Call
Stack to be empty.

When the Call Stack is empty we can run the first function. There's another function after it.
We'll have to wait for that first function to run before the second one does, and this is where
the Event Loop comes into play.

The event loop
The Event Loop takes a look at the Call Stack. If the Call Stack is not empty, it doesn't do
anything because it can't, there is nothing it can do you can only run one thing at a time. If
the Call Stack is empty, the Event Loop says great let's see if there's anything to run. In our
case, there is a callback function, but because we don't have an empty Call Stack, the Event
Loop can't run it. So let's move on with the example.



Basics of Asynchronous Programming in Node.js Chapter 5

[ 275 ]

Running the async code
The next thing that happens in our program is we run our  statement, which
prints  to the screen. This is the second message that shows up in the
Terminal:

This statement runs, our main function is complete, and it gets removed from the Call
Stack.



Basics of Asynchronous Programming in Node.js Chapter 5

[ 276 ]

At this point, the Event Loop says hey I see that we have nothing in the call stack and we do
have something in the Callback Queue, so let's run that callback function. It will take the
callback and move it into the Call Stack; this means the function is executing:

It will run the first line which is sitting on line , , printing 
 to the screen. This is why  shows up after 

 in our previous section examples, because we can't run our callback until the Call Stack
is complete. Since  is part of the main function, it will always run before

.



Basics of Asynchronous Programming in Node.js Chapter 5

[ 277 ]

After our  statement finishes, the function is going to implicitly return
and callback will get removed from the Call Stack:



Basics of Asynchronous Programming in Node.js Chapter 5

[ 278 ]

At this point, there's nothing in the Call Stack and nothing in the Callback Queue, but
there is still something in our Node APIs, we still have an event listener registered. So the
Node process is not yet completed. Two seconds later, the  event is
going to fire, and it's going to take that callback function and move it into the Callback
Queue. It gets removed from the Node APIs and it gets added to the Callback Queue:



Basics of Asynchronous Programming in Node.js Chapter 5

[ 279 ]

At this point, the Event Loop will take a look at the Call Stack and see it's empty. Then it
will take a quick look at the Callback Queue and see there is indeed something to run.
What will it do? It will take that callback, add it on to the Call Stack, and start the process of
executing it. This means that we'll run our one statement inside callback. After that's
finished, the callback function implicitly returns and our program is complete:

This is exactly how our program ran. This illustrates how we're able to register our events
using Node APIs, and why when we use a  of zero the code doesn't run right
away. It needs to go through the Node APIs and through the Callback Queue before it can
ever execute on the Call Stack.

Now as I mentioned in the beginning of this section, the Call Stack, the Node APIs, the
Callback Queue, and the Event Loop are pretty confusing topics. A big reason why they're
confusing is because we never actually directly interact with them; they're happening
behind the scenes. We're not calling the Callback Queue, we're not firing an Event Loop
method to make these things work. This means we're not aware they exist until someone
explains them. These are topics that are really hard to grasp the first time around. By
writing real asynchronous code it's going to become a lot clearer how it works.

Now that we got a little bit of an idea about how our code executes behind the scenes, we'll
move on with the rest of the chapter and start creating a weather app that interacts with
third-party APIs.



Basics of Asynchronous Programming in Node.js Chapter 5

[ 280 ]

Callback functions and APIs
In this section, we'll take an in-depth look at callback functions, and use them to fetch some
data from a Google Geolocation API. That's going to be the API that takes an address and
returns the latitude and longitude coordinates, and this is going to be great for the weather
app. This is because the weather API we use requires those coordinates and it returns the
real-time weather data, such as the temperature, five-day forecast, wind speed, humidity,
and other pieces of weather information.

The callback function
Before we get started making the HTTPS request, let's talk about callback functions, and we
have already used them. Refer to the following code (we used it in the previous section):

Inside the  function we used a  function. In general, a 
function is defined as a function that gets passed as an argument to another function and is
executed after some event happens. Now this is a general definition, there is no strict
definition in JavaScript, but it does satisfy the function in this case:

Here we have a function and we pass it as an argument to another function, ,
and it does get executed after some event two-second pass. Now the event could be other
things, it could be a database query finishes, it could be an HTTP request comes back. In
those cases, you will want a callback function, like the one in our case, to do something with
that data. In the case of , we don't get any data back because we're not
requesting any; we're just creating an arbitrary delay.



Basics of Asynchronous Programming in Node.js Chapter 5

[ 281 ]

Creating the callback function
Now before we actually make an HTTP request to Google, let's create a callback function
example inside our  folder. Let's make a new file called :

Inside the file, we'll create a contrived example of what a callback function would look like
behind the scenes. We'll be making real examples throughout the book and use many
functions that require callbacks. But for this chapter, we'll start with a simple example.

To get started, let's make a variable called . This will be the function we'll define
that will show us exactly what happens behind the scenes when we pass a callback to
another function. The  callback will be something that simulates what it would
look like to fetch a user from a database or some sort of web API. It will be a function, so
we'll set it as such using arrow function ( ):

The arrow function ( ) is going to take some arguments. The first argument it will take is
the , which will be some sort of a unique number that represents each user. I might have
an  of , you might have an  of ; either way we're going to need the  to find a
user. Next up we'll get a callback function, which is what we will call later with the data,
with that user object:



Basics of Asynchronous Programming in Node.js Chapter 5

[ 282 ]

This is exactly what happens when you pass a function to .

The  function definition looks like this:

It has a callback and a delay. You take the callback, and after a certain
amount of time passes, you call it. In our case, though, we'll switch the
order with an  first and the callback second.

Now we can call this function before actually filling it out. We'll call , just like we
did with  in the previous code example. I'll call , passing in those two
arguments. The first one will be some ; since we're faking it for now it doesn't really
matter, and I'll go with . The second argument will be the function that we want to run
when the user data comes back, and this is really important. As shown, we'll define that
function:

Now the callback alone isn't really useful; being able to run this function after the user data
comes back only works if we actually get the user data, and that's what we'll expect here:

We'll expect that the  objects, things like , , , , or whatever,
comes back as an argument to the callback function. Then inside the arrow function ( ),
we can actually do something with that data, for example, we could show it on a web app,
respond to an API request, or in our case we can simply print it to the console,

:

Now that we have the call in place, let's fill out the  function to work like we have
it defined.

The first thing I'll do is create a dummy object that's going to be the  object. In the
future, this is going to come from database queries, but for now we'll just create a variable

 setting it equal to some object:



Basics of Asynchronous Programming in Node.js Chapter 5

[ 283 ]

Let's set an  property equal to whatever  the user passes in, and we'll set a 
property equal to some name. I'll use :

Now that we have our  object, what we want to do is call the callback, passing it as an
argument. We'll then be able to actually run,  function, printing the

 to the screen. In order to do this, we would call the callback function like any other
function, simply referencing it by name and adding our parentheses like this:

Now if we call the function like this, we're not passing any data from  back to the
callback. In this case, we're expecting a  to get passed back, which is why we are going
to specify  as shown here:

Now the naming isn't important, I happen to call it , but I could easily call this
 and  as shown here:

All that matters is the arguments, position. In this case, we call the first argument
 and the first argument pass back is indeed that . With this in

place we can now run our example.



Basics of Asynchronous Programming in Node.js Chapter 5

[ 284 ]

In the Terminal, we'll run the callback function using , which is in the 
folder, and we call the file :

node playground/callback.js

When we run the file, right away our data prints to the screen:

We've created a callback function using synchronous programming. Now as I mentioned,
this is still a contrived example because there is no need for a callback in this case. We could
simply return the user object, but in that case, we wouldn't be using a callback, and the
whole point here is to explore what happens behind the scenes and how we actually call the
function that gets passed in as an argument.

Simulating delay using setTimeout
Now, we can also simulate a delay using , so let's do that. In our code, just
before the  statement, we'll use  just like we did before in
the previous section. We'll pass an arrow function ( ) in as the first argument, and set a
delay of 3 seconds using  milliseconds:

Now I can take my callback call, delete it from line 10, and add it inside of the callback
function, as shown here:



Basics of Asynchronous Programming in Node.js Chapter 5

[ 285 ]

Now we'll not be responding to the  request until three seconds have passed. Now
this will be more or less similar to what happens when we create real-world examples of
callbacks, we pass in a callback, some sort of delay happens whether we're requesting from
a database or from an HTTP endpoint, and then the callback gets fired.

If I save  and rerun the code from the Terminal, you'll see we wait those
three seconds, which is the simulated delay, and then the  object prints to the screen:

This is exactly the principle that we need to understand in order to start working with
callbacks, and that is exactly what we'll start doing in this section.

Making request to Geolocation API
The requests that we'll be making to that Geolocation API can actually be simulated over in
the browser before we ever make the request in Node, and that's exactly what we want to
do to get started. So follow along for the URL,

.

Now this is the actual endpoint URL, but we do have to specify the address for which we
want the geocode. We'll do that using query strings, which will be provided right after the
question mark. Then, we can set up a set of key value pairs and we can add multiples using
the ampersand in the URL, for example: 

.

In our case, all we need is one query string address, 
, and for the address query string we'll set it equal to an

address. In order to fill out that query address, I'll start typing 
.

Notice that we are using spaces in the URL. This is just to illustrate a point: we can use
spaces in the browser because it's going to automatically convert those spaces to something
else. However, inside Node we'll have to take care of that ourselves, and we'll talk about
that a little later in the section. For now if we leave the spaces in, hit enter, and we can see
they automatically get converted for us:



Basics of Asynchronous Programming in Node.js Chapter 5

[ 286 ]

Space characters get converted to , which is the encoded version of a space. In this page,
we have all of the data that comes back:

Now we'll use an extension called JSONView, which is available for Chrome and Firefox.

I highly recommend installing JSONView, as we should see a much nicer
version of our JSON data. It lets us minimize and expand various
properties, and it makes it super easy to navigate.

Now as shown in the preceding screenshot, the data on this page has exactly what we need.
We have an address_components property, we don't need that. Next, we have a formatted
address which is really nice, it includes the state, the zip code, and the country, which we
didn't even provide in the address query.

Then, we have what we really came for: in geometry, we have location, and this includes
the latitude and longitude data.



Basics of Asynchronous Programming in Node.js Chapter 5

[ 287 ]

Using Google Maps API data in our code
Now, what we got back from the Google Maps API request is nothing more than some
JSON data, which means we can take that JSON data, convert it to a JavaScript object, and
start accessing these properties in our code. To do this, we'll use a third-party module that
lets us make these HTTP requests inside of our app; this one is called request.

We can visit it by going to . When we visit this
page, we'll see all the documentation and all the different ways we can use the request
package to make our HTTP requests. For now, though, we'll stick to some basic examples.
On the request documentation page, on the right-hand side, we can see this is a super
popular package and it has seven hundred thousand downloads in the last day:

In order to get started we're going to install the package inside our project, and we'll make a
request to this URL.



Basics of Asynchronous Programming in Node.js Chapter 5

[ 288 ]

To install the package, we'll go to the Terminal and install the module using , to
create the  file:



Basics of Asynchronous Programming in Node.js Chapter 5

[ 289 ]

We'll run this command and use enter to use the defaults for every single option:

At the end, we'll type  and hit enter again.

Now that we have our  file we can use , followed by the
module name, request, and I will specify a version. You can always find the latest version of
modules on the npm page. The latest version at the time of writing is , so we'll add
that, . Then we can specify the save flag because we do want to save this module in
our  file:

npm install request@2.73.0 --save

It will be critical for running the weather application.



Basics of Asynchronous Programming in Node.js Chapter 5

[ 290 ]

Now that we have the request module installed, we can start using it. Inside Atom we'll
wrap up the section by making a request to that URL, in a new file in the root of the project
called . This will be the starting point for the weather application. The weather app
will be the last command-line app we create. In the future we'll be making the backend for
web apps as well as real-time apps using Socket.IO. But to illustrate asynchronous
programming, a command-line app is the nicest way to go.

Now, we have our app file, and we can get started by loading in  just like we did
with our other npm modules. We'll make a constant variable, call it , and set it
equal to , as shown here:

Now what we need to do is make a . In order to do this, we'll have to call the
 function. Let's call it, and this function takes two arguments:

The first argument will be an options object where we can configure all sorts of
information
The second one will be a callback function, which will be called once the data
comes back from the HTTP endpoint



Basics of Asynchronous Programming in Node.js Chapter 5

[ 291 ]

In our case, it's going to get called once the JSON data, the data from the Google Maps API,
comes back into the Node application. We can add the arguments that are going to get
passed back from . Now, these are arguments that are outlined in the 
documentation, I'm not making up the names for these:

In the documentation, you can see they call it error, response, and body. That's exactly
what well call ours. So, inside Atom, we can add , , and , just like the
docs.

Now we can fill out that options object, which is where we are going to specify the things
unique to our . In this case, one of the unique things is the URL. The URL specifies
exactly what you want to request, and in our case, we have that in the browser. Let's copy
the URL exactly as it appears, pasting it inside of the string for the URL property:



Basics of Asynchronous Programming in Node.js Chapter 5

[ 292 ]

Now that we have the URL property in place, we can add a comma at the very end and hit
enter. Because we will specify one more property, we'll set  equal to :

This tells  that the data coming back is going to be JSON data, and it should go
ahead, take that JSON string, and convert it to an object for us. That lets us skip a step, it's a
really useful option.

With this in place, we can now do something in the callback. In the future we'll be taking
this longitude and latitude and fetching weather. For now, we'll simply print the  to
the screen by using . We'll pass the body argument into , as
shown here:

Now that we have our very first HTTP request set up, and we have a callback that's going
to fire when the data comes back, we can run it from the Terminal.

To run the request, we'll use  and run the  file:

node app.js



Basics of Asynchronous Programming in Node.js Chapter 5

[ 293 ]

When we do this, the file will start executing and there will be a really short delay before
the body prints to the screen:

What we get back is exactly what we saw in the browser. Some of the properties, such as
, show object in this case because we're printing it to the screen. But

those properties do indeed exist; we'll talk about how to get them later in the chapter. For
now, though, we do have our  as shown in the preceding screenshot,
the  object, the , and . This is what we'll be using to fetch the
longitude and latitude, and later to fetch the weather data.

Now that we have this in place, we are done. We have the first step of the process complete.
We've made a request to the Google Geolocation API, and we're getting the data back. We'll
continue creating the weather app in the next section.

Pretty printing objects
Before we continue learning about HTTP and what exactly is inside of , ,
and , let's take a quick moment to talk about how we can pretty print an object to the
screen. As we saw in the last subsection, when we ran our app with , the
body prints to the screen.

But since there is a lot of objects nested inside of each other, JavaScript starts clipping them:



Basics of Asynchronous Programming in Node.js Chapter 5

[ 294 ]

As shown in the preceding screenshot, it tells us an object is in the , but we don't
get to see exactly what the properties are. This takes place for ,

, and . Obviously this is not useful; what we want to do is see exactly
what's in the object.

Using the body argument
To explore all of the properties, we're going to look at a way to pretty print our objects. This
is going to require a really simple function call, a function we've actually already used,

. This is the function that takes your JavaScript objects, which  is,
remember we used the  statement to tell  to take the JSON and
convert it into an object. In the , statement we'll take that object, pass  in,
and provide the arguments as shown here:



Basics of Asynchronous Programming in Node.js Chapter 5

[ 295 ]

Now, this is how we've usually used , in the past we provided just one
argument, the object we want to , in this case we're going to provide a couple of
other arguments. The next argument is used to filter out properties. We don't want to use
that, it's usually useless, so we're going to leave it as undefined as of now:

The reason we need to provide it, is because the third argument is the thing we want. The
third argument will format the JSON, and we'll specify exactly how many spaces we want
to use per indentation. We could go with  or  depending on your preference. In this case,
we'll pick :

We'll save the file and rerun it from the Terminal. When we  our JSON and print
it to the screen, as we'll see when we rerun the app, we get the entire object showing up.
None of the properties are clipped off, we can see the entire address_components array,
everything shows up no matter how complex it is:



Basics of Asynchronous Programming in Node.js Chapter 5

[ 296 ]

Next, we have our geometry object, this is where our latitude and longitude are stored, and
you can see them as shown here:



Basics of Asynchronous Programming in Node.js Chapter 5

[ 297 ]

Then below that, we have our , which was cut off before, even though it was an array
with one item, which is a string:

Now that we know how to pretty print our objects, it will be a lot easier to scan data inside
of the console none of our properties will get clipped, and it's formatted in a way that
makes the data a lot more readable. In the next section, we'll start diving into HTTP and all
of the arguments in our callback.

Making up of the HTTPS requests
The goal in the previous section was not to understand how HTTP works, or what exactly
the arguments, , , and  are the goal was to come up with a real-world
example of a callback, as opposed to the contrived examples that we've been using so far
with :



Basics of Asynchronous Programming in Node.js Chapter 5

[ 298 ]

In the preceding case, we had a real callback that got fired once the HTTP request came
back from the Google servers. We were able to print the , and we saw exactly what we
had in the website. In this section, we'll dive into these arguments, so let's kick things off by
taking a look at the  argument. This is the third argument that  passes to the
callback.

Now the  is not something unique to the  module (  is part of HTTP,
which stands for the Hypertext Transfer Protocol). When you make a request to a website,
the data that comes back is the body of the request. We've actually used the body about a
million times in our life. Every single time we request a URL in the browser, what we get
rendered inside the screen is the body.

In the case of , the body that comes back is an HTML web page that
the browser knows how to render. The body could also be some JSON information, which is
the case in our Google API request. Either way, the body is the core data that comes back
from the server. In our case, the body stores all of the location information we need, and
we'll be using that information to pull out the formatted address, the latitude, and the
longitude in this section.

The response object
Before we dive into the body, let's discuss about the  object. We can look at the

 object by printing it to the screen. Let's swap out body in the 
statement for  in the code:



Basics of Asynchronous Programming in Node.js Chapter 5

[ 299 ]

Then save the file and rerun things inside of the Terminal by running the 
command. We'll get that little delay while we wait for the request to come back, and then
we get a really complex object:

In the preceding screenshot, we can see the first thing we have in the  object is a
status code. The status code is something that comes back from an HTTP request; it's a part
of the response and tells you exactly how the request went.

In this case,  means everything went great, and you're probably familiar with some
status codes, like 404 which means the page was not found, or 500 which means the server
crashed. There are other body codes we'll be using throughout the book.

We'll be making our very own HTTP API, so you'll become intimately
familiar with how to set and use status codes.



Basics of Asynchronous Programming in Node.js Chapter 5

[ 300 ]

In this section, all we care about is that the status code is , which means things went
well. Next up in the  object, we actually have the  repeated because it is part
of the . Since it's the most useful piece of information that comes back, the request
module developers chose to make it the third argument, although you could access it using

 as you can clearly see in this case. Here, we have all of the information
we've already looked at, address components, formatted address geometry, so on.

Next to the body argument, we have something called , as shown here:

Now,  are part of the HTTP protocol, they are key-value pairs as you can see in the
preceding screenshot, where the key and the value are both strings. They can be sent in the
request, from the Node server to the Google API server, and in the response from the
Google API server back to the Node server.

Headers are great, there's a lot of built-in ones like . The  is
HTML for a website, and in our case, it's . We'll talk about headers
more in the later chapters. Most of these headers are not important to our application, and
most we're never ever going to use. When we go on and create our own API later in the
book, we'll be setting our own headers, so we'll be intimately familiar with how these
headers work. For now, we can ignore them completely, all I want you to know is that these
headers you see are set by Google, they're headers that come back from their servers.



Basics of Asynchronous Programming in Node.js Chapter 5

[ 301 ]

Next to the headers we have the request object, which stores some information about the
request that was made:

As shown in the preceding screenshot, you can see the protocol HTTPS, the host, the
 website, and other things such as the address parameters, the

entire URL, and everything else about the request, which is stored in this part.

Next, we also have our own headers. These are headers that were sent from Node to the
Google API:



Basics of Asynchronous Programming in Node.js Chapter 5

[ 302 ]

This header got set when we added  to options object in our code. We told
request we want JSON back and request went on to tell Google, Hey, we want to accept some
JSON data back, so if you can work with that format send it back! And that's exactly what Google
did.

This is the  object, which stores information about the  and about the
request. While we'll not be using most of the things inside the  argument, it is
important to know they exist. So if you ever need to access them, you know where they live.
We'll use some of this information throughout the book, but as I mentioned earlier, most of
it is not necessary.

For the most part, we're going to be accessing the body argument. One thing we will use is
the status. In our case it was . This will be important when we're making sure that the
request was fulfilled successfully. If we can't fetch the location or if we get an error in the
status code, we do not want to go on to try to fetch the weather because obviously we don't
have the latitude and longitude information.



Basics of Asynchronous Programming in Node.js Chapter 5

[ 303 ]

The error argument
For now, we can move on to the final thing which is error. As I just mentioned, the status
code can reveal that an error occurred, but this is going to be an error on the Google servers.
Maybe the Google servers have a syntax error and their program is crashing, maybe the
data that you sent is invalid, for example, you sent an address that doesn't exist. These
errors are going to become evident via the status code.

What the error argument contains is errors related to the process of making that HTTP
request. For example, maybe the domain is wrong: if I delete  and the dot with  in the
URL, in our code, I get a URL that most likely doesn't exist:

In this case, I'll get an error in the error object because Node cannot make the HTTP request,
it can't even connect it to the server. I could also get an error if the machine I'm making the
request from does not have access to the internet. It's going to try to reach out to the Google
servers, it's going to fail, and we're going to get an error.

Now, we can check out the error object by deleting those pieces of text from the URL and
making a request. In this case, I'll swap out response for , as shown here:

Now, inside the Terminal, let's rerun the application by running the 
command, and we can see exactly what we get back:



Basics of Asynchronous Programming in Node.js Chapter 5

[ 304 ]

When we make the bad request, we get our error object printing to the screen, and the thing
we really care about is the error code. In this case we have the  error. This means
that our local machine could not connect to the host provided. In this case

, it doesn't exist so we'll get an error right here.

These are going to be the system errors, things such as your program not being able to
connect to the internet or the domain not being found. This is also going to be really
important when it comes to creating some error handling for our application there is a
chance that the user's machine won't be connected to the internet. We're going to want to
make sure to take the appropriate action and we'll do that depending on what is inside the
error object.

If we can fix the URL, setting it back to , and make the exact same
request by using the up arrow key and the enter key, the request error object it's going to be
empty, and you can see null print to the screen:

In this case, everything went great, there was no error, and it was able to successfully fetch
the data, which it should be able to because we have a valid URL. That is a quick rundown
of the body, the , and the error argument. We will use them in more detail as we
add error handling.



Basics of Asynchronous Programming in Node.js Chapter 5

[ 305 ]

Printing data from the body object
Now, we'll print some data from the body to the screen. Let's get started by printing the
formatted address, and then we will be responsible for printing both the latitude and the
longitude.

Printing the formatted address
We'll start with figure out where the formatted address is. For this, we'll go to the browser
and use JSONView. At the bottom of the browser page, you can see that little blue bar
shows up when we highlight over items, and it changes as we switch items. For formatted
address, for example, we access the  property, results is an array. In the case of
most addresses, you'll only get one result:



Basics of Asynchronous Programming in Node.js Chapter 5

[ 306 ]

We'll use the first result every time, so we have the index of , then it's the
 property. This bottom line is exactly what we need to type inside of

our Node code.

Inside Atom, in our code, we'll delete the  statement, and replace it with a
new  statement. We'll use template strings to add some nice formatting to
this. We'll add  with a colon and a space, then I'll inject the address using the dollar
sign and the curly braces. We'll access the body, results, and the first item in the results
array followed by formatted address, as shown here:

With this in place, I can now add a semicolon at the end and save the file. Next, we'll rerun
the application inside of the Terminal, and this time around we get our address printing to
the screen, as shown here:

Now that we have the address printing to the screen, what we would like to print both the
latitude and the longitude next.

Printing latitude and longitude
In order to get started, inside Atom, we'll add another  line right next to the

 we added for formatted address. We'll use template strings again to add
some nice formatting. Let's print the latitude first.



Basics of Asynchronous Programming in Node.js Chapter 5

[ 307 ]

For this, we'll add latitude followed by a colon. Then we can inject our variable using the
dollar sign with the curly braces. Then, the variable we want is on the body. Just like the
formatted address, it's also in the first results item; results at the index of zero. Next, we'll
be going into geometry. From geometry, we'll grab the location property, the latitude, ,
as shown here:

Now that we have this in place, we'll do the exact same thing for longitude. We'll add
another  statement in the next line of the code. We'll use template strings once
again, typing longitude first. After that, we'll put a colon and then inject the value. In this
case, the value is on the body; it's in that same results item, the first one. We'll go into
geometry location again. Instead of , we'll access . Then we can add a semicolon
at the end and save the file. This will look something like the following:

Now we'll test it from the Terminal. We'll rerun the previous command, and as shown in
the following screenshot, you can see we have the latitude, , and the longitude,

 printing to the screen:

And these are the exact same values we have inside the Chrome browser, , .
With this in place, we've now successfully pulled off the data we need to make that request
to the weather API.



Basics of Asynchronous Programming in Node.js Chapter 5

[ 308 ]

Summary
In this chapter, we have gone through a basic example of asynchronous programming.
Next, we talked about what happens behind the scenes when you run asynchronous code.
We got a really good idea about how your program runs and what tools and tricks are
happening behind the scenes to make it run the way it does. We through a few examples
that illustrate how the Call Stack, Node APIs, the Callback Queue, and the Event Loop
work.

Then, we learned how to use the request module to make an HTTP request for some
information, the URL we requested was a Google Maps Geocoding URL, and we passed in
the address we want the latitude and the longitude for. Then we used a callback function
that got fired once that data came back.

At the end of the section Callback functions and APIs, we looked into a quick tip on how we
can format objects when we want to print them to the console. Last, we looked into what
makes up the HTTPS request.

In the next chapter, we'll add some error handling to this callback because that's going to be
really important for our HTTP requests. There's a chance that things will go wrong, and
when they do, we'll want to handle that error by printing a nice error message to the screen.



66
Callbacks in Asynchronous

Programming
This chapter is the second part of our asynchronous programming in Node.js. In this
chapter, we'll look at callbacks, HTTP requests, and more. We're going to handle a lot of the
errors that happen inside callbacks. There's a lot of ways our request in  can go
wrong, and we'll want to figure out how to recover from errors inside of our callback
functions when we're doing asynchronous programming.

Next, we'll be moving our request code block into a separate file and abstracting a lot of
details. We'll talk about what that means and why it's important for us. We'll be using
Google's Geolocation API, and we'll be using the Dark Sky API to take location information
like a zip code and turn that into real-world current weather information.

Then, we'll start wiring up that forecast API, fetching real-time weather data for the address
that's geocoded. We'll add our request inside of the callback for . This will
let us take that dynamic set of latitude and longitude coordinates, the /  for the
address used in the arguments list, and fetch the weather for that location.

Specifically, we'll look into the following topics:

Encoding user input
Callback errors
Abstracting callbacks
Wiring up weather search
Chaining callbacks together



Callbacks in Asynchronous Programming Chapter 6

[ 310 ]

Encoding user input
In this section, you'll learn how to set up yargs for the weather app. You'll also learn how to
include user input, which is very important for our application.

As shown in the previous chapter, HTTPS request section, the user will not type their
encoded address into the Terminal; instead they will be typing in a plain text address like

.

Now this will not work for our URL, we need to encode those special characters, like the
space, replacing them with . Now  is the special character for the space, other special
characters have different encoding values. We'll learn how to encode and decode strings, so
we can set up our URL to be dynamic. It's going to be based off of the address provided in
the Terminal. That's all we're going to discuss in this section. By the end of the section,
you'll be able to type in any address you like, and you'll see the formatted address, the
latitude, and the longitude.

Installing yargs
Before we can get started doing any encoding, we have to get the address from the user,
and before we can set up yargs we have to install it. In the Terminal, we'll run the 

 command, the module name is , and we'll look for version 10.1.1, which is
the latest version at the time of writing. We'll use the  flag to run this installation, as
shown in the following screenshot:

Now the  flag is great because as you remember. It updates the  file and
that's exactly what we want. This means that we can get rid of the node modules folder
which takes up a ton of space, but we can always regenerate it using .



Callbacks in Asynchronous Programming Chapter 6

[ 311 ]

If you run  without anything else, no other module names or
flags. It will dig through that  file looking for all the
modules to install, and it will install them, recreating your node modules
folder exactly as you left it.

While the installation is going on, we do a bit of configuration in the  file. So we can
get started by first loading in yargs. For this, in the  file, next to request constant, I'll
make a constant called , setting it equal to  just like this:

Now we can go ahead and actually do that configuration. Next we'll make another constant
called . This will be the object that stores the final parsed output. That will take the
input from the process variable, pass it through , and the result will be right here in
the  constant. This will get set equal to , and we can start adding some calls:

Now when we created the notes app we had various commands, you could add a note and
that required some arguments, list a note which required just the title, list all notes which
didn't require any arguments, and we specified all of that inside of .

For the weather app the configuration will be a lot simpler. There is no command, the only
command would be get weather, but if we only have one why even make someone type it.
In our case, when a user wants to fetch the weather all they will do is type 
followed by the  flag just like this:

node app.js --address

Then they can type their address inside of quotes. In my case it could be something like
:

node app.js --address '1301 lombard street'

This is exactly how the command will get executed. There's no need for an actual command
like fetch weather, we go right from the file name right into our arguments.



Callbacks in Asynchronous Programming Chapter 6

[ 312 ]

Configuring yargs
To configure yargs, things will look a little different but still pretty similar. In the Atom, I'll
get started by calling , which will let us configure some top level options. In our
case, we'll pass in an object where we configure all of the options we need. Now I'll format
this like I do for all of my chained calls, where I move the call to the next line and I indent it
like this:

Now we can set up our options and in this case we just have one, it will be that  option; 
will be short for address. I could either type address in the options and I could put  in the
alias, or I could put  in the options and type address in the alias. In this case I'll put a as
shown here:

Next up, I can go ahead and provide that empty object, and we'll go through these same
exact options we used inside of the notes app. We will demand it. If you'll fetch the weather
we need an address to fetch the weather for, so I'll set  equal to :

demand: true,

Next up, we can set an , I'll set  equal to . Then finally we'll set
, we can set  to anything we think would be useful, in this case I'll go

with , as shown here:

alias: 'address',



Callbacks in Asynchronous Programming Chapter 6

[ 313 ]

      describe: 'Address to fetch weather for'

Now these are the three options we provided for the notes app, but I'll add a fourth one to
make our yargs configuration for the weather app even more full proof. This will be an
option called . Now  takes a Boolean either  or . In our case we
want  to be the value. This tells  to always parse the  or  argument as a
string, as opposed to something else like a number or a Boolean:

string: true

In the Terminal, if I were to delete the actual string ,  would still accept this,
it would just think I'm trying to add a Boolean flag, which could be useful in some
situations. For example, do I want to fetch in Celsius or in Fahrenheit? But in our case, we
don't need any sort of  or  flag, we need some data, so we'll set string to true to
make sure we get that data.

Now that we have our options configuration in place, we can go ahead and add a couple
other calls that we've explored. I'll add , calling it as shown in the following code,
which adds the  flag. This is really useful especially when someone is first using a
command. Then we can access , which takes all of this configuration, runs it through
our arguments, and restores the result in the  variable:

.help()
  .argv;



Callbacks in Asynchronous Programming Chapter 6

[ 314 ]

Now the  method adds that  argument, we can also add an alias for it right
afterwards by calling . Now  takes two arguments, the actual argument that
you want to set an alias for and the alias. In our case, we already have  registered, it
gets registered when we call , and we'll set an alias which will just be the letter ,
awesome:

Now we have all sorts of really great configurations set up for the weather app. For
example, inside the Terminal I can now run , and I can see all of the help information
for this application:

I could also use the shortcut , and I get the exact same data back:



Callbacks in Asynchronous Programming Chapter 6

[ 315 ]

Printing the address to screen
Now the address is also getting passed through but we don't print it to the screen, so let's
do that. Right after the configuration, let's use  to print the entire 
variable to the screen. This will include everything that got parsed by :

Let's go ahead and rerun it in the Terminal, this time passing in an address. I'll use the 
flag, and specifying something like , closing the quotes, and hitting
enter:

node app.js -a '1301 lombard street'

When we do this we get our object, and as shown in the code output, we have 1301
Lombard St, Philadelphia, PA 19147, USA, the plain text address:

In the preceding screenshot, notice that we happen to fetch the latitude and longitude for
that address, but that's just because we have it hard coded in the URL in . We still
need to make some changes in order to get the address, the one that got typed inside the
argument, to be the address that shows up in the URL.



Callbacks in Asynchronous Programming Chapter 6

[ 316 ]

Encoding and decoding the strings
To explore how to encode and decode strings we'll head into the Terminal. Inside the
Terminal, first we'll clear the screen using the  command, and then we boot up a node
process by typing the  command as shown:

node

Here we can run any statements we like. When we're exploring a really basic node or
JavaScript feature, we'll look into some examples first, and then we go ahead and add it into
our actual application. We'll look at two functions,  and

. We'll get started with encoding first.

Encoding URI component
Encoding, the method is called , encode URI in uppercase
component, and it takes just one argument, the string you want to encode. In our case, that
string will be the address, something like . When
we run this address through  by hitting enter, we get the encoded
version back:

encodeURIComponent('1301 lombard street philadelphia')

As shown in the following code output, we can see all the spaces, like the space between
1301 and lombard, have been replaced with their encoded character, and for the case of the
space it is %20. By passing our string through , we'll create
something that's ready to get injected right into the URL so we can fire off that dynamic
request.



Callbacks in Asynchronous Programming Chapter 6

[ 317 ]

Decoding URI component
Now the alternative to  is. This will take an encoded string like the
one in the previous example, and take all the special characters, like , and convert them
back into their original values, in this case space. For this, inside of 
once again we'll pass a string.

Let's go ahead and type our first and last name. In my case it's , and instead of a
space between them I'll add , which we know is the encoded character for a space. Since
we're trying to decode something, it's important to have some encoded characters here.
Once yours looks like the following code with your first and last name, you can go ahead
and hit enter, and what we get back is the decoded version:

decodeURIComponent('Andrew%20Mead')

As shown in the following code output, I have Andrew Mead with the  being replaced
by the space, exactly what we expected. This is how we can encode and decode URI
components in our app:

Pulling the address out of argv
Now what we want to do is pull the address out of , we already saw that it's there, we
want to encode it and we want to inject it in our URL in  file, replacing the address:

This will essentially create that dynamic request we've been talking about. We'll be able to
type in any address we want, whether it's an address or a zip code or a city state
combination, and we'll be able to fetch the formatted address, the latitude, and the
longitude.

In order to get started, the first thing I'll do is get the encoded address. Let's make a variable
called  in the  next to the  variable, where we can store that
result. We'll set this equal to the return value from the method we just explored in the
Terminal, . This will take the plain text address and return the
encoded result.



Callbacks in Asynchronous Programming Chapter 6

[ 318 ]

Now we do need to pass in the string, and we have that available on  which
is the alias:

var encodedAddress = encodeURIComponent(argv.address);

Here we could use  as well as , both will work the
same.

Now we have that encoded result all that's left to do is inject it inside of the URL string. In
the , currently we're using a regular string. We'll swap this out for a template string
so I can inject a variable inside of it.

Now that we have a template string, we can highlight the static address which ends at
 and goes up to the  sign, and remove it, and instead of typing in a static

address we can inject the dynamic variable. Inside of my curly braces, , as
shown here:

With this in place we are now done. We get the address from the Terminal, we encode it,
and we use that inside of a  call. So the formatted address, latitude, and longitude
should match up. Inside the Terminal, we'll shut down node by using control + C twice and
use clear to clear the Terminal output.

Then we can go ahead and run our app using , passing in either the  or
 flag. In this case, we'll just use . Then we can go ahead and type in an address,

for example,  as shown here:

node app.js -a '1614 south broad street philadelphia'



Callbacks in Asynchronous Programming Chapter 6

[ 319 ]

When you run it you should have that small delay while we fetch the data
from the geocode URL.

In this case we'll find that it's actually taking a little longer than we would expect, about
three or four seconds, but we do get the address back:

Here we have the formatted address with a proper zip code state and country, and we also
have the latitude and longitude showing up. We'll try a few other examples. For example
for a town in Pennsylvania called Chalfont, we can type in  which is not a
complete address, but the Google Geocode API will convert it into the closest thing, as
shown here:

We can see that it's essentially the address of the town, Chalfont, PA 18914 is the zip, with
the state USA. Next, we have the general latitude and longitude data for that town, and this
will be fine for fetching weather data. The weather isn't exactly changing when you move a
few blocks over.

Now that we have our data coming in dynamically, we are able to move on to the next
section where we'll handle a lot of the errors that happen inside of callbacks. There are a lot
of ways this request can go wrong, and we'll want to figure out how to recover from errors
inside of our callback functions when we're doing asynchronous programming.



Callbacks in Asynchronous Programming Chapter 6

[ 320 ]

Callback errors
In this section we'll learn how to handle errors inside of your callback functions, because as
you might guess things don't always go as planned. For example, the current version of our
app has a few really big flaws, if I try to fetch weather using  with the  flag
for a zip that doesn't exist, like , the program crashes, which is a really big problem.
It's going off. It's fetching the data, eventually that data will come back and we get an error,
as shown here:

It's trying to fetch properties that don't exist, such as
 is not a real property, and this is a big problem.

Our current callback expects everything went as planned. It doesn't care about the error
object, doesn't look at response codes; it just starts printing the data that it wants. This is the
happy path, but in real world node apps we have to handle errors as well otherwise the
applications will become really useless, and a user can get super frustrated when things
don't seem to be working as expected.



Callbacks in Asynchronous Programming Chapter 6

[ 321 ]

In order to do this, we'll add a set of /  statements inside of the callback. This will let
us check certain properties to determine whether or not this call, the one to our URL in the

, should be considered a success or a failure. For example, if the response code is a
404, we might want to consider that a failure and we'll want to do something other than
trying to print the address, latitude and longitude. If everything went well though, this is a
perfectly reasonable thing to do.

There are two types of errors that we'll worry about in this section. That will be:

The machine errors, things like being unable to connect to a network, these are
usually will show up in the error object, and
The errors coming from the other server, the Google server, this could be
something like an invalid address

In order to get started, let's take a look at what can happen when we pass a bad data to the
Google API.

Checking error in Google API request
To view what actually comes back in a call like the previous example, where we have an
invalid address, we'll head over to the browser and pull up the URL we used in the 
file:

We will remove the address we used earlier from the browser history, and type in ,
hit enter:



Callbacks in Asynchronous Programming Chapter 6

[ 322 ]

We get our results arrive but those are no results, and we have the status, the status says
, and this is the kind of information that's really important to track down.

We can use the status text value to determine whether or not the request was successful. If
we pass in a real zip code like , which is , we'll get our results back,
and as shown in the following image, the  will get set equal to :

We can use this status to determine that things went well. Between these status property
and the error object, which we have inside of our app, we can determine what exactly to do
inside of the callback.



Callbacks in Asynchronous Programming Chapter 6

[ 323 ]

Adding the if statement for callback errors
The first thing we'll do is add an  statement as shown below, checking if the error object
exists:

if (error) {

  }

This will run the code inside of our code block if the error object exists, if it doesn't fine,
we'll move on into the next  statement, if there is any.

If there is an error, all we'll do is add a  and a message to the screen,
something like :

This will let the user know that we were unable to connect to the user servers, not that
something went wrong with their data, like the address was invalid. This is what be inside
of the error object.

Now the next thing that we'll do is add an  statement, and inside of the condition
we'll check the status property. If the status property is , which it was for the
zip code , we want to do something other than trying to print the address. Inside of
our conditional in Atom, we can check that using the following statement:

If that's the case, we'll print a different message, other than 
, for this one we can use  to print 

:



Callbacks in Asynchronous Programming Chapter 6

[ 324 ]

This lets the user know that it wasn't a problem with the connection, we were just unable to
find the address they provided, and they should try with something else.

Now we have error handling for those system errors, like being unable to connect to the
Google servers, and for errors with the input, in this case we're unable to find a location for
that address, and this is fantastic, we have both of our errors handled.

Now the  property that shows up in the  statement,
is not going to be on every API, this is specific to the Google Geocode API.
When you explore a new API it's important to try out all sorts of data,
good data like a real address and bad data like an invalid zip code, to see
exactly what properties you can use to determine whether or not the
request was successful, or if it failed.

In our case, if the status is , we know the request failed and we can act
accordingly. Inside of our , now we'll add our last  clause, if things went well.

Adding if else statement to check body status property
Now we want to add the  clause checking if the  property equals .
If it does, we can go ahead and run these three lines inside of the code block:

If it doesn't, these lines shouldn't run because the code block will not execute. Then we'll
test things out inside of the Terminal, try to fetch the address of , and make sure that
instead of the program crashing we get our error message printing to the screen. Then we
go ahead and mess up the URL in the app by removing some of the important characters,
and make sure this time we get the 
message. And last we'll see what happens when we enter a valid address, and make sure
our three  statements still execute.



Callbacks in Asynchronous Programming Chapter 6

[ 325 ]

To get started we'll add that  statement, and inside of the condition we'll check if
 is :

If it is , then we'll simply take the three  lines (shown in the previous code
block) and move them in the  condition. If it is , we'll run these three

 statements:

console.log(`Address: ${body.results[0].formatted_address}`);
  console.log(`Latitude: ${body.results[0].geometry.location.lat}`);
  console.log(`Longitude: ${body.results[0].geometry.location.lng}`);

Now we have a request that handles errors really well. If anything goes wrong we have a
special message for it, and if things go right we print exactly what the user expects, the
address, the latitude, and the longitude. Next we'll test this.

To test this inside of the Terminal, we'll start by rerunning the command with an address
that's invalid:

node app.js -a 000000



Callbacks in Asynchronous Programming Chapter 6

[ 326 ]

When we run this command, we see that Unable to find address. prints to the screen.
Instead of the program crashing, printing a bunch of errors, we simply have a little message
printing to the screen. This is because the code we have in second  statement, that
tried to access those properties that didn't exist, no longer runs because our first 
condition gets caught and we simply print the message to the screen.

Now we also want to test that the first message (
) prints when it should. For this, we'll delete some part of the URl in our code,

let's say,  and , and save the file:

url:
`https://mapgoogleapis.com/maps/api/geocode/json?address=${encodedAddress}`
,

Then we'll rerun the previous command in the Terminal. This time around we can see
 prints to the screen just like it should:

Now we can test it the final thing, by first readjusting the URL to make it correct, and then
fetching a valid address from the Terminal. For example, we can use the ,
setting  equal to , which is a zip code in New Jersey:

node app.js --address 08822



Callbacks in Asynchronous Programming Chapter 6

[ 327 ]

When we run this command, we do indeed get our formatted address for Flemington, NJ,
with a zip code and the state, and we have our latitude and longitude as shown here:

We now have a complete error handling model. When we make a request to Google
providing a address that has problems, in this case there's , the error object
will get populated, because it's not technically an error in terms of what request thinks an
error is, it's actually in the response object, which is why we have to use  in
order to check the error.

That is it for this section, we now have error handling in place, we handle system errors,
Google server errors, and we have our success case.

Abstracting callbacks
In this section, we'll be refactoring , taking a lot of the complex logic related to
geocoding and moving it into a separate file. Currently, all of the logic for making the
request and determining whether or not the request succeeded, our  statements,
live inside of :



Callbacks in Asynchronous Programming Chapter 6

[ 328 ]

This is not exactly reusable and it really doesn't belong here. What I'd like to do before we
add even more logic related to fetching the forecast, that's the topic of the next section, is
break this out into its own function. This function will live in a separate file, like we did for
the notes application.

In the  we had a separate file that had functions for adding, listing, and
removing notes from our local adjacent file. We'll be creating a separate function
responsible for geocoding a given address. Although the logic will stay the same, there
really is no way around it, it will be abstracted out of the  file and into its own
location.

Refactoring app.js and code into geocode.js file
First up, we will need to create a new directory and a new file then we'll add a few more
advanced features to the function. But before that, we'll see what the require statement will
look like.

Working on request statement
We'll load in via a constant variable called  the module, and we'll set it equal to

, since we're requiring a local file we'll add that relative path,
:

That means you need to make a directory called  in the  folder, and a
file called . Since we have a  extension, we can actually leave it off of our
require call.

Now, in the  file, next to  object, we need to call .
The  function, that will be the function responsible for all the logic we
currently have in . The  function will take the address,

:



Callbacks in Asynchronous Programming Chapter 6

[ 329 ]

It will be responsible for doing everything, encoding the URL, making the request, and
handling all of the error cases. This means, in that new file we need to export the

 function, just like we exported functions from the 
file. Next, we have all of the logic here:

This logic needs to get moved inside of the  function. Now we can copy
and paste the preceding shown code directly, there really is no way around some of the
more complex logic, but we will need to make a few changes. We'll need to load requests
into that new file, since we use it and it isn't going to be required in that file by default.
Then we can go ahead and clean up the request require call in the code, since we won't be
using it in this file.

Next up, the  object is not going to exist, we'll get that passed in via the first argument,
just like the  in the  statement. This means we'll need to
swap this out for whatever we call that first argument for example, address. Once this is
done, the program should work exactly as it works without any changes in , there
should be no change in functionality.



Callbacks in Asynchronous Programming Chapter 6

[ 330 ]

Creating geocode file
To get started, let's make a brand new directory in the  folder, that's the first
thing we need to do. The directory is called , which aligns with the require
statement we have in the  variable. In  folder, we'll make our file

:

Now inside of , we can get started by loading in request, let's make a constant
called , and we'll set it equal to :

Now we can go ahead and define the function responsible for geocoding, this one will be
called . We'll make a variable called , setting it equal to
an arrow function, and this arrow function will get an  argument past in:

This is the plain text unencoded address. Now before we copy the code from  into
this function body, we want to export our  function using

, which we know as an object. Anything we put on 
object will be available to any files that require this file. In our case, we want to make a

 property available, setting it equal to the  function that
we defined in the preceding statement:



Callbacks in Asynchronous Programming Chapter 6

[ 331 ]

Now it's time to actually copy all of the code from  in to . We'll cut the
request function code, move in to , and paste it inside of the body of our
function:

The only thing we need to change inside of this code, is how we get the plaintext address.
We no longer have that  object, instead we get  passed in as an argument. The
final code will look like the following code block:



Callbacks in Asynchronous Programming Chapter 6

[ 332 ]

With this in place, we're now done with the  file. It contains all of the complex logic
for making and finishing the request. Over at , we can clean things up by removing
some extra spaces, and removing the request module which is no longer used in this file.
The final  file will look like the following code block:

Now at this point the functionality should be exactly the same. Inside of the Terminal, I'll go
ahead and run a few to confirm the changes worked. We'll use the  flag to search for a zip
code that does exist, something like , and as shown, we can see the address, the
latitude, and the longitude:



Callbacks in Asynchronous Programming Chapter 6

[ 333 ]

Now we'll swap out that zip code to one that does not exist, like , when we run this
through the geocoder, you can see Unable to find address prints to screen:

It means all of the logic inside of  is still working. Now the next step in the
process is the process of adding a callback function to .

Adding callback function to geocodeAddress
The goal of refactoring the code and  was not to get rid of the callback, the goal was
to abstract all the complex logic related to encoding the data, making that request, and
checking for errors.  should not care about any of that, it doesn't even need to know
that an HTTP request was ever made. All the  should care about is passing an
address to the function, and doing something with the result. The result being either an
error message or the data, the formatted address, the latitude, and the longitude.

Setting up the function in geocodeAddress function in
app.js
Before we go ahead and make any changes in , we want to take a look at how
we'll structure things inside of . We'll pass an arrow function to ,
and this will get called after the request comes back:

In the parentheses, we'll expect two arguments, , which will be a string, and
, which will contain the address, the latitude, and the longitude:



Callbacks in Asynchronous Programming Chapter 6

[ 334 ]

Out of these two only one will be available at a time. If we have an error message we'll not
have results, and if we have results we'll not have an error message. This will make the
logic in the arrow function, of determining whether or not the call succeeded, much
simpler. We'll be able to use an  statement, , and if there is an error
message, we can simply print it to the screen using  statement:

There's no need to dig into any sort of object and figure out exactly what's going on, all of
that logic is abstracted in . Now if there is no error message inside of the 
clause, we can go ahead and print the results. We'll use that pretty print method we talked
about in the previous chapter, we'll add the  statement,
and we'll pretty print the results object which will be an object containing an address
property, a latitude property, and a longitude property.

Then, we'll pass the  argument as our second argument. This skips over the
filtering function which we don't need, and then we can specify the spacing, which will
format this in a really nice way, we'll use two spaces as shown here:

Now that we have our function set up inside of  function in , and
we have a good idea about how it will look, we can go ahead and implement it inside of

.

Implementing the callback function in geocode.js file
In our arguments definition, instead of just expecting an address argument we'll also expect
a callback argument, and we can call this callback argument whenever we like. We'll call it
in three places. We'll call it once inside of the  block, instead of calling

 we'll simply call the callback with the 
 string. This string will be the error message we defined in 

function in .



Callbacks in Asynchronous Programming Chapter 6

[ 335 ]

In order to do this, all we need to do is change our  call to a  call.
We'll pass it as the first argument our error message. We can take the string exactly as it
appeared in , and move it into the arguments for . Then I can
remove the  call and save the file. The resultant code will look like following:

Now we can do the exact same thing in the next  block for our other 
statement, when there is , we'll replace  with :

Now the last  block will be a little trickier. It's a little trickier because we don't
exactly have our object. We also need to create an  variable for the first
argument, since an error message will not be provided when things go well. All we have to
do to create that undefined error message is call , passing an  variable
as the first argument. Then we can go ahead and specify our object as the second argument,
and this object, this will be exactly what's in the  function, results:

Now as I mentioned the results have three properties: the first one will be formatted
address, so let's go ahead and knock that out first. We'll set  equal to

, just like we have in the  variable of  statement:



Callbacks in Asynchronous Programming Chapter 6

[ 336 ]

Here we're making things even easier, instead of having complex properties that are nested
deep inside of an object inside of , we'll be able to access a simple 
property, and we'll do the same thing for  and  of 
statements.

Next, we'll grab the code that let us fetch the latitude, and I'll add my second property,
, setting it equal to the code we grab from the  statement. Then we

can go ahead and add the last property, which will be , setting that equal to the
 code, replacing  with . Now that we have this in place we can add a

semicolon at the end, and remove the  statements since they're no longer
necessary, and with this we are done:

We can now rerun the file, and when we do we'll pass an address to , this
will go off and make the request, and when the request comes back, we'll be able to handle
that response in a really simple way.



Callbacks in Asynchronous Programming Chapter 6

[ 337 ]

Testing the callback function in geocode.js file
Inside of the Terminal, we'll go back to run two  commands; the command
where we used the zip code of , everything works as expected and a bad zip code

, to show the error message.

As shown in the following code output, we can see our results object with an address
property, a latitude property, and a longitude property:

In case of a bad zip code, we just want to make sure the error message still shows up, and it
does, Unable to find that address. prints to the screen, as shown here:

This is happening because of the  statement in the  function in .

After abstracting all of that logic to the  file, the  file is now a lot simpler
and a lot easier to maintain. We can also call  in multiple locations. If we
want to reuse the code we don't have to copy and paste the code, which would not follow
the DRY principle, which stands for Don't Repeat Yourself, instead we can do the DRY
thing and simply call  like we have in the  file. With this in place
we are now done fetching the  data.



Callbacks in Asynchronous Programming Chapter 6

[ 338 ]

Wiring up weather search
In this section, you'll make your very first request to the weather API, and we'll do this in a
static way at first, meaning that it will not use the actual latitude and longitude for the
address we passed in, we'll simply have a static URL. We'll make the request and we'll
explore what data we get back in the body.

Exploring working of API in the browser
Now before we can add anything to Atom, we want to go ahead and explore this API so we
can see how it works in the browser. This will give us a better idea about what weather data
we get back, when we pass a latitude and longitude to the API. To do this we'll head over to
the browser, and we'll visit a couple of URLs.

First up let's go to . It is a regular weather website, you type in your location
and you get all the weather information you'd expect:



Callbacks in Asynchronous Programming Chapter 6

[ 339 ]

As shown in the preceding image, there's warnings, there's radar, there's the current
weather, and we also have the weekly forecast in the website as shown in the following
image:

This is similar to , but the one cool thing about  is that the API that
powers this website, it's actually available to you as a developer. You can make a request to
our URL, and you can fetch the exact same weather information.



Callbacks in Asynchronous Programming Chapter 6

[ 340 ]

That is exactly what we'll do when we can explore the API by going to the website
. Here we can sign up for a free developer account, in order to get

started making those weather requests:

The Dark Sky Forecast API gives you 1,000 free requests a day, and I do not see us going
over that limit. After the 1,000 requests, each costs a one thousandth of a penny, so you get a
thousand requests for every penny you spend. We'll never go over that limit so don't even
worry about it. There is no credit card required to get started, you'll simply get cut off after
you make a thousand requests.



Callbacks in Asynchronous Programming Chapter 6

[ 341 ]

To get started you'll need to register for a free account, it's really simple, we just need an
email and a password. Once we've created an account and we can see the dashboard as
shown here:

The only piece of information we need from this page is our API key. The API key is like a
password, it will be part of the URL we request and it will help  keep track of
how many requests we make a day. Now I'll take this API key and paste it in the , so
we have it accessible later when we need it.



Callbacks in Asynchronous Programming Chapter 6

[ 342 ]

The next thing we'll do is explore the documentation, the actual URL structure we need to
provide in order to fetch the weather for a given latitude and longitude. We can get that by
clicking the API Docs link button, which is present in the top-right side of The Dark Sky
Forecast API page. This'll lead us to following page:

In the API Docs link, we have a Forecast Request URL. As shown in the preceding image,
this URL is exactly what we need to make a request to in order to fetch the data.



Callbacks in Asynchronous Programming Chapter 6

[ 343 ]

Exploring the actual URL for code
Before we add this URL into our app and use the request library, we need to find the actual
URL which we can use to make the request. For this, we'll copy it and paste it into a new
tab:

Now, we do need to swap out some of the URL information. For example, we have our API
key that needs to get replaced, we also have latitude and longitude. Both of those need to
get replaced with the real data. Let's get started with that API key first since we already
copy and pasted it inside of . We'll copy the API key, and replace the letters 
with the actual value:

Next up, we can grab a set of longitude and latitude coordinates. For this, go inside the
Terminal and run our app, , and for the address we can use any zip let's say,

 to fetch the latitude and longitude coordinates.

Next up, we'll copy these and place into the URL where they belong. The latitude goes
between the forward slash and the comma, and the longitude will go after the comma, as
shown here:



Callbacks in Asynchronous Programming Chapter 6

[ 344 ]

Once we have a real URL with all of those three pieces of info swapped out for actual info,
we can make the request, and what we'll get back is the forecast information:

Remember, this way the information is showing in the preceding image is
due to JSONView, I highly recommend installing it.

Now the data we get back, it is overwhelming. We have a forecast by the minute, we have
forecasts by the hour, by the week, by the day, all sorts of information, it's really useful but
it's also super overwhelming. In this chapter, we'll be using the first object that is

. This stores all of the current weather information, things like the current
summary which is clear, the temperature, the precipitation probability, the humidity, a lot
of really useful information is sitting in it.

In our case, what we really care about is the temperature. The current temperature in
Philadelphia is shown  degrees. This is the kind of information we want to use inside
of our application, when someone searches for the weather in a given location.



Callbacks in Asynchronous Programming Chapter 6

[ 345 ]

Making a request for the weather app using the
static URL
Now in order to play around with the weather API, we'll take the exact same URL we have
defined in the previous section, and we'll make a request in . First, we want to do a
little setup work.

Inside of , we'll comment out everything we have so far, and next to our API key
we'll make a call to request, requesting this exact URL, just like we did for the geocode API
in the previous section/chapter, before we made it dynamic. Then we'll print out the

 property to the screen, so when we run the app we'll see
the current temperature for whatever latitude and longitude we used. In our case it's a static
latitude and longitude representing Philadelphia.

In order to get started we'll load in request. Now we had it in the  file before and
then we removed it in the previous section, but we'll add it back once again. We'll add it
next to the commented out code, by creating a constant called , and loading it in,

 equals to :

Now we can go ahead and make the actual request, just like we did for the geocode API by
calling , it's a function just like this:

We have to pass in our two arguments, the options object is the first one, and the second
one is the arrow function:



Callbacks in Asynchronous Programming Chapter 6

[ 346 ]

This is our callback function that gets fired once the HTTP request finishes. Before we fill
out the actual function, we want to set up our options. There're two options, URL and
JSON. We'll set  equal to the static string, the exact URL we have in the browser:

Then in the next line after comma, we can set  equal to , telling the request library
to go ahead and parse that body as JSON, which it is:

From here, we can go ahead and add our callback arguments; , , and .
These are the exact same three arguments we have in the  block of  file for
the  request:

Now that we have this in place, the last thing we need to do is print the current
temperature, which is available on the body using  statement. We'll use

 to print , as shown here:

console.log(body.currently.temperature);



Callbacks in Asynchronous Programming Chapter 6

[ 347 ]

Now that we have the temperature printing, we need to test it by running it from the
Terminal. In the Terminal, we'll rerun the previous command. The address is not actually
being used here since we commented out that code, and what we get is 28.65, as shown in
this code output:

With this we have our weather API call working inside of the application.

Error handling in the the callback function
Now we do want to add a little error handling inside of our callback function. We'll handle
errors on the error object, and we'll also handle errors that come back from the 
servers. First up, just like we did for the geocoding API, we'll check if error exists. If it does,
that means that we were unable to connect to the servers, so we can print a message that
relays that message to the user,  something like 

:

Now that we've handled general errors, we can move on to a specific error that the
 API throws. This happens when the format of the URL, the latitude and

longitude, is not correct.



Callbacks in Asynchronous Programming Chapter 6

[ 348 ]

For example, if we delete some numbers including the comma in the URL, and hit enter
we'll get a 400 Bad Request:

This is the actual HTTP status code. If you remember from the  API we had a
 property that was either  or . This is similar to that

property, only this uses the HTTP mechanisms instead of some sort of custom solution that
Google used. In our case, we'll want to check if the status code is 400. Now if we have a bad
API key, I'll add a couple e's in the URL, we'll also get a 400 Bad Request:

So both of these errors can be handled using the same code.

Inside of Atom, we can handle this by checking the status code property. After our 
statement closing curly brace, we'll add  block, 

, this is the property we looked at when we looked at the
response argument in detail.  will be equal to  if something
went wrong, and that's exactly what we'll check for here:



Callbacks in Asynchronous Programming Chapter 6

[ 349 ]

If the status code is  we'll print a message, 
:

Now we've handled those two errors, and we can move on to the success case. For this we'll
add another else if block with  equals . The status code will
equal  if everything went well, in that case we'll print the current temperature to the
screen.

I'll cut the  line out and paste it inside of
the else if code block:

Another way of error handling
There's is another way to represent our entire if block code. The following is an updated
code snippet, and we can actually replace everything we have in the current callback
function with this code:



Callbacks in Asynchronous Programming Chapter 6

[ 350 ]

This condition checks if there is no error and the response status code is a , if that's the
case what do we do? We simply print the temperature like we were doing last time, that
was in the  clause at the very bottom. Now we have an  case in the updated
code snippet, so if there is an error or the status code is not a , we'll go ahead and print
this message to the screen. This will handle things like the server not having a network
connection, or 404s from an invalid or broken URL. All right, use this code instead and
everything should be working as expected with the latest version of the weather API.

Testing the error handling in callback
Now we have some error handling in place and we can go ahead and test that our app still
works. From the Terminal we'll rerun the previous command, and we still get a
temperature 28.71:

Back inside of Atom, we'll trash some of the data by removing the comma, saving the file:

url:
'https://api.forecast.io/forecast/4a04d1c42fd9d32c97a2c291a32d5e2d/39.93962
84-75.18663959999999',



Callbacks in Asynchronous Programming Chapter 6

[ 351 ]

When we rerun it from the Terminal, this time, we would expect Unable to fetch weather.
to print to the screen, and when I rerun the app that is exactly what we get, as shown here:

Now, let's add the comma back in and test our last part of the code. To test the if error, we
can test that by removing something like the dot from :

url:
'https://api.forecastio/forecast/4a04d1c42fd9d32c97a2c291a32d5e2d/39.939628
4,-75.18663959999999',

We can rerun the app, and we see Unable to connect to Forecast.io server.:

All of our error handling works great, and if there is no errors the proper temperature
prints to the screen, which is fantastic.

Chaining callbacks together
In this section, we'll take the code that we created in the last section, and break it out into its
own file. Similar to what we did with the Geocoding API request where we called

 instead of actually having the request call in . That means we'll
make a new folder, a new file, and we'll create a function in there that gets exported.

After that we'll go ahead and learn how to chain callbacks together. So when we get that
address from the Terminal we can convert that into coordinates. And we can take those
coordinates and convert them into temperature information, or whatever weather data we
want to pull off of the return result from the Forecast API.



Callbacks in Asynchronous Programming Chapter 6

[ 352 ]

Refactoring our request call in weather.js file
Now before we can dive into the refactoring, we'll create a brand new file, and we'll worry
about getting the code we created in the previous section into that function. Then we'll go
for creating that callback.

Defining the new function getWeather in weather file
First, let's make the directory. The directory will be called . And in the 
directory we'll make a new file called .

Now in this file we can take all of our code from , and paste it in :

The only thing we need to do in order to take this code and convert it to create that
function, which will get exported. And then we can move our call to the request inside of it.
We'll make a brand new function called  next to the  variable:

 will take some arguments, but that'll be added later. For now we'll leave the
arguments list empty. Next, we'll take our call to request and move it inside the

 function:



Callbacks in Asynchronous Programming Chapter 6

[ 353 ]

Then, we can go ahead and export this  function. We'll add
 and set it equal to the  function that we

defined up:

Providing weather directory in app.js
Now that we have this in place, we can go ahead and move into  to add some code.
The first thing we need do is remove the API key. We no longer need that. And we'll
highlight all of the commented code and uncomment it using the command .

Now we'll import the  file. We'll create a  variable called , and
setting it equal to the , return result:

In this case we're requiring our brand new file we just created. We'll provide a relative path
 because we're loading in a file that we wrote. Then we'll provide the directory named

 followed by the file named . And we can leave off that  extension,
as we already know:



Callbacks in Asynchronous Programming Chapter 6

[ 354 ]

Now that we have the Weather API loaded in, we can go ahead and call it. We'll comment
out our call to  and, we'll run :

Now as I mentioned before, there will be arguments later in the section. For now we'll leave
them empty. And we can run our file from the Terminal. This means we should see the
weather printing for the coordinates, we hard-coded in the previous section. So, we'll run

. We'll need to provide an address since we haven't commented out the yargs
code. So we'll add a dummy address. I'll use a zip code in New Jersey:

node app.js -a 08822

Now, the  code is never running, because that is commented out. But we are
running the weather code that got moved to the new file. And we are indeed seeing a
temperature 31.82 degrees, which means that the code is properly getting executed in the
new file.

Passing the arguments in the getWeather function
Now we'll need to pass in some arguments, including a callback function and inside

 variable in weather file. We'll need to use those arguments instead of a static
/  pair. And we'll also need to call the callback instead of using . The

first thing we'll do before we actually change the  code is change the 
code. There are three arguments to be added. These are ,  and .



Callbacks in Asynchronous Programming Chapter 6

[ 355 ]

First up we'll want to pass in the latitude. We'll take the static data, like the latitude part
from the URL in , copy it, and paste it right inside of the arguments list in

 as first argument. The next one will be the longitude. We'll grab that from the URL,
copy it, and paste it inside of  as the second argument:

Then we can go ahead and provide the third one, which will be the callback function. This
function will get fired once the weather data comes back from the API. I'll use an arrow
function that will get those two arguments we discussed earlier in the previous section:

 and :

The  object containing any sort of temperature information we want. In
this case it could be the temperature and the actual temperature. Now, we have used

 in place of results, and this is because, we want to differentiate
 from the results variable in .

Inside of the  function in , we now need to use -  statements in
order to print the appropriate thing to the screen, depending on whether or not the error
message exists. If there is  we do want to go ahead and print it using

. In this case we'll pass in the  variable:

Now if there is no error message we'll use the  object. We'll be printing a
nice formatted message later. For now we can simply print the  object
using the pretty printing technique we talked about in the previous chapter, where we call

 inside of :



Callbacks in Asynchronous Programming Chapter 6

[ 356 ]

Inside the  parentheses, we'll provide those three arguments, the actual
object; ,  for our filtering function, and a number for our
indentation. In this case we'll go with  once again:

And now that we have our  call getting called with all three arguments, we can
go ahead and actually implement this call inside of .

Implementing getWeather callback inside weather.js file
To get started we'll make the URL in the  file dynamic, which means we need
to replace the url strings with template strings. Once we have template strings in place, we
can inject the arguments, latitude and longitude, right into the URL.

Let's go ahead and define all the arguments that are getting passed in. We add , ,
and our :

First off let's inject that latitude. We'll take the static latitude, remove it, and between the
forward slash and the comma we'll inject it using dollar with our curly braces. This lets us
inject a value into our template string; in this case . And we can do the exact same thing
right after the comma with the longitude. We'll remove the static longitude, use the dollar
sign with our curly braces to inject the variable into the string:



Callbacks in Asynchronous Programming Chapter 6

[ 357 ]

Now that the URL is dynamic, the last thing we need to do inside of  is change
our  calls to  calls.

To change our  into  calls, for the first two  calls we
can replace  with . And this will line up with the arguments that we
specified in , where the first one is the  and the second one is the

. In this case we'll pass the  back and the second argument
is , which it should be. We can do the same thing for 

:

Now the third  call will be a little more complex. We'll have to actually create
an object instead of just passing the temperature back. We'll call the  with the first
argument being , because in this case there is no . Instead we'll
provide that  object:

Inside the parentheses, we can define all the temperature properties we like. In this case
we'll define , setting it equal to , which stores all of the

 weather data, :



Callbacks in Asynchronous Programming Chapter 6

[ 358 ]

Now that we have the  variable we can go ahead and provide that second
property to the object, which is . Actual temperature will account for
things like humidity, wind speed, and other weather conditions. The actual temperature
data is available under a property on currently called . We'll
provide that. And as the value we'll use the same thing. This gets us to the 
object, just like we do for temperature. This will be

:

Now we have our two properties, so we can go ahead and remove that 
statement. Add a semicolon. The final code will look like:



Callbacks in Asynchronous Programming Chapter 6

[ 359 ]

Now we can go ahead and run the app. We have our  function wired up both
inside of the  file and inside of . Now once again we are still using static
coordinates, but this will be the last time we run the file with that static data. From the
Terminal we'll rerun the application:

And as shown we get our temperature object printing to the screen. We have our
temperature property 48.82 and we have the apparentTemperature, which is already at
47.42 degrees.

With this in place we're now ready to learn how to chain our callbacks together. That means
in  we'll take the results that come back from , pass them in to

, and use that to print dynamic weather for the address you provide over here
in the Terminal. In this case we would get the address for the town in New Jersey. As
opposed to the static address which we're using in the  file that latitude/longitude
pair is for Philadelphia.

Chaining the geocodeAddress and getWeather
callbacks together
To get started we have to take our  call and actually move it inside of the

 function for . Because inside this  function is the only
place we have access to the latitude and longitude pairs.

Now if we open the  file, we can see that we get  back as
the address property, we get the  back as latitude, and we get  back as
longitude. We'll start wiring this up.



Callbacks in Asynchronous Programming Chapter 6

[ 360 ]

Moving getWeather call into geocodeAddress function
First, we do need to remove the comments of  in the .

Next, we'll go ahead and take the  statement in the success case and replace it
with a  call that will print the formatted address:

This will print the address to the screen, so we know exactly what address we're getting
weather data for.

Now that we have our  printing the address, we can take the 
call, and move it right below the  line:

And with this in place we're now really close to actually chaining the two callbacks
together. All that's left to do is take these static coordinates and replace them with the
dynamic ones, which will be available in the  object.



Callbacks in Asynchronous Programming Chapter 6

[ 361 ]

Replacing static coordinates with dynamic coordinates
The first argument will be , which we defined in  on the object.
And the second one will be :

weather.getWeather(results.latitude, results.longitude,
    (errorMessage, weatherResults) => {

This is all we need to do to take the data from  and pass it in to
. This will create an application that prints our dynamic weather, the weather

for the address in the Terminal.

Now before we go ahead and run this, we'll replace the object call with a more formatted
one. We'll take both of the pieces of information-the  variable and the

 variable from  file, and use them in that string in
. This means that we can remove the  in the  block of

 call, replacing it with a different  statement:

We'll use template strings, since we plan to inject a few variables in; these're currently,
followed by the temperature. We'll inject that using . And
then we can go ahead and put a period, and add something along the lines of: 

, followed by the  property, which I'll inject using
. I'll put a period after that:



Callbacks in Asynchronous Programming Chapter 6

[ 362 ]

We now have a  statement that prints the weather to the screen. We also have
one that prints the address to the screen, and we have error handlers for both

 and .

Testing the chaining of callbacks
Let's go ahead and test this by rerunning the  command in the Terminal. We'll
use the same zip code, :

node app.js -a 08822

When we run it we get Flemington, NJ as the formatted address and It's currently is 31.01.
It feels like 24.9. Now to test that this is working we'll type in something else inside of
quotes, something like :

node app.js -a 'Key West fl'

And when we run this command we do get Key West, FL as shown as the formatted
address, and It's currently 64.51. It feels like 64.52.

With this in place, the weather application is now wired up. We take the address we get the
latitude/longitude pair using the Google Geocoding API. Then we use our forecast API to
take that latitude/longitude pair and convert it into temperature information.



Callbacks in Asynchronous Programming Chapter 6

[ 363 ]

Summary
In this chapter, we learned about how to set up yargs for the  file and how to
include user input in it. Next, we looked into how to handle errors inside of our callback
functions and how to recover from those errors. We simply added /  statements
inside of the  function. Callbacks are just one function, so in order to figure out if
things went well or if things didn't go well, we have to use /  statements, this lets us
do different things, such as print different messages, depending on whether or not we
perceive the request to have gone well. Then, we made our first request to the weather API,
and we looked into a way to fetch the weather based off of the latitude-longitude
combination.

Last, we looked in chaining the  and  call functions. We took
that request call that was originally in , and we moved it into , defining
it there. We used a callback to pass the data from  into  where we
imported the  file. Then, inside of the callback for  we call

 and inside of that  we printed the weather specific information to
the screen. This was all done using  functions.

In the next chapter, we'll talk about a different way we can synchronize our asynchronous
code using ES6 promises.



77
Promises in Asynchronous

Programming
In the previous two chapters, we looked at many important concepts of asynchronous
programming in Node. This chapter is about promises. Promises are available in JavaScript
since ES6. Although they have been around in third-party libraries for quite some time, they
finally made their way into the core JavaScript language, which is great because they're a
really fantastic feature.

In this chapter, we'll learn about how promises work, we'll start to understand exactly why
they're useful, and why they've even come to exist inside JavaScript. We'll take a look at a
library called axios that supports promises. This will let us simplify our code, creating our
promise calls easily. We'll actually rebuild an entire weather app in the last section.

Specifically, we'll look into following topics:

Introduction to ES6 promises
Advanced promises
Weather app with promises

Introduction to ES6 promises
Promises aim to solve a lot of the problems that come up when we have a lot of
asynchronous code in our application. They make it a lot easier to manage our
asynchronous computations things such as requesting data from a database.
Alternatively, in the case of a weather app, things such as fetching data from a URL.



Promises in Asynchronous Programming Chapter 7

[ 365 ]

In the  file we do a similar thing using callbacks:

In this code, we have two callbacks:

One that gets passed into 
One that gets passed into 

We use this to manage our asynchronous actions. In our case, it's things such as fetching
data from an API, using an HTTP request. We can use promises in this example to make the
code a lot nicer. This is exactly the aim later in the chapter.



Promises in Asynchronous Programming Chapter 7

[ 366 ]

In this section, we'll explore the basics concept of promises. We'll compare and contrast
callbacks with promises just yet, because there's a lot more subtleties than can be described
without knowing exactly how promises work. So, before we talk about why they're better,
we will simply create some.

Creating an example promise
In the Atom, inside the  folder, we'll create a new file and call it .
Before we define promises and talk about exactly how they work, we will run through a
simple example because that is the best way to learn just about anything going through an
example and seeing how it works.

To get started, we'll work through a very basic example. We'll stick to the core promise
features.

To get started with this very simple example, we'll make a variable called
. This will eventually store the promise object. We'll be calling various

methods on this variable to do something with the promise. We'll set the 
variable equal to the return result from the constructor function for promises. We'll use the

 keyword to create a new instance of a promise. Then, we'll provide the thing we want
to create a new instance of, , as shown here:

Now this  function, which is indeed a function we have to call it like one; that is,
it takes one argument. This argument will be a function. We'll use an anonymous arrow
function ( ), and inside it, we'll do all of the asynchronous stuff we want to do:

It will all be abstracted, kind of like we abstract the HTTP request inside the
 function in the  file:



Promises in Asynchronous Programming Chapter 7

[ 367 ]

All of the complex logic in the  function does indeed need to happen, but
the  file doesn't need to worry about it. The  function in
the  file has a very simple  statement that checks whether there's an error. If there
is an error, we will print a message, and if there's not, we move on. The same thing will be
true with promises.

The  callback function will get called with two arguments,  and
:

This is how we'll manage the state of our promise. When we make a promise, we're making
a promise; we're saying, "Hey, I'll go off and I'll fetch that website data for you." Now this
could go well, in which case, you will  the promise, setting its state to fulfilled.
When a promise is fulfilled, it's gone out and it's done the thing you've expected it to do.
This could be a database request, an HTTP request, or something else completely.

Now when you call , you're saying, "Hey, we tried to get that thing done man, but
we just could not." So the promise has been considered rejected. These are the two states
that you can set a promise to fulfilled or rejected. Just like inside , we either
provide one argument for an error, or we provide the second argument if things went well.
Instead of doing that though, promises give us two functions we can call.



Promises in Asynchronous Programming Chapter 7

[ 368 ]

Now, in order to illustrate exactly how we can use these, we'll call . Once again,
this is not asynchronous. We're not doing anything quite yet. So all of this will
happen essentially in real time, as far as you see in Terminal. We'll call  with some
data. In this case, I'll pass in a string, , as shown here:

Now this string is the value the promise was fulfilled with. This is exactly what someone
will get back. In case of the  function in app file, it could be the
data, whether it's the results or the error message. In our case though, we're using ,
so this will be the actual data the user wanted. When things go well,  is
what they expect.

Now you can only pass one argument to both  and ,
which means that if you want to provide multiple pieces of information I
recommend that you resolve or reject an object that you can set multiple
properties on. In our case though, a simple message, ,
will do the job.

Calling the promise method then
Now in order to actually do something when the promise gets either resolved or rejected,
we need to call a promise method called ; . The  method lets
us provide  functions for both success and error cases. This is one of the areas
where callbacks differ from promises. In a callback, we had one function that fired no
matter what, and the arguments let us know whether or not things went well. With
promises we'll have two functions, and this will be what determines whether or not things
went as planned.

Now before we dive into adding two functions, let's start with just one. Right here, I'll call
then, passing in one function. This function will only get called if the promise gets fulfilled.
This means that it works as expected. When it does, it will get called with the value passed
to . In our case, it's a simple , but it can be something like a user object in
the case of a database request. For now though, we'll stick with :



Promises in Asynchronous Programming Chapter 7

[ 369 ]

This will print  to the screen. Inside the callback, when the promise gets fulfilled
we'll call , printing , and then as a second argument, we'll print the
actual  variable:

Running the promise example in Terminal
Now that we have a very basic promise example in place, let's run it from the Terminal
using , which we installed in the previous chapter. We'll add , and then
we'll go into the  folder, :

When we do this right away, our app runs and we get success.  This
happens instantaneously. There was no delay because we haven't done anything
asynchronously. Now when we first explored callbacks (refer to , Basics of
Asynchronous Programming in Node.js ), we used  to simulate a delay, and this is
exactly what we'll do in this case.

Inside our  function, we'll call , passing in the two arguments:
the function to call after the delay and the delay in milliseconds. I'll go with , which is
2.5 seconds:

Now after those 2.5 seconds are up, then, and only then, do we want to  the
promise. This means that our function, the one we pass into then will not get called for 2.5
seconds. Because, as we know, this will not get called until the promise resolves. I'll save the
file, which will restart :



Promises in Asynchronous Programming Chapter 7

[ 370 ]

In Terminal, you can see we have our delay, and then  prints
to the screen. This 2.5 second delay was caused by this . After the delay was up
(in this case it's an artificial delay, but later it'll be a real delay), we're able to  with
the data.

Error handling in promises
Now there's a chance that things didn't go well. We have to handle errors inside our Node
applications. In that case, we wouldn't call , we would call . Let's comment
out the  line, and create a second one, where we call . We'll call 
much the same way we called . We have to pass in one argument, and in this case,
a simple error message like  will do:

Now when we call , we're telling the promise that it has been rejected. This means
that the thing we tried to do did not go well. Currently, we don't have an argument that
handles this. As we mentioned, this function only gets called when things go as expected,
not when we have errors. If I save the file and rerun it in Terminal, what we'll get is a
promise that rejects:



Promises in Asynchronous Programming Chapter 7

[ 371 ]

However, we don't have a handler for it, so nothing will print to the screen. This will be a
pretty big problem. We need to do something with that error message. Maybe we will alert
the user, or we will try some other code.

As shown in the previous code output, we can see that nothing printed between the
restarting and exiting. In order to do something with the error, we'll add a second argument
to the  method. This second argument is what lets us handle errors in our promises.
This argument will get executed and called with that value. In this case, it's our message.
We'll create an argument called , as shown here:

Inside the argument, we can do something with that. In this case, we'll print it to the screen
using , printing  with a colon and a space to add some nice formatting,
followed by the actual value that was rejected:

Now that we have this in place, we can refresh things by saving the file. We will now see
our error message in Terminal, because we now have a place for it to do something:

Here, we have a place for it to print the message to the screen; 
 prints to the screen, which works exactly as expected.



Promises in Asynchronous Programming Chapter 7

[ 372 ]

Merits of promises
We now have a promise that can either get resolved or rejected. If it gets resolved, meaning
the promise was fulfilled, we have a function that handles that. If it gets rejected, we have a
function that handles that as well. This is one of the reasons why promises are awesome.
You get to provide different functions, depending on whether or not the promise got
resolved or rejected. This lets you avoid a lot of complex  statements inside of our code,
which we needed to do in  to manage whether or not the actual callback succeeded
or failed.

Now inside a promise, it's important to understand that you can only either  or
 a promise once. If you  a promise you can't  it later, and if you

 it with one value you can't change your mind at a later point in time. Consider this
example, where I have a code like the following code; here I  first and then I

:

In this case, we'll get our success  printing to the screen. We'll never see
, because, as I just said, you can only do one of these actions once. You can

either  once or you can  once. You can't do both; you can't do either twice.

This is another great advantage over callbacks. There's nothing preventing us from
accidentally calling the  function twice. Let's consider the  file for
example. Let's add another line in the  block of geocode request call, as shown here:



Promises in Asynchronous Programming Chapter 7

[ 373 ]

This is a more obvious example, but it could easily be hidden inside of complex 
statements. In this case, our  function in  will indeed get called twice,
which can cause really big problems for our program. Inside the promise example this
callback will never get called twice, no matter how many times you try to call  or

, this function will only get fired once.

We can prove that right now by calling  again. In the promise example case, let's
save the file with the following changes:

Now, let's refresh things; we'll  with our message,  and we'll
never ever have the function fired a second time with no message. Because, as we said, the
promise is already resolved. Once you set a promise's state to either fulfilled or rejected,
you can't set it again.

Now before a promise's  or  function gets called, a promise is in a state
known as pending. This means that you're waiting for information to come back, or you're
waiting for your async computation to finish. In our case, while we're waiting for the
weather data to come back, the promise would be considered pending. A promise is
considered settled when it has been either fulfilled or rejected.

No matter which one you chose, you could say the promise has settled, meaning that it's no
longer pending. In our case, this would be a settled promise that was indeed fulfilled
because  is called right here. So these are just a couple of the benefits of promises.
You don't have to worry about having callbacks called twice, you can provide multiple
functions one for success handling and one for error handling. It really is a fantastic
utility!



Promises in Asynchronous Programming Chapter 7

[ 374 ]

Now that we've gone through a quick example of how promises work, going over just the
very fundamentals, we'll to move on to something slightly more complex.

Advanced promises
In this section, we'll explore two more ways to use promises. We'll create functions that take
input and return a promise. Also, we'll explore promise chaining, which will let us combine
multiple promises.

Providing input to promises
Now the problem with the example we discussed in the previous section is that we have a
promise function, but it doesn't take any input. This most likely is never going to be the case
when we're using real-world promises. We'll want to provide some input, such as the ID of
a user to fetch from the database, a URL to request, or a partial URL, for example, just the
address component.

In order to do this, we'll have to create a function. For this example, we'll make a variable,
which will be a function called :

This will be a function that simulates the async functionality using . In reality,
it's just going to add two numbers together. However, it will illustrate exactly what we need
to do, later in this chapter, to get our weather app using promises.

Now in the function, we will take two arguments,  and , and we'll return a promise:



Promises in Asynchronous Programming Chapter 7

[ 375 ]

So, whoever calls this  method, they can pass in input, but they can also get the
promise back so that they can use then to sync up and wait for it to complete. Inside the

 function, we'll use  to do this. We'll  the  object
using the exact same  syntax we did when we created the 
variable. Now this is the same function, so we do need to provide the constructor function
that gets called with both  and , just like this:

Now we have an  function, which takes two numbers and returns a promise. The
only thing left to do is to actually simulate the delay, and make the call to . To do
this, we'll simulate the delay using . Then we'll pass in my  function,
setting the delay to 1.5 seconds, or  milliseconds:

In the  function, we'll write a simple  statement that will check if the type
of both  and  is a number. If it is, great! We'll  the value of the two numbers
added. If they're not numbers (one or more), then we'll . To do this, we'll use the 
statement with the  operator:

Here, we're using the  object to get the string type before the variable. Also, we're
checking whether it's equal to a number, which is what will come back from  when
we have a number. Now similar to , we'll add ,  which is also a number:

We can add the two numbers up, resolving the value. Inside the code block of the 
statement, we'll call , passing in :



Promises in Asynchronous Programming Chapter 7

[ 376 ]

This will add the two numbers up, passing in one argument to . Now this is the
happy path when both  and  are indeed numbers. If things don't go well, we'll want to
add . We'll use the  block to do this. If the previous condition fails,
we'll  by calling :

Now we have an  function that takes two variables,  and , returns a promise,
and anyone who happens to call  can add a then call onto the return result to get
that value.

Returning the promises
Now what exactly will this look like? To show this, first we'll comment out all of the code
we have in the  variable of . Following this, we'll call
the  variable where we make . We'll call it like we would any other
function, by passing in two values. Remember, this could be a database ID or anything else
for an async function. In our case, it's just two numbers. Let's say,  and . Now the return
value from this function is a promise. We can make a variable and call then on that variable,
but we can also just tack the  method, as shown here:

This is exactly what we'll do when we use promises; we'll tack on then, passing in our
callbacks. The first callback being the success case, and the second one being the error case:

In the second callback, we'll get our , which we can log to the screen using
the  statement, as shown here:



Promises in Asynchronous Programming Chapter 7

[ 377 ]

If one or more of the numbers are not actually numbers, the  function will fire
because we called . If both are numbers, all we'll do will get the result and print it to
the screen, using . We'll add  and inside the arrow function ( ), we'll add
the  statement and print the string  with a colon. Then, as the second
argument in , we'll pass in the actual number, which will print it to the screen
as well:

Now that we have our promise  function in place, let's test this out inside
Terminal. To do this, we'll run  to start up :

Right away, we'll get the delay and the result,  prints to the screen. This is fantastic! We
are able to create the function that takes the dynamic input, but still returns a promise.

Now notice that we've taken an async function that usually requires callbacks and we've
wrapped it to use promises. This is a good handy feature. As you start using promises in
Node, you'll come to realize that some things do not support promises and you'd like them
to. For example, the request library that we used to make our HTTP requests does not
support promises natively. However, we can wrap our request call inside of a promise,
which is what we'll to do later in the section. For now though, we have a basic example
illustrating how this works. Next, we'd like to talk about promise chaining.



Promises in Asynchronous Programming Chapter 7

[ 378 ]

Promise chaining
Promise chaining is the idea of having multiple promises run in a sequence. For example, I
want to take an address and convert that into coordinates, and take those coordinates and
convert them into weather information; this is an example of needing to synchronize two
things. Also, we can do that really easily using promise chaining.

In order to chain our promises, inside our success call we'll return a new promise. In our
example, we can  a new promise by calling  again. I'll call  next
to the  and  statements, passing in two arguments: the result, whatever
the previous promise has returned, and some sort of new number; let's use :

Now we're returning a promise so we can add my chaining onto it by calling the 
method again. The  method will to get called after we close the closing parenthesis for
our previous  method. This will also take one or more arguments. We can pass in a
success handler, which will be a function and an error handler, which will also be a
function:

Now that we have our  callbacks set up, we can actually fill them out. Once again we
will get a result; this will be the result of  plus , which is , plus , which will be .
Then, we can print . Next, we'll print the actual value
from results variable:



Promises in Asynchronous Programming Chapter 7

[ 379 ]

Now our error handler will also be the same. We'll have  and we'll print it to
the screen using the , printing :

Now what we have is some chaining. Our first then  functions will fire based on
the result of our first  call. If it goes well, the first one will fire. If it goes poorly,
the second function will fire. Our second then call will be based on the  call,
where we add . This will let us chain the two results together, and we should get 
printing to the screen. We'll save this file, which will restart things inside .
Eventually, we'll get our two results:  and our . As shown in the following
code image, we get just that,  and , printing to the screen:

Error handling in promises chaining
Now when it comes to error handling, there are a few quirks; so, we'll simulate some errors.
First up, let's simulate an error in our second  call. We know we can do that by
passing in a value that's not a number. In this case, let's wrap  inside quotes:



Promises in Asynchronous Programming Chapter 7

[ 380 ]

This will be a string and our call should . Now we can save the file and see what
happens:

We get , then we get our error, . Exactly as we
expect, this is printing on the screen. Instead of getting , we get our error
message.

But things get a little trickier when something earlier on in the promise chain gets rejected.
Let's swap  with the number . Then let's replace  with the string , as shown
here:

This will cause our first promise to fail, which means we'll never see the result. We should
see the error message printing to the screen, but that's not what will happen:

When we restart, we do indeed get the error message printing to the screen, but then we
also get . The second then  is running because we
provided an error handler in the second  function. It's running the error handler.
Then it says, Okay, things must be good now we ran the error handler. Let's move on to the next
then call calling the success case.



Promises in Asynchronous Programming Chapter 7

[ 381 ]

To fix the error, we can remove both of our error handlers from both the  calls, and
replace them with a call at the very bottom, to a different method, which we'll call :

The catch promise method is similar to then, but it just takes one function. This is the error
handler. As shown in the following code, we can specify one error handler if any of our
promise calls fail. We'll take  and print it to the screen using

:

For now though, if things are a little blurry that is okay, as long as you're starting to see
exactly what we're doing. We're taking the result from one promise and passing it to a
different one. In this case, the result works exactly as expected. The first promise fails, we
get,  printing to the screen. Also, we don't get that broken
statement where we try to print , but we get undefined instead. Using catch, we can
specify an error handler that will fire for all of our previous failures. This is exactly what we
want.

The request library in promises
Now as I mentioned earlier, some libraries support promises while others don't. The request
library does not support promises. We will make a function that wraps request, returning a
promise. We'll use some functionalities from the  file from the previous
chapter.



Promises in Asynchronous Programming Chapter 7

[ 382 ]

First, let's discuss a quick setup, and then we'll actually fill it out. In the  folder,
we can make a new file to store this, called :

We'll make a function called . The  function will take
the plain text address, and it will return a promise:

The  function will return a promise. So if I pass in a ZIP code, such
as , I would expect a promise to come back, which I can attach a  call to. This
will let me wait for that request to finish. Right here, I'll tack on a call to , passing in
my two functions: the success handler for when the promise is fulfilled and the error
handler for when the promise is rejected:

Now when things go well, I'll expect the  object with the address, the ,
and the , and when things go poorly, I'll expect the error message:



Promises in Asynchronous Programming Chapter 7

[ 383 ]

When the error message happens, we'll just print it to the screen using 
. For now, when things go well and the success case runs, we'll just print

that entire object using our pretty printing technique, . Then, we'll call
, like we've done many times before, passing in the three arguments the

object, undefined for the filter method which we'll never use in the book, and the number
 for the number of spaces we'd like to use as our indentation:

This is what we want to create, the function that lets this functionality work as expected.
This  call should work as shown in the previous code.

To get started I'll return the promise by calling: , passing in my
constructor function:

Inside the function, we'll add that call to request. Let's provide the  and
 arguments:

Now that we have our  set up, we can load in the request module on top of the
code, creating a constant called  and setting that equal to the return result from

:



Promises in Asynchronous Programming Chapter 7

[ 384 ]

Next, we'll move into the  file, grab code inside the  function,
and move it over into , inside of the constructor function:

Now we are mostly good to go; we only need to change a few things. The first thing we
need to do is to replace our error handlers. In the  block of the code, we have called our

 handler with one argument; instead, we'll call , because if this code runs,
we want to  the promise. We have the same thing in the next  block. We'll call

 if we get . This is indeed a failure, and we do not want to pretend
we succeeded:



Promises in Asynchronous Programming Chapter 7

[ 385 ]

Now in the next  block, this is where things did go well; here we can call .
Also, we can remove the first argument, as we know  and  only take one
argument:

We are able to specify multiple values though, because we  an object with
properties on it. Now that we have this in place, we are done. We can actually save our file,
rerun it inside Terminal, and test things out.

Testing the request library
To test, we'll save the file, move into Terminal, and shut down  for the

 file. We'll run  for the  file. It's in the  folder,
and it's called :

node playground/promise-2.js

Now, when we run this program, we're actually making that HTTP request. As shown in
the following code output, we can see the data comes back exactly as we expected:



Promises in Asynchronous Programming Chapter 7

[ 386 ]

We get our , , and  variables. This is fantastic! Now let's test
to see what happens when we pass in an invalid address, something like 5 zeroes, which
we've used before to simulate an error:

We'll save the file, rerun the program, and  prints to the
screen:



Promises in Asynchronous Programming Chapter 7

[ 387 ]

This happens only because we call . We will call  inside of the 
constructor function. We have our error handler, which prints the message to the screen.
This is an example of how to take a library that does not support promises and wrap it in a
promise, creating a promise ready function. In our case, that function is .

Weather app with promises
In this section, we'll learn how to use a library that has promises built in. We'll explore the
axios library, which is really similar to request. Although, instead of using callbacks as
request does, it uses promises. So we don't have to wrap our calls in promises to get that
promise functionality. We'll actually be recreating the entire weather app in this section.
We'll only have to write about 25 lines of code. We'll go through the entire process: taking
the address, getting the coordinates, and then fetching the weather.

Fetching weather app code from the app.js file
To fetch weather app code from the app.js file, we'll duplicate , because we
configure  in the original  file and we'll want to carry the code over to the new
project. There's no need to rewrite it. In the  directory, we'll duplicate ,
giving it a new name, .

Inside , before we add anything, let's rip some stuff out. We'll be ripping
out the  and  variable declarations. We'll not be requiring any files:



Promises in Asynchronous Programming Chapter 7

[ 388 ]

Then I'll remove everything after our  configuration, which in this case is just our call
to . The resultant code will look like the following:



Promises in Asynchronous Programming Chapter 7

[ 389 ]

Axios documentations
Now that we have a clean slate, we can get started by installing the new library. Before we
run the  command, we'll see where we can find the documentation. We can
get it by visiting: . As shown in the following
screenshot, we have the axios npm library page, where we can view all sorts of information
about it, including the documentation:

Here we can see some things that look familiar. We have calls to then and catch, just like we
do when we use promises outside of axios:



Promises in Asynchronous Programming Chapter 7

[ 390 ]

Inside the stats column of this page, you can see that this is a super popular library. The
most recent version is 0.13.1. This is the exact version we'll be using. Feel free to go to this
page when you use axios in your projects. There are a lot of really good examples and
documentation. For now though, we can install it.



Promises in Asynchronous Programming Chapter 7

[ 391 ]

Installing axios
To install axios, inside Terminal, we'll be running ; the library name is ,
and we'll specify the version  with the  flag updating the  file.
Now I can run the  command, to install axios:

Making calls in the app-promise file
Inside our  file, we can get started by loading in  at the top. We'll make
a constant called , setting it equal to , as shown here:

Now that we have this in place, we can actually start making the calls in the code. This will
involve us pulling out some of the functionality from the geocode and weather files. So
we'll open up the  and  files. Because we will be pulling some of
the code from these files, things such as the URL and some of the error handling techniques.
Although we'll talk about the differences as they come up.



Promises in Asynchronous Programming Chapter 7

[ 392 ]

The first thing we need to do is to encode the address and get the geocode URL. Now this
stuff happens inside . So we'll actually copy the  variable
line, where we create the encoded address, and paste it in the  file, following
the  variable:

Now we do need to tweak this a little bit. The  variable doesn't exist; but we have
. So, we'll switch  with :

Now we have the encoded address; the next thing we need to get before we can start using
axios is the URL that we want to make the request to. We'll grab that from the 
file as well. In , we will make a new variable called . Then,
we'll take the URL present in , from the opening tick to the closing tick, copy it,
and paste it in , equal to :

Now we use the encoded  variable inside the URL; this is fine because it does exist
in our code. So at this point, we have our  variable and we can get started in
making our very first axios request.

Making axios request
In our case, we'll be taking the address and getting the  and . To make
our request, we'll call a method available on axios, :



Promises in Asynchronous Programming Chapter 7

[ 393 ]

The  is the method that lets us make our HTTP get request, which is exactly what we
want to do in this case. Also, it's really simple to set up. When you're expecting JSON data,
all you have to do is to pass in the URL that we have in the  variable. There's
no need to provide any other options, such as an option letting it know it's 
knows how to automatically parse our JSON data. What get returns is actually a promise,
which means we can use  in order to run some code when the promise gets fulfilled
or rejected, whether things go well or poorly:

Inside then, we'll provide one function. This will be the success case. The success case will
get called with one argument, which the  library recommends that you call

:

Technically, we could call anything you like. Now inside the function, we'll get access to all
of the same information we got inside of the request library; things such as our headers,
response, and request headers, as well as the body information; all sorts of useful info. What
we really need though is the  property. We'll print that using

:

Now that we have this in place, we can run our  file, passing in a valid
address. Also, we can see what happens when we make that request.

Inside command line (Terminal), we'll use the  command first to clear the Terminal
output. Then we can run  , passing in an address. Let's use a valid
address, for example, :

node app-promise.js -a '1301 lombard street philadelphia

The request goes out. And what do we get back? We get back the results object exactly as
we saw it when we used the other modules in the previous chapters:



Promises in Asynchronous Programming Chapter 7

[ 394 ]

The only difference in this case is that we're using promises built in, instead of having to
wrap it in promises or using callbacks.

Error handling in axios request
Now aside from the success handler we used in the previous example, we can also add a
call to catch, to let us catch all of the errors that might occur. We'll to get the error object as
the one-and-only argument; then we can do something with that error object:

Inside the function, we'll kick things off, using  to print the error argument:

Now let's simulate an error by removing the dot in the URL:



Promises in Asynchronous Programming Chapter 7

[ 395 ]

We can see what happens when we rerun the program. Now I'm doing this to explore the
 library. I know exactly what will happen. This is not why I'm doing it. I'm doing it to

show you how you should approach new libraries. When you get a new library, you want
to play around with all the different ways it works. What exactly comes back in that error
argument when we have a request that fails? This is important information to know; so
when you write a real-world app, you can add the appropriate error handling code.

In this case, if we rerun the exact same command, we'll get an error:

As you can see, there really is nothing to print on the screen. We have a lot of very cryptic
error codes and even the  property, which usually contains something good
or does not. Then we have an error code followed by the URL. What we want instead is
print a plain text English message.



Promises in Asynchronous Programming Chapter 7

[ 396 ]

To do this, we'll use an  statement, checking what the code property is. This is the
error code and in this case ; we know it means that it could not connect to the
server. In , inside the error handler, we can add this by having  and
checking the condition:

If that is the case, we'll print some sort of custom message to the screen using
:

Now we have an error handler that handles this specific case. So we can remove our call to
:

Now if we save the file, and rerun things from Terminal, we should get a much nicer error
message printing to the screen:

This is exactly what we get: . Now I'll add that dot
back in, so things start working. We can worry about the response that comes back.



Promises in Asynchronous Programming Chapter 7

[ 397 ]

As you remember, inside the geocode file, there were some things we needed to do. We've
already handled the error related to server connection, but there is still another error
pending, that is, if the  property equals . We want to print an
error message in that case.

To do this, we'll inside , create our very own error. We'll throw an error inside
the  function. This error will cause all of the code after it, not to run. It will move
right into the error handler.

Now we only want to throw an error if the status property is set to . We'll
add an  statement at the very top of the  function to check 

 equals :

If that is the case, then things went bad and we do not want to move on to make the
weather request. We want to run our catch code we have. To throw a new error that our
promise can catch, we'll use a syntax called . This creates and throws an
error letting Node know that something went wrong. We can provide our own error
message, something that's readable to a user: :

This is a message that'll let that user know exactly what went wrong. Now when this error
gets thrown, the same catch code will run. Currently, we only have one  condition that
checks whether the code property is . So we'll add an  clause:



Promises in Asynchronous Programming Chapter 7

[ 398 ]

Inside the  block, we can print the error message, which is the string we typed in the
throw  syntax using the  message property, as shown here:

If the error code is not , we'll simply print the message to the screen. This will
happen if we get zero results. So let's simulate that to make sure the code works. Inside
Terminal, we'll rerun the previous command passing in a zip code. At first, we'll use a valid
zip code,  and we should get our data back. Then we'll use an invalid one: .

When we run the request with a valid address, we get this:

When we run the request with the invalid address, we get the error:



Promises in Asynchronous Programming Chapter 7

[ 399 ]

By calling , we're immediately stopping the execution of this function.
So  with  never prints, which is exactly what we want. Now that
we have our error handler in place, we can start generating that weather URL.

Generating the weather URL
In order to generate the weather URL, we'll copy the URL from the  file, taking it
with the ticks in place, and moving it into the  file. We'll make a new variable
called , setting it equal to the copied URL:

Now  does need a few pieces of information. We need the  and
. We have two variables  and , so let's create them, getting the

appropriate value from that response object,  and :

Now in order to pull them off, we have to go through that process of digging into the object.
We've done it before. We'll be looking in the response object at the data property, which is
similar to the body in the request library. Then we'll go into , grabbing the first
item and accessing the  property, then we'll access :

Now similarly, we can add things for the  variable:



Promises in Asynchronous Programming Chapter 7

[ 400 ]

Now before we make that weather request, we want to print the formatted address because
that's something the previous app did as well. In our 
statement, and instead of printing , we'll dive into the data object getting
the formatted address. This is also on the results array's first item. We'll be accessing
the  property:

Now that we have our formatted address printing to the screen, we can make our second
call by returning a new promise. This is going to let us chain these calls together.

Chaining the promise calls
To get started, we'll return a call to , passing in the URL. We just defined that, it
is :

Now that we have this call returning, we can attach another  call right between our
previous  call and catch call, by calling then, passing in one function, just like this:

This function will get called when the weather data comes back. We'll get that same
response argument, because we're using the same method, :



Promises in Asynchronous Programming Chapter 7

[ 401 ]

Inside the  call, we don't have to worry about throwing any errors, since we never
needed to access a body property in order to check if something went wrong. With the
weather request if this callback runs, then things went right. We can print the weather
information. In order to get that done, we'll make two variables:

The  variable will get set equal to . Then we'll access that
 property. Then we'll access temperature. We'll pull out the second variable, the

actual temperature or , which is the property name, 
. We'll be setting this equal to

:

Now that we have our two things pulled out into variables, we can add those things inside
of a call, . We chose to define two variables, so that we don't have to add the
two really long property statements to . We can simply reference the
variables. We'll add  and we'll use template strings in the 
statement, so that we can inject the previous mentioned two values inside of quotes: 

, followed by . Then we can add a period, ,
followed by :

Now that we have our string printing to the screen, we can test that our app works as
expected. We'll save the file and inside Terminal, we'll rerun the command from two
commands ago where we had a valid zip code:



Promises in Asynchronous Programming Chapter 7

[ 402 ]

When we run this, we get the weather info for , New Jersey. It's currently 
degrees, but it feels like . If we run something that has a bad address, we do get the error
message:

So everything looks great! Using the  library, we're able to chain promises like the
app-promise without needing to do anything too crazy. The  method returns a
promise, so we can access it directly using then.

In the code, we use then once to do something with that geolocation data. We print the
address to the screen. Then we return another promise, where we make the request for the
weather. Inside of our second  call, we print the weather to the screen. We also added a
catch call, which will handle any errors. If anything goes wrong with either of our promises,
or if we throw an error, catch will get fired printing the messages to the screen.

This is all it takes to use axios and set up promises for your HTTP requests. Now one reason
people love promises over traditional callbacks is that instead of nesting we can simply
chain. So our code doesn't get indented to crazy levels. As we saw in  in the
previous chapter, we went a few indentation levels deep just to add two calls together. If we
needed to add a third it would have gotten even worse. With promises, we can keep
everything at the same level, keeping our code a lot easier to maintain.



Promises in Asynchronous Programming Chapter 7

[ 403 ]

Summary
In this chapter, we've gone through a quick example of how promises work, by going over
just the very fundamentals. Async is a critical part to Node.js. We went through the very
basics of callbacks and promises. We looked a few examples, creating a pretty cool weather
app.

This brings us to the end of our asynchronous Node.js programming, but this does not
mean that you have to stop building out the weather app. There are a couple ideas as to
what you could do to continue on with this project. First up, you can load in more
information. The response we get back from the weather API contains a ton of stuff besides
just the current temperature, which is what we used. It'd great if you can incorporate some
of that stuff in there, whether it's high/low temperatures, or chances of precipitation.

Next up, it'd be really cool to have a default location ability. There would be a command
that lets me set a default location, and then I could run the weather app with no location
argument to use that default. We could always specify a location argument to search for
weather somewhere else. This would be an awesome feature, and it would work kind of
similar to the Notes app, where we save data to the filesystem.

In the next chapter, we'll start creating web servers, which will be async. We'll make APIs,
which will be async. Also, we'll create real-time Socket.IO apps, which will be async. We'll
move on to creating Node apps that we deploy to servers, making those servers accessible
to anybody with a web connection.



88
Web Servers in Node

We'll cover a ton of exciting stuff in this chapter. We'll learn how to make a web server and
how to integrate version control into Node applications. Now to get all this done, we will
look at a framework called Express. It's one of the most popular npm libraries, and for good
reason. It makes it really easy to do stuff such as creating a web server or an HTTP API. It's
kind of similar to the Dark Sky API we used in the last chapter.

Now most courses start with Express, and that can be confusing because it blurs the line
between what is Node and what is Express. We'll kick things off by adding Express to a
brand new Node app.

Specifically, we'll cover the following topics:

Introducing Express
Static server
Rendering templates
Advanced templates
Middleware

Introducing Express
In this section, you'll make your very first Node.js web server, which means you'll have a
whole new way for users to access your app. Instead of having them run it from the
Terminal passing in arguments, you'll be able to give them a URL they can visit to view
your web app or a URL they can make an HTTP request to to fetch some data.



Web Servers in Node Chapter 8

[ 405 ]

This will be similar to what we did when we used the geocode API in the previous chapters.
Instead of using an API though, we'll be able to create our own. We'll also be able to set up a
static website for something like a portfolio site. Both are really valid use cases. Now all of
this will be done using a library called Express, which is the most popular npm library. It's
actually one of the reasons that Node got so popular because it was so easy to make REST
APIs and static web servers.

Configuring Express
Express is a no-nonsense library. Now there are a lot of different ways to configure it. So it
can get pretty complex. That's why we'll be using it throughout the next couple of chapters.
To get started, let's make a directory where we can store all of the code for this app. This
app will be our web server.

On the desktop let's us make a directory called , by running the 
 command in the Terminal:

Once this directory is created, we'll navigate into it using :

And we'll also open it up inside Atom. In Atom, we'll open it up from the desktop:



Web Servers in Node Chapter 8

[ 406 ]

Now before going further, we'll run the  command so we can generate the
 file. As shown in the following code, we'll run :



Web Servers in Node Chapter 8

[ 407 ]

Then, we'll use the default value just by pressing enter through all of the options shown in
the following screenshot. There's no need to customize any of these as of now:

Then we'll type  in the last statement  and the  file
goes in place:

Express docs website
As mentioned earlier, Express is a really big library. There's an entire website dedicated to
the Express docs. Instead of a simple  file, you can go to  to
view everything the website have to offer:



Web Servers in Node Chapter 8

[ 408 ]

We'll find Getting started, help articles, and many more. The website has the Guide option
to help you do things such as Routing, Debugging, Error handling, and an API reference,
so we can look into exactly what methods we have access to and what they do. It's a very
handy website.

Installing Express
Now that we have our  directory, we'll install Express so we can get
started making our web server. In the Terminal we'll run the  command first to clear
the output. Then we'll run the  command. The module name is  and
we'll be using the latest version, . We'll also provide the  flag to update the
dependencies inside of our  file as shown here:

npm install express@4.16.0 --save



Web Servers in Node Chapter 8

[ 409 ]

Once again we'll use the  command to clear the Terminal output.

Now that we have  installed, we can actually create our web server inside Atom. In
order to run the server, we will need a file. I'll call this file . It will sit right in the
root of our application:

This is where we'll configure the various routes, things like the root of the website, pages
like , and so on. It's also where we'll start the server, binding it to a port on our
machine. Now we'll be deploying to a real server. Later we'll talk about how that works. For
now, most of our server examples will happen on our localhost.

Inside , the first thing we'll do is load in Express by making a constant called
 and setting it equal to :

Next up, what we'll do is make a new Express app. To do this we'll make a variable called
app and we'll set it equal to the return result from calling  as a function:



Web Servers in Node Chapter 8

[ 410 ]

Now there are no arguments we need to pass into . We will do a ton of
configuration, but that will happen in a different way.

Creating an app
In order to create an app, all we have to do is call the method. Next to the variable  we
can start setting up all of our HTTP route handlers. For example, if someone visits the root
of the website we're going to want to send something back. Maybe it's some JSON data,
maybe it's an HTML page.

We can register a handler using  function. This will let us set up a handler for an
HTTP get request. There are two arguments we have to pass into :

The first argument is going to be a URL
The second argument is going to be the function to run; the function that tells
Express what to send back to the person who made at the request

In our case we're looking for the root of the app. So we can just use forward slash ( ) for the
first argument. In the second argument, we'll use a simple arrow function ( ) as shown
here:

Now the arrow function ( ) will get called with two arguments. These are really important
to how Express works:

The first argument is request ( ) stores a ton of information about the request
coming in. Things like the headers that were used, any body information, or the
method that was made with a request to the path. All of that is stored in request.
The second argument, respond ( ), has a bunch of methods available so we can
respond to the HTTP request in whatever way we like. We can customize what
data we send back and we could set our HTTP status codes.



Web Servers in Node Chapter 8

[ 411 ]

We'll explore both of these in detail. For now though, we'll use one method, . This
will let us respond to the request, sending some data back. In  function, let's call

, passing in a string. In the parenthesis we'll add :

This is the response for the HTTP request. So when someone views the website they will see
this string. If they make a request from an application, they will get back 
as the body data.

Now at this point we're not quite done. We have one of our routes set up, but the app is
never going to actually start listening. What we need to do is call . The

 function will bind the application to a port on our machine. In this case for our
local host app, we will use port , a really common port for developing locally. Later in
the chapter, we'll talk about how to customize this depending on whatever server you use
to deploy your app to production. For now though, a number like  works:

With this in place we are now done. We have our very first Express server. We can actually
run things from the Terminal, and view it in the browser. Inside the Terminal, we'll use

 to start up our app:

nodemon server.js



Web Servers in Node Chapter 8

[ 412 ]

This will start up the app and you'll see that the app never really finishes as shown here:

Right now it's hanging. It's waiting for requests to start coming in. The apps that use
, they will never stop. You'll have to shut them down manually with control +

C, like we've done before. It might crash if you have an error in your code. But it'll never
stop normally, since we have that binding set up here. It will listen to requests until you tell
it to stop.

Now that the server is up, we can move into the browser and open up a new tab visiting the
website,  followed by the port :

This will load up the root of the website, and we specify the handler for that route. Hello
Express! shows up, which is exactly what we expected. Now there's no thrills. There's no
formatting. We're just sending a string from the server back to the client that made the
request.



Web Servers in Node Chapter 8

[ 413 ]

Exploring the developer tools in the browser for the app
request
What we'd like to do next is open up the developer tools, so we can explore exactly what
happened when that request was made. Inside Chrome you can get to the Developer Tools
using Settings| More Tools| Developer Tools:

Or you can use the keyboard shortcut shown along with Developer Tools for the operating
system.

I would highly recommend memorizing that keyboard shortcut because
you'll use the  a ton in your career with Node.



Web Servers in Node Chapter 8

[ 414 ]

We'll now open up the Developer Tools, which should look similar to the ones we used
when we ran the Node Inspector debugger. They're a little different, but the idea is the
same:

We have a bunch of tabs up top, and then we have our tab specific information down
following on the page. In our case, we want to go to the Network tab, and currently we
have nothing. So we'll refresh the page with the tab open, and what we see right here is our
localhost request:



Web Servers in Node Chapter 8

[ 415 ]

This is the request that's responsible for showing Hello Express! to the screen. We can
actually click the request to view its details:

This page can be a little overwhelming at first. There is a a lot of information. Up on top we
have some general info, such as the URL that was requested, the method that the client
wanted; in this case, we made a GET request, and the status code that came back. The
default status code being 200, meaning that everything went great. We'd like to point the
attention to is one response header.

Under Response Headers we have a header called Content-Type. This header tells the
client what type of data came back. Now this could be something like an HTML website,
some text, or some JSON data and the client could be a web browser, an iPhone, an Android
device, or any other computer with network capabilities. In our case, we're telling the
browser that what came back is some HTML, so why don't you render it as such. We use
the text/html Content-Type. And this automatically got set by Express, which is one of the
reasons it's so popular. It handles a lot of that mundane stuff for us.

Passing HTML to res.send
Now that we have a very basic example, we want to step things up a notch. Inside Atom,
we can actually provide some HTML right inside of send by wrapping our 

 message in an  tag. Later in this section, we'll be setting up a static website that
has HTML files that get served up. We'll also look at templating to create dynamic web
pages. But for now, we can actually just pass in some HTML to :



Web Servers in Node Chapter 8

[ 416 ]

We'll save the server file, which should restart things in the browser. When we give the
browser a refresh, we get Hello Express! printing to the screen:

This time though, we have it in an  tag, which means it's formatted by the default
browser styles. In this case it looks nice and big. With this in place we can now open up the
request inside the Network tab, and what we get is the exact same thing we had before.
We're still telling the browser that it's HTML. Only one difference this time: we actually
have an HTML tag, so it gets rendered using the browser's default styles.

Sending JSON data back
The next thing we'd look into is how we can send some JSON data back. Sending JSON is
really easy with Express. To illustrate how we can do it we'll comment out our current call
to  and add a new one. We'll call  passing in an object:



Web Servers in Node Chapter 8

[ 417 ]

On this object we can provide whatever we like. We can create a  property, setting it
equal to the string version of any name, say . We can make a property called ,
setting it equal to an array, and we can specify some things we may like. Let's add 
as one of them, and then add  as another:

When we call  passing in an object, Express notices that. Express takes it, converts
it into JSON, and sends it back to the browser. When we save  and nodemon
refreshes, we can refresh the browser, and what we get is my data formatted using JSON
view:



Web Servers in Node Chapter 8

[ 418 ]

This means we can collapse the properties and quickly navigate the JSON data.

Now the only reason JSON view picked up on this is because that Content-Type header
that we explored in our last request it actually changed. If I open up , a lot of
things look the same. But now Content-Type has an application/json Content-Type:

This Content-Type tells the requester whether it's an Android phone, an iOS device, or the
browser that JSON data is coming back, and it should parse it as such. That's exactly what
the browser does in this case.



Web Servers in Node Chapter 8

[ 419 ]

Express also makes it really easy to set up other routes aside from the root route. We can
explore that inside Atom by calling  a second time. We'll call . We'll create
a second route. We'll call this one :

Notice that we just used  as the route. It's important to keep that forward slash in
place, but after that you can type whatever you like. In this case we'll have a  page
that someone can visit. Then I'll provide the handler. The handler will take the  and the

 object:

This will let us figure out what kind of request came in, and it will let us respond to that
request. For now just to illustrate we can create more pages, we'll keep the response simple,

. Inside the string we're going to print :

Now when we save the  file, the server is going to restart. In the browser we can
visit . At  we should now see our new data, and that's
exactly what we get back, About Page shows up as shown here:



Web Servers in Node Chapter 8

[ 420 ]

Using  we're able to specify as many routes as we like. For now we just have an
 route and a  route, which is also referred to as the root route. The root route returns

some data, which happens to be JSON, and the about route returns a little bit of HTML.
Now that we have this in place and we have a very basic understanding about how we can
set up routes in Express, we'd like you to create a new route . This is going to simulate
what happens when a request fails.

Error handling in the JSON request
To show the error handling request with JSON, we're going to call . This 
is going to let us register another handler for a get HTTP request. In our case the route we're
looking for inside of quotes is going to be . When someone makes a request for this
page, what we want to do is going to be specified in the callback. The callback will take our
two arguments,  and . We'll use an arrow function ( ), which I've used for all of the
handlers so far:



Web Servers in Node Chapter 8

[ 421 ]

Inside the arrow function ( ), we'll send back some JSON by calling . But instead
of passing in a string, or some string HTML, we'll pass in an object:

Now that we have our object in place we can specify the properties we want to send back.
In this case we'll set one . We'll set my error message property equal to a
string, :

Next up we'll save the file, restarting it in nodemon, and visit it in the browser. Make sure
our error message showed up correctly. In the browser, we'll visit , hit enter, and this is
what we get:



Web Servers in Node Chapter 8

[ 422 ]

We get our JSON showing up using JSON view. We have our error message, and we have
the message showing up: Unable to handle request. Now if you are using JSON view and
you want to view the raw JSON data, you can actually click on View source, and it will
show it in a new tab. Here, we're looking at the raw JSON data, where everything is
wrapped in those double quotes:

I'll stick to the JSON view data because it's a lot easier to navigate and view. We now have a
very basic Express application up and running. It listens on port  and it currently has
handlers for 3 URLs: when we get the root of the page, when we get , and when we
make a get request for .

The static server
In this section, we'll learn how to set up a static directory. So if we have a website with
HTML, CSS, JavaScript, and images, we can serve that up without needing to provide a
custom route for every single file, which would be a real burden. Now setting this up is
really simple. But before we make any updates to , we'd create some static assets
inside of our project that we can actually serve up.



Web Servers in Node Chapter 8

[ 423 ]

Making an HTML page
In this case we'll make one HTML page that we'll be able to view in the browser. Before we
get started, we do need to create a new directory, and everything inside this directory will
be accessible via the web server, so it's important to not put anything in here that you don't
want prying eyes to see.

Everything in the directory should be intended to be view able by anybody. We'll create a
public folder to store all of our static assets, and inside here we'll make an HTML page.
We'll create a help page for our example project by creating a file called :

Now in  we will make a quick basic HTML file, although we'll not touch on all
of the subtleties of HTML, since this is not really an HTML book. Instead, we'll just set up a
basic page.

The first thing we need to do is create a  which lets the browser know what version
of HTML we're using. That will look something like this:

After the opening tag, and the exclamation mark, we'd type  in uppercase. Then,
we provide the actual  for HTML5, the latest version. Then we can use the greater
than sign to close things up. In the next line, we'll open up our  tag so we can define
our entire HTML file:

Inside , there are two tags we'll use: the  tag which lets us configure our doc, and
the  tag which contains everything we want to render to the screen.



Web Servers in Node Chapter 8

[ 424 ]

The head tag
We'll create the  tag first:

Inside , we'll provide two pieces of info,  and  tag:

First up we have to set up the  which lets the browser know how to
render our characters.
Next up we'll provide the  tag. The  tag lets the browser know what
to render in that title bar, where the new tab usually is.

As shown in the following code snippet, we'll set . And on , we'll set the 
property using equals, and provide the value :

For the  tag, we can set it to whatever we like;  seems appropriate:

The body tag
Now that our  is configured, we can add something to the body of our website. This is
the stuff that's actually going to be viewable inside the viewport. Next to the head, we'll
open and close the  tag:

Inside  again, we'll provide two things: an  title and a  paragraph tag.



Web Servers in Node Chapter 8

[ 425 ]

The title is going to match the  tag we used in the , Help Page, and the
paragraph will just have some filler text :

Now we have an HTML page and the goal is to be able to serve this page up in our Express
app without having to manually configure it.

Serving the HTML page in the Express app
We'll serve our HTML page in the Express app using a piece of Express middleware.
Middleware lets us configure how our Express application works, and it's something we'll
use extensively throughout the book. For now, we can think of it kind of like a third-party
add-on.

In order to add some middleware, we'll call . The  takes the middleware
function we want to use. In our case, we'll use a built-in piece of middleware. So inside

, next to the variable  statement, we'll provide the function off of the
 object:

We will be making our own middleware in the next chapter, so it'll become clear exactly
what's getting passed into use in a little bit. For now, we'll pass in  and to
call it as a function:



Web Servers in Node Chapter 8

[ 426 ]

Now  takes the absolute path to the folder you want to serve up. If we
want to be able to serve up , we'll need to provide the path to the  folder. This
means we need to specify the path from the root of our hard drive, which can be tricky
because your projects move around. Luckily we have the  variable:

This is the variable that gets passed into our file by the wrapper function we explored. The
 variable stores the path to your projects directory. In this case, it stores the path

to . All we have to do is concatenate  to tell it to use this
directory for our server. We'll concatenate using the plus sign and the string, :

With this in place, we are now done. We have our server set up and there's nothing else to
do. Now we should be able to restart our server and access . We should now
see the HTML page we have. In the Terminal we can now start the app using 

:

Once the app is up and running we can visit it in the browser. We'll start by going to
:



Web Servers in Node Chapter 8

[ 427 ]

Here we get our JSON data, which is exactly what we expect. And if we change that URL to
 we should get our Help Page rendering:

And that is exactly what we get, we have our Help Page showing to the screen. We have the
Help Page title as the head, and the Some text here paragraph following as body. Being
able to set up a static directory that easily has made Node the go-to choice for simple
projects that don't really require a backend. If you want to create a Node app for the sole
purpose of serving up a directory you can do it in about four lines of code: the first three
lines and the last line in the  file.

The call to app.listen
Now one more thing we'd discuss is the call to . The  does
take a second argument. It's optional. It's a function. This will let us do something once the
server is up because it can take a little bit of time to get started. In our case we'll
assign  a message: :

Now it's really clear to the person who started the app that the server is actually ready to go
because the message will print to the screen. If we save , and go back into the
Terminal we can see  prints:



Web Servers in Node Chapter 8

[ 428 ]

Back inside the browser we can refresh and we get the exact same results:

That's it for this section. We now have a static directory where we can include JavaScript,
CSS, images, or any other file types we like.

Rendering templates
In the last couple sections, we looked at multiple ways that we can render HTML using
Express. We passed some HTML into , but obviously that was not ideal. It's
a real pain to write the markup in a string. We also created a public directory where we can
have our static HTML files, such as our  file, and we can serve these up to the browser.
Both of those work great but there is a third solution, and that will be the topic in this
section. The solution is a templating engine.

A templating engine will let you render HTML but do it in a dynamic way, where we can
inject values, such as a username or the current date, inside the template, kind of like we
would in Ruby or PHP. Using this templating engine, we'll also be able to create reusable
markup for things such as a header or a footer, which is going to be the same on a lot of
your pages. This templating engine, handlebars, will be the topic of this section and the
next, so let's get started.



Web Servers in Node Chapter 8

[ 429 ]

Installing the hbs module
The first thing we'll do is install the  module. This is a handlebars view engine for
Express. Now there are a ton of other view engines for Express, for example EJS or Pug.
We'll go with handlebars because its syntax is great. It's a great way to get started.

Now we'll see a few things inside of the browser. First up we will visit .
This is the documentation for handlebars. It shows you exactly how to use all of its features,
so if we want to use anything, we can always go here to learn how to use it.

Now we'll install a module that's a wrapper around handlebars. It will let us use it as an
Express view engine. To view this, we'll go to .

This is the URL structure for all packages. So if you ever want to find a
packages page, you simply type 

.

This module is pretty popular. It's a really great view engine. They have a lot of
documentation. I just want to let you know this exists as well. Now we can install and
integrate it into our application. In the Terminal, we'll install  using , the
module name is , and the most recent version is . I will use the  flag to
update :

Now actually configuring Express to use this handlebars view engine is super simple. All
we have to do is import it and add one statement to our Express configuration. We'll do just
that inside Atom.



Web Servers in Node Chapter 8

[ 430 ]

Configuring handlebars
Inside Atom, let's get started by loading in handlebars , as
shown and from here we can add that one line:

Next, let's call  where we call  for Express static:

This lets us set some various Express-related configurations. There's a lot of built-in ones.
We'll be talking about more of them later. For now, about what we'll do is pass in a key-
value pair, where the key is the thing you want to set and the value is the value you want to
use. In this case, the key we're setting is . This will tell Express what view
engine we'd like to use and we'll pass in inside of quotes :

This is all we need to do to get started.

Our first template
Now in order to create our very first template, what we'd like to do is make a directory in
the project called . The  is the default directory that Express uses for your
templates. So what we'll do is add the  directory and then we'll add a template inside
it. We'll make a template for our About Page.

Inside views, we'll add a new file and the file name will be . The  handlebars
extension is important. Make sure to include it.

Now Atom already knows how to parse  files. At the bottom of the  file,
where it shows the current language it's using, HTML in parentheses mustache.

Mustache is used as the name for this type of handlebars syntax because
when you type the curly braces ( ) I guess they kind of look like
mustaches.



Web Servers in Node Chapter 8

[ 431 ]

What we'll do to get started though is take the contents of  and copy it directly.
Let's copy this file so we don't have to rewrite that boilerplate, and we'll paste it right in the

:

Now we can try to render this page. We'll change the  tag from help page to about page:

We'll talk about how to dynamically render stuff inside this page later. Before that we'd like
to just get this rendering.

Getting the static page for rendering
Inside , we already have a root for , which means we can render our hbs
template instead of sending back this about page string. We will remove our call to

 and we'll replace it with :

Render will let us render any of the templates we have set up with our current view engine
 file. We do indeed have the about template and we can pass that name,
, in as the first and only argument. We'll render :



Web Servers in Node Chapter 8

[ 432 ]

This will be enough to get that static page rendering. We'll save  and in the
Terminal, we'll clear the output and we'll run our server using :

Once the server is up and running, it is showing on port . We can open up this 
URL and see what we get. We'll head into Chrome and open up ,
and when we do that, we get the following:

We get my about page rendered just like we'd expect it. We've got an  tag, which shows
up nice and big, and we have our paragraph tag, which shows up the following. So far we
have used hbs but we haven't actually used any of its features. Right now, we're rendering a
dynamic page, so we might as well have not even included it. What I want to do is talk
about how we can inject data inside of our templates.



Web Servers in Node Chapter 8

[ 433 ]

Injecting data inside of templates
Let's come up with some things that we want to make dynamic inside our handlebars file.
First up, we'll make this  tag dynamic so the page name gets passed into the template in

 page, and we'll also add a footer. For now, we'll just make that a simple 
tag:

Inside of the , we'll add a paragraph and that paragraph will have the copyright for
our website. We'll just say something like copyright followed by the year, which is 2018:

Now year should also be dynamic, so that as the years change, we don't have to manually
update our markup. We'll look at how to make both the 2018 and the about page dynamic,
which means they're getting passed in instead of being typed in the handlebars file.

In order to do this, we'll have to do two things:

We'll have to pass some data into the template. This will be an object a set of key
value pairs, and
We'll have to learn how to pull off some of those key-value pairs inside of our
handlebars file

Passing in data is pretty simple. All we have to do is specify a second argument to
 in . This will take an object, and on this object we can specify

whatever we like. We might have a  that gets set equal to :



Web Servers in Node Chapter 8

[ 434 ]

We have one piece of data getting injected in the template. It's not used yet but it is indeed
getting injected. We could also add another one like . We'll put 
next to the  and we'll set  equal to the actual year off of the date
JavaScript constructor. This will look something like this:

We'll create a new date which makes a new instance of the date object. Then, we'll use a
method called , which returns the year. In this case, it would return , just
like this . Now we have a  and a . These are both
getting passed in, and we can use them.

In order to use these pieces of data, what we have to do inside of our template is use that
handlebars syntax which looks a little bit like shown in the following code. We start by
opening up two curly braces in the  tag, then we close two curly braces. Inside the curly
braces, we can reference any of the props we passed in. In this case, let's use ,
and inside our copyright paragraph, we'll use, inside of double curly braces, :



Web Servers in Node Chapter 8

[ 435 ]

With this in place, we now have two pieces of dynamic data getting injected inside our
application. Now nodemon should have restarted in the background, so there's no need to
manually do anything there. When we refresh the page, we do still get About Page, which
is great:

This comes from the data we defined in , and we get Copyright 2018 showing
up. Well this web page is pretty simple and doesn't look that interesting. At least you know
how to create those servers and inject that data inside your web page. All you have to do
from here is add some custom styles to get things looking nice.

Before we go ahead, let's move into the about file and swap out the title. Currently, it says
. That's left over from the public folder. Let's change it to :



Web Servers in Node Chapter 8

[ 436 ]

Now that we have this in place. Next, we'll create a brand new template and that template
is going to get rendered when someone visits the root of our website, the  route. Now
currently, we render some JSON data:

What we want to do is replace this with a call to , rendering a brand new
view.

Rendering the template for the root of the website
To get started, we'll duplicate the  file so we can start customizing it for our
needs. We'll duplicate it, and call this one :



Web Servers in Node Chapter 8

[ 437 ]

Now from here most things are going to stay the same. We'll keep the  in place.
We'll also keep the  and  following. What we want to change though is
this paragraph. It was fine that the  as a static one, but for the  page, we'll
set it equal to, inside curly braces, the  property:

Now  is only going to be available on , which is why we have
specifying it in  but not in .

Next up, we needed to call response render inside of the callback. This will let us actually
render the page. We'll add , passing in the template name we want to
render. This one is called . Then we'll pass in our data:

Now to get started, we can pass in the page title. We'll set this equal to  and
we'll pass in some sort of generic welcome message - . Then we'll
pass in the , and we already know how to fetch the 

, and on the date object, we'll call the  method:

With this in place, all we needed to do is save the file, which is automatically going to
restart the server using nodemon and refresh the browser. When we do that, we get the
following:



Web Servers in Node Chapter 8

[ 438 ]

We get our Home Page title, our Welcome to my website message, and my copyright with
the year 2018. And if we go to , everything still looks great. We have our dynamic
page title and copyright and we have our static  text:

With this in place, we are now done with the very basics of handlebars. We see how this can
be useful inside of a real-world web app. Aside from a realistic example such as the
copyright, other reasons you might use this is to inject some sort of dynamic user data -
things such as a username and email or anything else.



Web Servers in Node Chapter 8

[ 439 ]

Now that we have a basic understanding about how to use handlebars to create static
pages, we'll look at some more advanced features of hbs inside the next section.

Advanced templates
In this section, we'll learn a few more advanced features that handlebars has to offer. This
will make it easier to render our markup, especially markup that's used in multiple places,
and it will make it easier to inject dynamic data into your web pages.

In order to illustrate the first thing we'll talk about, I want to open up both  and
, and you'll notice down at the bottom that they both have the exact same footer

code as follows:

We have a little copyright message for both and they both have the same header area,
which is the  tag.

Now this really isn't a problem because we have two pages, but as you add more and more
pages it's going to become a real pain to update your header and your footer. You'll have to
go into every file and manage the code there, but what we'll talk about instead is something
called a partial.

Adding partials
A partial is a partial piece of your website. It's something you can reuse throughout your
templates. For example, we might have a footer partial that renders the footer code. You can
include that partial on any page you need a footer. You could do the same thing for header.
In order to get started, the first thing we need to do is set up our  file just a little
bit to let handlebars know that we want to add support for partials.

In order to do this, we'll add one line of code in the  file where we declared our
view engine previously, and it will look something like this ( ):



Web Servers in Node Chapter 8

[ 440 ]

Now  is going to take the directory you want to use for all of your
handlebar partial files, and we'll be specifying that directory as the first and only argument.
Once again, this does need to be the absolute directory, so I'll use the  variable:

Then we can concatenate the rest of the path, which will be . In this case, I want you
to use .

We'll store our  files right inside a directory in the  folder. Now we can
create that folder right in views called .

Inside , we can put any of the handlebars partials we like. To illustrate how they
work, we'll create a file called :

Inside , we'll have access to the same handlebars features, which means we can
write some markup, we can inject variables, we can do whatever we like. For now, what
we'll do is copy the  tag exactly, pasting it inside :



Web Servers in Node Chapter 8

[ 441 ]

Now we have our  file, this is the partial and we can include it in both
 and . In order to do that, we'll delete the code that we already have in

the partial and we'll replace it with opening and closing two curly braces. Now instead of
injecting data, we want to inject a template and the syntax for that is to add a greater than
symbol with a space, followed by the partial name. In our case that partial is called ,
so we can add this right here:

Then I can save about and do the same thing over in . We now have our footer
partial. It's rendering on both pages.

Working of partial
To illustrate how this works, I'll fire up my server and by default ; it's not going to
watch your handlebars files. So if you make a change, the website's not going to render as
you might expect. We can fix this by running , passing in  and
providing the  flag. This lets us specify all of the extensions we want to watch. In our
case, we'll watch the JS extension for the server file, and after the comma, the  extension:

Now our app is up and running, we can refresh things over in the browser, and they should
look the same. We have our about page with our footer:



Web Servers in Node Chapter 8

[ 442 ]

We have our home page with the exact same footer:

The advantage now is if we want to change that footer, we just do it in one place, in the
 file.

We can add something to our  paragraph tag. Let's add a little message created by
 with a :



Web Servers in Node Chapter 8

[ 443 ]

Now, save the file and when we refresh the browser, we have our brand new footer for
Home Page:

We have our brand new footer for About Page:

It will show up for both the home page and the about page. There's no need to do you
anything manual in either of these pages, and this is the real power of partials. You have
some code, you want to reuse it inside your website, so you simply create a partial and you
inject it wherever you like.



Web Servers in Node Chapter 8

[ 444 ]

The Header partial
Now that we have the footer partial in place, let's create the header partial. That means we'll
need to create a brand new file . We'll want to add the  tag inside that file
and then we'll render the partial in both  and . Both pages should still
look the same.

We'll get started by creating a new file in the partials folder called .

Inside , we'll take the  tag from our website, paste it right inside and save it:

Now we can use this header partial in both  and  files. Inside of , we need
to do this using the syntax, the double curly braces with the greater than sign, followed by
the partial name . We'll do the exact same thing for the  page. In the  page,
we'll delete our  tag, inject the  and save the file:

Now we'd create something slightly different just so we can test that it actually is using the
partial. We'll type  right after the  tag in :



Web Servers in Node Chapter 8

[ 445 ]

Now that all the files are saved, we should be able to refresh the browser, and we see 
page with 123 printing, which is fantastic:

This means the  partial is indeed working, and if I go back to the  page,
everything still looks great:



Web Servers in Node Chapter 8

[ 446 ]

Now that we have the header broken out into its own file, we can do all sorts of things. We
can take our  tag and put it inside of a , which is the appropriate way to
declare your header inside of HTML. As shown, we add an opening and closing 
tag. We can take the  and we can move it right inside:

We could also add some links to the other pages on our website. We could add an anchor
tag for the homepage by adding an  tag:

Inside the  tag, we'll specify the link text we'd like to show up. I'll go with , then
inside the  attribute, we can specify the path the link should take you to, which would
just be :

Then we can take the same paragraph tag, copy it and paste it in the next line and make a
link for the  page. I'll change the page text to , the link text, and the URL
instead of going to  will go to :



Web Servers in Node Chapter 8

[ 447 ]

Now we've made a change to our  file and it will be available on all of the pages of
our website. I'm on the  page. If I refresh it, I get Home and About page links:

I can click on the About to go to the About Page:

Similarly, I can click on Home to come right back. All of this is much easier to manage now
that we have partials inside of our website.



Web Servers in Node Chapter 8

[ 448 ]

The Handlebars helper
Now before we go further, there is one more thing I want to talk about, that is, a handlebars
helper. Handlebars helpers are going to be ways for us to register functions to run to
dynamically create some output. For example, inside , we currently inject the
current year inside of both of our  templates and that's not really necessary.

There is a better way to pass this data in, and this data shouldn't need to be provided
because we'll always use the exact same function. We'll always take the new date

 return value passing it in. Instead, we'll use a partial, and we'll set ours up
right now. Now a partial is nothing more than a function you can run from inside of your
handlebars templates.

All we need to do is register it and I'll do that in the , following on from where
we set up our Express middleware. As shown in the following code, we'll call

 and we'll be registering a helper, so we'll call a :

Now  takes two arguments:

The name of the helper as the first argument
The function to run as the second argument.

The first argument right here will be  in our case. We'll create a helper
that returns that current year:

The second argument will be our function. I'll use an arrow function ( ):

Anything we return from this function will get rendered in place of the 
call. That means if we call  inside the , it will return the year from
the function, and that data is what will get rendered.



Web Servers in Node Chapter 8

[ 449 ]

In the , we can return the year by using  and having the exact same code
we have  object:

We'll make a new date and we'll call its  method. Now that we have a helper,
we can remove this data from every single one of our rendering calls:

This is going to be really fantastic because there really is no need to compute it for every
page since it's always the same. Now that we've removed that data from the individual calls
to render, we will have to use  inside the  file:

Instead referencing the current year, we will use the helper , and there's
no need for any special syntax. When you use something inside curly braces that clearly
isn't a partial, handlebars is first going to look for a helper with that name. If there is no
helper, it'll look for a piece of data with that  name.



Web Servers in Node Chapter 8

[ 450 ]

In this case, it will find the helper, so everything will work as expected. We can now save
, move into the browser, and give things a refresh. When I refresh the page, we

still get Copyright 2018 in Home Page:

If I go to the About Page, everything looks great:



Web Servers in Node Chapter 8

[ 451 ]

We can prove that data is coming back from our helper by simply returning something else.
Let's comment out our helper code in  and before the comment, we can
use , just like this:

We can now save , refresh the browser, and we get tests showing up as shown
here:

So the data that renders right after the Copyright word is indeed coming from that helper.
Now we can remove the code so we return the proper year.

Arguments in Helper
Helpers can also take arguments, and this is really useful. Let's create a second helper that's
going to be a capitalization helper. We'll call the helper  and its job will be to take
some text and it will return that text in uppercase.



Web Servers in Node Chapter 8

[ 452 ]

In order to do this, we will be calling  again. This helper will be
called , and it will take a function because we do need to run some code in order
to do anything useful:

Now  is going to take  to scream and all it will do is call on that string the
 method. We'll return , just like this:

Now we can actually use  in one of our files. Let's move into . Here, we
have our welcome message in the  tag. We'll remove it and we'll scream the welcome
message. In order to pass data into one of our helpers, we first have to reference the helper
by name, , then after a space we can specify whatever data we want to pass in as
arguments.

In this case, we'll pass in the welcome message, but we could also pass in two arguments by
typing a space and passing in some other variable which we don't have access to:



Web Servers in Node Chapter 8

[ 453 ]

For now, we'll use it like this, which means we'll call the  helper, passing in one
argument . Now we can save , move back into the browser, go
to the Home Page and as shown following, we get WELCOME TO MY WEBSITE in all
uppercase:

Using handlebars helpers, we can create both functions that don't take arguments and
functions that do take arguments. So when you need to do something to the data inside of
your web page, you can do that with JavaScript. Now that we have this in place, we are
done.

Express Middleware
In this section, you'll learn how to use Express middleware. Express middleware is a
fantastic tool. It allows you to add on to the existing functionality that Express has. So if
Express doesn't do something you'd like it to do, you can add some middleware and teach
it how to do that thing. Now we've already used a little bit of middleware. In 
file, we used some middleware and we teach Express how to read from a  directory,
which is shown here:

We called , which is how you register middleware, and then we provided the
middleware function we want to use.



Web Servers in Node Chapter 8

[ 454 ]

Now middleware can do anything. You could just execute some code such as logging
something to the screen. You could make a change to the request or the response object.
We'll do just that in the next chapter when we add API authentication. We'll want to make
sure the right header is sent. That header will be expected to have an API token. We can use
middleware to determine whether or not someone's logged in. Basically, it will determine
whether or not they should be able to access a specific route, and we can also use
middleware to respond to a request. We could send something back from the middleware,
just like we would anywhere else, using  or .

Exploring middleware
In order to explore middleware, we'll create some basic middleware. Just following where
we call  registering our Express static middleware, we'll call  again:

Now  is how you register middleware, and it takes a function. So, we'll pass in an
arrow function ( ):

The  function takes just one function. There is no need to add any other arguments. This
function will get called with the request ( ) object, the response ( ) object and a third
argument, :

Now request and response objects, these should seem familiar by now. They're the exact
same arguments we get whenever we register a handler. The  argument is where
things get a little trickier. The  argument exists so you can tell Express when your
middleware function is done, and this is useful because you can have as much middleware
as you like registered to a single Express app. For example, I have some middleware that
serves up a directory. We'll write some more that logs some request data to the screen, and
we could have a third piece that helps with application performance, keeping track of
response times, all of that is possible.



Web Servers in Node Chapter 8

[ 455 ]

Now inside  function, we can do anything we like. We might log something to the
screen. We might make a database request to make sure a user is authenticated. All of that
is perfectly valid and we use the  argument to tell Express when we're done. So if we
do something asynchronous, the middleware is not going to move on. Only when we call

, will the application continue to run, like this:

Now this means if your middleware doesn't call next, your handlers for each request,
they're never going to fire. We can prove this. Let's call , passing in an empty
function:

Let's save the file and in the Terminal, we'll run our app using  with :

nodemon server.js

I'll move into the browser and I'll make a request for the home page. I'll refresh the page
and you can see that up top, it is trying to load but it's never going to finish:



Web Servers in Node Chapter 8

[ 456 ]

Now it's not that it can't connect to the server. It connects to the server just fine. The real
problem is that inside our app, we have middleware that doesn't call next. To fix this, all
we'll do is call  like this:

Now when things refresh over inside the browser, we get our Home Page exactly as we
expect it:

The only difference is now we have a place where we can add on some functionality.

Creating a logger
Inside , we're going to get started by creating a logger that will log out all of the
requests that come in to the server. We'll store a timestamp so we can see exactly when
someone made a request for a specific URL.



Web Servers in Node Chapter 8

[ 457 ]

To get started inside the middleware, let's get the current time. I'll make a variable called
now, setting it equal to , creating a new instance of our date object, and I'll call
it  method:

The  method creates a nice formatted date, a human-readable timestamp. Now
that we have our now variable in place, we can start creating the actual logger by calling

.

Let's call , passing in whatever I like. Let's pass in inside of ticks the 
variable with a colon after:

Now if I save my file, things are going to restart in the Terminal because  is
running. When we make a request for the site again and we go into the Terminal, we should
see the log:

Currently it's just a timestamp, but we are on the right track. Now everything is working
because we called , so after this  call prints to the screen, our application
continues and it serves up the page.

Inside middleware, we can add on more functionality by exploring the request object. On
the request object, we have access to everything about the request the HTTP method, the
path, query parameters, and anything that comes from the client. Whether the client is an
app, a browser, or an iPhone, it is all going to be available in that request object. Two things
we'll pull off now are the HTTP method and the path.



Web Servers in Node Chapter 8

[ 458 ]

If you want to look at a full list of the things you have access to, you can go to
, and go to API reference:

We happen to be using a 4.x version of Express, so we'll click that link:



Web Servers in Node Chapter 8

[ 459 ]

On the right-hand side of this link, we have both Request and Response. We'll look for the
request objects, so we'll click that. This'll lead us to the following:

We'll be using two request properties:  and . Inside Atom, we can start
implementing those, adding them into . Right after the timestamp, we'll print
the HTTP method. We'll be using other methods later. For now we've only used the 
method. Right inside the , I'll inject  printing it to the
console:

Next up we can print the path so we know exactly what page the person requested. I'll do
that by injecting another variable, :



Web Servers in Node Chapter 8

[ 460 ]

With this in place, we now have a pretty useful piece of middleware. It takes the request
object, it spits out some information and then it moves on, letting the server process that
request which was added. If we save the file and rerun the app from the browser, we
should be able to move into the Terminal and see this new logger printing to the screen, and
as shown following we get just that:

We have our timestamp, the HTTP method which is , and the path. If we change the
path to something more complicated, such as , and we move back into the Terminal,
we'll see the  where we accessed :

Now this is a pretty basic example of some middleware. We can take it a step further. Aside
from just logging a message to the screen, we'll also print the message to a file.

Printing message to file
To print the message to a file, let's load in  up in the  file. We'll create a
constant. Call that  and set that equal to the return result from requiring the
module:

Now we can implement this down following in the . We'll take our template string,
which is currently defined inside . We'll cut it out and instead store in a
variable. We'll make a variable called , setting it equal to that template string as shown
here:



Web Servers in Node Chapter 8

[ 461 ]

Now we can pass that  variable into both  and into an  method to write
to our file system. For , we will call log like this:

For , I'll call . Now as you remember,  lets you add on to a
file. It takes two arguments: the file name and the thing we want to add. The file name we'll
use is . We'll create a nice log file and the actual contents will just be the 
message. We will need to add one more thing: we also want to move on to the next line
after every single request gets logged, so I'll concatenate the new line character, which will
be :

If you're using Node V7 or greater, you will need to make a small tweak to
this line. As shown in the following code, we added a third argument to

. This is a callback function. It's now required.
 

If you don't have a callback function, you'll get a deprecation warning
over inside the console. Now as you can see, our callback function here
takes an error argument. If there is an error, we just print a message to the
screen. If you change your line to look like this, regardless of your Node
version, you'll be future proof. If you're on Node V7 or greater, the
warning in the console will go away. Now the warning is going to say
something such as deprecation warning. Calling an asynchronous function
without callback is deprecated. If you see that warning, make this change.



Web Servers in Node Chapter 8

[ 462 ]

Now that we have this in place, we can test things out. I save the file, which should be
restarting things inside of . Inside Chrome, we can give the page a refresh. If we
head back into the Terminal, we do still get my log, which is great:

Notice we also have a request for a . This is usually the icon that's shown in
the browser tab. I have one cached from a previous project. There actually is no icon file
defined, which is totally fine. The browser still makes the request anyway, which is why
that shows up as shown in the previous code snippet.

Inside Atom, we now have our  file, and if we open it up, we have a log of all
the requests that were made:

We have timestamps, HTTP methods, and paths. Using , we were able to create
some middleware that helps us keep track of how our server is working.

Now there are times where you might not want to call next. We learned that we could call
next after we do something asynchronous, such as a read from a database, but imagine
something goes wrong. You can avoid calling next to never move on to the next piece of
middleware. We would like to create a new view inside the  folder. We'll call this one

. This will be a handlebars template that will render when the site is in
maintenance mode.



Web Servers in Node Chapter 8

[ 463 ]

The maintenance middleware without the next
object
We'll start with making the  file by duplicating . Inside

, all we'll do is wipe the body and add a few tags:

As shown in the following code, we'll add an  tag to print a little message to the user:

We're going to use something like :

Next, I can add a paragraph tag:



Web Servers in Node Chapter 8

[ 464 ]

Now we will be able to use  followed by the tab. This is a shortcut inside
Atom for creating an HTML tag. It works for all tags. We could type body
and hit enter or I could type  and press enter, and the tag will be created.

Inside the paragraph, I'll leave a little message: 
:

Now that we have our template file in place, we can define our maintenance middleware.
This is going to bypass all of our other handlers, where we render other files and print
JSON, and instead it'll just render this template to the screen. We'll save the file, move into

, and define that middleware.

Right next to the previously-defined middleware, we can call  passing in our
function. The function will take those three arguments: request ( ), response ( ), and

:

Inside the middleware, all we'll need to do is call . We'll add
 passing in the name of the file we want to render; in this case, it's

:

That is all you needed to do to set up our main middleware. This middleware will stop
everything after it from executing. We don't call next, so the actual handlers in the 
function, they will never get executed and we can test this.



Web Servers in Node Chapter 8

[ 465 ]

Testing the maintenance middleware
Inside the browser, we'll refresh the page, and we will get the following output:

We get the maintenance page. We can go to the home page and we get the exact same thing:

Now there's one more really important piece to middleware we haven't discussed yet.
Remember inside the  folder, we have a  file as shown here:



Web Servers in Node Chapter 8

[ 466 ]

If we visit this in the browser by going to , we'll still get the
help page. We'll not get the maintenance page:



Web Servers in Node Chapter 8

[ 467 ]

That is because middleware is executed in the order you call . This means the first
thing we do is we set up our Express static directory, then we set up our logger, and finally
we set up our  logger:

This is a pretty big problem. If we also want to make the  directory files such
as  private, we'll have to reorder our calls to  because currently the
Express server is responding inside of the Express static middleware, so our maintenance
middleware doesn't get a chance to execute.

To resolve this, we'll take the  Express static call, remove it from the file, and add it
after we render the maintenance file to the screen. The resultant code is going to look like
this:



Web Servers in Node Chapter 8

[ 468 ]

Now, everything will work as expected, no matter what we're going to log the request.
Then we'll check if we're in maintenance mode if the maintenance middleware function is in
place. If it is, we'll render the maintenance file. If it's not, we'll ignore it because it'll be
commented out or something like that, and finally we'll be using Express static. This is
going to fix all those problems. If I re-render the app now, I get the maintenance page on

:

If I go back to the root of the website, I still get the maintenance page:

Now once we're done with the maintenance middleware, we can always comment it out.
This will remove it from being executed, and the website will work as expected.

This has been a quick dive into Express middleware. We'll be using it a lot more throughout
the book. We'll be using middleware to check if our API requests are actually authenticated.
Inside the middleware, we'll be making a database request, checking if the user is indeed
who they say they are.



Web Servers in Node Chapter 8

[ 469 ]

Summary
In this chapter you learned about Express and how it can be used to easily create websites.
We looked at how we can set up a static web server, so when we have an entire directory of
JavaScript, images, CSS, and HTML. We can serve that up easily without needing to
provide routes for everything. This will let us create all sorts of applications, which we'll be
doing throughout the rest of the book.

Next, we continued on learning how to use Express. We took a look at how we can render
dynamic templates, kind of like we would with a PHP or Ruby on Rails file. We have some
variables and we rendered a template injecting those variables. Then we learned a little bit
about handlebars partials, which let us create reusable chunks of code like headers and
footers. We also learned about Handlebars helpers, which is a way to run some JavaScript
code from inside of your handlebars templates. Lastly, we moved back to talking about
Express and how it can customize our requests, responses, our server.

In the next chapter, we'll look into deploying applications to the web.



99
Deploying Applications to Web

In this chapter, we'll worry about adding version control and deploying our applications
because when it comes to creating real-world Node apps, deploying your app to the Web is
obviously a pretty big part of that. Now in the real world, every single company uses some
form of version control. It is essential to the software development process, and most of
them aren't using Git. Git has become really popular, dominating the market share for
version control. Git is also free and open source, and there is a ton of great educational
material. They have a book on how to learn Git. It's free and Stack Overflow is filled with
Git-specific questions and answers.

We'll be using Git to save our project. We'll also be using it to back up our work to a service
called GitHub, and finally we'll be using Git to deploy our project live to the Web. So we'll
be able to take our web server and deploy it for anybody to visit. It won't just be available
on localhost.

Specifically, we'll look into the following topics:

Setting up and using Git
Setting up GitHub and SSH keys
Deploying Node app to the web
The workflow of the entire development life cycle



Deploying Applications to Web Chapter 9

[ 471 ]

Adding version control
In this section, we'll learn how to set up and use Git, which is a version control system. Git
will let us keep track of the changes to our project over time. This is really useful when
something goes wrong and we need to revert to a previous state in the project where things
were working. It's also super useful for backing up our work.

Installing Git
To get started, we will need to install Git on the computer, but luckily for us it is a really
simple installation process. It's one of those installers where we just click on the Next button
through a few steps. So let's go ahead and do that.

We can grab the installer by heading over to the browser and going to 1.
.

Before we go ahead and install it, I want to show you the link to the book
called Pro Git ( ). It is a free book and
also available for online reading. It covers everything that Git has to offer.
We'll be looking at some of the more basic features in this chapter, but we
could easily create an entire course on Git. There actually are Udemy
courses just on Git and GitHub, so if you want to learn more than what we
cover in this book, I'd recommend reading this book or checking out a
course, whatever your preferred learning method is.

Click on the download button present on the right-hand side of the home page,2.
for all the operating systems, whether it's Windows, Linux, or macOS. This
should take us to the installer page and we should be able to get the installer
downloading automatically. If you see any problem with , then
we may have to actually click on it to download manually in order to start the
download.



Deploying Applications to Web Chapter 9

[ 472 ]

Once the installer is downloaded, we can simply run it.3.
Next, move through the installer:4.



Deploying Applications to Web Chapter 9

[ 473 ]

Click on Continue and install the package:5.



Deploying Applications to Web Chapter 9

[ 474 ]

Once it's done, we can go ahead and actually test that things installed6.
successfully:



Deploying Applications to Web Chapter 9

[ 475 ]

Git on macOS
If you're on macOS, you'll need to launch the package installer and you might get the
following message box saying that it's from an unidentified developer:

This is because it is distributed via a third party as opposed to being in the macOS App
Store. We can go ahead and right-click on the package, then click on the Open button and
confirm that we do indeed want to open it.

Once you're at the installer, the process is going to be pretty simple. You can essentially
click on Continue and Next throughout every step.



Deploying Applications to Web Chapter 9

[ 476 ]

Git on Windows
If you're on Windows though, there is an important distinction. Inside the installer you're
going to see a screen just like this:

It is really important that you also install Git Bash as shown in the screenshot. Git Bash is a
program that simulates a Linux-type Terminal, and it's going to be really essential when we
create our SSH keys in the next section to uniquely identify our machine.

Testing the installation
Now, let's move in to the Terminal to test the installation. From the Terminal we can go
ahead and run . This is going to print a new version of Git we have
installed:

git --version



Deploying Applications to Web Chapter 9

[ 477 ]

As shown in the following screenshot, we can see we have git version 2.14.3:

Now if you have your Terminal still open and you're getting an error like
git command not found, I'd recommend trying to restart your Terminal.
Sometimes that is required when you're installing new commands such as
the  command, which we just installed.

Turning the node-web-server directory into a Git
repository
With successful installation of Git, we are now ready to turn our 
directory into a Git repository. In order to do this, we'll the following command:

git init

The  command needs to get executed from the root of our project, the folder that
has everything that we want to keep track of. In our case,  is that folder.
It has our  file, our  file, and all of our directories. So, from the
server folder, we'll run :

This creates a  directory inside that folder. We can prove that by running the 
command:

ls -a



Deploying Applications to Web Chapter 9

[ 478 ]

As shown in the following screenshot, we get all of the directories including the hidden
ones and right here I do indeed have .git:

For Windows, go ahead and run these commands from the Git Bash.

Now this directory is not something we should be manually updating. We'll be using
commands from the Terminal in order to make changes to the Git folder.

You don't want to be going in there manually messing around with things
because there's a pretty good chance you're going to corrupt the Git
repository and all of your hard work is going to become useless. Now
obviously if it's backed up, it's not a big deal, but there really is no reason
to go into that Git folder.

Let's use the  command to clear the Terminal output, and now we can start looking at
exactly how Git works.

Using Git
As mentioned earlier, Git is responsible for keeping track of the changes to our project, but
by default it doesn't actually track any of our files. We have to tell Git exactly which files we
want it to keep track of and there's a good reason for this. There are files in every project
that we're most likely not going to want to add to our Git repo, and we'll talk about which
ones and why later. For now let's go ahead and run the following command:

git status

Now all these commands need to get executed from inside of the root of the project. If you
try to run this outside a repository, you'll get an error like git repository not found. What
that means is that Git cannot find that  directory in order to actually get the status of
your repository.



Deploying Applications to Web Chapter 9

[ 479 ]

When we run this command, we'll get some output that looks like this:

The important pieces for now is the Untracked files header and all of the files underneath
it. These are all of the files and folders that Git seized, but it's currently not tracking. Git
doesn't know if you want to keep track of the changes to these files or if you want to ignore
them from your repository.

Now the  folder, for example, is something we definitely want to keep track of. This
is going to be essential to the project and we want to make sure that whenever someone
downloads the repository, they get the  folder. The log file on the other hand doesn't
really need to be included in Git. In general our log files are not going to be committed,
since they usually contain information specific to a point in time when the server was
running.

As shown in the preceding code output, we have , our public folder, and
. These are all essential to the process of executing the app. These are

definitely going to be added to our Git repository, and the first one above we have is the
 folder. The  folder is what's called a generated folder.



Deploying Applications to Web Chapter 9

[ 480 ]

Generated folders are easily generated by running a command. In our case, we can
regenerate this entire directory using . We're not going to want to add Node
modules to our Git repository because its contents differ depending on the version of npm
you have installed and depending on the operating system you're using. It's best to leave off
Node modules and let every person who uses your repository manually install the modules
on the machine they're actually going to be running the app.

Adding untracked files to commit
Now we have these six folders and files listed, so let's go ahead and add the four folders
and files we want to keep. To get started, we'll use any  command. The 
command lets us tell the Git we want to keep track of a certain file. Let's type the following
command:

git add package.json

After we do this, we can run it  again, and this time we get something very
different:



Deploying Applications to Web Chapter 9

[ 481 ]

Now we have an Initial commit header. This is new, and we have our old Untracked files
header. Notice under Untracked files, we don't have  anymore. That is
moved up to the Initial commit header. These are all of the files that are going to be saved,
also known as committed, when we make our first commit. Now we can move on adding
the 3 others. We'll use a  command again to tell Git we want to track the public
directory. We can run a  command to confirm it was added as expected:

As shown in the preceding screenshot, we can see the public/help.html file is now going to
be committed to Git once we run a commit.

Next up we can add  with , and we can add the 
directory using , just like this:

git add server.js

git add views/



Deploying Applications to Web Chapter 9

[ 482 ]

We'll run a  command to confirm:

Everything looks good. Now the Untracked files are going to sit around here until we do
one of two things we either add them to the Git repository or ignore them using a custom
file that we're going to create inside Atom.

Inside Atom, we'd like to make a new file called , in our root of our project.
The  file is going to be part of our Git repository and it tells get which folders
and files you want to ignore. In this case we can go ahead and ignore , just
like this:



Deploying Applications to Web Chapter 9

[ 483 ]

When we save the  file and rerun  from the Terminal, we'll now get
a really different result:



Deploying Applications to Web Chapter 9

[ 484 ]

As shown, we can see we have a new untracked file but the
 directory is nowhere in sight, and that's exactly what we want. We want to

remove this completely, making sure that it never ever gets added to the Git repo. Next up,
we can go ahead and ignore that  file by typing its name, :

node modules/
server.log

We'll save , run  from the Terminal one more time, and make sure
everything looks great:

As shown, we have a  file as our only untracked file. The  file and
 are nowhere in sight.



Deploying Applications to Web Chapter 9

[ 485 ]

Now that we have , we are going to be adding it to Git using 
 and when we run , we should be able to see that all the files that

show up are under the initial commit:

git add .gitignore

git status

So now it's time to make a commit. A commit really only requires two things. It requires
some change in the repository. In this case, we're teaching Git how to track a ton of new
files, so we are indeed changing something, and it requires a message. We've already
handled the file part of things. We've told Git what we want to save, we just haven't
actually saved it yet.



Deploying Applications to Web Chapter 9

[ 486 ]

Making a commit
In order to make our first commit and save our first thing into the Git repository, we'll run

 and provide one flag, the  flag, which is short message. After that inside
quotes, we can specify the message that we want to use for this commit. It's really important
to use these messages so when someone's digging through the commit history, the list of all
the changes to the project can be seen, which are actually useful. In this case, 

 is always a good message for your first commit:

git commit -m 'Initial commit'

I'll go ahead and hit enter and as shown in the following screenshot, we see all of the
changes that happened to the repo:

We have created a bunch of new files inside of the Git repository. These are all of the files
that we told Git we want to keep track of and this is fantastic.



Deploying Applications to Web Chapter 9

[ 487 ]

We now have our very first commit, which essentially means that we've saved the project at
its current state. If we make a big change to , messing stuff up to not be able
figure out how to get it back to the way it was, we can always get it back because we made a
Git commit. Now we'll explore some more fancy Git things in the later sections. We'll be
talking about how to do most of the things you want to do with Git, including deploying to
Heroku and pushing to GitHub.

Setting up GitHub and SSH keys
Now that you have a local Git repository, we'll look at how we can take that code and push
it up to a third-party service called GitHub. GitHub is going to let us host our Git
repositories remotely, so if our machine ever crashes we can get our code back, and it also
has great collaboration tools, so we can open-source a project, letting others use our code, or
we can keep it private so only people we choose to collaborate with can see the source code.

Now in order to actually communicate between our machine and GitHub, we'll have to
create something called an SSH key. SSH keys were designed to securely communicate
between two computers. In this case, it will be our machine and the GitHub server. This will
let us confirm that GitHub is who they say they are and it will let GitHub confirm that we
indeed have access to the code we're trying to alter. This will all be done with SSH keys and
we'll create them first, then we'll configure them, and finally we'll push our code up to
GitHub.

Setting up SSH keys
The process of setting up SSH keys can be a real burden. This is one of those topics where
there's really small room for error. If you type any of the commands wrong, things are just
not going to work as expected.

Now if you're on Windows, you'll need to do everything in this section from a Git Bash as
opposed to the regular Command Prompt because we'll be using some commands that just
are not available on Windows. They are, however, available on Linux and macOS. So if
you're using either of those operating systems, you can continue using the Terminal you've
been using throughout the book.



Deploying Applications to Web Chapter 9

[ 488 ]

SSH keys documentations
Before we dive into the commands, I want to show you a quick guide that exists online in
case you get stuck or you have any questions. You can Google GitHub SSH keys, and this is
going to link you to an article called generating an SSH key: 

. Once you're here, you'll be able to click on
the SSH breadcrumb, and this is going to bring you back to all of their articles on SSH keys:



Deploying Applications to Web Chapter 9

[ 489 ]

Out of these articles, the nested four are the ones we'll be focusing on checking if we have a
key, generating a new key, adding the key to GitHub, and finally testing that everything
worked as expected. If you run into any problems along any of these steps, you can always
click on the guide for that step and you can pick the operating system you're using so you
can see the appropriate commands for that OS. Now that you know this exists, let's go
ahead and do it together.

Working on commands
The first command we'll run from the Terminal is going to check if we have an existing SSH
key. Now if you don't, that's fine. We'll go ahead and create one. If you do or you're not
sure you do, you can run the following command to confirm whether or not you have one:

 with the  flag. This is going to print all the files in a given directory, and the directory
where SSH keys are stored by default on your machine is going to be at the user directory,
which you can use ( ) as a shortcut for :

ls -al ~/.ssh

When you run the command, you'll see all of the contents inside of that SSH directory:

In this case I've deleted all of my SSH keys so I have nothing inside my directory. I just have
paths for the current directory and the previous one. Now that we have this in place and
we've confirmed we don't have a key, we can go ahead and generate one. If you do already
have a key, a file like , you can go ahead and skip the process of generating the key.

To make a key we'll use the  command. Now the  takes three
arguments. We'll pass in  setting it equal to . We'll pass in  which is for bytes, setting
that equal to . Make sure to match these arguments exactly, and we'll be setting a
capital  flag which will get set equal to your email:

ssh-keygen -t rsa -b 4096 -C 'garyngreig@gmail.com'



Deploying Applications to Web Chapter 9

[ 490 ]

Now the scope of what's actually happening behind the scenes is not part
of this book. SSH keys and setting up security, that could be an entire
course in and of itself. We'll be using this command to simplify the entire
process.

Now we can go ahead and hit enter, which will generate two new files in our  folder.
When you run this command, you'll get greeted with a few steps. I want you to use the
default for all of them:

Here they want to ask you if you want to customize the file name. I do not recommend
doing that. You can just hit enter:

Next up they ask you for a passphrase, which we'll not use. I'll hit enter for no passphrase,
then I need to confirm the passphrase, so I'll just hit enter again:



Deploying Applications to Web Chapter 9

[ 491 ]

As shown, we get a little message that our SSH key was properly created and that it was
indeed saved in our folder.

With this in place, I can now cycle back through my previous commands running the 
command, and what do I get?

We get  and I get the  file. The  file contains the private key.
This is the key you should never give to anyone. It lives on your machine and your machine
only. The  file, which is the public file. This one is the one you'll give to third-party
services such as GitHub or Heroku, which we'll be doing in the next several sections.

Starting up the SSH agent
Now that our keys are generated, the last thing we need to do is start up the SSH agent and
add this key so it knows that it exists. We'll do this by running two commands. These are:

First up we'll run , and then we'll open some quotes and inside the quotes, we'll use
the dollar sign and open and close some parentheses just like this:

eval "$()"



Deploying Applications to Web Chapter 9

[ 492 ]

Inside our parentheses we'll type  with the  flag:

eval "$(ssh-agent -s)"

This will start up the SSH agent program and it will also print the process ID to confirm it is
indeed running, and as shown, we get Agent pid 1116:

The process ID is obviously going to be different for everyone. As long as you get
something back like this you are good to go.

Next up we have to tell the SSH agent where this file lives. We'll do that using .
This takes the path to our private key file which we have in the user directory

:

ssh-add ~/.ssh/id_rsa

When I run this, I should get a message like identity added:

This means that the local machine now knows about this public/private key pair and it'll try
to use these credentials when it communicates with a third-party service such as GitHub.
Now that we have this in place, we are ready to configure GitHub. We'll make an account,
set it up, and then we'll come back and test that things are working as expected.



Deploying Applications to Web Chapter 9

[ 493 ]

Configuring GitHub
To configure GitHub, follow these steps:

First head into the browser and go to .1.
Here log into your existing account or create a new one. If you need a new one,2.
sign up for GitHub. If you have an existing one, go ahead and sign into it.
Once signed in, you should see the following screen. This is your GitHub3.
dashboard:



Deploying Applications to Web Chapter 9

[ 494 ]

From here, navigate to Settings, present at the top-left hand side, by the profile4.
picture. Go to Settings | SSH and GPG keys | SSH keys:

From here we can add the public key, letting GitHub know that we want to5.
communicate using SSH.



Deploying Applications to Web Chapter 9

[ 495 ]

Add the new SSH key:6.

Here, you need to do two things: give it a name, and add the key.

First add the name. The name can be anything you like. For example, I usually use
one that uniquely identifies my computer since I have a couple. I'll use 

, just like this.

Next up, add the key.



Deploying Applications to Web Chapter 9

[ 496 ]

To add the key, we need to grab the contents of the  file, we
generated in the previous sub-section. That file contains the information that
GitHub needs in order to securely communicate between our machine and their
machines. There are different methods to grab the key. In the browser, we have
the Adding a new SSH key to your GitHub account article for our reference.

This contains a command you can use to copy the contents of that file to your7.
clipboard from right inside the Terminal. Now obviously it is different for the
operating systems, macOS, Windows, and Linux, so run the command for your
operating system.



Deploying Applications to Web Chapter 9

[ 497 ]

Use the  command which is available for macOS.8.

Then, move into the Terminal and run it.

      pbcopy < ~/.ssh/id_rsa.pub

This copies the contents of the file to the clipboard. You can also open the
command up with a regular text editor and copy the contents of the file. We can
use any method to copy the file. It doesn't matter how you do it. All that matters is
you do.

Now move back into GitHub, click on the text area and paste it in.9.

The contents of  should start with  and it should end with
that email you used.



Deploying Applications to Web Chapter 9

[ 498 ]

Once you're done, go ahead and click on Add SSH key.10.

Now we can go ahead and test that things are working by running one command from the
Terminal. Once again this command can be executed from anywhere on your machine. You
don't need to be in your project folder to do this.

Testing the configuration
To test the working of our GitHub configuration, we'll use , which tries to make a
connection. We'll use the  flag, followed by the URL we want to connect to you get at

:

ssh -T git@github.com

This is going to test our connection. It will make sure that the SSH keys are properly set up
and we can securely communicate with GitHub. When I run the command I get a message
saying that The authenticity of host 'github.com (192.30.253.113)' can't be established.



Deploying Applications to Web Chapter 9

[ 499 ]

We know that we want to communicate with . We're expecting that
communication to happen, so we can go ahead and enter :

From here, we get a message from the GitHub servers as shown in the preceding
screenshot. If you are seeing this message with your username then you are done. You're
ready to create your first repository and push your code up.

Now if you don't see this message, something went wrong along the way.
Maybe the SSH key wasn't generated correctly or it's not getting
recognized by GitHub.

Next, we'll move into GitHub, go back to the home page, and create a new repository.

Creating a new repository
To create a new repository, follow these steps:

On the GitHub home page, in the right-hand side corner, navigate to the New1.
repository button, which should look like this (click on Start New Project if it's a
new one):

This will lead us to the new repository page:



Deploying Applications to Web Chapter 9

[ 500 ]

Here, all we need to do is give it a name. I'm going to call this one 2.
:

Once you have a name, you could give it an optional description and you can pick
whether you want to go with a public or private repository.

Now private repositories do put you on a $7 plan. I do recommend that if
you're creating projects with other companies.



Deploying Applications to Web Chapter 9

[ 501 ]

In this case though, we're creating pretty simple projects and it doesn't really3.
matter if someone else finds the code, so go ahead and use a public repository by
clicking that option.

Once you have those two things filled out, click on the Create repository button:4.



Deploying Applications to Web Chapter 9

[ 502 ]

This is going to get brought to your repository page:

It will give you a little setup because currently there is no code to view, so it will give you a
few instructions depending on which situation you're in.

Setting up the repository
Now, out of the preceding three setup instructions, we don't need the one for creating a
new repository. We are not going to use the one for importing our code from some other
URL. What we have is an existing repository and we want to push it from the command
line.



Deploying Applications to Web Chapter 9

[ 503 ]

We'll run these two commands from inside our project:

The first one adds a new remote to our Git repository
The second command is going to push it up to GitHub

Remotes let Git know which third-party URLs you want to sync up with. Maybe I want to
push my code to GitHub to communicate with my co-workers. Maybe I also want to be able
to push up to Heroku to deploy my app. That means you would want two remotes. In our
case, we'll just add one, so I'll copy this URL, move into the Terminal, paste it, and hit enter:

git remote add origin
https://github.com/garygreig/node-course-2-web-server.git

Now that we have our  added, we can go ahead and run that second
command. We'll use the second command extensively throughout the book. In the
Terminal, we can copy and paste the code for second command, and run it:

git push -u origin master



Deploying Applications to Web Chapter 9

[ 504 ]

As shown in the preceding screenshot, we can see everything went great. We were able to
successfully write all of our data up to GitHub, and if we go back into the browser and
refresh the page, we're no longer going to see those setup instructions. Instead, we're going
to see our repository, kind of like a tree view:

Here we can see we have our  file, which is great. We don't see the log file or
 file, which is good, because we ignored that. I have my public directory.

Everything works really really well. We also have issues tracking, Pull requests. You can
create a Wiki page which lets you set up instructions for your repository. There's a lot of
really great features that GitHub has to offer. We'll be using just the very basic features.



Deploying Applications to Web Chapter 9

[ 505 ]

On our repository, we can see we have one commit and if we click on that one commit
button, you can actually go to the commits page and here we see the initial commit message
that we typed. We made that commit in the previous section:

This is going to let us keep track of all our code, revert if we make unwanted changes, and
manage our repository. Now that we have our code pushed up, we are done.

Deploying the node app to the Web
In this section, you'll deploy your Node app live to the Web using Heroku. By the end of the
section, you'll have the URL you can give anybody and they'll be able to go to that URL in
their browser to view the application. We'll do this via Heroku.



Deploying Applications to Web Chapter 9

[ 506 ]

Heroku is a website. It's a web app for managing web applications that are hosted in the
cloud. It's a really great service. They make it almost effortless to create new apps, deploy
your apps, update apps, and add cool add-on-things such as logging and error tracking, all
of that is built in. Now Heroku, like GitHub, does not require a credit card to sign up and
there is a free tier, which we'll use. They have paid plans for just about everything, but we
can get away with the free tier for everything we'll do in this section.

Installing Heroku command-line tools
To kick things off, we'll open up the browser and go to . Here we can go ahead
and sign up for a new account. Take a quick moment to either log in to your existing one or
sign up for a new one. Once log in, it'll show you the dashboard. Now your dashboard will
look something like this:

Although there might be a greeting telling you to create a new application, which you can
ignore. I have a bunch of apps. You might not have these. That is perfectly fine.

The next thing we'll do is install the Heroku command-line tools. This will let us create
apps, deploy apps, open apps, and do all sorts of really cool stuff from the Terminal,
without having to come into the web app. That will save us time and make development a
lot easier. We can grab the download by going to .



Deploying Applications to Web Chapter 9

[ 507 ]

Here we're able to grab the installer for whatever operating system, you happen to be
running on. So, let's start the download. It's a really small download so it should happen
pretty quickly.



Deploying Applications to Web Chapter 9

[ 508 ]

Once it's done, we can go ahead and run through the process:



Deploying Applications to Web Chapter 9

[ 509 ]

This is a simple installer where you just click on Install. There is no need to customize
anything. You don't have to enter any specific information about your Heroku account.
Let's go ahead and complete the installer.

This will give us a new command from the Terminal that we can execute. Before we can do
that, we do have to log in locally in the Terminal and that's exactly what we'll do next.

Log in to Heroku account locally
Now we will start off the Terminal. If you already have it running, you might need to
restart it in order for your operating system to recognize the new command. You can test
that it got installed properly by running the following command:

heroku --help



Deploying Applications to Web Chapter 9

[ 510 ]

When you run this command, you'll see that it's installing the CLI for the first time and then
we'll get all the help information. This will tell us what commands we have access to and
exactly how they work:

Now we will need to log in to the Heroku account locally. This process is pretty simple. In
the preceding code output, we have all of the commands available and one of them happens
to be login. We can run  just like this to start the process:

heroku login



Deploying Applications to Web Chapter 9

[ 511 ]

I'll run the  command and now we just use the email and password that we had set
up before:

I'll type in my email and password. Typing for Password is hidden because it's secure. And
when I do that you see Logged in as garyngreig@gmail.com shows up and this is fantastic:

Now we're logged in and we're able to successfully communicate between our machine's
command line and the Heroku servers. This means we can get started creating and
deploying applications.

Getting SSH key to Heroku
Now before going ahead, we'll use the  command to clear the Terminal output and
get our SSH key on Heroku, kind of like what we did with GitHub, only this time we can do
it via the command line. So it's going to be a lot easier. In order to add our local keys to
Heroku, we'll run the  command. This will scan our SSH directory and
add the key up:

heroku keys:add



Deploying Applications to Web Chapter 9

[ 512 ]

Here you can see it found a key the  file: Would you like to upload it to
Heroku?.

Type  and hit enter:

Now we have our key uploaded. That is all it took. Much easier than it was to configure
with GitHub. From here, we can use the  command to print all the keys
currently on our account:

heroku keys

We could always remove them using  command followed by the
email related to that key. In this case, we'll keep the Heroku key that we have. Next up, we
can test our connection using SSH with the  flag and :

ssh -v git@heroku.com



Deploying Applications to Web Chapter 9

[ 513 ]

This will communicate with the Heroku servers:

As shown, we can see it's asking that same question: The authenticity of the host
'heroku.com' can't be established, Are you sure you want to continue connecting? Type

.



Deploying Applications to Web Chapter 9

[ 514 ]

You will see the following output:

Now when you run that command, you'll get a lot of cryptic output. What you're looking
for is authentication succeeded and then public key in parentheses. If things did not go
well, you'll see the permission denied message with public key in parentheses. In this case,
the authentication was successful, which means we are good to go. I'll run clear again,
clearing the Terminal output.



Deploying Applications to Web Chapter 9

[ 515 ]

Setting up in the application code for Heroku
Now we can turn our attention towards the application code because before we can deploy
to Heroku, we will need to make two changes to the code. These are things that Heroku
expects your app to have in place in order to run properly because Heroku does a lot of
things automatically, which means you have to have some basic stuff set up for Heroku to
work. It's not too complex some really simple changes, a couple one-liners.

Changes in the server.js file
First up in the  file down at the very bottom of the file, we have the port and our

 statically coded inside :

We need to make this port dynamic, which means we want to use a variable. We'll be using
an environment variable that Heroku is going to set. Heroku will tell your app which port
to use because that port will change as you deploy your app, which means that we'll be
using that environment variable so we don't have to swap out our code every time we want
to deploy.

With environment variables, Heroku can set a variable on the operating system. Your Node
app can read that variable and it can use it as the port. Now all machines have environment
variables. You can actually view the ones on your machine by running the  command
on Linux or macOS or the  command on Windows.



Deploying Applications to Web Chapter 9

[ 516 ]

What you'll get when you do that is a really long list of key-value pairs, and this is all
environment variables are:

Here, we have a LOGNAME environment variable set to Andrew. I have a HOME
environment variable set to my home directory, all sorts of environment variables
throughout my operating system.

One of these that Heroku is going to set is called , which means we need to go ahead
and grab that  variable and use it in  instead of 3000. Up at the very top of
the  file, we'd to make a constant called , and this will store the port that
we'll use for the app:

const port



Deploying Applications to Web Chapter 9

[ 517 ]

Now the first thing we'll do is grab a port from . The  is an
object that stores all our environment variables as key-value pairs. We're looking for one
that Heroku is going to set called :

This is going to work great for Heroku, but when we run the app locally, the 
environment variable is not going to exist, so we'll set a default using the OR ( ) operator
in this statement. If  does not exist, we'll set port equal to  instead:

Now we have an app that's configured to work with Heroku and to still run locally, just like
it did before. All we have to do is take the  variable and use that in 
instead of . As shown, I'm going to reference  and inside our message, I'll swap it
out for template strings and now I can replace  with the injected port variable, which
will change over time:

With this in place, we have now fixed the first problem with our app. I'll now run 
 from the Terminal, like we did in the previous chapter:

node server.js

We still get the exact same message: Server is up on port 3000, so your app will still works
locally as expected:

Changes in the package.json file
Next up, we have to specify a script in . Inside , you might 
have noticed we have a  object, and in there we have a  script.



Deploying Applications to Web Chapter 9

[ 518 ]

This gets set by default for npm:

We can create all sorts of scripts inside the  object that do whatever we like. A
script is nothing more than a command that we run from the Terminal, so we could take
this command, , and turn it into a script instead, and that's exactly what
we're going to do.

Inside the  object, we'll add a new script. The script needs to be called :

This is a very specific, built-in script and we'll set it equal to the command that starts our
app. In this case, it will be :

This is necessary because when Heroku tries to start our app, it will not run Node with your
file name because it doesn't know what your file name is called. Instead, it will run the start
script and the start script will be responsible for doing the proper thing; in this case, booting
up that server file.



Deploying Applications to Web Chapter 9

[ 519 ]

Now we can run our app using that  script from the Terminal by using the following
command:

npm start

When I do that, we get a little output related to npm and then we get Server is up on port
3000, and if we visit the app in the browser, everything works exactly as it did in the
previous chapter:

The big difference is that we are now ready for Heroku. We could also run the test script
using from the Terminal :

npm test



Deploying Applications to Web Chapter 9

[ 520 ]

Now, we have no tests specified and that is expected:

Making a commit in Heroku
The next step in the process will be to make the commit and then we can finally start getting
it up on the Web. From the Terminal, we'll use some of the Git commands we explored
earlier in this chapter. First up, . When we run , we have
something a little new:

Instead of new files, we have modified files here as shown in the code output here. We have
a modified  file and we have a modified  file. These are not going
to be committed if we were to run a  just yet; we still have to use .
What we'll do is run  with the dot as the next argument. Dot is going to add every
single thing showing up and get status to the next commit.



Deploying Applications to Web Chapter 9

[ 521 ]

Now I only recommend using the syntax of everything you have listed in the 
 header. These are the things you actually want to commit, and in our

case, that is indeed what we want. If I run  and then a rerun , we can
now see what is going to be committed next, under the Changes to be committed header:

Here we have our  file and the  file. Now we can go ahead and
make that commit.

I'll run a  command with the  flag so we can specify our message, and a good
message for this commit would be something like 

:

git commit -m 'Setup start script and heroku port'

Now we can go ahead and run that command, which will make the commit.

Now we can go ahead and push that up to GitHub using the  command, and we
can leave off the  remote because the origin is the default remote. I'll go ahead and
run the following command:

git push



Deploying Applications to Web Chapter 9

[ 522 ]

This will push it up to GitHub, and now we are ready to actually create the app, push our
code up, and view it over in the browser:

Running the Heroku create command
The next step in the process will be to run a command called  from the
Terminal.  needs to get executed from inside your application:

heroku create

Just like we run our Git commands, when I run , a couple things are going
to happen:

First up, it's going to make a real new application over in the Heroku web app
It's also going to add a new remote to your Git repository

Now remember we have an origin remote, which points to our GitHub repository. We'll
have a Heroku remote, which points to our Heroku Git repository. When we deploy to the
Heroku Git repository, Heroku is going to see that. It will take the changes and it will
deploy them to the Web. When we run Heroku create, all of that happens:



Deploying Applications to Web Chapter 9

[ 523 ]

Now we do still have to push up to this URL in order to actually do the deploying process,
and we can do that using  followed by :

git push heroku

The brand new remote was just added because we ran . Now pushing it
this time around will go through the normal process. You'll then start seeing some logs.

These are logs coming back from Heroku letting you know how your app is deploying. It's
going through the entire process, showing you what happens along the way. This will take
about 10 seconds and at the very end we have a success message Verifying deploy...
done:



Deploying Applications to Web Chapter 9

[ 524 ]

It also verified that the app was deployed successfully and that did indeed pass. From here
we actually have a URL we can visit ( ).
We can take it, copy it, and paste it in the browser. What I'll do instead is use the following
command:

heroku open

The  will open up the Heroku app in the default browser. When I run this, it
will switch over to Chrome and we get our application showing up just as expected:

We can switch between pages and everything works just like it did locally. Now we have a
URL and this URL was given to us by Heroku. This is the default way Heroku generates
app URLs. If you have your own domain registration company, you can go ahead and
configure its DNS to point to this application. This will let you use a custom URL for your
Heroku app. You'll have to refer to the specific instructions for your domain registrar in
order to do that, but it can indeed be done.

Now that we have this in place, we have successfully deployed our Node applications live
to Heroku, and this is just fantastic. In order to do this, all we had to do is make a commit to
change our code and push it up to a new Git remote. It could not be easier to deploy our
code.



Deploying Applications to Web Chapter 9

[ 525 ]

You can also manage your application by going back over to the Heroku dashboard. If you
give it a refresh, you should see that brand new URL somewhere on the dashboard.
Remember mine was sleepy retreat. Yours is going to be something else. If I click on the
sleepy retreat, I can view the app page:

Here we can do a lot of configuration. We can manage Activity and Access so we can
collaborate with others. We have metrics, we have Resources, all sorts of really cool stuff.
With this in place, we are now done with our basic deploying section.

In the next section, your challenge will be to go through that process again. You'll add some
changes to the Node app. You'll commit them, deploy them, and view them live in the Web.
We'll get started by creating the local changes. That means I'll register a new URL right here
using .



Deploying Applications to Web Chapter 9

[ 526 ]

We'll create a new page/projects, which is why I have that as the route for my HTTP get
handler. Inside the second argument, we can specify our  function, which will get
called with request and response, and like we do for the other routes above, the root route
and our about route, we'll be calling  to render our template. Inside the
render arguments list, we'll provide two.

The first one will be the file name. The file doesn't exist, but we can still go ahead and call
. I'll call it , then we can specify the options we want to pass to the

template. In this case, we'll set page title, setting it equal to  with a capital P.
Excellent! Now with this in place, the server file is all done. There are no more changes
there.

What I'll do is go ahead and go to the  directory, creating a new file called
. In here, we'll be able to configure our template. To kick things off, I'm

going to copy the template from the about page. Since it's really similar, I'll copy it. Close
about, paste it into projects, and I'm just going to change this text to project page text would
go here. Then we can save the file and make our last change.

The last thing we want to do is update the header. We now have a brand new projects page
that lives at . So we'll want to go ahead and add that to the header links list.
Right here, I'll create a new paragraph tag and then I'll make an anchor tag. The text for the
link will be  with a capital P and the , which is the URL to visit when that
link is clicked. We'll set that equal to , just like we did for about, where we set it
equal to .

Now that we have this in place, all our changes are done and we are ready to test things out
locally. I'll fire up the app locally using Node with  as the file. To start, we're up
on localhost 3000. So over in the browser, I can move to the localhost tab, as opposed to the
Heroku app tab, and click on Refresh. Right here we have Home, which goes to home, we
have About which goes to about, and we have Projects which does indeed go to

, rendering the projects page. Project page text would go here. With this in place
we're now done locally.

We have the changes, we've tested them, now it's time to go ahead and make that commit.
That will happen over inside the Terminal. I'll shut down the server and run Git status. This
will show me all the changes to my repository as of the last commit. I have two modified
files: the server file and the header file, and I have my brand new projects file. All of this
looks great. I want to add all of this to the next commit, so I can use a Git add with the  to
do just that.



Deploying Applications to Web Chapter 9

[ 527 ]

Now before I actually make the commit, I do like to test that the proper things got added by
running Git status. Right here I can see my changes to be committed are showing up in
green. Everything looks great. Next up, we'll run a Git commit to actually make the commit.
This is going to save all of the changes into the Git repository. A message for this one would
be something like adding a project page.

With a commit made, the next thing you needed to do was push it up to GitHub. This will
back our code up and let others collaborate on it. I'll use Git push to do just that. Remember
we can leave off the origin remote as origin is the default remote, so if you leave off a
remote it'll just use that anyway.

With our GitHub repository updated, the last thing to do is deploy to Heroku and we do
that by pushing up the Git repository, using Git push, to the Heroku remote. When we do
this, we get our long list of logs as the Heroku server goes through the process of installing
our npm modules, building the app, and actually deploying it. Once it's done, we'll get
brought back to the Terminal like we are here, and then we can open up the URL in the
browser. Now I can copy it from here or run Heroku open. Since I already have a tab open
with the URL in place, I'll simply give it a refresh. Now you might have a little delay as you
refresh your app. Sometimes starting up the app right after a new app was deployed can
take about 10 to 15 seconds. That will only happen as you first visit it. Other times where
you click on the Refresh button, it should reload instantly.

Now we have the projects page and if I visit it, everything looks awesome. The navbar is
working great and the projects page is indeed rendering at . With this in place,
we are now done. We've gone through the process of adding a new feature, testing it
locally, making a Git commit, pushing it up to GitHub, and deploying it to Heroku. We
now have a workflow for building real-world web applications using Node.js. This also
brings a close to this section.



Deploying Applications to Web Chapter 9

[ 528 ]

Summary
You also learned about Git, GitHub, and Heroku. These are the tools I prefer to use when
I'm creating applications. I like to use Git because it's super popular. It's basically the only
choice these days. I like to use GitHub because it has a great user interface. It has a ton of
awesome features and pretty much everyone else is using it too. There's a great community.
And I like to use Heroku because it is just dead simple to deploy new versions of your
application. You can swap out any of these tools with any other tools. You can use services
such Amazon Web Services to host. You could use Bitbucket as your GitHub alternative.
These are perfectly fine solutions. All that really matters is you have some tools that are
working for you, you have a Git repository backed up somewhere, whether it's GitHub or
Bitbucket, and you have an easy way to deploy so you can make changes quickly and get
them out to your users fast.

In different sections, we looked at how to add files to Git and how to make that first
commit. Next, we set up both GitHub and Heroku, then we looked at how to push our code
and deploy it. Then, we looked at how we can communicate with Heroku to deploy our
code. Then after that, we looked at some real-world workflows for creating new commits,
pushing to GitHub, and deploying to Heroku.

In the next chapter, we'll look into testing our applications.



110
Testing the Node Applications –

Part 1
In this chapter, we'll look at how we can test our code to make sure it's working as
expected. Now, if you've ever set up test cases for other languages, then you know how
hard it can be to get started. You have to set up the actual test infrastructure. Then you have
to write your individual test cases. Every time I didn't test an application, it was because the
setup process and the tools available to me were such a burden. Then you dig around for
information online and you get really simple examples, but not examples for testing real-
world things like asynchronous code. We'll be doing all of that in this chapter. I'll give you a
very simple setup for testing and writing your test cases.

We'll look at the best tools available so you'll actually be excited to write those test cases
and see all of those green checkmarks. We'll be testing from here on out as well, so let's dive
in looking at how we can test some code.



Testing the Node Applications – Part 1 Chapter 10

[ 530 ]

Basic testing
In this section, you'll create your very first test case so that you can test whether your code
is working as expected. By adding automatic testing to our project, we'll be able to verify
that a function does what it says it'll do. If we make a function that's supposed to add two
numbers together, we can automatically verify it's doing that. And if we have a function
that's supposed to fetch a user from the database, we can make sure it's doing that as well.

Now to get started in this section, we'll look at the very basics of setting up a testing suite
inside a Node.js project. We'll be testing a real-world function.

Installing the testing module
In order to get started, we will make a directory to store our code for this chapter. We'll
make one on the desktop using  and we'll call this directory :

mkdir node-tests

Then we'll change directory inside it using , so we can go ahead and run . We'll
be installing modules and this will require a  file:

cd node-tests

npm init

We'll run  using the default values for everything, simply hitting enter throughout
every single step:



Testing the Node Applications – Part 1 Chapter 10

[ 531 ]

Now once that  file is generated, we can open up the directory inside Atom.
It's on the desktop and it's called .

From here, we're ready to actually define a function we want to test. The goal in this section
is to learn how to set up testing for a Node project, so the actual functions we'll be testing
are going to be pretty trivial, but it will help illustrate exactly how to set up our tests.

Testing a Node project
To get started, let's make a fake module. This module will have some functions and we'll
test those functions. In the root of the project, we'll create a brand new directory and I'll call
this directory :



Testing the Node Applications – Part 1 Chapter 10

[ 532 ]

We can assume this will store some utility functions, such as adding a number to another
number, or stripping out whitespaces from a string, anything kind of hodge-podge that
doesn't really belong to any specific location. We'll make a new file in the  folder
called , and this is a similar pattern to what we did when we created the 
and  directories in our weather app in the previous chapter:

You're probably wondering why we have a folder and a file with the same name. This will
be clear when we start testing.

Now before we can write our first test case to make sure something works, we need
something to test. I'll make a very basic function that takes two numbers and adds them
together. We'll create an adder function as shown in the following code block:

This arrow function ( ) will take two arguments,  and , and inside the function, we'll
return the value . Nothing too complex here:

Now since we just have one expression inside our arrow function ( ) and we want to
return it, we can actually use the arrow function ( ) expression syntax, which lets us add
our expression as shown in the following code, , and it'll be implicitly returned:



Testing the Node Applications – Part 1 Chapter 10

[ 533 ]

There's no need to explicitly add a  keyword on to the function. Now that we have
 ready to go, let's explore testing.

We'll be using a framework called Mocha in order to set up our test suite. This will let us
configure our individual test cases and also run all of our test files. This will be really
important for creating and running tests. The goal here is to make testing simple and we'll
use Mocha to do just that. Now that we have a file and a function we actually want to test,
let's explore how to create and run a test suite.

Mocha  the testing framework
We'll be doing the testing using the super popular testing framework Mocha, which you
can find at . This is a fantastic framework for creating and running test suites.
It's super popular and their page has all the information you'd ever want to know about
setting it up, configuring it, and all the cool bells and whistles it has included:



Testing the Node Applications – Part 1 Chapter 10

[ 534 ]

If you scroll down on this page, you'll be able to see a table of contents:

Here you can explore everything Mocha has to offer. We'll be covering most of it in this
chapter, but for anything we don't cover, I do want to make you aware you can always
learn about it on this page.

Now that we've explored the Mocha documentation page, let's install it and start using it.
Inside the Terminal, we'll install Mocha. First up, let's clear the Terminal output. Then we'll
install it using the  command. When you use , you can also use
the shortcut . This has the exact same effect. I'll use  with , specifying the
version . This is the most recent version of the library as of this filming:

npm i mocha@3.0.0

Now we do want to save this into the  file. Previously, we've used the 
flag, but we'll talk about a new flag, called . The  flag is will save this
package for development purposes only and that's exactly what Mocha will be for. We
don't actually need Mocha to run our app on a service like Heroku. We just need Mocha
locally on our machine to test our code.



Testing the Node Applications – Part 1 Chapter 10

[ 535 ]

When you use the  flag, it installs the module much the same way:

npm i mocha@5.0.0 --save-dev

But if you explore , you'll see things are a little different. Inside our
 file, instead of a dependencies attribute, we have a 

attribute:

In there we have Mocha, with the version number as the value. The  are
fantastic because they're not going to be installed on Heroku, but they will be installed
locally. This will keep the Heroku boot times really, really quick. It won't need to install
modules that it's not going to actually need. We'll be installing both  and

 in most of our projects from here on out.



Testing the Node Applications – Part 1 Chapter 10

[ 536 ]

Creating a test file for the add function
Now that we have Mocha installed, we can go ahead and create a test file. In the 
folder, we'll make a new file called :

This file will store our test cases. We'll not store our test cases in . This will be our
application code. Instead, we'll make a file called . When we use this

 extension, we're basically telling our app that this will store our test cases. When
Mocha goes through our app looking for tests to run, it should run any file with this
extension.

Now we have a test file, the only thing left to do is create a test case. A test case is a function
that runs some code, and if things go well, great, the test is considered to have passed. And
if things do not go well, the test is considered to have failed. We can create a new test case,
using . It is a function provided by Mocha. We'll be running our project test files through
Mocha, so there's no reason to import it or do anything like that. We simply call it just like
this:

Now it lets us define a new test case and it takes two arguments. These are:

The first argument is a string
The second argument is a function

First up, we'll have a string description of what exactly the test is doing. If we're testing that
the adder function works, we might have something like:



Testing the Node Applications – Part 1 Chapter 10

[ 537 ]

Notice here that it plays into the sentence. It should read like this, 
; describes exactly what the test will verify. This is called behavior-driven

development, or BDD, and that's the principles that Mocha was built on.

Now that we've set up the test string, the next thing to do is add a function as the second
argument:

Inside this function, we'll add the code that tests that the add function works as expected.
This means it will probably call  and check that the value that comes back is the
appropriate value given the two numbers passed in. That means we do need to import the

 file up at the top. We'll create a constant, call , setting it equal to the return
result from requiring utils. We're using  since we will be requiring a local file. It's in the
same directory so I can simply type  without the  extension as shown here:

Now that we have the utils library loaded in, inside the callback we can call it. Let's make a
variable to store the return results. We'll call this one results. And we'll set it equal to

 passing in two numbers. Let's use something like  and :

We would expect it to get  back. Now at this point, we do have some code inside of our
test suites so we run it. We'll do that by configuring that test script we looked at in the
previous chapter inside a .



Testing the Node Applications – Part 1 Chapter 10

[ 538 ]

Currently, the test script simply prints a message to the screen saying that no tests exist.
What we'll do instead is call Mocha. As shown in the following code, we'll be calling
Mocha, passing in as the one and only argument the actual files we want to test. We can use
a globbing pattern to specify multiple files. In this case, we'll be using  to look in every
single directory. We're looking for a file called :

Now this is a very specific pattern. It's not going to be particularly useful. Instead, we can
swap out the file name with a star as well. Now we're looking for any file on the project that
has a file name ending in :

And this is exactly what we want. From here, we can run our test suite by saving
 and moving to the Terminal. We'll use the  command to clear the

Terminal output and then we can run our  script using command shown as follows:

npm test

When we run this, we'll execute that Mocha command:

It'll go off. It'll fetch all of our test files. It'll run all of them and print the results on the
screen inside Terminal as shown in the preceding screenshot. Here we can see we have a
green checkmark next to our test, . Next, we have a little
summary, one passing test, and it happened in 8 milliseconds.



Testing the Node Applications – Part 1 Chapter 10

[ 539 ]

Now in our case, we don't actually assert anything about the number that comes back. It
could be 700 and we wouldn't care. The test will always pass. To make a test fail what we
have to do is throw an error. That means we can throw a new error and we pass into the
constructor function whatever message we want to use as the error as shown in the
following code block. In this case, I could say something like :

Now with this in place, I can save the test file and rerun things from the Terminal by
rerunning , and when we do that now we have 0 tests passing and we have 1 test
failing:

Next we can see the one test is should add two numbers, and we get our error message,
Value not correct. When we throw a new error, the test fails and that's exactly what we
want to do for add.

Now, we'll create an  statement for the test. If the response value is not equal to , that
means we have a problem on our hands and we'll throw an error:



Testing the Node Applications – Part 1 Chapter 10

[ 540 ]

Inside the  condition, we can throw a new error and we'll use a template string as our
message string because I do want to use the value that comes back in the error message. I'll
say , then I'll inject the actual value, whatever happens to come
back:

throw new Error(`Expected 44, but got ${res}.`);

Now in our case, everything will line up great. But what if the  method wasn't working
correctly? Let's simulate this by simply tacking on another addition, adding on something
like  in :

I'll save the file, rerun the test suite:



Testing the Node Applications – Part 1 Chapter 10

[ 541 ]

Now we get an error message: Expected 44, but got 66. This error message is fantastic. It
lets us know that something is going wrong with the test and it even tells us exactly what
we got back and what we expected. This will let us go into the  function, look for errors,
and hopefully fix them.

Creating test cases doesn't need to be something super complex. In this case, we have a
simple test case that tests a simple function.

Testing the squaring a number function
Now, we'll create a new function that squares a number and returns the result. We'll define
that in the  file using . We'll set that equal to an arrow
function ( ) that takes in one number, , and we'll return  times , , just like this:

Now we have this brand new function square and we'll create a new test case that makes
sure  works as expected. In , next to the  condition for 
function, we'll call the  function again:

it();

Inside the  function, we'll add our two arguments, the string, and the callback function.
Inside the string, we'll create our message, :



Testing the Node Applications – Part 1 Chapter 10

[ 542 ]

And inside the callback function, we can actually go ahead and call . Now we do
want to create a variable to store the result so we can check that the result is what we expect
it to be. Then we can call  passing in a number. I'll go with  in this case,
which means I should expect 9 to come back:

In the next line, we can have an  statement, if the result does not equal , then we'll throw
a message because things went wrong:

We can throw an error using , passing in whatever message we like. We
can use a regular string, but I always prefer using a template string so we can inject values
easily. I'll say something like , followed by the value that's not
correct; in this case, that's stored in the response variable:

Now I can save this test case and run the test suite from the Terminal. Using the up arrow
key and the enter key, we can rerun the last command:

npm test



Testing the Node Applications – Part 1 Chapter 10

[ 543 ]

We get two tests passing, should add two numbers and should square a number both have
checkmarks next to them. And we ran both tests in just 14 milliseconds, which is fantastic.

Now the next thing, we want to do is mess up the  function to make sure our test
fails when the number is not correct. I'll add  on to the result in , which will
cause the test to fail:

Then we can rerun things from the Terminal and we should see the error message:



Testing the Node Applications – Part 1 Chapter 10

[ 544 ]

We get Expected 9, but got 10. This is fantastic. We now have a test suite capable of testing
both the  function and the  function. I'll remove that , and we are done.

We now have a very, very basic test suite that we can execute with Mocha. Currently, we
have two tests and to create those tests we used the  method provided by Mocha. In the
upcoming sections, we'll be exploring more methods that Mocha gives us and we'll also be
looking at better ways to do our assertions. Instead of manually creating them, we'll be
using an assertion library to help with the heavy lifting.

Autorestarting the tests
Before we write more test cases, let's see an automatic way to rerun our test suite when we
change either our test code or our application code. We'll be doing that with .
Now, previously we used  like this:

nodemon app.js

We would type  and we would pass in a file like . Whenever any code in
our app changed, it would rerun the  file as a Node application. What we can
actually do is specify any command in the world we want to run when our files change.
This means we can rerun  when the files change.

To do this, we'll use the  flag. This flag tells  that we'll specify a command to
run, and it might not necessarily be a Node file. As shown in the following command, we
can specify that command. It'll be :

nodemon --exec 'npm test'

If you are using Windows, remember to use double quotes in place of
single quotes.

With this in place, we can now run the  command. It'll kick off for the first time
running our test suite:



Testing the Node Applications – Part 1 Chapter 10

[ 545 ]

Here we see we have two tests passing. Let's go ahead into the app  and make a
change to one of the functions, so it fails. We'll add  or  onto the result for :

It automatically restarts over here:



Testing the Node Applications – Part 1 Chapter 10

[ 546 ]

And now we see that we have a test suite where one test passes and one tests fails. I can
always go ahead and undo that error we added, save the file, and the test suite will
automatically rerun.

This will make testing your application that much easier. You won't have to switch to the
Terminal and rerun the  command every time we make a change to our
application. Now we have a command that we can run, we'll shut down  and use
the up arrow key to show it again.

And we can actually move this into a script inside of .

Inside  we'll make a new script right after the test script. Now we've used
the  script and the  script these are built-in we'll create a custom one called

, and we can run the  script to kick things off. Inside of 
, we'll have the exact same command we ran from Terminal. That means we'll be

rounding . We'll be using the  flag and inside of quotes, we'll be running 
:

Now that we have this in place, we can run the script from the Terminal as opposed to
having to type out this command every single time we want to start up the autotest suite.

The script we have inside  currently will work on macOS
and Linux. It'll also work on Heroku, which uses Linux. But it will not
work on Windows. The following script will:

.
As you can see here, we're escaping the quotes surrounding 
and we're using double quotes, which as we know are the only quotes
supported by Windows. This script will remove any errors you're seeing,
something like npm cannot be found, which you will get if you wrap 

 in single quotes and run the script on Windows. So use the above
script for cross-OS compatibility.

To run a script with a custom name, such as , in the Terminal all we need to do
is run  followed by the script name, , as shown in the following
command:

npm run test-watch



Testing the Node Applications – Part 1 Chapter 10

[ 547 ]

If I do this, it will start things off. We'll get our test suite and it's still waiting for changes, as
shown here:

Now, every time you start the test suite you can simply use . That'll
start up the  script, which starts up . Every time a change happens in
your project, it'll rerun , showing the results of the test suite to the screen.

Now that we have a way to automatically restart our test suite, let's go ahead and get back
into the specifics of testing in Node.

Using assertion libraries in testing Node
modules
In the previous sections, we made two test cases to verify that  and our

 method work as expected. We did that using an  condition, that is, if the
value was not  that means something went wrong and we threw an error. In this section,
we'll learn how to use an assertion library, which will take care of all of the  condition in

 code for us:



Testing the Node Applications – Part 1 Chapter 10

[ 548 ]

Because when we add more and more tests, the code will end up looking pretty similar and
there's no reason to keep rewriting it. Assertion libraries let us make assertions about
values, whether it's about their type, the value itself, whether an array contains an element,
all sorts of things like that. They really are fantastic.

The one we'll be using is called expect. You can find it by going to Google and googling
. And this is the result we're looking for:

It's mjackson's repository, expect. It is a fantastic and super popular assertion library. This
library will let us pass in a value and make some assertions about it. On this page, we scroll
down past the introduction and the installation we can get down to an example:



Testing the Node Applications – Part 1 Chapter 10

[ 549 ]

As shown in the preceding screenshot, we have our Assertions header and we have our
first assertion, . This will verify that a value exists. In the next line, we have an
example, we pass in a string to :

This is the value we want to make some assertions about. In the context of our application,
that would be the response variable in the , shown here:

We want to assert that it is equal to . After we call , we can start chaining on some
assertion calls. In the assertion example, next we check if it does exist:

This would not throw an error because a string is indeed truthy inside JavaScript. If we
passed in something like , which is not ,  would fail. It would
throw an error and the test case would not pass. Using these assertions, we can make it
really, really easy to check the values in our tests without having to write all of that code
ourselves.

Exploring assertion libraries
Let's go ahead and start exploring the assertion libraries. First up, let's install the module
inside the Terminal by running . The module name itself is called expect and
we'll grab the most recent version, . Once again, we'll be using the  flag
like we did with Mocha. Because we do indeed want to save this dependency in

, but it's a  dependency, it's not required for the application to run
whether it's on Heroku or some other service:

npm install expect@1.20.2 --save-dev



Testing the Node Applications – Part 1 Chapter 10

[ 550 ]

The  library has been donated to a different organization. The
latest version, which is v21.1.0 is not compatible with the backward
version we are using here that is 1.20.2. What I like you to do is install the
1.20.2 version in the section that will make sure, you'll use in next several
sections.

Let's go ahead and install this dependency.

Then we can move to the application, and check out the  file, as shown in the
following screenshot, it looks great:



Testing the Node Applications – Part 1 Chapter 10

[ 551 ]

We have both expect and Mocha. Now, inside our  file, we can kick things off
by loading in the library and making our first assertions using expect. Up at the very top of
the file, we'll load in the library, creating a constant called  and

, just like this:

Now, we can get started by swapping out the  condition in the  code
with a call to  instead:

As you saw in the example on assertion/expect page, we'll start all our assertions by calling
 as a function passing in the value we want to make assertions about. In this case,

that is the  variable:

expect(res)



Testing the Node Applications – Part 1 Chapter 10

[ 552 ]

Now, we can assert all sorts of things. In this case, we want to assert that the value is equal
to . We'll make our assertion . On the documentation page, it looks like this:

This asserts that a value equals another value and that's exactly what we want. We assert
that our value passed into expect equals another value using , passing that value in as
the first argument. Back inside Atom, we can go ahead and use this assertion, , and
we're expecting the result variable to be the number , just like this:

expect(res).toBe(44);

Now we have our test case and it should work exactly as it did with the  condition.

To prove it does work, let's move into the Terminal and use the  command to clear
the Terminal output. Now we can run that  script as shown in the following
command line:

npm run test-watch



Testing the Node Applications – Part 1 Chapter 10

[ 553 ]

As shown in the preceding code output, we get our two tests passing just like they did
before. Now we were to change  to some other value that would throw an error like :

expect(res).toBe(40);



Testing the Node Applications – Part 1 Chapter 10

[ 554 ]

We save the file, and we'll get an error and the  library will generate useful error
messages for us:

It's saying that we Expected 44 to be 40. Clearly that's not the case, so an error gets thrown.
I'll change this back to , save the file, and all of our tests will pass.

Chaining multiple assertions
Now we can also chain together multiple assertions. For example, we could assert that the
value that comes back from  is a number. This can be done using another assertion. So
let's head into the docs and take a look. Inside Chrome, we'll scroll down through the
assertion docs list. There are a lot of methods. We'll be exploring some of them. In this case,
we're looking for , the method that takes a string:



Testing the Node Applications – Part 1 Chapter 10

[ 555 ]

This takes the string type and it uses the  operator to assert that the value is of a
certain type. Here we're expecting  to be a number. We can do that exact same thing over
in our code. Inside Atom, right after , we can chain on another call, , followed by
the type. This could be something like a string, it could be something like an object, or in
our case, it could be a number, just like this:

expect(res).toBe(44).toBeA('number');

We'll open up the Terminal so we can see the results. It's currently hidden. Save the file.
Our tests will rerun and we can see they're both passing:

Let's use a different type, something that was going to cause the test to fail for example
string:



Testing the Node Applications – Part 1 Chapter 10

[ 556 ]

We would then get an error message, Expected 44 to be a string:

This is really useful. It'll help us clean up our errors really quickly. Let's change the code
back to number and we are good to go.

Multiple assertions for the square function
Now we'd like to do the same thing for our tests for square a number function. We'll use

 to assert that the response is indeed the number  and that the type is a number.
We'll use these same two assertions we do with the  function. First, we need to do to
delete the current square  condition code, since we will not be using that anymore. As
shown in the following code, we'll make some expectations about the  variable. We'll
expect it to be the number , just like this:

expect(res).toBe(9);



Testing the Node Applications – Part 1 Chapter 10

[ 557 ]

We'll save the file and make sure the test passes, and it does indeed pass:

Now, we'll assert the type using . Here, we're checking that the type of the return
value from the  method is a number:

expect(res).toBe(9).toBeA('number');

When we save the file, we get both of our tests still passing, which is fantastic:

Now this is just a small test as to what  can do. Let's create a bogus test case that will
explore a few more ways we can use . We'll not be testing an actual function. We'll
just play around with some assertions inside of the it callback.



Testing the Node Applications – Part 1 Chapter 10

[ 558 ]

Exploring usage of expect with bogus test
To create the bogus test, we'll make a new test using the  callback function:

We can put whatever we want in here, it's not too important. And we'll pass in an arrow
function ( ) as our callback function:

Now as we've seen already, one of the most fundamental assertions you'll make is you're
just going to check for equality. We want to check if something like the response variable
equals something else, like the number . Inside , we can also do the opposite. We
can expect that a value like  does not equal, using . And then we can assert that
it doesn't equal some other value, like :

The two aren't equal, so when we save the file over in the Terminal, all three tests should be
passing:

If I set that equal to the same value, it'll not work as expected:



Testing the Node Applications – Part 1 Chapter 10

[ 559 ]

We'll get an error, Expected 12 to not be 12:

Now  and  work great for numbers, strings, and Booleans, but if you're trying
to compare arrays or objects, they will not work as expected and we can prove this.

Using toBe and toNotBe to compare array/objects
We'll start with removing the current code by commenting it out. We'll leave it around so
we use it later:

We'll  an object with the  property set to , , and we'll assert that it
is another object where the name property is equal to , just like this:



Testing the Node Applications – Part 1 Chapter 10

[ 560 ]

We'll use , just like we did with , checking if it is the same as another object
where name equals :

Now when we save this, you might think the test will pass, but it doesn't:

As shown in the preceding output, we see that we expected the two names to be equal.
When objects are compared for equality using the triple equals, which is what  uses,
they'll not be the same because it's trying to see if they're the exact same object, and they're
not. We've created two separate objects with the same properties.

Using the toEqual and toNotEqual assertions
To check if the two names are equal, we'll have to use something different. It's called

 as shown here:



Testing the Node Applications – Part 1 Chapter 10

[ 561 ]

If we save the file now, this will work. It'll rip into the object properties, making sure they
have the same ones:

The same thing goes for . This checks if two objects are not equal. To check this,
we'll go ahead and change the first object to have a lowercase a in :

Now, the test passes. They are not equal:

This is how we do equality with our objects and arrays. Now another really useful thing we
have is .



Testing the Node Applications – Part 1 Chapter 10

[ 562 ]

Using toInclude and toExclude
The  assertion checks if an array or an object includes some things. Now if it's an
array, we can check if it includes a certain item in the array. If it's an object, we can check if
it includes certain properties. Let's run through an example of that.

We'll  that an array with the numbers , , and  inside the  callback has the
number  inside and we can do that using :

The  assertion takes the item. In this case, we'll check if the array has  inside.
Now clearly it doesn't, so this test will fail:

We get the message, Expected [ 2, 3, 4] to include 5. That does not exist. Now we change
this to a number that does exist, for example :



Testing the Node Applications – Part 1 Chapter 10

[ 563 ]

We'll rerun the test suite and everything will work as expected:

Now, along with , we have  like this:

expect([2,3,4]).toExclude(1);

This will check if something does not exist, for example the number , which is not in the
array. If we run this assertion, the test passes:

The same two methods,  and , work with objects as well. We can
play with that right on the next line. I'll  that the following object has something on
it:



Testing the Node Applications – Part 1 Chapter 10

[ 564 ]

Let's go ahead and create an object that has a few properties. These are:

: We'll set it equal to any name, let's say .
: We'll set that equal to age, say .

: We'll set that equal to any location, for example .

This will look like the following code block:

name: 'Andrew',
    age: 25,
    location: 'Philadelphia'

Now let's say we want to make some assertions about particular properties, not necessarily
the entire object. We can use  to assert that the object has some properties and
that those property values equals the value we pass in:

toInclude({

  })



Testing the Node Applications – Part 1 Chapter 10

[ 565 ]

For example, the  property. Let's say we only care about the age. We can assert that the
object has an  property equal to  by typing the following code:

age: 25

It doesn't matter that there's a  property. The  property could be any value. That is
irrelevant in this assertion. Now let's use the value, :

age: 23

This test will fail as shown here since the value is not correct:



Testing the Node Applications – Part 1 Chapter 10

[ 566 ]

We expected the  property to be , but it was indeed , so the test fails. The same
thing goes with the  assertion.

Here we can save our test files. This checks if the object does not have a property age equal
to . It does indeed not have that, so the test passes:

This is just a quick taste as to what expect can do. For a full list of features, I recommend
diving through the documentation. There's a ton of other assertions you can use, things like
checking if a number is greater than another number, if a number is less than or equal to
another number, all sorts of math-related operations are included as well.

Testing the setName method
Now let's wrap up this section with some more testing. Over in , we can make a
new function, one that we'll be testing, . The  function
is will take two arguments. It'll take a  object, some fictitious user object with some
generic properties, and it'll take  as a string:



Testing the Node Applications – Part 1 Chapter 10

[ 567 ]

The job of  will be to rip apart  into two parts the first name and the
last name by splitting it on the space. We'll set the two properties, first name and last
name, and return the  object. We'll fill out the function then we'll write the test case.

The first thing we'll do is split the name into a  array,  will be that array:

It'll have two values, assuming there's only one space inside of the name. We're assuming
someone types their first name, hits a space, and types their last name. We'll set this equal to

 and we'll split on the space. So I'll pass in an empty string with a space
inside it as the value to split:

Now we have a  array where the first item is the  and the last item is the
. So we can start updating the  object.  will equal the first

item in the  array and we'll grab the index of , which is the first item. We'll do
something similar for last name,  equals the second item from the 
array:



Testing the Node Applications – Part 1 Chapter 10

[ 568 ]

Now we're all done, we have the names set, and we can return the  object 
 user, just like this:

return user;

Inside the  file, we can now kick things off. First, we'll comment out our
 handler:

// it('should expect some values', () => {
//   // expect(12).toNotBe(12);
//   // expect({name: 'andrew'}).toNotEqual({name: 'Andrew'});
//   // expect([2,3,4]).toExclude(1);
//   expect({
//      name: 'Andrew',
//      age: 25,
//      location: 'Philadelphia'
//    }).toExclude({
//      age: 23
//    })
//  });



Testing the Node Applications – Part 1 Chapter 10

[ 569 ]

This is pretty great for documentation. You can always explore it later if you forget how
things work. We'll create a new test that should verify first and last names are set.

We'll create a  object. On that  object, we want to set some properties such as 
and . Then we'll pass the variable  into the  method. That'll be the
first argument defined in the  file. We'll pass in a string. The string with

 followed by a space followed by . Then we'll get the result back and
we'll make some assertions about it. We want to assert the returning object includes using
the  assertion.

As shown in the following code, we'll call it to make the new test case. We'll be testing:

Inside , we can now provide our second argument, which will be our callback function.
Let's set that to an arrow function ( ) and now we can make the  object:

The  object will have a few properties. Let's add something like , setting that
equal to , and then set an  property, setting that equal to :

Now we'll call the method we defined over in , the  method. We'll do
that on the next line, creating a variable called  to store the response. Then we'll set that
equal to  passing in the two arguments, the  object and ,

:

Now at this point, the result should be what we expect. We should have the 
and  properties. We should have the  property and the  property.



Testing the Node Applications – Part 1 Chapter 10

[ 570 ]

Now if you know a lot about JavaScript, you might know that objects are passed by
reference, so the  variable has actually been updated as well. That is expected. Both

 and  will have the exact same value. We can actually go ahead and prove that
using an assertion. We'll  that  equals using  the :

Inside Terminal, we can see the test does indeed pass:

Let's delete . Now, we want check if the  object or the
 object includes certain properties. We'll check using  that the  variable has

some properties using :

 expect(res).toInclude({

  })

The properties we're looking for are  equal to what we would expect that to be,
, and  equal to :



Testing the Node Applications – Part 1 Chapter 10

[ 571 ]

firstName: 'Andrew',
    lastName: 'Mead'

These are the assertions that should be made in order to verify that  is working as
expected. If I save the file, the  suite reruns and we do indeed get the passing tests as
shown here:

We have three of them and it took just 10 milliseconds to run.

And with this in place, we now have an assertion library for our  suite. That's fantastic
because writing test cases just got way easier, and the whole goal of the chapter is to make
testing approachable and easy.

In the next section, we'll start looking at how we can test more complex asynchronous
functions.

The asynchronous testing
In this section, you'll learn how to test asynchronous functions. The process of testing
asynchronous functions isn't that different from synchronous ones, like what we've done
already, but it is a little different so it justifies its own section.



Testing the Node Applications – Part 1 Chapter 10

[ 572 ]

Creating the asyncAdd function using the
setTimeout object
To kick things off, we'll make a fake  function using  to simulate a delay
inside . Just below where we make our  function, let's make one called

. It'll essentially have the same features, but it'll use  and it'll have a
callback to simulate a delay. Now in the real world, this delay might be a database request
or an HTTP request. We'll be dealing with that in the following chapters. For now though,
let's add :

This will take three arguments, as opposed to the two the  function took, , , and
:

This is what's going to make the function asynchronous. Eventually, once the 
is up, we'll call the callback with the sum, whether it's one plus three being four, or five plus
nine being fourteen. Next up, we can put the arrow in arrow function ( ) and open and
close our curly braces:

Inside the arrow function ( ), as mentioned, we'll be using  to create the
delay. We'll pass in a callback and we'll pass in our . Let's go with 1 second in
this case:



Testing the Node Applications – Part 1 Chapter 10

[ 573 ]

Now, by default, if our tests take longer than 2 seconds, Mocha will assume that is not what
we wanted and it'll fail. That's why we're using 1 second in this case. Inside our callback, we
can call the actual  argument with the sum , just like this:

We now have an  function and we can start writing a test for it.

Writing the test for the asyncAdd function
Inside of the  file, just under our previous test for , we'll add a new
one for . The test setup will look really similar. We will be calling  and passing
in a string as the first argument and a callback as the second argument. Then we'll add our
callback, just like this:

Inside the callback, we can get started calling . We'll call it using
 and we'll pass in those three arguments. We'll use  and , which should

result in . And we'll provide the callback function, which should get called with that value,
the value being :

Inside the callback arguments, we would expect something like  to come back:



Testing the Node Applications – Part 1 Chapter 10

[ 574 ]

Making assertion for the asyncAdd function
Now we can start making some assertions about that  variable using the  object.
We can pass it into  to make our assertions, and these assertions aren't going to be
new. It's stuff we've already done. We'll  that the  variable equals, using ,
the number . Then we'll check that it's a number, using , inside quotes, :

Now obviously if it is equal to  that means it is a number, but we're using both just to
simulate exactly how chaining will work inside of our expect calls.

Now that we have our assertions in place, let's save the file and run our test and see what
happens. We'll run it from Terminal,  to start up our 
watching script:

npm run test-watch

Now our tests will run and the test does indeed pass:



Testing the Node Applications – Part 1 Chapter 10

[ 575 ]

The only problem is that it's passing for the wrong reasons. If we change  to  and save
the file:

In this case, the test is still going to pass. Right here, you see we have four tests passing:

Adding the done argument
Now the reason this test is passing is not because the assertion in  is valid.
It's passing because we have an asynchronous action that takes 1 second. This function will
return before the  callback gets fired. When I say function returning, I'm referring to
the  function, the second argument to .

This is when Mocha thinks your test is done. This means that these assertions never run.
The Mocha output has already said our test passes before this callback ever gets fired. What
we need to do is tell Mocha this will be an asynchronous test that'll take time. To do this, all
we do is we provide an argument inside the callback function we pass to it. We'll call this
one :



Testing the Node Applications – Part 1 Chapter 10

[ 576 ]

When we have the  argument specified, Mocha knows that means we have an
asynchronous test and it'll not finish processing this test until  gets called. This means
we can call  after our assertions:

done();

With this in place, our test will now run. The function will return right after it calls
, but that's OK because we have  specified. About a second later, our

callback function will fire. Inside the  callback function, we'll make our assertions.
This time the assertions will matter because we have  and we haven't called it yet.
After the assertions we call done, this tells Mocha that we're all done with the test. It can go
ahead and process the result, letting us know whether it passed or failed. This will fix that
error.

If I save the file in this state, it'll rerun the tests and we'll see that our test should 
two numbers will indeed fail. Inside Terminal, let's open up the error message, we have
Expected 7 to be 10:



Testing the Node Applications – Part 1 Chapter 10

[ 577 ]

This is exactly what we thought would happen the first time around when we didn't use
, but as we can see, we do need to use  when we're doing something

asynchronous inside of our tests.

Now we can change this expectation back to , save the file:

This time around things should work as expected after 1 second delay as it runs this test:

It can't report right away because it has to wait for done to get called. Notice that our total
test time is now about a second. We can see that we have four tests passing. Mocha also
warns us when a test takes a long time because it assumes that's not expected. Nothing
inside Node, even a database or HTTP request, should take even close to a second, so it's
essentially letting us know that there's probably an error somewhere inside of your
function it's taking a really, really long time to process. In our case though, the one second
delay was clearly set up inside of  so there's no need to worry about that warning.

With this in place, we now have a test for our very first asynchronous method. All we had
to do is add a  as an argument and call it once we were done making our assertions.



Testing the Node Applications – Part 1 Chapter 10

[ 578 ]

The asynchronous testing for the square function
Now let's create an asynchronous version of the  method as we did with the
synchronous one. In order to get started, we'll define the function first and then we'll worry
about writing that test.

Creating the async square function
Inside the  file, we can get started next to the  method creating a new one
called :

It'll take two arguments: the original argument which we called , and the 
function that'll get called after our 1-second delay:

Then we can finish up the arrow function ( ) and we can start working on the body of
. It'll look pretty similar to the  one. We'll call  passing

in a callback and a delay. In this case, the delay will be the same; we'll go with 1 second:

Now we can actually call the callback. This will trigger the  function that got
passed in and we'll pass in the value  times , which will properly square the number
passed in place of :



Testing the Node Applications – Part 1 Chapter 10

[ 579 ]

Writing test for asyncSquare
Now inside the  file, things are indeed passing, but we haven't added a test for the

 function so let's do that. Inside the  file, the next thing you
needed to do was call . Next to  for testing the  function, let's call  to make
a new test for this  function:

it('should async square a number')

Next up, we'll provide the callback function that'll get called when the test actually
executes. And since we are testing an  function, we'll put  in the callback
function as shown here:

This will tell Mocha to wait until  is called to decide whether or not the test passed.
Next, we can now call  passing in a number of our choice. We'll use .
Next up, we can pass in a callback:

This will get the final result. In the arrow function ( ), we'll create a variable to store that
result:

res

Now that we have this in place, we can start making our assertions.



Testing the Node Applications – Part 1 Chapter 10

[ 580 ]

The assertions will be done using the  library. We'll make some assertions about the
 variable. We'll assert that it equals, using , the number , which is  times .

We'll also use  to assert something about the type of the value:

In this case, we want to make sure that the  is indeed a number, as opposed to a
Boolean, string, or object. With this in place, we do need to call  and then save the file:

done();

Remember, if you don't call , your test will never finish. You might
find that every once in a while you'll get an error like this inside the
Terminal:



Testing the Node Applications – Part 1 Chapter 10

[ 581 ]

You're getting an error timeout, the 2,000 milliseconds has exceeded. This is when Mocha
cuts off your test. If you see this, this usually means two things:

You have an  function that never actually calls the callback, so you're call to
done never gets fired.
You just never called .

If you see this message, it usually means there's a small typo somewhere
in the  function. To overcome this, either fix things in the method
( ) by making sure the callback is called, or fix things in the test
( ) by calling , and when you save the file you should
now see all of your tests are passing.

In our case, we have 5 tests passing and it took 2 seconds to do that. This is fantastic:

We now have a way to test synchronous functions and asynchronous functions. This will
make testing a lot more flexible. It'll let us test essentially everything inside of our
applications.

Summary
In this chapter, we looked into testing the synchronous and asynchronous functions. We
looked into basic testing. We explored the testing framework, Mocha. Then, we look into
using assertion libraries in testing Node modules.

In the next chapter, we'll look at how we can test our Express apps.



111
Testing the Node Applications –

Part 2
In this chapter, we'll continue our journey of testing the Node applications. In the previous
chapter, we looked at the basic testing framework and worked on synchronous as well as
asynchronous Node application. In this chapter we'll move on to testing the Express
applications, then we'll look into a method to organize our test better in the result output,
and last but not least we'll get into some advanced methods of testing Node application.

Specifically, we'll look into the following topics:

Setting up testing for Express app
Testing Express application
Organizing test with 
Test spies

Testing the Express application
In this section, we'll be setting up an Express app and then, we'll look at how we can test it
to verify that the data that comes back from our routes is what the user should be getting.
Now before we do any of that, we will need to create an Express server and that's the goal
of this section.



Testing the Node Applications – Part 2 Chapter 11

[ 583 ]

Setting up testing for the Express app
We'll start with installing Express. We'll use , which is short for install, to install
Express. Remember, you could always replace install with . We'll grab the most recent
version, . Now, we'll be using the  flag as opposed to the save  flag that
we've used for testing in the previous chapter:

npm i express@4.16.2 --save

This command is going to install Express as a regular dependency, which is exactly what
we want:

We need Express when we deploy to production, whether it's Heroku or some other
service.

Back inside the app, if we open up , we can see we have dependencies
which we've seen before, and  which is new to us:

This is how we can break up the different dependencies. From here, we'll make a 
folder inside the root of the project where we can store the server example as well as the test
file. We'll make a directory called . Then inside , we'll make a file called

.



Testing the Node Applications – Part 2 Chapter 11

[ 584 ]

The  file will contain the actual code that starts up our server. We'll define our
routes, we'll listen to a port, all that stuff is going to happen in here. This is what we had
before for the previous server chapter. In , we'll add , and this
will get equal to the  return result:

Next up, we can make our application by creating a variable called  and setting it equal
to a call to :

Then we can start configuring our routes. Let's set up just one for this section, :

This will set up an HTTP GET handler. The URL will be just  (forward slash), the root of
the website. And when someone requests that, for the moment we'll specify a really simple
string as the return result. We get the request and the response object like we do for all of
our  routes. Yo respond, we'll call , sending back the string 

:

The last step in the process will be to listen on a port using . We'll bind to port
 by passing it in as the first and only argument:



Testing the Node Applications – Part 2 Chapter 11

[ 585 ]

With this in place, we are now done. We have a basic Express server. Before we move on to
explore how to test these routes, let's start it up. We'll do that by using the following
command:

node server/server.js

When we run this, we don't get any logs because we haven't added a callback function for
when the server starts, but it should indeed be up.

If we go over to Chrome and visit , we get Hello world! printing to the
screen:

Now, we are ready to move on to start testing our Express application.

Testing the Express app using SuperTest
Now, we'll learn an easy, no-nonsense way to test our Express applications. That means we
can verify that when we make an HTTP GET request to the  URL, we get the 

 response back.



Testing the Node Applications – Part 2 Chapter 11

[ 586 ]

Now traditionally, testing HTTP apps has been one of the more difficult things to test. We
would have to fire up a server, like we did in the previous section. Then we would need
some code to actually make the request to the appropriate URL. And then we have to dig
through the response, getting what we want, and making assertions about it, whether it's
headers, the status code, the body, or anything else. It is a real burden. That is not the goal
for this section. Our goal here is to make testing easy and approachable, so we'll use a
library called SuperTest to test our Express applications.

SuperTest was created by the developers who originally created Express. It has built-in
support for Express and it makes testing your Express apps dead simple.

The SuperTest documentation
In order to get started, let's pull up the docs page so you know where it lives if you ever
want to look at any other features that it has to offer. If you Google , it should be
the first result:



Testing the Node Applications – Part 2 Chapter 11

[ 587 ]

It's the VisionMedia repository and the repository itself is called SuperTest. Let's switch
over to the repository page and we can take a quick look at what it has to offer. On this
page, we can find installation instructions and introduction stuff. We don't really need that.
Let's take a quick look at an example:

As shown in the previous screenshot, we can see an example of how SuperTest works. We
create an Express application, just like we normally would, and we define a route. Then we
make a call to the  method, which is provided by SuperTest, passing in our Express
application. We say we want to make a  request to the  URL. Then we start making
assertions. There's no need to manually check either the headers, the status code, or the
body. It has built-in assertions for all of that.

Creating a test for the Express app
To get started, we'll install SuperTest in our application by running npm install from the
Terminal. We have the Node server still running. Let's shut that down and then install the
module.



Testing the Node Applications – Part 2 Chapter 11

[ 588 ]

We can use , the module name is  and we'll be grabbing the most recent
version, . This is a test-specific module so we'll be installing it with save. We'll use

 to add it to the  in :

npm i supertest@3.0.0 --save-dev

With SuperTest installed, we are now ready to work on the  file. As it
doesn't yet exist inside the  folder, so we can create it. It's going to sit just alongside

:

Now that we have  in place, we can start setting up our very first test.
First, we'll be creating a constant called request and setting that equal to the return result
from requiring :

This is the main method we'll be using to test our Express apps. From here, we can load in
the Express application. Now inside , we don't have an export that exports the
app, so we'll have to add that. I'll add it next to the  statement by creating

 and setting that equal to the  variable:



Testing the Node Applications – Part 2 Chapter 11

[ 589 ]

Now we have an export called app that we can access from other files. The  is
still going to run as expected when we start it from the Terminal, not in test mode. We just
added an export so if anyone happens to require it, they can get access to that app. Inside

, we'll make a variable to import this. We'll call the variable . Then
we'll require using , or just . Then we'll access the 
property:

With this in place, we now have everything we need to write our very first test.

Writing the test for the Express app
The first test we'll write is a test that verifies when we make an HTTP GET request to the 
URL, we get  back. To do this, we will be calling  just like we did for our
other tests in the previous chapter. We're still using  as the actual test framework.
We're using SuperTest to fill in the gaps:

Now we'll set up the function as follows:

This is going to be an asynchronous call so I are providing  as the argument to let
 know to wait before determining whether or not the test passed or failed. From here,

we can now make our very first call to . To use SuperTest, we call  passing
in the actual Express application. In this case, we pass in the  variable:

Then we can start chaining together all the methods we need to make the request, make our
assertions, and finally wrap things up. First up, you'll be using a method to actually make
that request, whether it's a , , , or a .



Testing the Node Applications – Part 2 Chapter 11

[ 590 ]

For now, we'll be making a  request, so we will use . The  request takes the
URL. So, we'll provide  (forward slash), just as we did in :

Next up, we can make some assertions. To make assertions, we'll use . Now
 is one of those methods that does different things depending on what you pass to

it. In our case, we'll be passing in a string. Let's pass in a string which will be the response
body that we assert, :

Now that we're done and we've made our assertions, we can wrap things up. To wrap up a
request in SuperTest, all we do is we call  passing in  as the callback:

This handles everything behind the scenes so you don't need to manually call  at a
later point in time. All of it is handled by SuperTest. With these four lines (in the previous
code), we have successfully tested our very first API request.

We'll kick things off in the Terminal by running our  script:

npm run test-watch



Testing the Node Applications – Part 2 Chapter 11

[ 591 ]

The test script is going to start and as shown here, we have some tests:

We have our test, , showing up in the previous
screenshot.

Now we can take things a step further making other assertions about the data that comes
back. For example, we can use expect after the  request in  to make
an assertion about the status code. By default, all of our Express calls are going to return a

 status code, which means that things went OK:

If we save the file, the test still passes:



Testing the Node Applications – Part 2 Chapter 11

[ 592 ]

Now let's make some changes to the request to make these tests fail. First up, in 
we'll just add a few characters ( ) to the string, and save the file:

This should cause the SuperTest test to fail and it does indeed do that:



Testing the Node Applications – Part 2 Chapter 11

[ 593 ]

As shown in the previous screenshot, we get a message, 
. This is letting us know exactly what

happened. Back inside , we can remove those extra characters ( ) and try
something else.

Now we haven't talked about how to set a custom status for our response, but we can do
that with one method, . Let's add  in , chaining it on, before,

, just like this:

Then, we can pass in the numerical status code. For example, we could use a  for page
not found:

If we save the file this time around, the body is going to match up, but inside the Terminal
we can see we now have a different error:



Testing the Node Applications – Part 2 Chapter 11

[ 594 ]

We expected a , but we got a . Using SuperTest, we can make all sorts of assertions
about our application. Now the same thing is true for different types of responses. For
example, we can create an object as the response. Let's make a simple object and we'll create
a property called . Then we'll set  equal to a generic error message for a ,
something like :

Now, we're sending back a JSON body, but currently we're not making any assertions about
that body so the test is going to fail:

We can update our tests to  JSON to come back. In order to get that done, all we
have to do inside  is change what we pass to . Instead of passing in a
string, we'll pass in an object:



Testing the Node Applications – Part 2 Chapter 11

[ 595 ]

Now we can match up that object exactly. Inside the object, we'll  that the 
property exists and that it equals exactly what we have in :

Then, we'll change the  call to a  from :

With this in place, our assertions now match up with the actual endpoint we've defined
inside the Express application. Let's save the file and see if all the tests pass:

As shown in the previous screenshot, we can see it is indeed passing. The 
 response is passing. It took about  (milliseconds) to complete, and that

is perfectly fine.



Testing the Node Applications – Part 2 Chapter 11

[ 596 ]

A lot of the built-in assertions do get the job done for the majority of cases. There are times
where you want a little more flexibility. For example, in the previous chapter, we learned
about all those cool assertions expect can make. We can use , , all of
that stuff is really handy and it's a shame to lose it. Luckily, there's a lot of flexibility with
SuperTest. What we can do instead of taking an object and passing it into expect, or a
number for the status code, we can provide a function. This function will get called by
SuperTest and it will get passed the response:

This means we can access headers, body, anything we want to access from the HTTP
response it's going to be available in the function. We can pipe it through the regular
expect assertion library like we've done in the previous chapter.

Let's load it in, creating a constant called  and setting it equal to require :

Now before we look at how it's going to work, we'll make a change in . Here,
we'll add a second property on to the  object. We'll add an  and then add
something else. Let's use , setting it equal to the application name, :

Now that we have this in place, we can take a look at how we can use those custom
assertions inside our test file. In the  object, we'll have access to the response and in
the response there is a body property. This will be a JavaScript object with key-value pairs,
which means we would expect to have an  property and a  property, which we
set in .



Testing the Node Applications – Part 2 Chapter 11

[ 597 ]

Back inside our test file, we can make a custom assertion using . I'll 
something about the body, . Now we can use any assertion we like, not just the
equals assertion, which is the only one SuperTest supports. Let's use the 
assertion:

Remember,  lets you specify a subset of the properties on the object. As long as it
has those ones that's fine. It doesn't matter that it has extra ones. In our case, inside

, we can just specify the  message, leaving off the fact that name exists at
all. We want to check that , formatted exactly like we have it
inside of :

Now when we save the file back inside the Terminal, things restart and all of my tests are
passing:

Using a combination of SuperTest and expect we can have super flexible test suites for our
HTTP endpoints. With this in place, we'll create another  route and we'll define a
test that makes sure it works as expected.



Testing the Node Applications – Part 2 Chapter 11

[ 598 ]

Creating an express route
There will be two sides to this express route, the actual setup in  and the test. We
can start inside . In here, we'll make a new route. First, let's add a few comments
to specify exactly what we'll do. It's going to be an HTTP  route. The route itself will be

 and we can just assume this returns an array of users:

We can pass an array back through the  method, just like we do an object in the
previous code. Now this array is going to be an array of objects where each object is a user.
For now, we want to give users a  property and an  prop:

Then we'll create two or three users for this example. Now once we have this done, we'll be
responsible for writing a test that asserts it works as expected. That's going to happen in

. Inside , we'll make a new test:



Testing the Node Applications – Part 2 Chapter 11

[ 599 ]

And this test is going to assert a couple of things. First up, we assert that the status code that
comes back is a  and we want to make an assertion that inside of that array and we'll do
that using :

Let's start with defining the endpoint first. Inside , just following the comments,
we'll call  so we can register the brand new HTTP endpoint for our application.
This one is going to be at :

Next up, we'll specify the callback that takes both request and response:

This will let us actually respond to the request, and the goal here is just to respond with an
array. In this case, I'll call  passing in an array of objects:

The first object will be . We'll set the  equal to  and we'll set his  equal to
:

Then I can add another object. Let's add the second object to the array with a name equal to
 and an age equal to :



Testing the Node Applications – Part 2 Chapter 11

[ 600 ]

In the last one, we'll set the name equal to  and the age equal to :

Now that we have our endpoint done, we can save , move into
, and start worrying about actually creating our test case.

Writing the test for the express route
In , just following the comments, we need to start things out by calling .

 is the only way to make a new test:

Then we'll specify the callback function. It will get past the  argument because this one
is going to be asynchronous:



Testing the Node Applications – Part 2 Chapter 11

[ 601 ]

To kick things off inside the test case, we'll be calling requests just like we did in hello world
response, passing in the Express application:

Now we can set up the actual call. In this case, we're just making a call, a  request, to the
following URL, inside of quotes, :

Next up, we can start making our assertions and the first thing we're supposed to assert that
the status code is at , which is the default status code used by Express. We can assert
that by calling  and passing in the status code as a number. In this case, we'll pass
in :

After this, we'll use a custom  assertion. This means that we'll call  passing in
a function and use  inside  to make the assertion that you exist in that users
array. We'll call  the method passing in the function, and that function will get
called with the response:

This will let us make some assertions about the response. What we're actually going to do is
make an assertion using . We'll expect something about the response body. In this
case, we'll be checking that it includes using , our user object:



Testing the Node Applications – Part 2 Chapter 11

[ 602 ]

Now remember you can call  on both arrays and objects. All we do is pass in the
item we want to confirm is in the array. In our case, it's an object where the  property
equals  and the  property equals , which is what we used inside :

Now that we have our custom  call in place, at the very bottom we can call .
This is going to wrap up the request and we can pass in  as the callback so it can
properly fire off those errors if any actually occurred:

With this in place, we are ready to get going. We can save the file.

Inside the Terminal, we can see the tests are indeed rerunning:



Testing the Node Applications – Part 2 Chapter 11

[ 603 ]

We have a test as shown in the previous screenshot, . It
is passing.

Now we can confirm that we'll not go crazy and test the wrong thing by just messing up the
data. We will now add a lowercase  after the uppercase one in  in , as
shown here:

The test is going to fail. We can see that in the Terminal:

We have done testing for our Express apps. We'll now talk about one more way we can test
our Node code.



Testing the Node Applications – Part 2 Chapter 11

[ 604 ]

Organizing test with describe()
In this section, we will learn how to use .  is a function injected into
our test files, just like the  function is. It comes from  and it's really fantastic.
Essentially, it lets us group tests together. That makes it a lot easier to scan the test output. If
we run our  command in the Terminal, we get our tests:

We have seven tests and currently they're all grouped together. It's really hard to look for
the tests in the  file and it's impossible to find the tests for  without
scanning all of the text. What we'll do is call . This will let us make groups of
tests. We can give that group a name. It will make our test output much more readable.

In the  file, right after the  constant, we'll call :

The describe object takes two arguments, just like . The first one is the name and the
other is the callback function. We'll use . This will be the  block that
contains all of the tests in the  file. Then we'll provide the function. This is the
callback function:



Testing the Node Applications – Part 2 Chapter 11

[ 605 ]

Inside the callback function, we'll be defining tests. Any test defined in the callback function
will be a part of the  block. That means we can take our existing tests, cut them out of
the file, paste them in there, and we'll have a  block called  with all of the
tests for this file. So, let's do just that.

We'll grab all the tests, excluding the ones that are just playground tests where we play
around with various  functionality. We'll then paste them right into the callback
function. The resultant code is going to look like this:

These are four tests for , , , and  respectively. Now we'll
save the file and we can start up the  script from the Terminal and check the
output:

npm run test-watch



Testing the Node Applications – Part 2 Chapter 11

[ 606 ]

The script will start and run through our tests, and as shown in the following screenshot,
we'll have different outputs:

We have a  section and under , we have all of the tests in that  block.
This makes reading and scanning your tests much, much easier. We can do the same thing
for the individual methods.

Adding describe() for individual methods
Now, in the case of  (refer to the previous screenshot), we have one test per
method, but if you have a lot of tests that are targeting a complex method, it's best to wrap
that in its own  block. We can nest  blocks and tests in any way we like.
For example, right inside  just after the  statement, we can call 
again. We can pass a new description. Let's use  (pound sign) followed by :

The  (pound sign) followed by the method name is the common syntax for adding a
 block for a specific method. Then we can provide that callback function:



Testing the Node Applications – Part 2 Chapter 11

[ 607 ]

Then, we can take any tests we want to add into that group, cut them out, and paste them
in:

Then I can save the file. This will rerun the test suite and now we have test output that's
even more scannable:

It's super easy to find the  add method tests because they're clearly labelled. Now you
could go as crazy or as uncrazy with this as you want. There really is no hard-and-fast rule
for how often to use  to structure your tests. It's really up to you to figure out
what makes sense given the amount of tests you have for a method or a file.

In this case, we have quite a few tests in the file so it definitely makes sense to add that
 block. And I just wanted to show you you could nest them, so I added it for  as

well. If I was writing this code, I probably wouldn't add a second layer of tests, but if I had
more than one test per method, I definitely would add a second  block.



Testing the Node Applications – Part 2 Chapter 11

[ 608 ]

Adding the route describe block for the
server.test.js file
Now, let's create some  blocks in the  file. We'll create a route

 block called . Then we'll create  blocks for both the route URL
and for . We'll have . That will have the test case in there, .
Then alongside , we'll have , and that will have its own test case, 

 as explained in the comments next:

Now the test cases are obviously already defined. All we need to do is call  three
times to generate the previously explained structure.

We'll start with calling  once following the comments part, and this description
will be for the route, so we'll call this one :

This is going to contain all the tests in our  file. We can add the callback function
next and we can move on:



Testing the Node Applications – Part 2 Chapter 11

[ 609 ]

Next up, we'll call  again. This time we're creating a  block for tests that
test the  route and add the callback function:

Now we can simply take our test, cut it out, and paste it right inside the  callback.
The resultant code is going to look like this:

Next up, we'll call  the third time. We'll be calling  passing in as the
description :

We'll have our callback function as always and then we can copy and paste our test right
inside:



Testing the Node Applications – Part 2 Chapter 11

[ 610 ]

With this in place, we are now done. We have a much better structure for our tests and
when we rerun the test suite by saving the file, we'll be able to see that in the Terminal:

As shown in the previous code, we have a much more scannable test suite. We can see our
server tests right away. We can create groups of tests for each feature. Since we have static
data right now, we really don't need more than one test per feature. But down the line, we
will have multiple tests for each of our HTTP requests, so it's a good idea to get into that
habit of creating  blocks early. And that's it for this one!

Test spies
In this section, which is the final section for the testing chapter, we'll learn some pretty
advanced testing techniques. We'll be using these techniques as we build real-world apps,
but for now let's start off with an example. We'll worry about the vocabulary for what we're
about to do in just a second.



Testing the Node Applications – Part 2 Chapter 11

[ 611 ]

For the moment, we'll close all our current files and create a new directory in the root of the
project. We'll make a new folder called . We'll talk about what exactly  are and
how they relate to testing in just a moment. Inside , we'll make two files:  (this
is the file that we'll be testing) and a second one, called . In our example, we can just
assume that  is a file that has all sorts of methods for saving and reading data from
the database.

Inside , we'll create one function using . Let's create a function
called . The  function will be a really simple function, and it will take a

 object like this:

Now, we'll just print it to the screen using the  statement. We'll print it a little
message, , and we'll also print out the object as shown here:

Now obviously, this is not a real  function. We do not interact with any sort of
database, but it will illustrate exactly how we will be using  to test our code.

Next up, we will fill our , and this is the file we'll actually be testing. Inside ,
we'll create a new function: . In the context of an
application with authentication,  might take an  and a ;
maybe it goes ahead and checks if the  already exists. If it doesn't, great; it saves the
user and then it sends some sort of a welcome email. We can simulate that by creating an
arrow function ( ) that takes in  and a :



Testing the Node Applications – Part 2 Chapter 11

[ 612 ]

Inside the arrow function ( ), we'll leave three comments. These will be things that the
function is supposed to do. It will check if the  already exists; it will save the user to
the database; and finally, we'll send that welcome email:

Now, these three things are just an example of what a  method might
actually do. When we go through the real process, you'll see how it pans out. Now, we
already have one of these in place. We just created , so we'll do is call 
instead of having this second comment:

It's not imported just yet, but that's not going to stop us from calling it; we'll add the import
in just a second, and we'll pass in what it expects, the  object. Now, we don't have a

 object; we have an  and a . We can create that  object by setting
 equal to the  argument and setting  equal to the 

argument:

Now one important thing to note: inside ES6, if the property name in an object you're
setting is the same as the variable name, you can actually define it like this:

In this example, since we're setting a  property equal to whatever on the
 variable, there's no need to have both. This ES6 syntax also allows us to create a

much simpler-looking call. There's no need to have it on multiple lines since it's pretty
reasonable in length.



Testing the Node Applications – Part 2 Chapter 11

[ 613 ]

Now, at the top, we can load in  by creating a variable, calling it , and setting it equal
to . That is a local file, so we'll start it with a  to grab it from the
current directory:

Now, this is an example of something that we'll want to test inside our code. We have a
 method. It takes an  and a , and we need to make sure that

 works as well. That is a big problem, and this means that we're not just
testing , we are also testing the following:

We're testing 
We're testing our code that checks if an  exists
Maybe that allows another function
We're checking if the  function works as expected
we're checking if the welcome email is sent

This is a real pain. What we'll do instead is fake the  function. It's never actually
going to execute the code inside it , but it will let us verify that when we run

,  gets called. We're going to do this with something called .

The  function let you swap out a real function such as  for a testing utility.
When that test function gets called we can create various assertions about it, making sure it
was called with certain arguments. Let's start exploring that.

Creating a test file for spies
We'll start it with creating a new file. Inside the  directory, we'll make a new file
called , and we can start playing around with . Now,  comes
built-in with , so all we have to do is load it in:

From here we can create our very first test. We'll put this in a  block so it's easier
to find over in our test output:



Testing the Node Applications – Part 2 Chapter 11

[ 614 ]

We'll call this  block  and we'll add my callback function:

Now we can add individual test cases. First up, we'll call  and make a new test where we
can just play around with :

We won't be calling the function in our  file just yet. We'll add in the  object a
string say, :

In order to visualize how  work, we'll go through the most basic example we can.
First up, creating a .

Creating a spy
To create a , we'll call a function  inside the  callback function:

The  is going to return a function, and that is the function that we'll swap out for
the real one, which means we do want to store that in a variable. I'll create a variable called

, setting it equal to the returned result:



Testing the Node Applications – Part 2 Chapter 11

[ 615 ]

And now we would inject  into our code, whether it's  or some other function,
and we would wait for it to get called. We can call it directly just like this:

Setting up spies assertions
Next up, we can set up a series of assertions using expect's spies assertions by heading over
to the browser and going to the  documentation, mjackson expect
( ).

On this page, we can scroll down to the spies section, where they talk about all the
assertions we have access to. We should start seeing spies in the method names, and that's
when we know we've gotten there:



Testing the Node Applications – Part 2 Chapter 11

[ 616 ]

As shown in the previous code, we have the  function and this is our
first assertion with spies. We can assert that our  was indeed called. Inside Atom, we'll
do that by calling  and passing in the , just like this:

Then, we'll add the assertion, :

This will cause the test to pass if  was called, which it was, and it'll cause the test to fail
if the  was never called. We can run the test suite inside the Terminal using the 

 command, and this is going to kick off the tests using :

As shown in the previous screenshot, we have all our test cases, and under the  one, we
have . It did indeed pass, which is fantastic.



Testing the Node Applications – Part 2 Chapter 11

[ 617 ]

Now let's comment out the line where I call :

And this time around, the test should fail because  was never actually called, and as
shown in the following screenshot, we see :

More details out of spy assertion
Now, checking if a  was called or not called is great, but we can get even more detail out
of our assertions. For example, what if I call the  with the name  and the age :



Testing the Node Applications – Part 2 Chapter 11

[ 618 ]

Now, we want to verify if the  was not just called but was called with these arguments?
Well, luckily, we have an assertion for that too. Instead of , we can call

, and this lets us pass in some arguments and verify the  was
indeed called with those arguments.

As shown in the following code, we'll assert that my  was called with  and the
number :

When we save the file and the test cases restart, we should see all the tests passing, and
that's exactly what we get:

Now, if the  was not called with the mentioned data, I'll remove :

Now if we rerun the test suite, the test will fail. It will give you an error message letting you
know that . This is causing the test to
fail, which is fantastic.



Testing the Node Applications – Part 2 Chapter 11

[ 619 ]

There are plenty of other assertions we can use with our spies. You can
find them in the  docs. We have , which we
used; , verifying that a  was not called. Then
we have , which we also used. You can see
there's a lot more to spies as well: how to create spies, which we've already
done, and a few other methods.

Swapping of the function with spy
For our purposes, we need a spy so we can simulate that function inside of 
( ). We need a way to replace  function with a . Then we can verify
that when  gets called, it does indeed call . It doesn't need to
actually go through the process over in ; this is not important to our tests. The only
thing that is important is that the function was called with the correct arguments.

To do that, we'll look at an npm module called , which lets us swap out variables for
our tests. In our case, in our test file, we'll be able to replace the  object with something
else completely. Then, when the code runs, instead of calling  as defined in

, it will be calling , which will be a .

Installing and setting up the rewire function
To get started, we do need to install  in the Terminal. It's a fantastic test utility. It's
pretty essential for testing functions with side effects, like the one we have seen in this
section. Let's run . The module name itself is called , and we'll be
grabbing the most recent version as of this filming, version . This is a test-specific
module. We'll not need it for our application to run regularly, so we will be using the 

 flag to add it to our  dependencies list:

npm install rewire@3.0.2 --save-dev



Testing the Node Applications – Part 2 Chapter 11

[ 620 ]

Once the module is installed we can get started using it, and it's pretty simple to set up.
Inside  we can start by loading it in. Up at the very top, we'll create a new
constant. This one will be called , and we'll set it equal to the returned result from
requiring :

Replacing db with the spy
Now, the way that  works is it requires you to use  instead of require when
you're loading in the file that you want to mock out. For this example, we want to replace

 with something else, so when we load an  we have to load it in in a special way.
We'll make a variable called , and we'll set it equal to  followed by what we
would usually put inside of . In this case it's a relative file, a file that we created

 will get the job done:

Now rewire loads your file through require, but it also adds two methods onto . These
methods are:

We can use these to mock out various data inside of . That means we'll make a
simulation of the  object, the one that comes back from , but we'll swap out the
function with a .



Testing the Node Applications – Part 2 Chapter 11

[ 621 ]

Inside our  block, we can kick things off by making a variable. This variable is
going to be called , and we'll set it equal to an object:

The only thing we need to mock out in our case is . Inside the object, we'll define
 and then I'll set it equal to a  by creating one using , just

like this:

Now we have this  variable, and the only thing left to do is replace it. We do that using
, and this is going to take two arguments:

The first one is the thing you want to replace. We're trying to replace , and we're trying to
replace it with the  variable, which is our object that has the  function:

With that in place, we can now write a test that verifies that  does indeed
call .

Writing a test to verify swapping of the function
To verify if  calls , inside , we'll call :



Testing the Node Applications – Part 2 Chapter 11

[ 622 ]

Then we can pass in our function, and this is what will actually run when the test gets
executed, and there's no need to use any asynchronous done arguments. This will be a
synchronous test for now:

Inside the callback function, we can come up with an  and a  that we'll pass
in to  in . We'll make a variable called  setting it equal to some
email , and we can do the same thing with the , 

; we'll set that equal to :

Next up, we will call . This is the function we want to test. We'll call
, passing in our two arguments,  and :

Now at this point,  will get executed. This means that the code over here will
run and it will fire , but  is not the method in ; it's a 
instead, which means we can now use those assertions we just learned about.



Testing the Node Applications – Part 2 Chapter 11

[ 623 ]

Inside of the test case, we'll use  to  something about ; the variable
, which we set equal to a :

We'll call  with an object because that is what  should have
been called with. We'll use that same ES6 shortcut: , :

This creates an  attribute set to the  variable, and a  attribute set to
the  variable. With this in place, we can now save our test file, and in the
Terminal we can restart the  script by using the up arrow key twice to rerun
our  command. This is going to kick off our test suite, starting up all
of our tests:

As shown in the previous screenshot, we see  passes.
Also, the test case we just created also passes. We can see 

, and this is fantastic. We now have a way to test pretty much anything
inside Node. We can even test functions that call other functions, verifying that the
communication happens as expected. All of this can be done using spies.



Testing the Node Applications – Part 2 Chapter 11

[ 624 ]

Summary
In this chapter, we looked into testing the Express applications as we did with the
synchronous and async Node applications in the previous chapter. Then, we worked on
organizing our tests with the  object so that we can see our different test
methods right away.

In the last section we explored one more way we can test our Node applications, that is,
spies. We created test files for spies, looked into the  assertions and swapping of a
function with .

Conclusion
That's the end of the book! Through the course of is book, you learned the fundamentals of
Node.js so that you test and deploy Node.js applications on the web. We hope that you
liked the journey this book has taken you through. We wish you all the success and hope
that you continue to better your Node.js applications.



Another Book You May Enjoy
If you enjoyed this book, you may be interested in another book by Packt:

Node Cookbook - Third Edition
David Mark Clements, Mathias Buus, Matteo Collina, Peter Elger

ISBN: 978-1-78588-008-7

Debug Node.js programs
Write and publish your own Node.js modules
Detailed coverage of Node.js core API s
Use web frameworks such as Express, Hapi and Koa for accelerated web
application development
Apply Node.js streams for low-footprint data processing
Fast-track performance knowledge and optimization abilities
Persistence strategies, including database integrations with MongoDB,
MySQL/MariaDB, Postgres, Redis, and LevelDB
Apply critical, essential security concepts
Use Node with best-of-breed deployment technologies: Docker, Kubernetes and
AWS



Another Book You May Enjoy

[ 626 ]

Leave a review - let other readers know what
you think
Please share your thoughts on this book with others by leaving a review on the site that you
bought it from. If you purchased the book from Amazon, please leave us an honest review
on this book's Amazon page. This is vital so that other potential readers can see and use
your unbiased opinion to make purchasing decisions, we can understand what our
customers think about our products, and our authors can see your feedback on the title that
they have worked with Packt to create. It will only take a few minutes of your time, but is
valuable to other potential customers, our authors, and Packt. Thank you!



Index

.

.help command
   calling  , 

_
_.isString utility
   using  , 
_.uniq
   using  , 

A
actual URL
   exploring, for code  , 
add command
   working  , , 
address
   printing, to screen  
   pulling, out of argv  , 
advanced promises
   input, providing  
advanced yargs
   .help command, calling  , 
   about  
   chaining syntax, used  
   options object, adding  
   read command  
   remove command  
API working
   exploring, in browser  , , , , 
app.js
   refactoring, into geocode.js file  
app
   used, as an object  
application code
   setting up, for Heroku  

arguments array
   exploring  , 
arrow function
   about  
   arguments array, exploring  , 
   exploring, difference between regular function 

, , 
   using  , , 
assertion libraries
   exploring  , , , , 
   used, in testing Node modules  , , 
asyncAdd function
   assertion, creating  , 
   creating, setTimeout object used  , 
   done argument, adding  , , 
   test, writing  
asynchronous program
   async code, executing  , , , 
   callback queue  
   concept  , 
   event loop  
   example  , 
   illustrating  , , , 
   node API  , 
asynchronous testing
   about  
   asyncAdd function creating, setTimeout object

used  , 
   asyncSquare function, creating  
   asyncSquare, test writing  
   for square function  
asyncSquare function
   assertions, creating  , 
   creating  
Atom  
axios documentations
   about  



[ 628 ]

   reference link  
axios request
   creating  , 
   error handling  , , 
axios
   installing  

B
behavior-driven development (BDD)  
blocking I/O
   working  , 
body status property
   checking, to add if else statement  , 
   testing  , , 
bodyOption variables
   adding  
bogus test
   array/objects comparing, toBe used  , 
   array/objects comparing, toNotBe used  , 
   toEqual assertions, used  , 
   toExclude, used  , , 
   toInclude, used  , , 
   toNotEqual assertions  
   toNotEqual assertions, used  
   usage, exploring  , 

C
call stack  , 
callback errors
   about  , 
   error, checking in Google API request  , 
callback function
   about  
   adding, to geocodeAddress  
   creating  , , 
   delay simulating, setTimeout used  
   error handling  , , 
   executing  
   implementing, in geocode.js file  , 
   setting up, in geocodeAddress function in app.js 

, 
   testing, in geocode.js file  
callbacks
   abstracting  , 

   app.js, refactoring into geocode.js file  
   chaining  
   code, refactoring into geocode.js file  
   request call, refactoring in weather.js file  
catch method  
chaining syntax
   used, on yargs  
code block
   catching  , , 
   trying  , , 
code
   refactoring, into geocode.js file  
commands
   working  
commit
   creating  , 
   creating, in Heroku  , , 

D
data
   formatted address, printing  , 
   latitude, printing  
   longitude, printing  
   printing, from body object  
debugging
   about  
   notes application, debugger used  , , 
   program, executing in debug mode  , ,

, 
   working  , , , 
describe()
   adding, for individual methods  , 
   route describe block, adding for server.test.js file 

, 
   test, organizing  , 
Document Object Model (DOM)  
Don't Repeat Yourself (DRY)  , 
DRY principle
   about  
   logNote function, used  , , 

E
error handling
   about  , 



[ 629 ]

   in callback function  , , 
   testing, in callback function  , 
error
   checking, in Google API request  , 
   if else statement, adding to check body status

property  , 
   if statement, adding  
ES6 promises
   about  , , 
   error handling  , 
   example, creating  , 
   example, executing in Terminal  , 
   merits  , 
   promise method then  
   promise method then, calling  
event loop  
exports object
   working, example  , 
Express application
   API request, testing  , , 
   custom status, setting up  , 
   flexibility, adding to SuperTest  , 
   test, creating  , , 
   test, writing  , 
   testing  
   testing, setting up  , , 
   testing, SuperTest used  , 
Express middleware
   about  , 
   exploring  , 
   logger, creating  , , , , 
   maintenance, testing  , , 
   maintenance, without object  , 
   message, printing to file  , 
express route
   creating  , 
   test, writing  , , 
Express
   about  , 
   configuring  , 
   docs website  
   installing  , , 
   JSON data back, sending  , , , 

F
fetching command  , 
fetchNotes
   working  , , 
File System module  
files
   content, reading  , , , 
   creating, to load other files  , 
   exporting, from note.js to use app.js  , 
   exports object, working example  , 
   function, exporting  , , , 
   requisite  
   writing, in playground folder  
Finder  
flag  
function
   adding, to export object  
   exporting  , , , 
   fetchNotes, working  , , 
   functionality, moving  
   saveNotes, working  , 
   solution, to exercise  , , 
functionality
   testing  , , , , , 

G
geocode.js file
   app.js, refactoring  
   code, refactoring  
   creating  , , 
   request statement, working  , 
geocodeAddress
   callback function, adding  
   chaining  
Geolocation API
   about  
   request, creating  , 
getAll function
   using  , , 
getNote function
   executing  , 
   using  , 
getWeather callback
   about  



[ 630 ]

   chaining, testing  
   console.log calls, changing into callback calls 

, 
   dynamic latitude, adding  
   dynamic longitude, adding  
   implementing, in weather.js file  
   moving, into geocodeAddress function  
   static coordinates, replacing with dynamic

coordinates  
getWeather function
   arguments, passing  , 
   defining, in weather.js file  
   error message, printing  
Git repository
   node-web-server directory, turning  , 
Git
   commit, creating  , 
   installation, testing  , 
   installing  , , , 
   on macOS  
   on Windows  
   untracked files, adding to commit  , , ,

, 
   using  , , 
GitHub
   configuration, testing  , 
   configuring  , , , , , 
   repository, creating  , , , 
   repository, setting up  , , , 
   setting up  
Google Maps API data
   request package, installing  , 
   request, executing  
   request, used as function  , 
   used, in code  

H
handlebars helpers
   about  , , , 
   arguments  , , 
handlebars
   configuring  
hbs module
   installing  
header partial  , , , 

Heroku account
   logging in  , , 
Heroku command-line tools
   installing  , , 
   SSH key, obtaining  , , , 
Heroku create command
   executing  , , , , , 
Heroku
   commit, creating  , , 
   package.json file, changes in  , , ,

   server.js file, changes in  , , 
HTML page
   app.listen, calling  , 
   body tag  , 
   creating  
   head tag  
   serving, in Express app  , , 
HTTPs requests
   creating  
   data, printing from body object  
   error argument  , 
   response object  , , , 
Hypertext Transfer Protocol (HTTP)  

I
if else statement
   adding, to check body status property  , 

J
JavaScript Object Notation (JSON)
   about  
   app, used as an object  
   object, converting into string  , 
   object, converting into strings  
   string, converting to an object  
   string, converting to object  
   string, defining  
   string, storing in file  
JetBrains  
JSON data back
   sending  , , , 
JSON request
   error handling  , , 



[ 631 ]

K
key
   generating  , , 

L
list command
   working  
lodash module
   _.isString utility, using  , 
   _.uniq, using  , 
   installing  , 
   installing, in app  , 
   utilities, using  , , 
logger
   creating  , , , , 
logNote function
   using  , , 

M
make directory  
message
   printing, to file  , 
Mocha framework
   testing  , , 
module basics
   about  
   require(), using  
multiple assertions
   chaining  , , 
   for square function  , 

N
node app
   application code, setting up for Heroku  
   commit, creating in Heroku  , , 
   deploying, to Web  , 
   Heroku command-line tools, installing  , ,

   Heroku create command, executing  , ,
, , , 

Node application
   creating  , , 
   executing  , , , , 

Node modules
   testing, assertion libraries used  , , 
Node package manager  
Node project
   Mocha framework, testing  , , 
   squaring, testing  , , 
   test file, creating for add function  , , ,

   testing  , 
node-web-server directory
   turning, into Git repository  , 
Node.js API
   reference link  
Node.js
   installation  
   version confirmation  , 
Node
   about  , , , , 
   installation  , 
   installation, verifying  , 
   JavaScript coding, difference in browser  , ,

, , , 
   open source libraries, issues solving  , , 
   software development, blocking  
   software development, non-blocking  
   terminal, used for blocking example  , , 
   terminal, used for non-blocking example  , ,

   used, for difference between JavaScript coding 
, , , , , , 

   using  , 
non-blocking I/O
   working  , , , 
note
   DRY principle  
   getAll function, used  , , 
   getNote function, using  , 
   listing  
   reading  
   removeNote function, using  , , 
   removing  
   removing, for printing message  , , 
notes
   adding  , 
   adding, to notes array  , , , 



[ 632 ]

   code block, catching  , , 
   code block, trying  , , 
   fetching  , 
   saving  
   title unique, creating  , , , , ,

npm modules
   used, for creating projects  

O
object
   body argument, used  , , 
   converting, into string  , , 
   printing  
open source libraries
   issues, solving  , , 
options object
   adding  
   body, adding  , , , 
   title, adding  , 

P
package.json file
   changes in  , , , 
parsing command
   errors, dealing  
partials
   adding  , , 
   header partial  , , , 
   working  , 
promise calls
   chaining  , 
promise chaining
   about  , 
   catch method  
   error handling  , 
promise method then
   calling  , 
promises
   about  
   axios documentations  
   axios, installing  
   calls, creating in app-promise file  , 
   input, providing  

   request library  , , , , 
   request library, testing  , , 
   returning  
   weather app  

R
read command  , 
Read Evaluate Print Loop  
refactoring
   about  , 
   functionality, moving into functions  
   functionality, testing  , , , , ,

remove command
   about  , , 
   testing  , , 
removeNote function
   using  , , 
repository
   creating  , , , 
   setting up  , , , 
request call
   refactoring, in weather.js file  
request statement
   working  , 
require()
   application, initialization  
   application, initializing  , 
   built-in module  
   files, appending in File System module  , ,

, , 
   files, creating in File System module  , , ,

, 
   OS module  , , , 
   template strings, using  , , 
   user.username, concatenating  
   using  
rewire function
   installing  
   setting up  

S
saveNotes
   working  , 



[ 633 ]

server.js file
   changes in  , , 
setName method
   testing  , , , , 
software development
   blocking  , 
   blocking I/O, working  , 
   non-blocking  , 
   non-blocking I/O, working  , , , 
spies
   assertions, setting up  , , 
   spy, creating  
   test file, creating  
   testing  , , , 
spy assertion  , 
spy
   db, replacing  , 
   function, swapping  
   rewire function, installing  
   rewire function, setting up  
   test, writing for verifying function swapping  ,

squaring
   testing  , , 
SSH agent
   starting up  , 
SSH keys
   commands, working  
   documentations  , 
   reference link  
   setting up  
static coordinates
   replacing, with dynamic coordinates  
static server
   about  
   HTML page, creating  
static URL
   used, for creating request for weather app  ,

, 
string
   converting, to an object  , 
   defining  
   storing, in file  
   URI component, decoding  
   URI component, encoding  

Sublime Text  
SuperTest
   documentation  , 
   used, for testing Express application  , 
synchronous program
   example  , , , , 
   executing  , , 

T
templates
   about  , , 
   data, injecting  , , , 
   handlebars helpers  , , , 
   handlebars, configuring  
   hbs module, installing  
   partials, adding  , , 
   rendering  
   rendering, for website  , , 
   static page, obtaining for rendering  , 
terminal
   used, for blocking example  , , , 
   used, for non-blocking example  , , 
test file
   creating, for add function  , , , 
   if condition, creating  , 
test
   autorestarting  , , 
   organizing, with describe()  , 
testing  
testing module
   installing  
text editors
   for node applications  
third-party modules
   about  
   lodash module, installing in app  , 
   projects creating, npm modules used  , ,

, 
title unique
   creating  , , , , , , 
titleOption
   adding  



U
untracked files
   adding, to commit  , , , , 
URI component
   decoding  
   encoding  
user input
   address, printing to screen  
   address, pulling out of argv  , 
   encoding  
   strings, decoding  
   strings, encoding  
   yargs, configuring  , 
   yargs, installing  , 

V
variable app
   creating  , , 
   developer tools, exploring in browser for app

request  , , 
   HTML, passing to res.send  
version control
   adding  
   Git, installing  , , , 
   Git, used  , , 
   node-web-server directory, turning into Git

repository  , 
Visual Studio Code  

W
weather app
   axios documentations  

   code, fetching from app.js file  
weather directory
   providing, in app.js  , 
weather search
   API working, exploring in browser  , ,

, , 
   error handling, in callback function  , ,

   static URL, used for creating request for weather
app  , , 

   wiring up  
weather URL
   generating  , 
weather.js file
   arguments, passing in getWeather function  ,

   getWeather callback, implementing  
   getWeather function, defining  
   weather directory, providing in app.js  , 

Y
yargs
   about  , 
   add command, working  , , 
   configuring  , 
   executing  , , , 
   fetching command  
   installing  , , , 
   list command, working  

Z
ZERO_RESULT body status
   error handling  , 


	Cover
	Title Page
	Copyright and Credits
	Packt Upsell
	Contributor
	Table of Contents
	Preface
	Chapter 1: Getting Set Up
	Node.js installation
	Node.js version confirmation
	Installing Node
	Verifying installation


	What is Node?
	Differences between JavaScript coding using Node and in the browser

	Why use Node
	Blocking and non-blocking software development
	The working of blocking I/O
	The working non-blocking I/O

	Blocking and non-blocking examples using Terminal
	Node community – problem solving open source libraries

	Different text editors for node applications
	Hello World – creating and running the first Node app
	Creating the Node application
	Running the Node application

	Summary

	Chapter 2: Node Fundamentals – Part 1
	Module basics
	Using case for require()
	Initialization of an application
	The built-in module to use require()
	Creating and appending files in the File System module
	The OS module in require()
	Concatenating user.username
	Using template strings



	Require own files
	Making a new file to load other files
	Exporting files from note.js to use in app.js
	A simple example of the working of the exports object
	Exporting the functions
	Exercise – adding a new function to the export object
	Solution to the exercise



	Third-party modules
	Creating projects using npm modules
	Installing the lodash module in our app
	Installation of lodash
	Using the utilities of lodash
	Using the _.isString utility
	Using _.uniq


	The node_modules folder

	Global modules
	Installing the nodemon module
	Executing nodemon

	Getting input
	Getting input from the user inside the command line
	Accessing the command-line argument for the notes application
	Adding if/else statements
	Exercise – adding two else if clauses to an if block
	Solution to the exercise

	Getting the specific note information


	Summary

	Chapter 3: Node Fundamentals – Part 2
	yargs
	Installing yargs
	Running yargs
	Working with the add command
	Working with the list command
	The read command
	Dealing with the errors in parsing commands
	The remove command

	Fetching command


	JSON
	Converting objects into strings
	Defining a string and using in app as an object
	Converting a string back to an object
	Storing the string in a file
	Writing the file in the playground folder
	Reading out the content in the file


	Adding and saving notes
	Adding notes
	Adding notes to the notes array
	Fetching new notes

	Trying and catching code block
	Making the title unique

	Refactoring
	Moving functionality into individual functions
	Working with fetchNotes
	Working with saveNotes

	Testing the functionality

	Summary

	Chapter 4: Node Fundamentals – Part 3
	Removing a note
	Using the removeNote function
	Printing a message of removing notes

	Reading note
	Using the getNote function
	Running the getNote function

	The DRY principle
	Using the logNote function


	Debugging
	Executing a program in debug mode
	Working with debugging
	Using debugger inside the notes application

	Listing notes
	Using the getAll function

	Advanced yargs
	Using chaining syntax on yargs
	Calling the .help command
	Adding the options object
	Adding the title
	Adding the body


	Adding support to the read and remove commands
	Adding the titleOption and bodyOption variables
	Testing the remove command


	Arrow functions
	Using the arrow function
	Exploring the difference between regular and arrow functions
	Exploring the arguments array


	Summary

	Chapter 5: Basics of Asynchronous Programming in Node.js
	The basic concept of asynchronous program
	Illustrating the async programming model

	Call stack and event loop
	A synchronous program example
	The call stack
	Running the synchronous program
	A complex synchronous program example

	An async program example
	The Node API in async programming
	The callback queue in async programming
	The event loop
	Running the async code


	Callback functions and APIs
	The callback function
	Creating the callback function
	Running the callback function

	Simulating delay using setTimeout

	Making request to Geolocation API
	Using Google Maps API data in our code
	Installing the request package
	Using request as a function
	Running the request


	Pretty printing objects
	Using the body argument


	Making up of the HTTPS requests
	The response object
	The error argument
	Printing data from the body object
	Printing the formatted address
	Printing latitude and longitude


	Summary

	Chapter 6: Callbacks in Asynchronous Programming
	Encoding user input
	Installing yargs
	Configuring yargs
	Printing the address to screen

	Encoding and decoding the strings
	Encoding URI component
	Decoding URI component

	Pulling the address out of argv

	Callback errors
	Checking error in Google API request
	Adding the if statement for callback errors
	Adding if else statement to check body status property
	Testing the body status property



	Abstracting callbacks
	Refactoring app.js and code into geocode.js file
	Working on request statement
	Creating geocode file

	Adding callback function to geocodeAddress
	Setting up the function in geocodeAddress function in app.js
	Implementing the callback function in geocode.js file
	Testing the callback function in geocode.js file


	Wiring up weather search
	Exploring working of API in the browser
	Exploring the actual URL for code

	Making a request for the weather app using the static URL
	Error handling in the the callback function
	Another way of error handling
	Testing the error handling in callback


	Chaining callbacks together
	Refactoring our request call in weather.js file
	Defining the new function getWeather in weather file
	Providing weather directory in app.js
	Passing the arguments in the getWeather function
	Printing errorMessage in the getWeather function

	Implementing getWeather callback inside weather.js file
	Adding dynamic latitude and longitude
	Changing console.log calls into callback calls


	Chaining the geocodeAddress and getWeather callbacks together
	Moving getWeather call into geocodeAddress function
	Replacing static coordinates with dynamic coordinates
	Testing the chaining of callbacks


	Summary

	Chapter 7: Promises in Asynchronous Programming
	Introduction to ES6 promises
	Creating an example promise
	Calling the promise method then

	Running the promise example in Terminal
	Error handling in promises
	Merits of promises

	Advanced promises
	Providing input to promises
	Returning the promises

	Promise chaining
	Error handling in promises chaining
	The catch method


	The request library in promises
	Testing the request library


	Weather app with promises
	Fetching weather app code from the app.js file
	Axios documentations
	Installing axios
	Making calls in the app-promise file
	Making axios request
	Error handling in axios request
	Error handling with ZERO_RESULT body status


	Generating the weather URL
	Chaining the promise calls

	Summary

	Chapter 8: Web Servers in Node
	Introducing Express
	Configuring Express
	Express docs website
	Installing Express

	Creating an app
	Exploring the developer tools in the browser for the app request
	Passing HTML to res.send

	Sending JSON data back
	Error handling in the JSON request


	The static server
	Making an HTML page
	The head tag
	The body tag

	Serving the HTML page in the Express app
	The call to app.listen


	Rendering templates
	Installing the hbs module
	Configuring handlebars
	Our first template
	Getting the static page for rendering
	Injecting data inside of templates
	Rendering the template for the root of the website


	Advanced templates
	Adding partials
	Working of partial
	The Header partial

	The Handlebars helper
	Arguments in Helper


	Express Middleware
	Exploring middleware
	Creating a logger
	Printing message to file

	The maintenance middleware without the next object
	Testing the maintenance middleware


	Summary

	Chapter 9: Deploying Applications to Web
	Adding version control
	Installing Git
	Git on macOS
	Git on Windows
	Testing the installation

	Turning the node-web-server directory into a Git repository
	Using Git
	Adding untracked files to commit
	Making a commit


	Setting up GitHub and SSH keys
	Setting up SSH keys
	SSH keys documentations
	Working on commands
	Generating a key

	Starting up the SSH agent

	Configuring GitHub
	Testing the configuration

	Creating a new repository
	Setting up the repository


	Deploying the node app to the Web
	Installing Heroku command-line tools
	Log in to Heroku account locally
	Getting SSH key to Heroku

	Setting up in the application code for Heroku
	Changes in the server.js file
	Changes in the package.json file

	Making a commit in Heroku
	Running the Heroku create command

	Summary

	Chapter 10: Testing the Node Applications – Part 1
	Basic testing
	Installing the testing module
	Testing a Node project
	Mocha – the testing framework
	Creating a test file for the add function
	Creating the if condition for the test

	Testing the squaring a number function

	Autorestarting the tests

	Using assertion libraries in testing Node modules
	Exploring assertion libraries
	Chaining multiple assertions
	Multiple assertions for the square function

	Exploring usage of expect with bogus test
	Using toBe and toNotBe to compare array/objects
	Using the toEqual and toNotEqual assertions
	Using toInclude and toExclude

	Testing the setName method

	The asynchronous testing
	Creating the asyncAdd function using the setTimeout object
	Writing the test for the asyncAdd function
	Making assertion for the asyncAdd function
	Adding the done argument

	The asynchronous testing for the square function
	Creating the async square function
	Writing test for asyncSquare
	Making assertions for the asyncSquare function



	Summary

	Chapter 11: Testing the Node Applications – Part 2
	Testing the Express application
	Setting up testing for the Express app
	Testing the Express app using SuperTest
	The SuperTest documentation
	Creating a test for the Express app
	Writing the test for the Express app
	Testing our first API request
	Setting up custom status
	Adding flexibility to SuperTest


	Creating an express route
	Writing the test for the express route


	Organizing test with describe()
	Adding describe() for individual methods
	Adding the route describe block for the server.test.js file

	Test spies
	Creating a test file for spies
	Creating a spy
	Setting up spies assertions
	More details out of spy assertion

	Swapping of the function with spy
	Installing and setting up the rewire function
	Replacing db with the spy
	Writing a test to verify swapping of the function


	Summary
	Conclusion

	Another Book You May Enjoy
	Leave a review - let other readers know what you think

	Index

