

The Road to React
Your journey to master React in JavaScript

Robin Wieruch

This book is for sale at http://leanpub.com/the-road-to-learn-react

This version was published on 2021-10-20

This is a Leanpub book. Leanpub empowers authors and publishers with the Lean Publishing
process. Lean Publishing is the act of publishing an in-progress ebook using lightweight tools and
many iterations to get reader feedback, pivot until you have the right book and build traction once
you do.

© 2016 - 2021 Robin Wieruch

http://leanpub.com/the-road-to-learn-react
http://leanpub.com/
http://leanpub.com/manifesto

Tweet This Book!
Please help Robin Wieruch by spreading the word about this book on Twitter!

The suggested tweet for this book is:

I am going to learn #ReactJs with The Road to React by @rwieruch Join me on my journey
https://roadtoreact.com

The suggested hashtag for this book is #ReactJs.

Find out what other people are saying about the book by clicking on this link to search for this
hashtag on Twitter:

#ReactJs

http://twitter.com
https://twitter.com/intent/tweet?text=I%20am%20going%20to%20learn%20%23ReactJs%20with%20The%20Road%20to%20React%20by%20@rwieruch%20Join%20me%20on%20my%20journey%20https://roadtoreact.com
https://twitter.com/intent/tweet?text=I%20am%20going%20to%20learn%20%23ReactJs%20with%20The%20Road%20to%20React%20by%20@rwieruch%20Join%20me%20on%20my%20journey%20https://roadtoreact.com
https://twitter.com/search?q=%23ReactJs
https://twitter.com/search?q=%23ReactJs

Contents

Foreword . 1
About the Author . 2
FAQ . 3
Who is this book for? . 5

Fundamentals of React . 6
Hello React . 7
Requirements . 9
Setting up a React Project . 11
Meet the React Component . 15
React JSX . 19
Lists in React . 22
Meet another React Component . 28
React Component Instantiation . 32
React DOM . 35
React Component Definition (Advanced) . 36
Handler Function in JSX . 41
React Props . 44
React State . 47
Callback Handlers in JSX . 50
Lifting State in React . 52
React Controlled Components . 57
Props Handling (Advanced) . 60
React Side-Effects . 71
React Custom Hooks (Advanced) . 74
React Fragments . 78
Reusable React Component . 80
React Component Composition . 83
Imperative React . 86
Inline Handler in JSX . 90
React Asynchronous Data . 96
React Conditional Rendering . 98
React Advanced State . 102
React Impossible States . 106

CONTENTS

Data Fetching with React . 111
Data Re-Fetching in React . 113
Memoized Handler in React (Advanced) . 116
Explicit Data Fetching with React . 118
Third-Party Libraries in React . 121
Async/Await in React (Advanced) . 123
Forms in React . 125

React’s Legacy . 129
React Class Components . 130
React Class Components: State . 133
Imperative React . 135

Styling in React . 137
CSS in React . 139
CSS Modules in React . 145
Styled Components in React . 151
SVGs in React . 157

React Maintenance . 160
Performance in React (Advanced) . 161
TypeScript in React . 170
Testing in React . 180
React Project Structure . 207

Real World React (Advanced) . 212
Sorting . 213
Reverse Sort . 219
Remember Last Searches . 222
Paginated Fetch . 232

Deploying a React Application . 242
Build Process . 243
Deploy to Firebase . 244

Outline . 247

Foreword
The Road to React teaches the fundamentals of React. You will build a real-world application in plain
React without complicated tooling. Everything from project setup to deployment on a server will be
explained to you. The book comes with additional referenced reading material and exercises with
each chapter. After reading the book, you will be able to build your own applications in React. The
material is kept up to date by myself and the community. In the Road to React, I offer a foundation
before you dive into the broader React ecosystem. It explains general concepts, patterns, and best
practices for a real-world React application. Essentially, you will learn to build your own React
application from scratch, with features like pagination, client-side and server-side searching, and
advanced interactions like sorting. I hope this book captures my enthusiasm for React and JavaScript,
and that it helps you get started with it.

Foreword 2

About the Author

I am a German software and web developer dedicated to learning and teaching JavaScript. After
obtaining my Master’s Degree in computer science, I gained experience from the startup world
where I used JavaScript intensively during both my professional life and spare time. For a few years,
I worked closely with an exceptional team of engineers at a company in Berlin, developing large-
scale JavaScript applications, which eventually led to a desire to teach others about these topics.

During my time as a developer in Berlin, I regularly wrote articles about web development on
my website. I received great feedback from people learning from my articles which allowed me
to improve my writing and teaching style. Article after article, I grew my ability to teach others. I
find it it fulfilling to see students strive by giving them clear objectives and short feedback loops.

Currently, I am a self-employed developer helping companies in creating their MVPs, conducting
workshops and code audits/reviews, and creating large-scale JavaScript applications. You can find
more information about me, ways to support me, and how to work with me on my website¹.

¹https://www.robinwieruch.de/about

https://www.robinwieruch.de/about
https://www.robinwieruch.de/about

Foreword 3

FAQ

How to get updates?

I have two channels where I share updates about my content. You can subscribe to updates by email²
or follow me on Twitter³. Regardless of the channel, my objective is to only share quality content.
Once you receive a notification about an update, you can download a new version of the book from
my website.

Is the learning material up-to-date?

Programming books are usually outdated soon after their release, but since this book is self-
published, I can update it as needed whenever a new version of something related to this book
gets released.

Can I get a digital copy of the book if I bought it on Amazon?

If you have bought the book on Amazon, youmay have seen that the book is available onmywebsite
too. Since I use Amazon as one way to monetize my often free content, I honestly thank you for
your support and invite you to sign up for my courses on my website⁴. After creating an account
there, write me an email about your purchase with a receipt from Amazon, so that I can unlock the
content for you. With an account on my platform, you always have access to the latest version of
the book.

Why is the print copy so large in size?

If you have purchased the print version of the book, make sure to take notes in the book. It was my
intention to keep the printed book extra-large, for the sake of giving larger code snippets enough
space, but also for giving you enough space to work with it.

How can I get help while reading the book?

The book has a community of learners who help each other and for people who are reading along.
You can join the community to get help or to help others, as helping others may help you internalize
your own understanding. Just follow the navigation to my courses on my website⁵, sign up there,
and navigate to joining the community.

Can I help to improve the content?

If you have feedback, shoot me an email and I will consider your suggestions. Don’t expect many
replies for bug tracking or troubleshoots though because that’s what’s the community for.

What do I do if I encounter a bug?

If you encounter any bug in the code, you should find a URL to the current GitHub project at the
end of each section. Feel free to open a GitHub issue there. Your help is very much appreciated!

²https://www.getrevue.co/profile/rwieruch
³https://twitter.com/rwieruch
⁴https://www.robinwieruch.de
⁵https://www.robinwieruch.de

https://www.getrevue.co/profile/rwieruch
https://twitter.com/rwieruch
https://www.robinwieruch.de/
https://www.robinwieruch.de/
https://www.getrevue.co/profile/rwieruch
https://twitter.com/rwieruch
https://www.robinwieruch.de/
https://www.robinwieruch.de/

Foreword 4

How to support the project?

If you find my lessons useful and would like to contribute, seek my website’s about page⁶ for
information about how to offer support. It is also very helpful for my readers to spread the word
about how my books helped them, so others might discover it as ways to improve their web
development skills. Contributing through any of the provided channels gives me the freedom to
create in-depth courses, and to continue offering free material on my website.

What’s your motivation behind the book?

I want to teach about this topic consistently. I often find materials online that don’t receive updates,
or only apply to a small part of a topic. Sometimes people struggle to find consistent and up-to-date
resources to learn from. I want to provide this consistent and up-to-date learning experience. Also,
I hope I can support the less fortunate with my projects by giving them the content for free or by
having other impacts⁷.

⁶https://www.robinwieruch.de/about/
⁷https://www.robinwieruch.de/giving-back-by-learning-react

https://www.robinwieruch.de/about/
https://www.robinwieruch.de/giving-back-by-learning-react
https://www.robinwieruch.de/about/
https://www.robinwieruch.de/giving-back-by-learning-react

Foreword 5

Who is this book for?

JavaScript Beginners

JavaScript beginners with knowledge in fundamental JS, CSS, and HTML: If you just started out
with web development, and have a basic grasp of JS, CSS, and HTML, this book should give you
everything that’s needed to learn React. However, if you feel there is a gap in your JavaScript
knowledge, don’t hesitate to read up on that topic before continuing with the book. You will have
lots of references to fundamental JavaScript knowledge in this book though.

JavaScript Veterans

JavaScript veterans coming from jQuery: If you have used JavaScript with jQuery, MooTools, and
Dojo extensively back in the days, the new JavaScript era may seem overwhelming for someone
getting back on track with it. However, most of the fundamental knowledge didn’t change, it’s still
JavaScript and HTML under the hood, so this book should give you the right start into React.

JavaScript Enthusiasts

JavaScript enthusiasts with knowledge in other modern SPA frameworks: If you are coming from
Angular or Vue, there may be lots of differences in how to write applications with React, however,
all these frameworks share the same fundamentals of JavaScript and HTML. After a mindset shift
to get comfortable with React, you should be doing just fine adopting React.

Non-JavaScript Developers

If you are coming from another programming language, you should be more familiar than others
with the different aspects of programming. After picking up the fundamentals of JavaScript and
HTML, you should have a good time learning React with me.

Designers and UI/UX Enthusiasts

If your main profession is in design, user interaction, or user experience, don’t hesitate to pick up this
book. You may be already quite familiar with HTML and CSS which is a plus. After going through
somemore JavaScript fundamentals, you should be good to get through this book. These days UI/UX
is moving closer to the implementation details which are often taken care of with React. It would be
your perfect asset to know how things work in code.

Team Leads, Product Owners, or Product Managers

If you are a team lead, product owner or product manager of your development department, this
book should give you a good breakdown of all the essential parts of a React application. Every
section explains one React concept/pattern/technique to add another feature or to improve the
overall architecture. It’s a well-rounded reference guide for React.

Fundamentals of React
In this first part of this learning experience, we’ll cover the fundamentals of React, with which
we’ll create our first React project. Later we’ll explore new use cases for React by implementing real
features like client and server-side searching, remote data fetching, and advanced state management
the same as developing an actual web application. By the end, you will have a fully running React
application that interacts with real-world data.

Fundamentals of React 7

Hello React

Single-page applications (SPA⁸) have become increasingly popular with first-generation SPA frame-
works like Angular (by Google), Ember, Knockout, and Backbone. Using these frameworks made
it easier to build web applications that advanced beyond vanilla JavaScript and jQuery. React, yet
another solution for SPAs, was released by Facebook later in 2013. All of them are used to create
web applications in JavaScript.

For a moment, let’s go back in time before SPAs existed: In the past, websites and web applications
were rendered from the server. A user visits a URL in a browser and requests one HTML file and all
its associated HTML, CSS, and JavaScript files from a web server. After some network delay, the user
sees the rendered HTML in the browser (client) and starts to interact with it. Every additional page
transition (meaning: visiting another URL) would initiate this chain of events again. In this version
from the past, essentially everything crucial is done by the server, whereas the client plays a minimal
role by just rendering page by page. While barebones HTML and CSS were used to structure the
application, just a little bit of JavaScript was thrown into the mix to make interactions (e.g. toggling
a dropdown) or advanced styling (e.g. positioning a tooltip) possible. A popular JavaScript library
for this kind of work was jQuery.

In contrast, modern JavaScript shifted the focus from the server to the client. The most extreme
version of it: A user visits a URL and requests one small HTML file and one larger JavaScript file.
After some network delay, the user sees the rendered HTML by JavaScript in the browser and starts
to interact with it. Every additional page transition wouldn’t request more files from the web server,
but would use the initially requested JavaScript to render the new page. Also, every additional
interaction by the user is handled on the client too. In this modern version, the server delivers
mainly JavaScript across the wire with one minimal HTML file. The HTML file then executes all
the linked JavaScript on the client-side to render the entire application with HTML and JavaScript
for its interactions.

React, among the other SPA solutions, makes this possible. Essentially a SPA is one bulk of JavaScript,
which is neatly organized in folders and files, to create a whole application whereas the SPA
framework (e.g. React) gives you all the tools to architect it. This JavaScript-focused application is
delivered once over the network to your browser when a user visits the URL for your web application.
From there, React, or any other SPA framework, takes over for rendering everything in the browser
and for dealing with user interactions.

With the rise of React, the concept of components became popular. Every component defines its
look and feel with HTML, CSS, and JavaScript. Once a component is defined, it can be used in a
hierarchy of components for creating an entire application. Even though React has a strong focus
on components as a library, the surrounding ecosystem makes it a flexible framework. React has a
slim API, a stable yet thriving ecosystem, and a welcoming community. We are happy to welcome
you :-)

⁸https://bit.ly/3BZOL1o

https://bit.ly/3BZOL1o
https://bit.ly/3BZOL1o

Fundamentals of React 8

Exercises

• Read more about how we moved from websites to web applications⁹.
• Read more about why I moved from Angular to React¹⁰.
• Read more about how to learn a framework¹¹.
• Read more about how to learn React¹².
• Read more about JavaScript fundamentals needed for React¹³ – without worrying too much
about React here – to challenge yourself with several JavaScript features used in React.

• Optional: Rate this section¹⁴.

⁹https://www.robinwieruch.de/web-applications
¹⁰https://www.robinwieruch.de/reasons-why-i-moved-from-angular-to-react
¹¹https://www.robinwieruch.de/how-to-learn-framework
¹²https://www.robinwieruch.de/learn-react-js
¹³https://www.robinwieruch.de/javascript-fundamentals-react-requirements
¹⁴https://forms.gle/NTqhvyDaP1RjtanC6

https://www.robinwieruch.de/web-applications
https://www.robinwieruch.de/reasons-why-i-moved-from-angular-to-react
https://www.robinwieruch.de/how-to-learn-framework
https://www.robinwieruch.de/learn-react-js
https://www.robinwieruch.de/javascript-fundamentals-react-requirements
https://forms.gle/NTqhvyDaP1RjtanC6
https://www.robinwieruch.de/web-applications
https://www.robinwieruch.de/reasons-why-i-moved-from-angular-to-react
https://www.robinwieruch.de/how-to-learn-framework
https://www.robinwieruch.de/learn-react-js
https://www.robinwieruch.de/javascript-fundamentals-react-requirements
https://forms.gle/NTqhvyDaP1RjtanC6

Fundamentals of React 9

Requirements

To follow this book, you’ll need to be familiar with the basics of web development, i.e how to use
HTML, CSS, and JavaScript. It also helps to understandAPIs¹⁵, as theywill be covered in this learning
experience. Along with these skills, you’ll need the following tools to code with me while reading
this book.

Editor and Terminal

I have provided a setup guide¹⁶ to get you started with general web development. For this learning
experience, you will need a text editor (e.g. Sublime Text) and a command line tool (e.g. iTerm). As
an alternative, I recommend using an IDE, for example Visual Studio Code (also called VSCode),
for beginners, as it’s an all-in-one solution that provides an advanced editor with an integrated
command line tool, and because it’s a popular choice among web developers.

If you don’t want to set up the editor/terminal combination or IDE on your local machine,
CodeSandbox¹⁷, an online editor, is also a viable alternative. While CodeSandbox is a great tool
for sharing code online, a local machine setup is a better tool for learning the different ways to
create a web application. Also, if you want to develop applications professionally, a local setup will
be required.

Throughout this learning experience, I will use the term command line, which will be used
synonymously for the terms command line tool, terminal, and integrated terminal. The same applies
to the terms editor, text editor, and IDE, depending on what you decided to use for your setup.

Optionally, I recommend managing projects onGitHubwhile we conduct the exercises in this book,
and I’ve provided a short guide¹⁸ on how to use these tools. Github has excellent version control,
so you can see what changes were made if you make a mistake or just want a more direct way to
follow along. It’s also a great way to share your code later with other people.

Node and NPM

Before we can begin, we’ll need to haveNode andNPM¹⁹ installed. Both are used tomanage libraries
(node packages) that you will need along the way. These node packages can be libraries or whole
frameworks. We’ll install external node packages via npm (node package manager).

You can verify node and npm versions in the command line using the node --version and npm --

version commands. If you don’t receive output in the terminal indicating which version is installed,
you need to install node and npm:

¹⁵https://www.robinwieruch.de/what-is-an-api-javascript
¹⁶https://www.robinwieruch.de/developer-setup
¹⁷https://codesandbox.io
¹⁸https://www.robinwieruch.de/git-essential-commands
¹⁹https://nodejs.org/en/

https://www.robinwieruch.de/what-is-an-api-javascript
https://www.robinwieruch.de/developer-setup
https://codesandbox.io/
https://www.robinwieruch.de/git-essential-commands
https://nodejs.org/en/
https://www.robinwieruch.de/what-is-an-api-javascript
https://www.robinwieruch.de/developer-setup
https://codesandbox.io/
https://www.robinwieruch.de/git-essential-commands
https://nodejs.org/en/

Fundamentals of React 10

Command Line

node --version

*vXX.YY.ZZ

npm --version

*vXX.YY.ZZ

If you have already installed Node and npm, make sure that your installation is the most recent
version. If you’re new to npm or need a refresher, this npm crash course²⁰ I created will get you up
to speed.

²⁰https://www.robinwieruch.de/npm-crash-course

https://www.robinwieruch.de/npm-crash-course
https://www.robinwieruch.de/npm-crash-course

Fundamentals of React 11

Setting up a React Project

In the Road to React, we’ll use create-react-app²¹ to bootstrap your application. It’s an opinionated
yet zero-configuration starter kit for React introduced by Facebook in 2016, which is recommended
for beginners by 96% of React users²². In create-react-app, the tooling and configuration evolve in
the background, while the focus remains on the application’s implementation.

After installing Node and NPM, use the command line to type the following command in a dedicated
folder for your project. We’ll refer to this project as hacker-stories, but you may choose any name
you like:

Command Line

npx create-react-app hacker-stories

Navigate into your new folder after the setup has finished:

Command Line

cd hacker-stories

Now we can open the application in an editor or IDE. For Visual Studio Code, you can simply type
code . on the command line. The following folder structure, or a variation of it depending on the
create-react-app version, should be presented:

Project Structure

hacker-stories/

--node_modules/

--public/

--src/

----App.css

----App.js

----App.test.js

----index.css

----index.js

----logo.svg

--.gitignore

--package-lock.json

--package.json

--README.md

This is a breakdown of the most important folders and files:

²¹https://bit.ly/3jjkzHd
²²https://bit.ly/3AY58u3

https://bit.ly/3jjkzHd
https://bit.ly/3AY58u3
https://bit.ly/3AY58u3
https://bit.ly/3jjkzHd
https://bit.ly/3AY58u3

Fundamentals of React 12

• README.md: The .md extension indicates the file is a markdown file. Markdown is a
lightweight markup language with plain text formatting syntax. Many projects come with
a README.md file that gives instructions and useful information about the project. When we
push projects to platforms like GitHub, theREADME.md file usually displays information about
the content contained in its repositories. Because you used create-react-app, your README.md
should be the same as the official’s create-react-app GitHub repository²³.

• node_modules/: This folder contains all node packages that have been installed. Since we used
create-react-app, a couple of node modules are already installed. We’ll not touch this folder,
since node packages are usually installed and uninstalled with npm via the command line.

• package.json: This file shows you a list of node package dependencies and other project
configurations.

• package-lock.json: This file indicates npm how to break down all node package versions.We’ll
not touch this file.

• .gitignore: This file displays all files and folders that shouldn’t be added to your git repository
when using git, as such files and folders should be located only in your local project. The
node_modules/ folder is one example. It is enough to share the package.json file with others,
so they can install dependencies on their endwith npm installwithout your entire dependency
folder.

• public/: This folder holds development files, such as public/index.html. The index file is
displayed on localhost:3000 when the app is in development or on a domain that is hosted
elsewhere. The default setup handles relating this index.html with all the JavaScript from src/.

In the beginning, everything you need is located in the src/ folder. The main focus lies on the
src/App.js file which is used to implement React components. It will be used to implement your
application, but later you might want to split up your components into multiple files, where each
file maintains one or more components on its own. We will arrive at this point eventually.

Additionally, you will find a src/App.test.js file for your tests, and a src/index.js as an entry point
to the React world. You will get to know both files intimately in later sections. There is also a
src/index.css and a src/App.css file to style your overall application and components, which comes
with the default style when you open them. You will modify them later as well.

After you have learned about the folder and file structure of your React project, let’s go through
the available commands to get it started. All your project-specific commands can be found in your
package.json under the scripts property. They may look similar to these:

²³https://bit.ly/3jjkzHd

https://bit.ly/3jjkzHd
https://bit.ly/3jjkzHd

Fundamentals of React 13

package.json

{

...

},

"scripts": {

"start": "react-scripts start",

"build": "react-scripts build",

"test": "react-scripts test",

"eject": "react-scripts eject"

},

...

}

These scripts are executed with the npm run <script> command in an IDE-integrated terminal or
your standalone command line tool. The run can be omitted for the start and test scripts. The
commands are as follows:

Command Line

Runs the application in http://localhost:3000

npm start

Runs the tests

npm test

Builds the application for production

npm run build

Another command from the previous npm scripts called eject shouldn’t be used for this learning
experience. It’s a one-way operation, because once you eject, you can’t go back. Essentially this
command is only there to make all the tooling and configuration from create-react-app accessible if
you are not satisfied with the choices or if you want to change something. Here we will keep all the
defaults though.

Exercises:

• Read a bit more through React’s create-react-app documentation²⁴ and getting started guide²⁵.
– Read more about the supported JavaScript features in create-react-app²⁶.

• Read more about the folder structure in create-react-app²⁷.

²⁴https://bit.ly/3jjkzHd
²⁵https://create-react-app.dev/docs/getting-started
²⁶https://bit.ly/3vvl4Tn
²⁷https://bit.ly/3jeBN8H

https://bit.ly/3jjkzHd
https://create-react-app.dev/docs/getting-started
https://bit.ly/3vvl4Tn
https://bit.ly/3jeBN8H
https://bit.ly/3jjkzHd
https://create-react-app.dev/docs/getting-started
https://bit.ly/3vvl4Tn
https://bit.ly/3jeBN8H

Fundamentals of React 14

– Go through all of your React project’s folders and files one by one.
• Read more about the scripts in create-react-app²⁸.

– Start your React application with npm start on the command line and check it out in the
browser.
* Exit the command on the command line by pressing Control + C.

– Run the npm test script.
– Run the npm run build script and verify that a build/ folder was added to your project
(you can remove it afterward). Note that the build folder can be used later on to deploy
your application²⁹.

• Every timewe change something in our code throughout the coming learning experience, make
sure to check the output in your browser for getting visual feedback. Use npm start to keep
your application running.

• Optionally: If you use git and GitHub, add and commit your changes after every section of the
book.

• Optional: Rate this section³⁰.

²⁸https://bit.ly/3vvjsJx
²⁹https://www.robinwieruch.de/deploy-applications-digital-ocean/
³⁰https://forms.gle/bvH2jcppsSA6p9i16

https://bit.ly/3vvjsJx
https://www.robinwieruch.de/deploy-applications-digital-ocean/
https://www.robinwieruch.de/deploy-applications-digital-ocean/
https://forms.gle/bvH2jcppsSA6p9i16
https://bit.ly/3vvjsJx
https://www.robinwieruch.de/deploy-applications-digital-ocean/
https://forms.gle/bvH2jcppsSA6p9i16

Fundamentals of React 15

Meet the React Component

Every React application is built on the foundation of React components. In this section, you will get
to know your first React component which is located in the src/App.js file and which should look
similar to the example below. Depending on your create-react-app version, the content of the file
might differ slightly:

src/App.js

import * as React from 'react';

import logo from './logo.svg';

import './App.css';

function App() {

return (

<div className="App">

<header className="App-header">

<p>

Edit <code>src/App.js</code> and save to reload.

</p>

<a

className="App-link"

href="https://reactjs.org"

target="_blank"

rel="noopener noreferrer"

>

Learn React

</header>

</div>

);

}

export default App;

This file will be our focus throughout this tutorial, unless otherwise specified. Let’s start by reducing
the component to a more lightweight version for getting you started without too much boilerplate
code³¹. Afterward, start your application with npm start in the command line and check what’s
displayed in the browser:

³¹https://bit.ly/3lZzckS

https://bit.ly/3lZzckS
https://bit.ly/3lZzckS
https://bit.ly/3lZzckS

Fundamentals of React 16

src/App.js

import * as React from 'react';

function App() {

return (

<div>

<h1>Hello World</h1>

</div>

);

}

export default App;

Before we dive deeper into each topic, here comes a quick overview of what you are seeing:

• First, this React component, called the App component, is just a JavaScript function. In contrast
to JavaScript functions, it’s defined in PascalCase³². This kind of component is commonly
called a function component. Function components are the modern way of using components
in React, however, be aware that there are other variations of React components too. (see
component types later)

• Second, the App component doesn’t receive any parameters in its function signature yet. In
the upcoming sections, you will learn how to pass information (props) from one component to
another component. These props will be accessible via the function’s signature as parameters
then. (see props later)

• And third, the App component returns code that resembles HTML. You will see how this new
syntax, called JSX, allows you to combine JavaScript and HTML for displaying highly dynamic
and interactive content in a browser. (see JSX later)

The function component possesses implementation details between the function signature and the
return statement, like any other JavaScript function. Youwill see this in practice in action throughout
your React journey:

³²https://www.robinwieruch.de/javascript-naming-conventions

https://www.robinwieruch.de/javascript-naming-conventions
https://www.robinwieruch.de/javascript-naming-conventions

Fundamentals of React 17

src/App.js

import * as React from 'react';

function App() {

// you can do something in between

return (

<div>

<h1>Hello World</h1>

</div>

);

}

export default App;

Variables defined in the function’s body will be re-defined each time this function runs, which
shouldn’t be something new if you are familiar with JavaScript and its functions:

src/App.js

import * as React from 'react';

function App() {

const title = 'React';

return (

<div>

<h1>Hello World</h1>

</div>

);

}

export default App;

The function of a function component will either runwhen a component is rendered for the first time
or re-rendered when it updates. The act of rendering means that the component displays itself in the
browser. Since we don’t need anything from within the App component that will be used to define
this variable from the last code snippet – for example parameters coming from the component’s
function signature – we can define the variable outside of the App component as well. Thus it will
be defined only once and not every time the function is called:

Fundamentals of React 18

src/App.js

import * as React from 'react';

const title = 'React';

function App() {

return (

<div>

<h1>Hello World</h1>

</div>

);

}

export default App;

On your journey as a React developer, and in this learning experience, you will come across both
scenarios: variables defined outside and within a component. As a rule of thumb: If a variable does
not need anything from within the function component’s body (e.g. parameters), then define it
outside of the component which avoids redefining it on every function call.

Exercises:

• Confirm your source code³³.
• If you are unsure when to use const, let or var in JavaScript (or React) for variable declarations,
make sure to read more about their differences³⁴.
– Read more about const³⁵.
– Read more about let³⁶.

• Think about ways to display the title variable in your App component’s returned HTML. In
the next section, we’ll put this variable to use.

• Optional: Rate this section³⁷.

³³https://bit.ly/3G6O6gX
³⁴https://www.robinwieruch.de/const-let-var
³⁵https://mzl.la/3jkvHn5
³⁶https://mzl.la/3piHQgc
³⁷https://forms.gle/VYiZqqjzXGE11wCv6

https://bit.ly/3G6O6gX
https://www.robinwieruch.de/const-let-var
https://mzl.la/3jkvHn5
https://mzl.la/3piHQgc
https://forms.gle/VYiZqqjzXGE11wCv6
https://bit.ly/3G6O6gX
https://www.robinwieruch.de/const-let-var
https://mzl.la/3jkvHn5
https://mzl.la/3piHQgc
https://forms.gle/VYiZqqjzXGE11wCv6

Fundamentals of React 19

React JSX

Everything returned from a React component will be displayed in the browser. Until now, we only
returned HTML from the App component. However, recall that I mentioned the returned output of
the App component not only resembles HTML, but it can also be mixed with JavaScript. In fact, this
output is called JSX (JavaScript XML), powerfully combines HTML and JavaScript. Let’s see how
this works for displaying the variable from the previous section:

src/App.js

import * as React from 'react';

const title = 'React';

function App() {

return (

<div>

<h1>Hello {title}</h1>

</div>

);

}

export default App;

Either start your application again with npm start (or check whether your application still runs)
and look for the rendered variable in the browser, which should read: “Hello React”. If you change
the variable in the source code, the browser should reflect that change.

Now let’s focus on the HTML which differs slightly in JSX. An HTML input field with a label can
be defined as follows:

src/App.js

import * as React from 'react';

const title = 'React';

function App() {

return (

<div>

<h1>Hello {title}</h1>

<label htmlFor="search">Search: </label>

<input id="search" type="text" />

Fundamentals of React 20

</div>

);

}

export default App;

For our input field and label combination, we specified three HTML attributes: htmlFor, id, and
type. Where id and type should be familiar from native HTML, htmlFor might be new to you. The
htmlFor reflects the for attribute in HTML. JSX replaces a handful of internal HTML attributes
caused by internal implementation details of React itself. However, you can find all the supported
HTML attributes³⁸ in React’s documentation, which follows the camel case³⁹ naming convention.
Expect to come across more JSX-specific attributes like className and onClick instead of class and
onclick, as you learn more about React.

We will revisit the HTML input field for implementation details later; for now, let’s return to
JavaScript in JSX in contrast to HTML. We have defined a JavaScript string primitive to be displayed
in the App component, and the same can be done with a JavaScript object:

src/App.js

import * as React from 'react';

const welcome = {

greeting: 'Hey',

title: 'React',

};

function App() {

return (

<div>

<h1>

{welcome.greeting} {welcome.title}

</h1>

<label htmlFor="search">Search: </label>

<input id="search" type="text" />

</div>

);

}

export default App;

³⁸https://bit.ly/2Z42zcK
³⁹https://bit.ly/3jljQFn

https://bit.ly/2Z42zcK
https://bit.ly/2Z42zcK
https://bit.ly/3jljQFn
https://bit.ly/2Z42zcK
https://bit.ly/3jljQFn

Fundamentals of React 21

Essentially everything in curly braces in JSX can be used for JavaScript. For example, executing a
function works this way too:

src/App.js

import * as React from 'react';

function getTitle(title) {

return title;

}

function App() {

return (

<div>

<h1>Hello {getTitle('React')}</h1>

<label htmlFor="search">Search: </label>

<input id="search" type="text" />

</div>

);

}

export default App;

JSX was initially invented for React, but it became useful for other modern libraries and frameworks
after it gained popularity. It’s one of my favorite things about React⁴⁰. Without any extra templating
syntax (except for the curly braces), we are now able to use JavaScript in HTML. Every data structure,
from JavaScript primitive to a JavaScript function, can be displayed within HTML with the help of
JSX.

Exercises:

• Confirm your source code⁴¹.
– Confirm the changes⁴².

• Read more about React’s JSX⁴³.
• Read more about JavaScript Variables⁴⁴.

– Define more primitive and complex JavaScript data types and render them in JSX.
– Try to render a JavaScript array in JSX (hint⁴⁵). If it’s too complicated, don’t worry, because
you will learn more about this in the next section.

• Optional: Rate this section⁴⁶.

⁴⁰https://bit.ly/3aZbdM0
⁴¹https://bit.ly/3vvS8ec
⁴²https://bit.ly/3n3WW6o
⁴³https://bit.ly/3BZSkVk
⁴⁴https://www.robinwieruch.de/javascript-variable
⁴⁵https://mzl.la/3B3a7tf
⁴⁶https://forms.gle/R6y6kEqGPACLrXmP8

https://bit.ly/3aZbdM0
https://bit.ly/3vvS8ec
https://bit.ly/3n3WW6o
https://bit.ly/3BZSkVk
https://www.robinwieruch.de/javascript-variable
https://mzl.la/3B3a7tf
https://forms.gle/R6y6kEqGPACLrXmP8
https://bit.ly/3aZbdM0
https://bit.ly/3vvS8ec
https://bit.ly/3n3WW6o
https://bit.ly/3BZSkVk
https://www.robinwieruch.de/javascript-variable
https://mzl.la/3B3a7tf
https://forms.gle/R6y6kEqGPACLrXmP8

Fundamentals of React 22

Lists in React

So far we’ve rendered a few variables in JSX, however, most often you will deal with arrays. Thus
we’ll render a list of items next. We’ll experiment with sample data first, and later we’ll apply that
knowledge to fetched data from a remote API.

First, let’s define the array as a variable. Similar as before, we can define a variable outside or inside
the component. The following defines it outside:

src/App.js
import * as React from 'react';

const list = [

{

title: 'React',

url: 'https://reactjs.org/',

author: 'Jordan Walke',

num_comments: 3,

points: 4,

objectID: 0,

},

{

title: 'Redux',

url: 'https://redux.js.org/',

author: 'Dan Abramov, Andrew Clark',

num_comments: 2,

points: 5,

objectID: 1,

},

];

function App() { ... }

export default App;

Note: I used a ... here as a placeholder, to keep my code snippet small (without the App component’s
implementation details) and focused on the essential parts (the list variable outside of the App
component). I will use the ... throughout the rest of this learning experience as a placeholder for
code blocks that I have established in previous sections. If you get lost, you can always verify your
code using the CodeSandbox links I provide at the end of most sections.

Each item in the list has a title, a url, an author, an identifier (objectID), points – which indicate the
popularity of an item – and a count of comments (num_comments). Next, we’ll render the list within
our JSX dynamically:

Fundamentals of React 23

src/App.js

function App() {

return (

<div>

<h1>My Hacker Stories</h1>

<label htmlFor="search">Search: </label>

<input id="search" type="text" />

<hr />

{/* render the list here */}

{/* and by the way: that's how you do comments in JSX */}

</div>

);

}

You can use the built-in JavaScript map method for arrays⁴⁷ to iterate over each item of the list and
return a new version of each:

Code Playground

const numbers = [1, 4, 9, 16];

const newNumbers = numbers.map(function(number) {

return number * 2;

});

console.log(newNumbers);

// [2, 8, 18, 32]

In our case, we won’t map from one JavaScript data type to another. Instead, we return a JSX
fragment that renders each item of the list:

⁴⁷https://mzl.la/3B3a7tf

https://mzl.la/3B3a7tf
https://mzl.la/3B3a7tf

Fundamentals of React 24

src/App.js

function App() {

return (

<div>

...

<hr />

{list.map(function (item) {

return {item.title};

})}

</div>

);

}

Actually, one of my first React “Aha” moments was using barebones JavaScript to map a list of
JavaScript objects to HTML elements without any other HTML templating syntax. It’s just JavaScript
mixed with HTML.

React will display each item now, but you can still improve your code so React handles dynamic lists
more gracefully. By assigning a key attribute to each list item’s element, React can identify items if
the list changes (e.g. re-ordering). The key isn’t necessary yet in our current situation, however, it’s
a best practice to use it from the start. Fortunately, our items come with an identifier:

Fundamentals of React 25

src/App.js

function App() {

return (

<div>

...

<hr />

{list.map(function (item) {

return <li key={item.objectID}>{item.title};

})}

</div>

);

}

We avoid using the index of the item in the array to make sure the key attribute is a stable identifier.
If the list changes its order, for example, React will not be able to identify the items properly when
using the array’s index:

Code Playground

// avoid doing this

{list.map(function (item, index) {

return (

<li key={index}>

...

);

})}

So far, only the title is displayed for each item. Let’s experiment with displaying more of the item’s
properties:

Fundamentals of React 26

src/App.js

function App() {

return (

<div>

...

<hr />

{list.map(function (item) {

return (

<li key={item.objectID}>

{item.title}

{item.author}

{item.num_comments}

{item.points}

);

})}

</div>

);

}

The map function is inlined concisely in your JSX. Within the map function, we have access to
each item and its properties. The url property of each item is used as dynamic href attribute for
the HTML anchor tag. Not only can JavaScript in JSX be used to display items, but also to assign
HTML attributes dynamically. This section only scratches the surface of how powerful it is to use
mixed JavaScript and HTML, however, using an array’s map function or assigning dynamic HTML
attributes should give you a good first impression.

Exercises:

• Confirm your source code⁴⁸.
– Confirm the changes⁴⁹.

• Read more about why React’s key attribute is needed (0⁵⁰, 1⁵¹). Don’t worry if you don’t
understand the implementation yet, just focus on what problem it causes for dynamic lists.

⁴⁸https://bit.ly/2Z6e2ZI
⁴⁹https://bit.ly/3jf7a2Q
⁵⁰https://www.robinwieruch.de/react-list-key
⁵¹https://bit.ly/3vsA1pj

https://bit.ly/2Z6e2ZI
https://bit.ly/3jf7a2Q
https://www.robinwieruch.de/react-list-key
https://bit.ly/3vsA1pj
https://bit.ly/2Z6e2ZI
https://bit.ly/3jf7a2Q
https://www.robinwieruch.de/react-list-key
https://bit.ly/3vsA1pj

Fundamentals of React 27

• Recap the standard built-in array methods⁵² – especially map, filter, and reduce – which are
available in native JavaScript.

• What happens if you return null instead of the JSX? Try it first, then read the answer:
– Returning null in JSX is allowed. It’s always used if you want to render nothing.

• Extend the list with some more items to make the example more realistic.
• Practice using different JavaScript expressions in JSX.
• Optional: Rate this section⁵³.

⁵²https://mzl.la/3b9V9rf
⁵³https://forms.gle/aZmLFjEdSMTk9Thk9

https://mzl.la/3b9V9rf
https://forms.gle/aZmLFjEdSMTk9Thk9
https://mzl.la/3b9V9rf
https://forms.gle/aZmLFjEdSMTk9Thk9

Fundamentals of React 28

Meet another React Component

Components are the foundation of every React application. So far we’ve only been using the App
component. This will not end up well, because components should scale with your application’s
size. So instead of making one component larger and more complex, we’ll split one component
into multiple components eventually. We’ll start with a new List component which extracts
functionalities from the App component:

src/App.js

const list = [...];

function App() { ... }

function List() {

return (

{list.map(function (item) {

return (

<li key={item.objectID}>

{item.title}

{item.author}

{item.num_comments}

{item.points}

);

})}

);

}

Then the new List component can be used in the App component where we have been using the
inlined functionality previously:

Fundamentals of React 29

src/App.js

function App() {

return (

<div>

<h1>My Hacker Stories</h1>

<label htmlFor="search">Search: </label>

<input id="search" type="text" />

<hr />

<List />

</div>

);

}

You’ve just created your first React component! With this example in mind, we can see how
components encapsulate meaningful tasks while contributing to the greater good of a larger React
application. Extracting a component is a task that you will perform very often as a React developer
because it’s always the case that a component will grow in size and complexity. Let’s do this
extraction of a component one more time for a so-called Search component:

src/App.js

function App() {

return (

<div>

<h1>My Hacker Stories</h1>

<Search />

<hr />

<List />

</div>

);

}

function Search() {

return (

<div>

<label htmlFor="search">Search: </label>

<input id="search" type="text" />

Fundamentals of React 30

</div>

);

}

Finally, we have three components in our application: App, List, and Search. Generally speaking, a
React application consists of many hierarchical components; which we can put into the following
categories:

React applications have component hierarchies (also called component trees). There is usually one
uppermost entry point component (e.g. App) that spans a tree of components below it. The App
is the parent component of the List and Search, so the List and Search are child components of
the App component and sibling components to each other. The illustration takes it one step further
where the Item component is a child component of the List. In a component tree, there is always a
root component (e.g. App), and the components that don’t render any other components are called
leaf components (e.g. List/Search component in our current source code or Item/Search component
from the illustration). All components can have zero, one, or many child components.

Exercises:

• Confirm your source code⁵⁴.
– Confirm the changes⁵⁵.

• Ask yourself:
– What problem could arise if we keep treating the list variable as a global variable. Think
about a way how to prevent it.

⁵⁴https://bit.ly/3plb66a
⁵⁵https://bit.ly/3G61kKU

https://bit.ly/3plb66a
https://bit.ly/3G61kKU
https://bit.ly/3plb66a
https://bit.ly/3G61kKU

Fundamentals of React 31

– We can’t extract an Item component from the List component (like in the illustration) yet,
because we don’t know how to pass individual items from the list to each Item component.
Think about a way to do it.

• Optional: Rate this section⁵⁶.

⁵⁶https://forms.gle/EZENmy48zvDP82NL7

https://forms.gle/EZENmy48zvDP82NL7
https://forms.gle/EZENmy48zvDP82NL7

Fundamentals of React 32

React Component Instantiation

Next, I’ll briefly explain JavaScript classes, to help clarify React components. Technically they are
not related, which is important to note, but it is a fitting analogy for you to understand the concept
of a component.

Classes are most often used in object-oriented programming languages. JavaScript, always flexible
in its programming paradigms, allows functional programming and object-oriented programming
to co-exist side-by-side. To recap JavaScript classes for object-oriented programming, consider the
following Developer class:

Code Playground

class Developer {

constructor(firstName, lastName) {

this.firstName = firstName;

this.lastName = lastName;

}

getName() {

return this.firstName + ' ' + this.lastName;

}

}

Each class has a constructor that takes arguments and assigns them to the class instance. A class
can also define functions that are associated with a subject (e.g. getName), called methods or class
methods.

Defining the Developer class once is just one part; instantiating it is the other. The class definition is
the blueprint of its capabilities, and usage occurs when an instance is created with the new statement.
If a JavaScript class definition exists, one can create multiple instances of it:

Code Playground

// class definition

class Developer { ... }

// class instantiation

const robin = new Developer('Robin', 'Wieruch');

console.log(robin.getName());

// "Robin Wieruch"

// another class instantiation

const dennis = new Developer('Dennis', 'Wieruch');

Fundamentals of React 33

console.log(dennis.getName());

// "Dennis Wieruch"

The concept of a class with definition and instantiation is similar to a React component, which also
has only one component definition, but can have multiple component instances:

src/App.js

// definition of App component

function App() {

return (

<div>

<h1>My Hacker Stories</h1>

<Search />

<hr />

{/* creating an instance of List component */}

<List />

{/* creating another instance of List component */}

<List />

</div>

);

}

// definition of List component

function List() { ... }

Once we’ve defined a component, we can use it as an HTML element anywhere in our JSX. The
element produces a component instance of your component, or in other words, the component gets
instantiated. You can create as many component instances as you want. It’s not much different from
a JavaScript class definition and usage. However, technically a JavaScript class and React component
are not the same, just their usage makes it convenient to demonstrate their similarities.

Exercises:

• Familiarize yourself with the terms component definition, component instance, and element.
• Experiment by creating multiple component instances of a List component.
• From the previous section: Ask yourself again what problems could arise if we keep treating
the list variable as a global variable.

Fundamentals of React 34

– Think about how it could be possible to give each List component its own list variable.
• Optional: Rate this section⁵⁷.

⁵⁷https://forms.gle/sf1UMNR58v3NsRUSA

https://forms.gle/sf1UMNR58v3NsRUSA
https://forms.gle/sf1UMNR58v3NsRUSA

Fundamentals of React 35

React DOM

Now that we’ve learned about component definitions and their instantiation, we can move to the
App component’s instantiation. It has been in our application from the start, in the src/index.js file:

src/index.js

import * as React from 'react';

import ReactDOM from 'react-dom';

import App from './App';

ReactDOM.render(

<App />,

document.getElementById('root')

);

Next to React which is imported from react, there is another imported library called react-dom,
in which a ReactDOM.render() function uses an HTML node to replace it with JSX. Essentially
that’s everything needed to integrate React into any application which uses HTML. In more detail,
ReactDOM.render() expects two arguments; the first is to render the JSX. It creates an instance of
your App component, though it can also pass simple JSX without any component instantiation:

Code Playground

ReactDOM.render(

<h1>Hello React World</h1>,

document.getElementById('root')

);

The second argument specifies where the React application enters your HTML. It expects an element
with an id='root', found in the public/index.html file. This is a basic HTML file.

Exercises:

• Open the public/index.html to see where the React application enters your HTML.
• Read more about rendering elements in React⁵⁸.
• Optional: Rate this section⁵⁹.

⁵⁸https://bit.ly/3aUySgP
⁵⁹https://forms.gle/zSqHUhmsuQ35vqoj9

https://bit.ly/3aUySgP
https://forms.gle/zSqHUhmsuQ35vqoj9
https://bit.ly/3aUySgP
https://forms.gle/zSqHUhmsuQ35vqoj9

Fundamentals of React 36

React Component Definition (Advanced)

The following refactoring recommendations are optional to explain the different JavaScript/React
patterns. You can build complete React applications without these advanced patterns, so don’t be
discouraged if they seem too complicated.

JavaScript has multiple ways to declare functions. So far, we have used the function statement,
though arrow functions can be used more concisely:

Code Playground

// function declaration

function () { ... }

// arrow function declaration

const () => { ... }

You can remove the parentheses in an arrow function expression if it has only one argument, but
multiple arguments require parentheses:

Code Playground

// allowed

const item => { ... }

// allowed (recommended)

const (item) => { ... }

// not allowed

const item, index => { ... }

// allowed (recommended)

const (item, index) => { ... }

Defining React function components with arrow functions makes them more concise:

Fundamentals of React 37

src/App.js

const App = () => {

return (

<div>

...

</div>

);

};

const Search = () => {

return (

<div>

<label htmlFor="search">Search: </label>

<input id="search" type="text" />

</div>

);

};

const List = () => {

return (

...

);

};

This also holds true for other functions, like the one we used in our JavaScript array’s map method:

src/App.js

const List = () => {

return (

{list.map((item) => {

return (

<li key={item.objectID}>

{item.title}

{item.author}

{item.num_comments}

{item.points}

Fundamentals of React 38

);

})}

);

};

If an arrow function’s only purpose is to return a value and it doesn’t have any business logic in
between, you can remove the block body (curly braces) of the function. In a concise body, an
implicit return statement is attached, so you can remove the return statement:

Code Playground

// with block body

const countPlusOne = (count) => {

// perform any task in between

return count + 1;

};

// with concise body

const countPlusOne = (count) =>

count + 1;

// with concise body as one line

const countPlusOne = (count) => count + 1;

This can be done for the App, List, and Search components as well, because they only return JSX
and don’t perform any task in between. Again it also applies to the arrow function that’s used in the
map function:

src/App.js

const App = () => (

<div>

...

</div>

);

const Search = () => (

<div>

<label htmlFor="search">Search: </label>

<input id="search" type="text" />

</div>

);

Fundamentals of React 39

const List = () => (

{list.map((item) => (

<li key={item.objectID}>

{item.title}

{item.author}

{item.num_comments}

{item.points}

))}

);

Our JSX is more concise now, as it omits the function statement, the curly braces, and the return
statement. However, remember this is an optional step, and that it’s acceptable to use normal
functions instead of arrow functions and block bodies with curly braces for arrow functions over
implicit returns. Sometimes block bodies will be necessary to introduce more business logic between
function signature and return statement:

Code Playground
const App = () => {

// perform any task in between

return (

<div>

...

</div>

);

};

Be sure to understand this refactoring concept, because we’ll move quickly from arrow function
components with and without block bodies as we go. Which one we use will depend on the
requirements of the component.

Exercises:

• Confirm your source code⁶⁰.
– Confirm the changes⁶¹.

• Read more about JavaScript arrow functions⁶².
⁶⁰https://bit.ly/2ZbLXQz
⁶¹https://bit.ly/3pkH2aS
⁶²https://mzl.la/3BYCOcp

https://bit.ly/2ZbLXQz
https://bit.ly/3pkH2aS
https://mzl.la/3BYCOcp
https://bit.ly/2ZbLXQz
https://bit.ly/3pkH2aS
https://mzl.la/3BYCOcp

Fundamentals of React 40

• Familiarize yourself with arrow functions with block body and return, and concise body
without return.

• Optional: Rate this section⁶³.

⁶³https://forms.gle/iWSchmqasbZUWUpT8

https://forms.gle/iWSchmqasbZUWUpT8
https://forms.gle/iWSchmqasbZUWUpT8

Fundamentals of React 41

Handler Function in JSX

The Search component still has the input field and label, which we haven’t used. In HTML outside of
JSX, input fields have an onchange handler⁶⁴. We’re going to discover how to use onchange handlers
with a React component’s JSX. First, refactor the Search component from a concise body to a block
body so we can add implementation details:

src/App.js

const Search = () => {

// do something in between

return (

<div>

<label htmlFor="search">Search: </label>

<input id="search" type="text" />

</div>

);

};

Next, define a function – which can be a normal or arrow function – for the change event of the
input field. In React, this function is called an (event) handler. Then the function can be passed to
the onChange attribute (JSX named attribute) of the HTML input field:

src/App.js

const Search = () => {

const handleChange = (event) => {

console.log(event);

};

return (

<div>

<label htmlFor="search">Search: </label>

<input id="search" type="text" onChange={handleChange} />

</div>

);

};

After opening your application in a web browser, open the browser’s developer tools to see logging
occur after you type into the input field. What you see is called a synthetic event defined by a
JavaScript object. Through this object, we can access the emitted value of the input field:

⁶⁴https://mzl.la/3n9wit4

https://mzl.la/3n9wit4
https://mzl.la/3n9wit4

Fundamentals of React 42

src/App.js
const Search = () => {

const handleChange = (event) => {

console.log(event.target.value);

};

return (...);

};

React’s synthetic event is essentially a wrapper around the browser’s native event⁶⁵, with more
functions that are useful to prevent native browser behavior (e.g. refreshing a page after the user
clicks a form’s submit button). Sometimes you will use the event, sometimes you won’t need it.

After all, this is howwe give HTML elements in JSX handler functions to respond to user interaction.
Always pass functions to these handlers, not the return value of the function, except when the return
value is a function. Knowing this is crucial because it’s a well-known source for bugs in a React
beginners application:

Code Playground
// don't do this

<input

id="search"

type="text"

onChange={handleChange()}

/>

// do this instead

<input

id="search"

type="text"

onChange={handleChange}

/>

As you can see, HTML and JavaScript work well together in JSX. JavaScript in HTML can
display JavaScript variables (e.g. title JavaScript string in {title}), can pass JavaScript
primitives to HTML attributes (e.g. url JavaScript string to HTML element), and
can pass functions to an HTML element’s attributes for handling user interactions.

Exercises:

• Confirm your source code⁶⁶.
– Confirm the changes⁶⁷.

⁶⁵https://mzl.la/30Dk8kt
⁶⁶https://bit.ly/3lY8usB
⁶⁷https://bit.ly/3BYqQzp

https://mzl.la/30Dk8kt
https://bit.ly/3lY8usB
https://bit.ly/3BYqQzp
https://mzl.la/30Dk8kt
https://bit.ly/3lY8usB
https://bit.ly/3BYqQzp

Fundamentals of React 43

• Read more about React’s event handler⁶⁸ and React’s events⁶⁹.
• Optional: Rate this section⁷⁰.

⁶⁸https://www.robinwieruch.de/react-event-handler
⁶⁹https://bit.ly/3jiFdaz
⁷⁰https://forms.gle/oSKyMudmb8X1iSsv8

https://www.robinwieruch.de/react-event-handler
https://bit.ly/3jiFdaz
https://forms.gle/oSKyMudmb8X1iSsv8
https://www.robinwieruch.de/react-event-handler
https://bit.ly/3jiFdaz
https://forms.gle/oSKyMudmb8X1iSsv8

Fundamentals of React 44

React Props

We are currently using the list variable as a global variable in the current application. We used it
directly from the global scope in the App component, and later in the List component. This could
work if you only had one global variable, but it isn’t maintainable with multiple variables across
multiple components. By using so-called props in React, we can pass variables as information from
one component to another component.

Before using props for the first time, we’ll move the list from the global scope into the App
component and rename it to its actual domain. Don’t forget to refactor the App component’s function
from concise to block body in order to define the list in between:

src/App.js

const App = () => {

const stories = [

{

title: 'React',

url: 'https://reactjs.org/',

author: 'Jordan Walke',

num_comments: 3,

points: 4,

objectID: 0,

},

{

title: 'Redux',

url: 'https://redux.js.org/',

author: 'Dan Abramov, Andrew Clark',

num_comments: 2,

points: 5,

objectID: 1,

},

];

return (...);

};

Next, we’ll use React props to pass the list of items to the List component. The variable is called
stories in the App component, and we pass it under this name to the List component. In the List
component’s instantiation, however, it is assigned to the list HTML attribute:

Fundamentals of React 45

src/App.js

const App = () => {

const stories = [...];

return (

<div>

<h1>My Hacker Stories</h1>

<Search />

<hr />

<List list={stories} />

</div>

);

};

After passing it to the List component, we can access it as list property from the props object in
the List component’s function signature:

src/App.js

const List = (props) => (

{props.list.map((item) => (

<li key={item.objectID}>

{item.title}

{item.author}

{item.num_comments}

{item.points}

))}

);

Everything that we pass from a parent component to a child component via a component element’s
HTML attribute can be accessed in the child component. The child component receives an object
parameter (props) which includes all the passed attributes as properties (props).

Using this mechanism of passing information from one component down to another with React
props, we’ve prevented the list variable from polluting the global scope in our src/App.js file when

Fundamentals of React 46

we defined it outside of the component. Now, the list is defined as stories in our App component.
However, since stories is not used in the App component directly, but in one of its child components,
we passed it as props to the List component. We could also define stories directly in the List
component and would not need to use props in the first place, however, in the future we will make
use of the stories in the App component and thus will keep it there.

Another use case for React props is the List component and its potential child component. Previously,
we couldn’t extract an Item component from the List component, because we didn’t know how to
pass each item to the extracted Item component. With the new knowledge about React props, we
can perform the component extraction and pass each item along to the List component’s new child
component:

src/App.js
const List = (props) => (

{props.list.map((item) => (

<Item key={item.objectID} item={item} />

))}

);

const Item = (props) => (

{props.item.title}

{props.item.author}

{props.item.num_comments}

{props.item.points}

);

In conclusion, one can see how props are used to pass information down the component tree.
Following this explanation, information (props) can only be passed from a parent to a child
component and not vice versa. We will learn how to overcome this limitation later.

Exercises:

• Confirm your source code⁷¹.
– Confirm the changes⁷².

• Read more about how to pass props to React components⁷³.
• Optional: Rate this section⁷⁴.
⁷¹https://bit.ly/3jlmUBz
⁷²https://bit.ly/3lW2sIX
⁷³https://www.robinwieruch.de/react-pass-props-to-component
⁷⁴https://forms.gle/APwaUSAuVAAA56sY6

https://bit.ly/3jlmUBz
https://bit.ly/3lW2sIX
https://www.robinwieruch.de/react-pass-props-to-component
https://forms.gle/APwaUSAuVAAA56sY6
https://bit.ly/3jlmUBz
https://bit.ly/3lW2sIX
https://www.robinwieruch.de/react-pass-props-to-component
https://forms.gle/APwaUSAuVAAA56sY6

Fundamentals of React 47

React State

In contrast to React props, React state is used to make applications interactive. Both concepts, props
and state, have clear defined purposes: Props are used to pass information down the component tree,
state is used to alter information over time. Both can work hand in hand as well. We will see what
this means in the following sections.

Let’s start with state in React with the following use case: Whenever a user types something into
an HTML input field, the user may want to see this typed information (state) displayed somewhere
else in the application. Therefore we need some way to change information over time and, what’s
more important, to notify React to re-render its component(s) again. A naive (but wrong) approach
would be the following:

src/App.js

const Search = () => {

let searchTerm = '';

const handleChange = (event) => {

searchTerm = event.target.value;

};

return (

<div>

<label htmlFor="search">Search: </label>

<input id="search" type="text" onChange={handleChange} />

<p>

Searching for {searchTerm}.

</p>

</div>

);

};

When you try this in the browser, you will see that the output does not appear below the HTML
input field after typing into it. However, this approach is not too far away from the actual solution.
What’s missing after all is the mechanisms to notify React to re-render the component with the new
searchTerm state after the event handler updated it. In order to do so, we need to tell React that
searchTerm is a state that changes over time and that whenever it changes React has to re-render its
affected component(s). Fortunately, React offers us a utility function called useState for it:

Fundamentals of React 48

src/App.js

const Search = () => {

const [searchTerm, setSearchTerm] = React.useState('');

...

};

React’s useState function takes an initial state as an argument – where we will use an empty string.
By providing this initial state to useState, we are telling React that this state will change over time.
Furthermore, calling this function will return an array with two entries: The first entry (searchTerm)
represents the current state; the second entry is a function to update this state (setSearchTerm). I
will sometimes refer to this function as state updater function. Both entries are everything we need
to display the current state and to alter the current state:

src/App.js

const Search = () => {

const [searchTerm, setSearchTerm] = React.useState('');

const handleChange = (event) => {

setSearchTerm(event.target.value);

};

return (

<div>

<label htmlFor="search">Search: </label>

<input id="search" type="text" onChange={handleChange} />

<p>

Searching for {searchTerm}.

</p>

</div>

);

};

When the user types into the input field, the input field’s change event is captured by the event
handler. The handler’s logic uses the event’s value and the state updater function to set the updated
state. After the updated state is set in a component, the component renders again, meaning the
component function runs again. The updated state becomes the current state and is displayed in the
component’s JSX.

As an exercise, put a console.log() into each of your components. For example, the App component
gets a console.log('App renders'), the List component gets a console.log('List renders') and

Fundamentals of React 49

so on. Now check your browser: For the first rendering, all loggings should appear, however, once
you type into the HTML input field, only the Search component’s logging should appear. That’s
because React only re-renders this component (and all of its child components), because its state
changed.

It’s important to note that the useState function is called a React hook. It’s only one of many
hooks provided by React and this section only scratched the surface. You will learn more about
them throughout the next sections.

Exercises:

• Confirm your source code⁷⁵.
– Confirm the changes⁷⁶.

• Read more about JavaScript array destructuring⁷⁷.
• Read more about React’s useState Hook⁷⁸.
• Optional: Rate this section⁷⁹.

⁷⁵https://bit.ly/3prVjSO
⁷⁶https://bit.ly/30ISOBv
⁷⁷https://mzl.la/3ncC7WI
⁷⁸https://www.robinwieruch.de/react-usestate-hook
⁷⁹https://forms.gle/ZJNbQqq3Lw3RiD4H9

https://bit.ly/3prVjSO
https://bit.ly/30ISOBv
https://mzl.la/3ncC7WI
https://www.robinwieruch.de/react-usestate-hook
https://forms.gle/ZJNbQqq3Lw3RiD4H9
https://bit.ly/3prVjSO
https://bit.ly/30ISOBv
https://mzl.la/3ncC7WI
https://www.robinwieruch.de/react-usestate-hook
https://forms.gle/ZJNbQqq3Lw3RiD4H9

Fundamentals of React 50

Callback Handlers in JSX

The last sections taught us important lessons about props and state in React. While props are passed
down as information from parent to child components, state can be used to change information over
time and to make React show this changed information. However, we don’t have all the pieces yet
to make our components talk to each other. At the moment, the Search component does not share
its state with other components, so it’s only used and updated by the Search component and thus
becomes useless for the other components.

There is no way to pass information up the component tree, since props are naturally only passed
downwards. However, we can introduce a callback handler: A callback function gets introduced
(A), is used elsewhere (B), but “calls back” to the place it was introduced (C):

src/App.js

const App = () => {

const stories = [...];

// A

const handleSearch = (event) => {

// C

console.log(event.target.value);

};

return (

<div>

<h1>My Hacker Stories</h1>

{/* // B */}

<Search onSearch={handleSearch} />

<hr />

Fundamentals of React 51

<List list={stories} />

</div>

);

};

Now our Search component can use this callback handler from its incoming props to call it whenever
a user types into the HTML input field:

src/App.js

const Search = (props) => {

const [searchTerm, setSearchTerm] = React.useState('');

const handleChange = (event) => {

setSearchTerm(event.target.value);

// B

props.onSearch(event);

};

return (...);

};

The concept of the callback handler in a nutshell: We pass a function from a parent component (App)
to a child component (Search) via props; we call this function in the child component (Search), but
have the actual implementation of the called function in the parent component (App). Essentially
when an (event) handler is passed as props from a parent component to its child component, it
becomes a callback handler. React props are always passed down the component tree, and callback
handlers passed as functions in props can be used to communicate up the component hierarchy.

Exercises:

• Confirm your source code⁸⁰.
– Confirm the changes⁸¹.

• Revisit the concepts of handler and callback handler as many times as you need.
• Optional: Rate this section⁸².

⁸⁰https://bit.ly/3DUWm1O
⁸¹https://bit.ly/3jizj9s
⁸²https://forms.gle/3LoBoWKCMNT2YpnA7

https://bit.ly/3DUWm1O
https://bit.ly/3jizj9s
https://forms.gle/3LoBoWKCMNT2YpnA7
https://bit.ly/3DUWm1O
https://bit.ly/3jizj9s
https://forms.gle/3LoBoWKCMNT2YpnA7

Fundamentals of React 52

Lifting State in React

In this section, we are confronted with the following task: Use the searchTerm from the Search
component to filter the stories by title in the App component before they reach the List component.
In the last section, we established a callback handler to pass information from the Search component
up to the App component. However, if you check the code, it seems somehow difficult to access the
value coming from the callback handler’s event in the App component in order to filter the list. The
incoming value is only accessible in the callback handler’s function. We need to figure out how to
share the Search component’s state across multiple components (App, List) who are interested in it.
Therefore, we’ll need to lift state up from Search to App component to share the state with more
components:

src/App.js

const App = () => {

const stories = [...];

const [searchTerm, setSearchTerm] = React.useState('');

const handleSearch = (event) => {

setSearchTerm(event.target.value);

};

return (

<div>

<h1>My Hacker Stories</h1>

<Search onSearch={handleSearch} />

<hr />

<List list={stories} />

</div>

);

};

const Search = (props) => (

<div>

<label htmlFor="search">Search: </label>

<input id="search" type="text" onChange={props.onSearch} />

</div>

);

Fundamentals of React 53

We learned about the callback handler previously, because it helps us to keep an open communi-
cation channel from Search to App component. Now the Search component doesn’t manage the
state anymore, but only passes up the event to the App component via a callback handler after the
text is entered into the HTML input field. You could also display the searchTerm again in the App
component (from state, when using searchTerm directly) or Search component (from props, when
passing the searchTerm state down as props).

Rule of thumb: Always manage state at a component level where every component that’s interested
in it is one that either manages the state (using information directly from state, e.g. App component)
or a component below the managing component (using information from props, e.g. List or Search).
If a component below needs to update the state (e.g. Search), pass a callback handler down to it
which allows it to update it. If a component needs to use the state (e.g. displaying it), pass it down
as props.

Finally, by managing the search feature’s state in the App component, we can filter the storieswith
the stateful searchTerm before passing them as list to the List component:

src/App.js

const App = () => {

const stories = [...];

const [searchTerm, setSearchTerm] = React.useState('');

const handleSearch = (event) => {

setSearchTerm(event.target.value);

};

const searchedStories = stories.filter(function (story) {

return story.title.includes(searchTerm);

});

return (

<div>

Fundamentals of React 54

<h1>My Hacker Stories</h1>

<Search onSearch={handleSearch} />

<hr />

<List list={searchedStories} />

</div>

);

};

Here, the JavaScript array’s built-in filter function⁸³ is used to create a new filtered array. The filter
function takes a function as an argument, which accesses each item in the array and returns true or
false. If the function returns true, meaning the condition is met, the item stays in the newly created
array; if the function returns false, it’s removed:

Code Playground

const words = [

'spray',

'limit',

'elite',

'exuberant',

'destruction',

'present'

];

const filteredWords = words.filter(function (word) {

return word.length > 6;

});

console.log(filteredWords);

// ["exuberant", "destruction", "present"]

The filter function can be made more concise by using an arrow function with an immediate return:

⁸³https://mzl.la/3BYFAOR

https://mzl.la/3BYFAOR
https://mzl.la/3BYFAOR

Fundamentals of React 55

src/App.js

const App = () => {

...

const searchedStories = stories.filter((story) =>

story.title.includes(searchTerm)

);

...

};

That’s all to the refactoring steps of the inlined function for the filter function. There are many
variations to it – and it’s not always simple to keep a good balance between readable and conciseness
– however, I feel like keeping it concise whenever possible keeps it most of the time readable as well.

What’s not working very well yet: The filter function checks whether the searchTerm is present in
our story item’s title, but it’s still too opinionated about the letter case. If we search for “react”, there
is no filtered “React” story in your rendered list. To fix this problem, we have to lower case the
story’s title and the searchTerm to make them equal.

src/App.js

const App = () => {

...

const searchedStories = stories.filter((story) =>

story.title.toLowerCase().includes(searchTerm.toLowerCase())

);

...

};

Now you should be able to search for “eact”, “React”, or “react” and see one of two displayed
stories. Congratulations, you have just added your first real interactive feature to your application
by leveraging state – to derive a filtered list of stories – and props – by passing a callback handler
to the Search component.

Exercises:

• Confirm your source code⁸⁴.
– Confirm the changes⁸⁵.

⁸⁴https://bit.ly/3vtfBwo
⁸⁵https://bit.ly/3DSiuK6

https://bit.ly/3vtfBwo
https://bit.ly/3DSiuK6
https://bit.ly/3vtfBwo
https://bit.ly/3DSiuK6

Fundamentals of React 56

• Read more about lifting state in React⁸⁶.
• Optional: Rate this section⁸⁷.

⁸⁶https://www.robinwieruch.de/react-lift-state
⁸⁷https://forms.gle/EqJGjxCM1Xzw9S6g7

https://www.robinwieruch.de/react-lift-state
https://forms.gle/EqJGjxCM1Xzw9S6g7
https://www.robinwieruch.de/react-lift-state
https://forms.gle/EqJGjxCM1Xzw9S6g7

Fundamentals of React 57

React Controlled Components

When you type into your HTML input field and see the characters showing up, you may have
noticed that the element itself holds an internal state, because we are not providing any external
value to it. Let me show you where this behavior leads to unexpected results: After applying the
following change – giving the searchTerm an initial state of ‘React’ – can you spot the mistake in
your browser?

src/App.js

const App = () => {

const stories = [...];

const [searchTerm, setSearchTerm] = React.useState('React');

...

};

While the list has been filtered respectively to this search term, the HTML input field doesn’t show
the value. Only when typing into the input field we see the change reflected in it. However, if
we want to start properly with the initial state in the input field, we need to convert the Search
component with its input field into a so-called controlled component. So far, the input field doesn’t
know anything about the searchTerm. It only uses the onChange handler to inform us of a change.
Good for us that the input field has a value attribute which we can use as well:

src/App.js

const App = () => {

const stories = [...];

const [searchTerm, setSearchTerm] = React.useState('React');

...

return (

<div>

<h1>My Hacker Stories</h1>

<Search search={searchTerm} onSearch={handleSearch} />

...

</div>

);

};

Fundamentals of React 58

const Search = (props) => (

<div>

<label htmlFor="search">Search: </label>

<input

id="search"

type="text"

value={props.search}

onChange={props.onSearch}

/>

</div>

);

Now the input field uses the correct initial value when displaying it in the browser. When we use
the searchTerm state from the App component via props, we force the input field to use this value
over its internally managed element’s state.

We learned about controlled components in this section. Taking all the previous sections as learning
steps into consideration, we discovered another concept called unidirectional data flow:

Visualization

UI -> Side-Effect -> State -> UI -> ...

A React application and its components start with an initial state, which may or may not be passed
down as props to interested child components. It’s rendered for the first time as a UI. Once a
side-effect occurs, like user interaction (e.g. typing into an input field) or data loading from a
remote API, the change is captured in React’s state either in the component itself or by notifying
parent components via a callback handler. Once state has been changed, all components below the
component with the modified state are re-rendered (meaning: the component functions run again).

Fundamentals of React 59

In the previous sections, we also learned about React’s component lifecycle. At first, all components
are instantiated from the top to the bottom of the component hierarchy. This includes all hooks (e.g.
useState) that are instantiated with their initial values (e.g. initial state). From there, the UI awaits
side-effects like user interactions. Once the state is changed (e.g. current state changed via state
updater function from useState), all components below render again.

Every run through a component’s function takes the recent value (e.g. current state) from React’s
useState Hook and doesn’t reinitialize them again (e.g. initial state). This might seem odd, as one
could assume the useState hooks function re-initializes again with its initial value, but it doesn’t.
Hooks initialize only once when the component renders for the first time, after which React tracks
them internally with their most recent values.

Exercises:

• Confirm your source code⁸⁸.
– Confirm the changes⁸⁹.

• Read more about controlled components in React⁹⁰.
• Experiment with console.log() in your React components and observe how your changes
render, both initially and after the input field changes.

• Optional: Rate this section⁹¹.

⁸⁸https://bit.ly/3aXr7GZ
⁸⁹https://bit.ly/3aV4XVO
⁹⁰https://www.robinwieruch.de/react-controlled-components/
⁹¹https://forms.gle/7VYTww2EQiPkFnaR8

https://bit.ly/3aXr7GZ
https://bit.ly/3aV4XVO
https://www.robinwieruch.de/react-controlled-components/
https://forms.gle/7VYTww2EQiPkFnaR8
https://bit.ly/3aXr7GZ
https://bit.ly/3aV4XVO
https://www.robinwieruch.de/react-controlled-components/
https://forms.gle/7VYTww2EQiPkFnaR8

Fundamentals of React 60

Props Handling (Advanced)

Props are passed from parent to child down the component tree. Since we use props to transport
information from component to component frequently, and sometimes via other components which
are in between, it is useful to know a few tricks to make passing props more convenient. Note that
the following refactorings are recommended for you to learn different JavaScript/React patterns,
though you can still build complete React applications without them. Consider these advanced React
techniques that will make your source code more concise.

Object Destructuring

After all, React props are a JavaScript object, else we couldn’t access props.list or props.onSearch
in our React components. Since props is an object which just passes information from one component
to another component, we can apply a couple JavaScript tricks to it. For example, accessing an
object’s properties with modern JavaScript object destructuring⁹²:

Code Playground

const user = {

firstName: 'Robin',

lastName: 'Wieruch',

};

// without object destructuring

const firstName = user.firstName;

const lastName = user.lastName;

console.log(firstName + ' ' + lastName);

// "Robin Wieruch"

// with object destructuring

const { firstName, lastName } = user;

console.log(firstName + ' ' + lastName);

// "Robin Wieruch"

If we need to access multiple properties of an object, using one line of code instead of multiple
lines is often simpler and more elegant. That’s why object destructuring is already widely used in
JavaScript. Let’s transfer this knowledge to the React props in our Search component. First, we have
to refactor the Search component’s arrow function from the concise body into block body:

⁹²https://mzl.la/30KbXTC

https://mzl.la/30KbXTC
https://mzl.la/30KbXTC

Fundamentals of React 61

src/App.js

const Search = (props) => {

return (

<div>

<label htmlFor="search">Search: </label>

<input

id="search"

type="text"

value={props.search}

onChange={props.onSearch}

/>

</div>

);

};

And second, we can apply the destructuring of the props object in the component’s function body:

src/App.js

const Search = (props) => {

const { search, onSearch } = props;

return (

<div>

<label htmlFor="search">Search: </label>

<input

id="search"

type="text"

value={search}

onChange={onSearch}

/>

</div>

);

};

That’s a basic destructuring of the props object in a React component, so that the object’s
properties can be used conveniently in the component. However, we also had to refactor the Search
component’s arrow function from concise body into block body to access the properties of props
with the object destructuring in the function’s body. This would happen quite often if we followed
this pattern, and it wouldn’t make things easier for us, because we would constantly have to refactor
our components. We can take all this one step further by destructuring the props object right away
in the function signature of our component, omitting the function’s block body of the component
again:

Fundamentals of React 62

src/App.js

const Search = ({ search, onSearch }) => (

<div>

<label htmlFor="search">Search: </label>

<input

id="search"

type="text"

value={search}

onChange={onSearch}

/>

</div>

);

React’s props are rarely used in components by themselves; rather, all the information that
is contained in the props object is used. By destructuring the props object right away in the
component’s function signature, we can conveniently access all information without dealing with
its props container. The List and Item components can perform the same props destructuring:

src/App.js

const List = ({ list }) => (

{list.map((item) => (

<Item key={item.objectID} item={item} />

))}

);

const Item = ({ item }) => (

{item.title}

{item.author}

{item.num_comments}

{item.points}

);

This should be the basic lesson learned from this section, however, we can take this one step further
with the following advanced lessons. The incoming item parameter in the Item component has
something in common with the previously discussed props parameter: they are both JavaScript

Fundamentals of React 63

objects. Also, even though the item object has already been destructured from the props in the Item
component’s function signature, it isn’t directly used in the Item component. The item object only
passes its information (object properties) to the elements.

Nested Destructuring

The current solution is fine as you will see in the ongoing discussion. However, I want to show you
two more variations of it, because there are many things to learn about JavaScript objects in React
here. Let’s get started with nested destructuring and how it works:

Code Playground

const user = {

firstName: 'Robin',

pet: {

name: 'Trixi',

},

};

// without object destructuring

const firstName = user.firstName;

const name = user.pet.name;

console.log(firstName + ' has a pet called ' + name);

// "Robin has a pet called Trixi"

// with nested object destructuring

const {

firstName,

pet: {

name,

},

} = user;

console.log(firstName + ' has a pet called ' + name);

// "Robin has a pet called Trixi"

The nested destructuring helps us to gather all the needed information of the item object in
the function signature for its immediate usage in the component’s elements. However, nested
destructuring introduces lots of clutter through indentations in the function signature. Even though
it’s not the most readable option here, note that it can still be useful in other scenarios.

Fundamentals of React 64

src/App.js

// Variation 1: Nested Destructuring

const Item = ({

item: {

title,

url,

author,

num_comments,

points,

},

}) => (

{title}

{author}

{num_comments}

{points}

);

The nested destructuring helps us to gather all the needed information of the item object in
the function signature for its immediate usage in the component’s elements. However, nested
destructuring introduces lots of clutter through indentations in the function signature. While it’s
here not the most readable option, it can be useful in other scenarios though.

Spread and Rest Operators

Let’s take another approach with JavaScript’s spread and rest operators. In order to prepare for it,
we will refactor our List and Item components to the following implementation. Rather than passing
the item as an object from List to Item component, we are passing every property of the item object:

Fundamentals of React 65

src/App.js

// Variation 2: Spread and Rest Operators

// 1. Step

const List = ({ list }) => (

{list.map((item) => (

<Item

key={item.objectID}

title={item.title}

url={item.url}

author={item.author}

num_comments={item.num_comments}

points={item.points}

/>

))}

);

const Item = ({ title, url, author, num_comments, points }) => (

{title}

{author}

{num_comments}

{points}

);

Now, even though the Item component’s function signature is more concise, the clutter ended up in
the List component instead, because every property is passed to the Item component individually.
We can improve this approach using JavaScript’s spread operator⁹³:

⁹³https://mzl.la/3jetIkn

https://mzl.la/3jetIkn
https://mzl.la/3jetIkn

Fundamentals of React 66

Code Playground

const profile = {

firstName: 'Robin',

lastName: 'Wieruch',

};

const address = {

country: 'Germany',

city: 'Berlin',

};

const user = {

...profile,

gender: 'male',

...address,

};

console.log(user);

// {

// firstName: "Robin",

// lastName: "Wieruch",

// gender: "male"

// country: "Germany,

// city: "Berlin",

// }

JavaScript’s spread operator allows us to literally spread all key/value pairs of an object to another
object. This can also be done in React’s JSX. Instead of passing each property one at a time via
props from List to Item component as before, we can use JavaScript’s spread operator to pass all the
object’s key/value pairs as attribute/value pairs to a JSX element:

src/App.js

// Variation 2: Spread and Rest Operators

// 2. Step

const List = ({ list }) => (

{list.map((item) => (

<Item key={item.objectID} {...item} />

))}

);

Fundamentals of React 67

const Item = ({ title, url, author, num_comments, points }) => (

{title}

{author}

{num_comments}

{points}

);

This refactoring made the process of passing the information from List to Item component more
concise. Finally, we’ll use JavaScript’s rest parameters⁹⁴ as the icing on the cake. The JavaScript rest
operator happens always as the last part of an object destructuring:

Code Playground

const user = {

id: '1',

firstName: 'Robin',

lastName: 'Wieruch',

country: 'Germany',

city: 'Berlin',

};

const { id, country, city, ...userWithoutAddress } = user;

console.log(userWithoutAddress);

// {

// firstName: "Robin",

// lastName: "Wieruch"

// }

console.log(id);

// "1"

console.log(city);

// "Berlin"

Even though both have the same syntax (three dots), the rest operator shouldn’t be mistaken with
the spread operator. Whereas the rest operator happens on the left side of an assignment, the spread

⁹⁴https://mzl.la/3GeJbef

https://mzl.la/3GeJbef
https://mzl.la/3GeJbef

Fundamentals of React 68

operator happens on the right side. The rest operator is always used to separate an object from some
of its properties.

Now it can be used in our List component to separate the objectID from the item, because the
objectID is only used as a key and isn’t used in the Item component. Only the remaining (rest) item
gets spread as attribute/value pairs into the Item component (as before):

src/App.js

// Variation 2: Spread and Rest Operators

// Final Step

const List = ({ list }) => (

{list.map(({ objectID, ...item }) => (

<Item key={objectID} {...item} />

))}

);

const Item = ({ title, url, author, num_comments, points }) => (

{title}

{author}

{num_comments}

{points}

);

In this final variation, the rest operator is used to destructure the objectID from the rest of the item
object. Afterward, the item is spread with its key/values pairs into the Item component. While this
final variation is very concise, it comes with advanced JavaScript features that may be unknown to
some.

In this section, we have learned about JavaScript object destructuring which can be commonly used
not only for the props object, but also for other objects like the item object. We have also seen how
nested destructuring can be used (Variation 1), but also how it didn’t add any benefits in our case
because it just made the component bigger. In the future, you are more likely to find use cases for
nested destructuring which are beneficial. Last but not least, you have learned about JavaScript’s
spread and rest operators, which shouldn’t be confused with each other, to perform operations on
JavaScript objects and to pass the props object from one component to another component in the
most concise way. In the end, I want to point out the initial version again which we will keep over
for the next sections:

Fundamentals of React 69

src/App.js

const List = ({ list }) => (

{list.map((item) => (

<Item key={item.objectID} item={item} />

))}

);

const Item = ({ item }) => (

{item.title}

{item.author}

{item.num_comments}

{item.points}

);

It may not be the most concise, but it is the easiest to reason about. Variation 1 with its nested
destructuring didn’t add much benefit and variation 2 may add too many advanced JavaScript
features (spread operator, rest operator) which are not familiar to everyone. After all, all these
variations have their pros and cons. When refactoring a component, always aim for readability,
especially when working in a team of people, and make sure they’re using a common React code
style.

Exercises:

• Confirm your source code⁹⁵.
– Confirm the changes⁹⁶.

• Read more about JavaScript’s destructuring assignment⁹⁷.
• Think about the difference between JavaScript array destructuring – which we used for React’s
useState hook – and object destructuring.

• Read more about JavaScript’s spread operator⁹⁸.
• Read more about JavaScript’s rest parameters⁹⁹.
• Get a good sense about JavaScript (e.g. destructuring, spread operator, rest parameters) and
what’s related to React (e.g. props) from the last lessons.

⁹⁵https://bit.ly/30IuiAu
⁹⁶https://bit.ly/3G45eUI
⁹⁷https://mzl.la/30KbXTC
⁹⁸https://mzl.la/3jetIkn
⁹⁹https://mzl.la/3GeJbef

https://bit.ly/30IuiAu
https://bit.ly/3G45eUI
https://mzl.la/30KbXTC
https://mzl.la/3jetIkn
https://mzl.la/3GeJbef
https://bit.ly/30IuiAu
https://bit.ly/3G45eUI
https://mzl.la/30KbXTC
https://mzl.la/3jetIkn
https://mzl.la/3GeJbef

Fundamentals of React 70

• Continue to use your favorite way to handle React’s props. If you’re still undecided, consider
the variation used in the previous section.

• Optional: Rate this section¹⁰⁰.

¹⁰⁰https://forms.gle/WNB4R6yEP1hot3tK8

https://forms.gle/WNB4R6yEP1hot3tK8
https://forms.gle/WNB4R6yEP1hot3tK8

Fundamentals of React 71

React Side-Effects

A React component’s returned output is defined by its props and state. In contrast, side-effects don’t
change this output directly (but can change it indirectly). They are used to interact with APIs outside
of the component (e.g. browser’s localStorage API, remote APIs for data fetching), measuring HTML
element’s width and height, or setting timers in JavaScript. These are only a few examples of side-
effects in React components and we will get to know one of them in this section.

Wouldn’t it be great if our Search component could remember the most recent search, so that the
application opens it in the browser whenever it restarts? Let’s implement this feature by using a
side-effect to store the recent search from the browser’s local storage and load it upon component
initialization. First, use the local storage to store the searchTerm accompanied by an identifier
whenever a user types into the HTML input field:

src/App.js

const App = () => {

...

const handleSearch = (event) => {

setSearchTerm(event.target.value);

localStorage.setItem('search', event.target.value);

};

...

);

Second, use the stored value, if a value exists, to set the initial state of the searchTerm in React’s
useState Hook. Otherwise, default to our initial state (here “React”) as before:

src/App.js

const App = () => {

...

const [searchTerm, setSearchTerm] = React.useState(

localStorage.getItem('search') || 'React'

);

...

);

Fundamentals of React 72

JavaScript’s logical OR operator ||¹⁰¹ returns the truthy operand in this expression and is short-
circuited if localStorage.getItem('search') returns a truthy value. It’s used as a shorthand for
the following implementation:

Code Playground

let hasStored;

if (localStorage.getItem('search')) {

hasStored = true;

} else {

hasStored = false;

}

const initialState = hasStored

? localStorage.getItem('search')

: 'React';

When using the input field and refreshing the browser tab, the browser should remember the latest
search term now. The feature is complete, but there is one flaw that may introduce bugs in the long
run: The handler function should mostly be concerned with updating the state, but now it has this
side-effect. If we use the setSearchTerm function elsewhere in our application, we may break the
feature we implemented because we cannot enforce that the local storage will also get updated. Let’s
fix this by handling the side-effect at a centralized place. We’ll useReact’s useEffect Hook to trigger
the side-effect each time the searchTerm changes:

src/App.js

const App = () => {

...

const [searchTerm, setSearchTerm] = React.useState(

localStorage.getItem('search') || 'React'

);

React.useEffect(() => {

localStorage.setItem('search', searchTerm);

}, [searchTerm]);

const handleSearch = (event) => {

setSearchTerm(event.target.value);

};

...

);

¹⁰¹https://mzl.la/3aXxryd

https://mzl.la/3aXxryd
https://mzl.la/3aXxryd

Fundamentals of React 73

React’s useEffect Hook takes two arguments: The first argument is a function that runs our side-
effect. In our case, the side-effect stores searchTerm into the browser’s local storage. The second
argument is a dependency array of variables. If one of these variables changes, the function for the
side-effect is called. In our case, the function is called every time the searchTerm changes (e.g. when
a user types into the HTML input field); and it’s also called initially when the component renders
for the first time.

Leaving out the second argument (the dependency array) would make the function for the side-
effect run on every render (initial render and update renders) of the component. If the dependency
array of React’s useEffect is an empty array, the function for the side-effect is only called once,
after the component renders for the first time. After all, the hook lets us opt into React’s component
lifecycle. It can be triggered when the component is first mounted, but also if one of its dependencies
is updated.

In conclusion, using React useEffectHook instead of managing the side-effect in the (event) handler
has made the application more robust.Whenever and wherever the searchTerm state is updated via
setSearchTerm, the browser’s local storage will always be in sync with it.

Exercises:

• Confirm your source code¹⁰².
– Confirm the changes¹⁰³.

• Read more about React’s useEffect Hook¹⁰⁴.
• Read more about using local storage with React¹⁰⁵.
• Give the first argument’s function a console.log() and experiment with React’s useEffect
Hook’s dependency array. Check the logs for an empty dependency array too.

• Try the following scenario: In your browser, backspace the search term from the input field
until nothing is left there. Internally, it should be set to an empty string now. Next, refresh the
browser and check what it displays. You may be wondering why it does show “React” instead
of “”, because “” should be the recent search. That’s because JavaScript’s logical OR evaluates
“” to false and thus takes “React” as the true value. If you want to prevent this and evaluate “”
as true instead, you may want to exchange JavaScript’s logical OR operator || with JavaScript’s
nullish coalescing operator ??¹⁰⁶.

• Optional: Rate this section¹⁰⁷.

¹⁰²https://bit.ly/3jj9TbC
¹⁰³https://bit.ly/3E12iGK
¹⁰⁴https://www.robinwieruch.de/react-useeffect-hook
¹⁰⁵https://www.robinwieruch.de/local-storage-react
¹⁰⁶https://mzl.la/2Z4bsU4
¹⁰⁷https://forms.gle/iCtVZHYt2XRNfAcBA

https://bit.ly/3jj9TbC
https://bit.ly/3E12iGK
https://www.robinwieruch.de/react-useeffect-hook
https://www.robinwieruch.de/local-storage-react
https://mzl.la/2Z4bsU4
https://mzl.la/2Z4bsU4
https://forms.gle/iCtVZHYt2XRNfAcBA
https://bit.ly/3jj9TbC
https://bit.ly/3E12iGK
https://www.robinwieruch.de/react-useeffect-hook
https://www.robinwieruch.de/local-storage-react
https://mzl.la/2Z4bsU4
https://forms.gle/iCtVZHYt2XRNfAcBA

Fundamentals of React 74

React Custom Hooks (Advanced)

Thus far we’ve covered the twomost popular hooks in React: useState and useEffect. useState is used
for variables that change over time; useEffect is used to opt into the lifecycle of your components
to introduce side-effects. We’ll eventually cover more hooks that come with React, but next, we’ll
tackle React custom Hooks; that is, building a hook yourself.

Wewill use the two hookswe already possess to create a new customhook called useSemiPersistentState,
named as such because it manages state yet synchronizes with the local storage. It’s not fully
persistent because clearing the local storage of the browser deletes relevant data for this application.
We will start with how we want to use the hook in our App component:

src/App.js

const App = () => {

const stories = [...];

const [searchTerm, setSearchTerm] = useSemiPersistentState('React');

const handleSearch = (event) => {

setSearchTerm(event.target.value);

};

const searchedStories = stories.filter((story) =>

story.title.toLowerCase().includes(searchTerm.toLowerCase())

);

return (

...

);

};

Instead of using React’s built-in useState Hook, we want to use this custom hook now. Under the
hood, we want that this hook synchronizes the state with the browser’s local storage. If you look
closely at the App component now, you can see that none of the previously introduced local storage
features are there anymore. That’s because we will copy this functionality over to our new custom
hook:

Fundamentals of React 75

src/App.js

const useSemiPersistentState = () => {

const [searchTerm, setSearchTerm] = React.useState(

localStorage.getItem('search') || ''

);

React.useEffect(() => {

localStorage.setItem('search', searchTerm);

}, [searchTerm]);

};

const App = () => {

...

};

So far, this custom hook is just a function around the useState and useEffect hooks that we’ve
previously used in the App component. What’s missing is providing an initial state and returning
the values that are needed in our App component as an array:

src/App.js

const useSemiPersistentState = (initialState) => {

const [searchTerm, setSearchTerm] = React.useState(

localStorage.getItem('search') || initialState

);

React.useEffect(() => {

localStorage.setItem('search', searchTerm);

}, [searchTerm]);

return [searchTerm, setSearchTerm];

};

We are following two conventions of React’s built-in hooks here. First, the naming convention which
puts the “use” prefix in front of every hook name; second, the returned values are returned as an
array. Another goal of a custom hook should be reusability. All of this custom hook’s internals are
about a value of a certain search domain, but the hook should be for a generic value. Let’s refactor
the naming, therefore:

Fundamentals of React 76

src/App.js

const useSemiPersistentState = (initialState) => {

const [value, setValue] = React.useState(

localStorage.getItem('value') || initialState

);

React.useEffect(() => {

localStorage.setItem('value', value);

}, [value]);

return [value, setValue];

};

We handle an abstracted “value” within the custom hook. Using it in the App component, we can
name the returned current state and state updater function anything domain-related (e.g. searchTerm
and setSearchTerm) with array destructuring. There is still one problem with this custom hook.
Using the custom hook more than once in a React application leads to an overwrite of the “value”-
allocated item in the local storage, because it uses the same key in the local storage. To fix this, pass
in an flexible key. Since the key comes from outside, the custom hook assumes that it could change,
so it needs to be included in the dependency array of the useEffect hook as well. Without it, the
side-effect may run with an outdated key (also called stale) if the key changed between renders:

src/App.js

const useSemiPersistentState = (key, initialState) => {

const [value, setValue] = React.useState(

localStorage.getItem(key) || initialState

);

React.useEffect(() => {

localStorage.setItem(key, value);

}, [value, key]);

return [value, setValue];

};

const App = () => {

...

const [searchTerm, setSearchTerm] = useSemiPersistentState(

'search',

'React'

);

Fundamentals of React 77

...

};

You’ve just created your first custom hook. If you’re not comfortable with custom hooks, you can
revert the changes and use the useState and useEffect hook as before, in the App component.
However, knowing more about custom hooks gives you lots of new options. A custom hook can
encapsulate non-trivial implementation details that should be kept away from a component; can be
used in more than one React component; can be a composition of other hooks, and can even be open-
sourced as an external library. Using your favorite search engine, you’ll notice there are hundreds
of React hooks that could be used in your application without worry over implementation details.

Exercises:

• Confirm your source code¹⁰⁸.
– Confirm the changes¹⁰⁹.

• Read more about React Hooks¹¹⁰ to get a good understanding of them, because they are the
bread and butter in React function components.

• Optional: Rate this section¹¹¹.

¹⁰⁸https://bit.ly/30Koneb
¹⁰⁹https://bit.ly/2ZbkAGm
¹¹⁰https://www.robinwieruch.de/react-hooks
¹¹¹https://forms.gle/5seN1Rv3ZwXmWmDR9

https://bit.ly/30Koneb
https://bit.ly/2ZbkAGm
https://www.robinwieruch.de/react-hooks
https://forms.gle/5seN1Rv3ZwXmWmDR9
https://bit.ly/30Koneb
https://bit.ly/2ZbkAGm
https://www.robinwieruch.de/react-hooks
https://forms.gle/5seN1Rv3ZwXmWmDR9

Fundamentals of React 78

React Fragments

One caveat with JSX, especially when we create a dedicated Search component, is that we must
introduce a wrapping HTML element to render it:

src/App.js

const Search = ({ search, onSearch }) => (

<div>

<label htmlFor="search">Search: </label>

<input

id="search"

type="text"

value={search}

onChange={onSearch}

/>

</div>

);

Normally the JSX returned by a React component needs only one wrapping top-level element. To
render multiple top-level elements side-by-side, we have to wrap them into an array instead. Since
we’re working with a list of elements, we would have to give every sibling element React’s key
attribute:

src/App.js

const Search = ({ search, onSearch }) => [

<label key="1" htmlFor="search">

Search:{' '}

</label>,

<input

key="2"

id="search"

type="text"

value={search}

onChange={onSearch}

/>,

];

This is one way to have multiple top-level elements in your JSX. It doesn’t turn out very readable,
though, as it becomes verbose with the additional key attribute. Another solution is to use a React
fragment:

Fundamentals of React 79

src/App.js

const Search = ({ search, onSearch }) => (

<>

<label htmlFor="search">Search: </label>

<input

id="search"

type="text"

value={search}

onChange={onSearch}

/>

</>

);

A fragment wraps other elements into a single top-level element without adding to the rendered
output. As an alternative, you can also use <React.Fragment></React.Fragment> instead of the
shorthand <></> Both Search elements, input field and label, should be visible in your browser now.
So if you prefer to omit the wrapping <div> or elements, substitute them with an empty tag
that is allowed in JSX, and doesn’t introduce intermediate elements in your rendered HTML.

Exercises:

• Confirm your source code¹¹².
– Confirm the changes¹¹³.

• Read more about React fragments¹¹⁴.
• Optional: Rate this section¹¹⁵.

¹¹²https://bit.ly/3piEnhG
¹¹³https://bit.ly/3n9Rmjd
¹¹⁴https://bit.ly/2Z4mo44
¹¹⁵https://forms.gle/kNpEySPZzckNe6f96

https://bit.ly/3piEnhG
https://bit.ly/3n9Rmjd
https://bit.ly/2Z4mo44
https://forms.gle/kNpEySPZzckNe6f96
https://bit.ly/3piEnhG
https://bit.ly/3n9Rmjd
https://bit.ly/2Z4mo44
https://forms.gle/kNpEySPZzckNe6f96

Fundamentals of React 80

Reusable React Component

Have a closer look at the Search component. The label element has the text “Search: “; the id/htmlFor
attributes have the search identifier; the value is called search, and the callback handler is called
onSearch. The component is very much tied to the search feature, which makes it less reusable
for the rest of the application and non-search-related tasks which would need the same label and
input field. Also, it risks introducing bugs if two of these Search components are rendered side by
side, because the htmlFor/id combination is duplicated, breaking the focus when one of the labels is
clicked by the user. Let’s fix these underlying issues by making the Search component reusable.

Since the Search component doesn’t have any actual “search” functionality, it takes little effort to
generalize the search domain-specific properties to make the component reusable for the rest of the
application. Let’s pass a dynamic id and label prop to the Search component, rename the actual
value and callback handler to something more generic, and rename the component accordingly:

src/App.js

const App = () => {

...

return (

<div>

<h1>My Hacker Stories</h1>

<InputWithLabel

id="search"

label="Search"

value={searchTerm}

onInputChange={handleSearch}

/>

...

</div>

);

};

const InputWithLabel = ({ id, label, value, onInputChange }) => (

<>

<label htmlFor={id}>{label}</label>

<input

id={id}

type="text"

value={value}

Fundamentals of React 81

onChange={onInputChange}

/>

</>

);

It’s not fully reusable yet. If we want an input field for data like a number (number) or phone number
(tel), the type attribute of the input field needs to be accessible from the outside too:

src/App.js

const InputWithLabel = ({

id,

label,

value,

type = 'text',

onInputChange,

}) => (

<>

<label htmlFor={id}>{label}</label>

<input

id={id}

type={type}

value={value}

onChange={onInputChange}

/>

</>

);

Because we don’t pass a type prop from the App component to the InputWithLabel component,
the default parameter¹¹⁶ from the function signature takes over for the type. Thus, every time the
InputWithLabel component is used without a type prop, the default type will be text.

In conclusion, with just a few changes we turned a specialized Search component into a more
reusable component. We generalized the naming of the internal implementation details and gave
the new component a larger API surface to provide all the necessary information from the outside.
We aren’t using the component elsewhere, but we increased its ability to handle the task if we do.

Exercises:

• Confirm your source code¹¹⁷.

¹¹⁶https://mzl.la/3aUefkN
¹¹⁷https://bit.ly/3B0roTU

https://mzl.la/3aUefkN
https://bit.ly/3B0roTU
https://mzl.la/3aUefkN
https://bit.ly/3B0roTU

Fundamentals of React 82

– Confirm the changes¹¹⁸.
• Read more about Reusable React Components¹¹⁹.
• Before we used the text “Search:” with a “:”. How would you deal with it now?Would you pass
it with label="Search:" as prop to the InputWithLabel component or hardcode it after the
<label htmlFor={id}>{label}:</label> usage in the InputWithLabel component? We will
see how to cope with this later.

• Optional: Rate this section¹²⁰.

¹¹⁸https://bit.ly/3C2DzAY
¹¹⁹https://www.robinwieruch.de/react-reusable-components
¹²⁰https://forms.gle/76C3LvW3kHHwdhgq5

https://bit.ly/3C2DzAY
https://www.robinwieruch.de/react-reusable-components
https://forms.gle/76C3LvW3kHHwdhgq5
https://bit.ly/3C2DzAY
https://www.robinwieruch.de/react-reusable-components
https://forms.gle/76C3LvW3kHHwdhgq5

Fundamentals of React 83

React Component Composition

The concept of component composition is one of React’s more powerful features. Essentially we’ll
discover how to use a React element in the same fashion as an HTML element, with an opening and
closing tag:

src/App.js

const App = () => {

...

return (

<div>

<h1>My Hacker Stories</h1>

<InputWithLabel

id="search"

value={searchTerm}

onInputChange={handleSearch}

>

Search:

</InputWithLabel>

...

</div>

);

};

Instead of using the label prop from before, we inserted the text “Search:” between the component’s
element’s tags. In the InputWithLabel component, you have access to this information via React’s
children prop now. Instead of using the label prop, use the children prop to render everything that
has been passed down from above where you want it:

src/App.js

const InputWithLabel = ({

id,

value,

type = 'text',

onInputChange,

children,

}) => (

<>

<label htmlFor={id}>{children}</label>

Fundamentals of React 84

<input

id={id}

type={type}

value={value}

onChange={onInputChange}

/>

</>

);

Now the React component’s elements behave similarly to native HTML. Everything that’s passed
between a component’s elements can be accessed as children in the component and be rendered
somewhere. Sometimes when using a React component, you want to have more freedom from the
outside regarding what to render on the inside of a component:

src/App.js

const App = () => {

...

return (

<div>

<h1>My Hacker Stories</h1>

<InputWithLabel

id="search"

value={searchTerm}

onInputChange={handleSearch}

>

Search:

</InputWithLabel>

...

</div>

);

};

With this React feature, we can compose React components into each other. We’ve used it with a
JavaScript string and with a string wrapped in an HTML element, but it doesn’t end here.
You can pass components via React children as well; which you should definitely explore more as
an exercise.

Fundamentals of React 85

Exercises:

• Confirm your source code¹²¹.
– Confirm the changes¹²².

• Read more about Component Composition in React¹²³.
• Optional: Rate this section¹²⁴.

¹²¹https://bit.ly/3lUZqVA
¹²²https://bit.ly/3BU66J3
¹²³https://www.robinwieruch.de/react-component-composition
¹²⁴https://forms.gle/L2GgfHVjAAwbqudq8

https://bit.ly/3lUZqVA
https://bit.ly/3BU66J3
https://www.robinwieruch.de/react-component-composition
https://forms.gle/L2GgfHVjAAwbqudq8
https://bit.ly/3lUZqVA
https://bit.ly/3BU66J3
https://www.robinwieruch.de/react-component-composition
https://forms.gle/L2GgfHVjAAwbqudq8

Fundamentals of React 86

Imperative React

React is inherently declarative, starting with JSX and ending with hooks. In JSX, we tell React what
to render and not how to render it. In a React side-effect Hook (useEffect), we express when to
achieve what instead of how to achieve it. Sometimes, however, we’ll want to access the rendered
elements of JSX imperatively, most often as a side-effect, in cases such as these:

• read/write access to elements via the DOM API:
– measuring (read) an element’s width or height
– setting (write) an input field’s focus state

• implementation of more complex animations:
– setting transitions
– orchestrating transitions

• integration of third-party libraries:
– D3¹²⁵ is a popular imperative chart library

Because imperative programming in React is often verbose and counterintuitive, we’ll walk through
only a small example for setting the focus of an input field imperatively. For the declarative way,
simply set the input field’s autofocus attribute:

src/App.js

const InputWithLabel = ({ ... }) => (

<>

<label htmlFor={id}>{children}</label>

<input

id={id}

type={type}

value={value}

autoFocus

onChange={onInputChange}

/>

</>

);

This works, but only if one of the reusable components is rendered once. For example, if the App
component renders two InputWithLabel components, only the last rendered component receives the
autofocus on its render. However, since we have a reusable React component here, we can pass a
dedicated prop and let the developer decide whether its input field should have autofocus or not:

¹²⁵https://d3js.org

https://d3js.org/
https://d3js.org/

Fundamentals of React 87

src/App.js

const App = () => {

...

return (

<div>

<h1>My Hacker Stories</h1>

<InputWithLabel

id="search"

value={searchTerm}

isFocused

onInputChange={handleSearch}

>

Search:

</InputWithLabel>

...

</div>

);

};

Using just isFocused as an attribute is equivalent to isFocused={true}. Within the component, use
the new prop for the input field’s autoFocus attribute:

src/App.js

const InputWithLabel = ({

id,

value,

type = 'text',

onInputChange,

isFocused,

children,

}) => (

<>

<label htmlFor={id}>{children}</label>

<input

id={id}

type={type}

value={value}

autoFocus={isFocused}

Fundamentals of React 88

onChange={onInputChange}

/>

</>

);

The feature works, yet it’s still a declarative implementation. We are telling React what to do and
not how to do it. Even though it’s possible to do it with the declarative approach, let’s refactor this
scenario to an imperative approach. We want to execute the focus() method programmatically via
the input field element’s DOM API once it has been rendered:

src/App.js

const InputWithLabel = ({

id,

value,

type = 'text',

onInputChange,

isFocused,

children,

}) => {

// A

const inputRef = React.useRef();

// C

React.useEffect(() => {

if (isFocused && inputRef.current) {

// D

inputRef.current.focus();

}

}, [isFocused]);

return (

<>

<label htmlFor={id}>{children}</label>

{/* B */}

<input

ref={inputRef}

id={id}

type={type}

value={value}

onChange={onInputChange}

/>

</>

Fundamentals of React 89

);

};

All the essential steps are marked with comments that are explained step by step:

• (A) First, create a ref with React’s useRef Hook. This ref object is a persistent value which
stays intact over the lifetime of a React component. It comes with a property called current,
which, in contrast to the ref object, can be changed.

• (B) Second, the ref is passed to the input field’s JSX-reserved ref attribute and the element
instance is assigned to the changeable current property.

• (C) Third, opt into React’s lifecycle with React’s useEffect Hook, performing the focus on the
input field when the component renders (or its dependencies change).

• (D) And fourth, since the ref is passed to the input field’s ref attribute, its current property
gives access to the element. Execute its focus programmatically as a side-effect, but only if
isFocused is set and the current property is existent.

This was an example of how to move from declarative to imperative programming in React. It’s not
always possible to go the declarative way, so the imperative approach can be performed whenever
it’s necessary. However, if you can, you should definitely take the declarative approach.

Exercises:

• Confirm your source code¹²⁶.
– Confirm the changes¹²⁷.

• Read more about refs in React¹²⁸.
• Learn how to build a Slider component with imperative React¹²⁹.
• Optional: Rate this section¹³⁰.

¹²⁶https://bit.ly/3B0qc2S
¹²⁷https://bit.ly/3aT3bEq
¹²⁸https://www.robinwieruch.de/react-ref
¹²⁹https://www.robinwieruch.de/react-slider
¹³⁰https://forms.gle/nABoW2tKAPd1yVkv7

https://bit.ly/3B0qc2S
https://bit.ly/3aT3bEq
https://www.robinwieruch.de/react-ref
https://www.robinwieruch.de/react-slider
https://forms.gle/nABoW2tKAPd1yVkv7
https://bit.ly/3B0qc2S
https://bit.ly/3aT3bEq
https://www.robinwieruch.de/react-ref
https://www.robinwieruch.de/react-slider
https://forms.gle/nABoW2tKAPd1yVkv7

Fundamentals of React 90

Inline Handler in JSX

The list of stories we have in our App component is only an unstateful variable. We can filter the
rendered list with the search feature, but the list itself stays intact even if we apply or remove the
filter. The filtered list is just a derived state through a third party (here searchTerm), but we can’t
manipulate the real list yet. To gain control over the list, make it stateful by using it as initial state
in React’s useState Hook. The returned values from the array are the current state (stories) and the
state updater function (setStories):

src/App.js

const initialStories = [

{

title: 'React',

...

},

{

title: 'Redux',

...

},

];

...

const App = () => {

const [searchTerm, setSearchTerm] = ...

const [stories, setStories] = React.useState(initialStories);

...

};

The application behaves the same because the stories, now returned as a stateful list from React’s
useState Hook, are still filtered into searchedStories and displayed in the List component. It’s
just the origin where the stories are coming from have changed. Next, we’ll manipulate the list by
removing an item from it:

Fundamentals of React 91

src/App.js

const App = () => {

...

const [stories, setStories] = React.useState(initialStories);

const handleRemoveStory = (item) => {

const newStories = stories.filter(

(story) => item.objectID !== story.objectID

);

setStories(newStories);

};

...

return (

<div>

<h1>My Hacker Stories</h1>

...

<hr />

<List list={searchedStories} onRemoveItem={handleRemoveStory} />

</div>

);

};

The callback handler in the App component – which will be used in the List/Item components
eventually – receives the item as an argument which should be removed from the list. Based on
this information, the function filters the current stories by removing all items that don’t meet its
condition. The returned stories – where the desired item (story) has been removed – are then set as
a new state and passed to the List component. Since a new state is set, the App component and all
components below (e.g. List/Item components) will render again and thus display the new state of
stories.

However, what’s missing is how the List and Item components are using this new functionality
which modifies the state in the App component. The List component itself does not use this new
callback handler, but only passes it on to the Item component:

Fundamentals of React 92

src/App.js

const List = ({ list, onRemoveItem }) => (

{list.map((item) => (

<Item

key={item.objectID}

item={item}

onRemoveItem={onRemoveItem}

/>

))}

);

Finally, the Item component uses the incoming callback handler as a function in a new handler. In
this handler, we will pass the specific item to it. Moreover, an additional button element is needed
to trigger the actual event:

src/App.js

const Item = ({ item, onRemoveItem }) => {

const handleRemoveItem = () => {

onRemoveItem(item);

};

return (

{item.title}

{item.author}

{item.num_comments}

{item.points}

<button type="button" onClick={handleRemoveItem}>

Dismiss

</button>

);

};

So far in this section, we have made the list of stories stateful with React’s useState Hook; passed
the still searched stories down as props to the List component, and implemented a callback handler

Fundamentals of React 93

(handleRemoveStory) and handler (handleRemoveItem) to be used in their respective components to
remove a story by clicking on a button. In order to implement this feature, we applied many lessons
learned from before: state, props, handlers, and callback handlers.

You may have noticed that we had to introduce an additional handleRemoveItem handler in the Item
component which is in charge to execute the incoming onRemoveItem callback handler. If you want
to make this more elegant, you can use an inline handler which would allow you to execute the
callback handler function in the Item component right in the JSX. There are two solutions using the
incoming onRemoveItem function in the Item component as an inline handler. First, using JavaScript’s
bind method:

src/App.js

const Item = ({ item, onRemoveItem }) => (

{item.title}

{item.author}

{item.num_comments}

{item.points}

<button type="button" onClick={onRemoveItem.bind(null, item)}>

Dismiss

</button>

);

Using JavaScript’s bindmethod¹³¹ on a function allows us to bind arguments directly to that function
that should be used when executing it. The bind method returns a new function with the bound
argument attached. In contrast, the second and more popular solution is to use a wrapping arrow
function, which allows us to sneak in arguments like item:

¹³¹https://mzl.la/3ncEkBu

https://mzl.la/3ncEkBu
https://mzl.la/3ncEkBu

Fundamentals of React 94

src/App.js

const Item = ({ item, onRemoveItem }) => (

{item.title}

{item.author}

{item.num_comments}

{item.points}

<button type="button" onClick={() => onRemoveItem(item)}>

Dismiss

</button>

);

This is a quick solution, because sometimeswe don’t want to refactor a function component’s concise
function body back to a block body to define an appropriate handler between function signature
and return statement. While this way is more concise than the others, it can also be more difficult to
debug because JavaScript logic may be hidden in JSX. It becomes even more verbose if the wrapping
arrow function encapsulates more than one line of implementation logic, by using a block body
instead of a concise body. This should be avoided:

Code Playground

const Item = ({ item, onRemoveItem }) => (

...

<button

type="button"

onClick={() => {

// do something else

// note: avoid using complex logic in JSX

onRemoveItem(item);

}}

>

Dismiss

</button>

Fundamentals of React 95

);

All three handler versions, two of which are inline and the normal handler, are acceptable. The non-
inlined handler moves the implementation details into the function component’s block body; both
inline handler versions move the implementation details into the JSX.

Exercises:

• Confirm your source code¹³².
– Confirm the changes¹³³.

• Read more about how to add¹³⁴, update¹³⁵, remove¹³⁶ items in a list.
• Read more about computed properties in React¹³⁷.
• Review handlers, callback handlers, and inline handlers.
• Optional: Rate this section¹³⁸.

¹³²https://bit.ly/3vrGWzb
¹³³https://bit.ly/3jj37CR
¹³⁴https://www.robinwieruch.de/react-add-item-to-list
¹³⁵https://www.robinwieruch.de/react-update-item-in-list
¹³⁶https://www.robinwieruch.de/react-remove-item-from-list
¹³⁷https://www.robinwieruch.de/react-computed-properties
¹³⁸https://forms.gle/19NvNYMk2RUKTDyZ6

https://bit.ly/3vrGWzb
https://bit.ly/3jj37CR
https://www.robinwieruch.de/react-add-item-to-list
https://www.robinwieruch.de/react-update-item-in-list
https://www.robinwieruch.de/react-remove-item-from-list
https://www.robinwieruch.de/react-computed-properties
https://forms.gle/19NvNYMk2RUKTDyZ6
https://bit.ly/3vrGWzb
https://bit.ly/3jj37CR
https://www.robinwieruch.de/react-add-item-to-list
https://www.robinwieruch.de/react-update-item-in-list
https://www.robinwieruch.de/react-remove-item-from-list
https://www.robinwieruch.de/react-computed-properties
https://forms.gle/19NvNYMk2RUKTDyZ6

Fundamentals of React 96

React Asynchronous Data

We have two interactions in our application: searching the list and removing items from the list. The
first interaction is a fluctuant interference through a third-party state (searchTerm) applied on the
list; the second interaction is a non-reversible deletion of an item from the list. However, the list we
are dealing with is still just sample data. What about preparing our application to deal with real data
instead?

Usually, data from a remote backend/database arrives asynchronously for client-side applications
like React. Thus it’s often the case that we must render a component before we can initiate the
data fetching. In the following, we will start by simulating this kind of asynchronous data with our
sample data in the application. Later, we will replace it with real data fetched from a real remote
API. We start off with a function that returns a promise with data in its shorthand version once it
resolves. The resolved object holds the previous list of stories:

src/App.js

const initialStories = [...];

const getAsyncStories = () =>

Promise.resolve({ data: { stories: initialStories } });

In the App component, instead of using the initialStories, use an empty array for the initial state.
We want to start off with an empty list of stories and simulate fetching these stories asynchronously.
In a new useEffect hook, call the function and resolve the returned promise as a side-effect. Due
to the empty dependency array, the side-effect only runs once the component renders for the first
time:

src/App.js

const App = () => {

...

const [stories, setStories] = React.useState([]);

React.useEffect(() => {

getAsyncStories().then(result => {

setStories(result.data.stories);

});

}, []);

...

};

Fundamentals of React 97

Even though the data should arrive asynchronously when we start the application, it appears to
arrive synchronously, because it’s rendered immediately. Let’s change this by giving it a bit of a
realistic delay, because every network request to a remote API would come with a delay. First,
remove the shorthand version for the promise:

src/App.js

const getAsyncStories = () =>

new Promise((resolve) =>

resolve({ data: { stories: initialStories } })

);

And second, when resolving the promise, delay it for a few seconds:

src/App.js

const getAsyncStories = () =>

new Promise((resolve) =>

setTimeout(

() => resolve({ data: { stories: initialStories } }),

2000

)

);

Once you start the application again, you should see a delayed rendering of the list. The initial state
for the stories is an empty array. After the App component is rendered, the side-effect hook runs once
to fetch the asynchronous data. After resolving the promise and setting the data in the component’s
state, the component renders again and displays the list of asynchronously loaded stories.

Exercises:

• Confirm your source code¹³⁹.
– Confirm the changes¹⁴⁰.

• Read more about JavaScript Promises¹⁴¹.
• Read more about faking a remote API with JavaScript¹⁴².
• Read more about using mock data in React¹⁴³.
• Optional: Rate this section¹⁴⁴.

¹³⁹https://bit.ly/3vu6kEb
¹⁴⁰https://bit.ly/3B0p7rQ
¹⁴¹https://mzl.la/3aTGuQz
¹⁴²https://www.robinwieruch.de/javascript-fake-api
¹⁴³https://www.robinwieruch.de/react-mock-data
¹⁴⁴https://forms.gle/sfQcc477xmgGRLyB7

https://bit.ly/3vu6kEb
https://bit.ly/3B0p7rQ
https://mzl.la/3aTGuQz
https://www.robinwieruch.de/javascript-fake-api
https://www.robinwieruch.de/react-mock-data
https://forms.gle/sfQcc477xmgGRLyB7
https://bit.ly/3vu6kEb
https://bit.ly/3B0p7rQ
https://mzl.la/3aTGuQz
https://www.robinwieruch.de/javascript-fake-api
https://www.robinwieruch.de/react-mock-data
https://forms.gle/sfQcc477xmgGRLyB7

Fundamentals of React 98

React Conditional Rendering

A conditional rendering in React always happens if we have to render different JSX based on state
or props. Dealing with asynchronous data is a good use case for dealing with these conditional states.
For example, when the application initializes for the first time, there is no data to start with. Next,
we are loading data and eventually, we have the data at our disposal to display it. Sometimes the
data fetching fails and we receive an error instead. So there are lots of things to cover for us as
developers.

Fortunately, a few of these cases are already taken care of. For instance, because our initial state is
an empty list rather than null, we don’t have to worry that this breaks the application when we
filter and map over this list. However, some things are still missing. For example, let’s introduce one
more state for a loading indicator which gives our users feedback about the pending data request:

src/App.js

const App = () => {

...

const [stories, setStories] = React.useState([]);

const [isLoading, setIsLoading] = React.useState(false);

React.useEffect(() => {

setIsLoading(true);

getAsyncStories().then((result) => {

setStories(result.data.stories);

setIsLoading(false);

});

}, []);

...

};

With JavaScript’s ternary operator¹⁴⁵, we can inline this conditional state as a conditional rendering
in JSX:

¹⁴⁵https://mzl.la/3vAPKCL

https://mzl.la/3vAPKCL
https://mzl.la/3vAPKCL

Fundamentals of React 99

src/App.js

const App = () => {

...

return (

<div>

...

<hr />

{isLoading ? (

<p>Loading ...</p>

) : (

<List

list={searchedStories}

onRemoveItem={handleRemoveStory}

/>

)}

</div>

);

};

Asynchronous data comes with error handling, too. It doesn’t happen in our simulated environment,
but there could be errors if we start fetching data from another third-party API. Introduce another
state for error handling and handle it in the promise’s catch() block when resolving the promise:

src/App.js

const App = () => {

...

const [stories, setStories] = React.useState([]);

const [isLoading, setIsLoading] = React.useState(false);

const [isError, setIsError] = React.useState(false);

React.useEffect(() => {

setIsLoading(true);

getAsyncStories()

.then((result) => {

setStories(result.data.stories);

setIsLoading(false);

})

Fundamentals of React 100

.catch(() => setIsError(true));

}, []);

...

};

Next, give the user feedback in case something goes wrong with another conditional rendering. This
time, it’s either rendering something or nothing. So instead of having a ternary operator where one
side returns null, use the logical && operator as shorthand:

src/App.js

const App = () => {

...

return (

<div>

...

<hr />

{isError && <p>Something went wrong ...</p>}

{isLoading ? (

<p>Loading ...</p>

) : (

...

)}

</div>

);

};

In JavaScript, a true && 'Hello World' always evaluates to ‘HelloWorld’. A false && 'Hello World'

always evaluates to false. In React, we can use this behaviour to our advantage. If the condition is
true, the expression after the logical && operator will be the output. If the condition is false, React
ignores it and skips the expression.

Conditional rendering is not just for asynchronous data though. The simplest example of conditional
rendering is a boolean flag state that’s toggled with a button. If the boolean flag is true, render
something, if it is false, don’t render anything. Knowing about this feature in React can be quite
powerful, because it gives you the ability to conditionally render JSX. It’s yet another tool in React
to make your UI more dynamic. And as we’ve discovered, it’s often necessary for more complex
control flows like asynchronous data.

Fundamentals of React 101

Exercises:

• Confirm your source code¹⁴⁶.
– Confirm the changes¹⁴⁷.

• Read more about conditional rendering in React¹⁴⁸.
• Optional: Rate this section¹⁴⁹.

¹⁴⁶https://bit.ly/2ZfIJLM
¹⁴⁷https://bit.ly/3AYmneE
¹⁴⁸https://www.robinwieruch.de/conditional-rendering-react/
¹⁴⁹https://forms.gle/kHLAXtMaKsTFtWjY9

https://bit.ly/2ZfIJLM
https://bit.ly/3AYmneE
https://www.robinwieruch.de/conditional-rendering-react/
https://forms.gle/kHLAXtMaKsTFtWjY9
https://bit.ly/2ZfIJLM
https://bit.ly/3AYmneE
https://www.robinwieruch.de/conditional-rendering-react/
https://forms.gle/kHLAXtMaKsTFtWjY9

Fundamentals of React 102

React Advanced State

All state management in this application makes heavy use of React’s useState Hook. On the other
hand, React’s useReducer Hook gives you more sophisticated state management. Since the concept
of reducers in JavaScript splits the community in half, we won’t cover it extensively here, but the
exercises at the end of this section should give you plenty of practice.

We’ll move the stories state management from the useState hook to a new useReducer hook. First,
introduce a reducer function outside of your components. A reducer function always receives state
and action. Based on these two arguments, a reducer always returns a new state:

src/App.js

const storiesReducer = (state, action) => {

if (action.type === 'SET_STORIES') {

return action.payload;

} else {

throw new Error();

}

};

A reducer action is always associated with a type. If this type matches a condition in the reducer, do
something. If it isn’t covered by the reducer, throw an error to remind yourself the implementation
isn’t covered. The storiesReducer function covers one type and then returns the payload of the
incoming action without using the current state to compute the new state. The new state is simply
the payload.

In the App component, exchange useState for useReducer for managing the stories. The new hook
receives a reducer function and an initial state as arguments and returns an array with two items.
The first item is the current state; the second item is the state updater function (also called dispatch
function):

src/App.js

const App = () => {

...

const [stories, dispatchStories] = React.useReducer(

storiesReducer,

[]

);

...

};

Fundamentals of React 103

The new dispatch function can be used instead of the setStories function, which was previously
returned from useState. Instead of setting the state explicitly with the state updater function from
useState, the useReducer state updater function dispatches an action for the reducer. The action
comes with a type and an optional payload:

src/App.js

const App = () => {

...

React.useEffect(() => {

setIsLoading(true);

getAsyncStories()

.then((result) => {

dispatchStories({

type: 'SET_STORIES',

payload: result.data.stories,

});

setIsLoading(false);

})

.catch(() => setIsError(true));

}, []);

const handleRemoveStory = (item) => {

const newStories = stories.filter(

(story) => item.objectID !== story.objectID

);

dispatchStories({

type: 'SET_STORIES',

payload: newStories,

});

};

...

};

The application appears the same in the browser, though a reducer and React’s useReducer hook are
managing the state for the stories now. Let’s bring the concept of a reducer to a minimal version by
handling more than one state transition. So far, the handleRemoveStory handler computes the new
stories. It’s valid to move this logic into the reducer function and manage the reducer with an action,
which is another case for moving from imperative to declarative programming. Instead of doing it

Fundamentals of React 104

ourselves by saying how it should be done, we are telling the reducer what to do. Everything else is
hidden in the reducer:

src/App.js

const App = () => {

...

const handleRemoveStory = (item) => {

dispatchStories({

type: 'REMOVE_STORY',

payload: item,

});

};

...

};

Now the reducer function has to cover this new case in a new conditional state transition. If the
condition for removing a story is met, the reducer has all the implementation details needed to
remove the story. The action gives all the necessary information, an item’s identifier‘, to remove the
story from the current state and return a new list of filtered stories as state:

src/App.js

const storiesReducer = (state, action) => {

if (action.type === 'SET_STORIES') {

return action.payload;

} else if (action.type === 'REMOVE_STORY') {

return state.filter(

(story) => action.payload.objectID !== story.objectID

);

} else {

throw new Error();

}

};

All these if-else statements will eventually clutter when adding more state transitions into one
reducer function. Refactoring it to a switch statement for all the state transitions makes it more
readable:

Fundamentals of React 105

src/App.js

const storiesReducer = (state, action) => {

switch (action.type) {

case 'SET_STORIES':

return action.payload;

case 'REMOVE_STORY':

return state.filter(

(story) => action.payload.objectID !== story.objectID

);

default:

throw new Error();

}

};

What we’ve covered is a minimal version of a reducer in JavaScript. It covers two state transitions,
shows how to compute the current state and action into a new state, and uses some business logic
(removal of a story). Now we can set a list of stories as state for the asynchronously arriving data,
and remove a story from the list of stories, with just one state managing reducer and its associated
useReducer hook. To fully grasp the concept of reducers in JavaScript and the usage of React’s
useReducer Hook, visit the linked resources in the exercises.

Exercises:

• Confirm your source code¹⁵⁰.
– Confirm the changes¹⁵¹.

• Read more about reducers in JavaScript¹⁵².
• Read more about reducers and useReducer in React¹⁵³.
• Extract the action types 'SET_STORIES' and 'REMOVE_STORY' as variables and reuse them in the
reducer and the dispatch functions. This way, you will avoid introducing typos in your action
types.

• Optional: Rate this section¹⁵⁴.

¹⁵⁰https://bit.ly/3nbb5Pp
¹⁵¹https://bit.ly/3lZrV4y
¹⁵²https://www.robinwieruch.de/javascript-reducer
¹⁵³https://www.robinwieruch.de/react-usereducer-hook
¹⁵⁴https://forms.gle/tNqqVynwQV9Ym9u68

https://bit.ly/3nbb5Pp
https://bit.ly/3lZrV4y
https://www.robinwieruch.de/javascript-reducer
https://www.robinwieruch.de/react-usereducer-hook
https://forms.gle/tNqqVynwQV9Ym9u68
https://bit.ly/3nbb5Pp
https://bit.ly/3lZrV4y
https://www.robinwieruch.de/javascript-reducer
https://www.robinwieruch.de/react-usereducer-hook
https://forms.gle/tNqqVynwQV9Ym9u68

Fundamentals of React 106

React Impossible States

Perhaps you’ve noticed a disconnect between the single states in the App component, which seem to
belong together because of the useState hooks. Technically, all the states related to the asynchronous
data belong together, which doesn’t only include the stories as actual data, but also their loading
and error states.

There is nothingwrongwithmultiple useState hooks in one React component. Bewary once you see
multiple state updater functions in a row, however. These conditional states can lead to impossible
states and undesired behavior in the UI. Try changing your pseudo data fetching function to the
following to simulate the error handling:

src/App.js

const getAsyncStories = () =>

new Promise((resolve, reject) => setTimeout(reject, 2000));

The impossible state happens when an error occurs for the asynchronous data. The state for the error
is set, but the state for the loading indicator isn’t revoked. In the UI, this would lead to an infinite
loading indicator and an error message, though it may be better to show the error message only and
hide the loading indicator. Impossible states are not easy to spot, which makes them infamous for
causing bugs in the UI.

Fortunately, we can improve our chances by moving states that belong together from multiple
useState and useReducer hooks into a single useReducer hook. Take the following useState hooks:

src/App.js

const App = () => {

...

const [stories, dispatchStories] = React.useReducer(

storiesReducer,

[]

);

const [isLoading, setIsLoading] = React.useState(false);

const [isError, setIsError] = React.useState(false);

...

};

And merge them into one useReducer hook for a unified state management and a more complex
state object:

Fundamentals of React 107

src/App.js

const App = () => {

...

const [stories, dispatchStories] = React.useReducer(

storiesReducer,

{ data: [], isLoading: false, isError: false }

);

...

};

Now everything related to asynchronous data fetching must use the new dispatch function for state
transitions:

src/App.js

const App = () => {

...

const [stories, dispatchStories] = React.useReducer(

storiesReducer,

{ data: [], isLoading: false, isError: false }

);

React.useEffect(() => {

dispatchStories({ type: 'STORIES_FETCH_INIT' });

getAsyncStories()

.then((result) => {

dispatchStories({

type: 'STORIES_FETCH_SUCCESS',

payload: result.data.stories,

});

})

.catch(() =>

dispatchStories({ type: 'STORIES_FETCH_FAILURE' })

);

}, []);

...

};

Fundamentals of React 108

Since we introduced new types for state transitions and a new state structure, we must add these
types and change the structure in the storiesReducer reducer function:

src/App.js

const storiesReducer = (state, action) => {

switch (action.type) {

case 'STORIES_FETCH_INIT':

return {

...state,

isLoading: true,

isError: false,

};

case 'STORIES_FETCH_SUCCESS':

return {

...state,

isLoading: false,

isError: false,

data: action.payload,

};

case 'STORIES_FETCH_FAILURE':

return {

...state,

isLoading: false,

isError: true,

};

case 'REMOVE_STORY':

return {

...state,

data: state.data.filter(

(story) => action.payload.objectID !== story.objectID

),

};

default:

throw new Error();

}

};

For every state transition, we return a new state object which contains all the key/value pairs
from the current state object (via JavaScript’s spread operator) and the new overwriting properties.
For example, STORIES_FETCH_FAILURE resets the isLoading, sets the isError boolean flags, while
keeping all the the other state intact (e.g. stories). That’s how we get around the bug introduced
earlier as impossible state since an error should remove the loading state.

Fundamentals of React 109

Observe how the REMOVE_STORY action changed as well. It operates on the state.data, and no longer
just on the plain state. The state is a complex object with data, loading, and error states rather than
just a list of stories. This has to be solved in the remaining code too:

src/App.js

const App = () => {

...

const [stories, dispatchStories] = React.useReducer(

storiesReducer,

{ data: [], isLoading: false, isError: false }

);

...

const searchedStories = stories.data.filter((story) =>

story.title.toLowerCase().includes(searchTerm.toLowerCase())

);

return (

<div>

...

{stories.isError && <p>Something went wrong ...</p>}

{stories.isLoading ? (

<p>Loading ...</p>

) : (

<List

list={searchedStories}

onRemoveItem={handleRemoveStory}

/>

)}

</div>

);

};

Try to use the erroneous data fetching function again and check whether everything works as
expected now:

Fundamentals of React 110

src/App.js

const getAsyncStories = () =>

new Promise((resolve, reject) => setTimeout(reject, 2000));

We moved from unreliable state transitions with multiple useState hooks to predictable state
transitions with React’s useReducer Hook. The state object managed by the reducer encapsulates
everything related to the stories, including loading and error state, but also implementation details
like removing a story from the list of stories. We didn’t get fully rid of impossible states, because it’s
still possible to leave out a crucial boolean flag like before, but we moved one step closer towards
more predictable state management.

Exercises:

• Confirm your source code¹⁵⁵.
– Confirm the changes¹⁵⁶.

• Read over the previously linked tutorials about reducers in JavaScript and React.
• Read more about when to use useState or useReducer in React¹⁵⁷.
• Read more about deriving state from props in React¹⁵⁸.
• Optional: Rate this section¹⁵⁹.

¹⁵⁵https://bit.ly/3G6AphY
¹⁵⁶https://bit.ly/3jepMA7
¹⁵⁷https://www.robinwieruch.de/react-usereducer-vs-usestate
¹⁵⁸https://www.robinwieruch.de/react-derive-state-props
¹⁵⁹https://forms.gle/XWTJS65iu6WkiZMCA

https://bit.ly/3G6AphY
https://bit.ly/3jepMA7
https://www.robinwieruch.de/react-usereducer-vs-usestate
https://www.robinwieruch.de/react-derive-state-props
https://forms.gle/XWTJS65iu6WkiZMCA
https://bit.ly/3G6AphY
https://bit.ly/3jepMA7
https://www.robinwieruch.de/react-usereducer-vs-usestate
https://www.robinwieruch.de/react-derive-state-props
https://forms.gle/XWTJS65iu6WkiZMCA

Fundamentals of React 111

Data Fetching with React

We are currently fetching data, but it’s still pseudo data coming from a promise we set up ourselves.
The lessons up to now about asynchronous React and advanced state management were preparing
us to fetch data from a real remote third-party API. We will use the reliable and informative Hacker
News API¹⁶⁰ to request popular tech stories.

Instead of using the initialStories array and getAsyncStories function (you can remove these),
we will fetch the data directly from the API:

src/App.js

// A

const API_ENDPOINT = 'https://hn.algolia.com/api/v1/search?query=';

const App = () => {

...

React.useEffect(() => {

dispatchStories({ type: 'STORIES_FETCH_INIT' });

fetch(`${API_ENDPOINT}react`) // B

.then((response) => response.json()) // C

.then((result) => {

dispatchStories({

type: 'STORIES_FETCH_SUCCESS',

payload: result.hits, // D

});

})

.catch(() =>

dispatchStories({ type: 'STORIES_FETCH_FAILURE' })

);

}, []);

...

};

First, the API_ENDPOINT (A) is used to fetch popular tech stories for a certain query (a search term). In
this case, we fetch stories about React (B). Second, the native browser’s fetch API¹⁶¹ is used to make
this request (B). For the fetch API, the response needs to be translated into JSON (C). Finally, the
returned result follows a different data structure (D), which we send as payload to our component’s
state reducer.
¹⁶⁰https://hn.algolia.com/api
¹⁶¹https://mzl.la/2Z1kyjU

https://hn.algolia.com/api
https://hn.algolia.com/api
https://mzl.la/2Z1kyjU
https://hn.algolia.com/api
https://mzl.la/2Z1kyjU

Fundamentals of React 112

In the previous code example, we used JavaScript’s Template Literals¹⁶² for a string interpolation.
When this feature wasn’t available in JavaScript, we’d have used the + operator on strings instead:

Code Playground

const greeting = 'Hello';

// + operator

const welcome = greeting + ' React';

console.log(welcome);

// Hello React

// template literals

const anotherWelcome = `${greeting} React`;

console.log(anotherWelcome);

// Hello React

Check your browser to see stories related to the initial query fetched from the Hacker News API.
Since we used the same data structure for a story for the sample stories, we didn’t need to change
anything, and it’s still possible to filter the stories after fetching them with the search feature. We
will change this behavior in one of the next sections though.

Exercises:

• Confirm your source code¹⁶³.
– Confirm the changes¹⁶⁴.

• Read through Hacker News¹⁶⁵ and its API¹⁶⁶.
• Read more about the browser native fetch API¹⁶⁷ for connecting to remote APIs.
• Read more about JavaScript’s Template Literals¹⁶⁸.
• Optional: Rate this section¹⁶⁹.

¹⁶²https://mzl.la/3jlcVfn
¹⁶³https://bit.ly/3DYWxZS
¹⁶⁴https://bit.ly/3jks1Sj
¹⁶⁵https://news.ycombinator.com
¹⁶⁶https://hn.algolia.com/api
¹⁶⁷https://mzl.la/2Z1kyjU
¹⁶⁸https://mzl.la/3jlcVfn
¹⁶⁹https://forms.gle/hoJxjjpoZQGCS7Vp9

https://mzl.la/3jlcVfn
https://bit.ly/3DYWxZS
https://bit.ly/3jks1Sj
https://news.ycombinator.com/
https://hn.algolia.com/api
https://mzl.la/2Z1kyjU
https://mzl.la/3jlcVfn
https://forms.gle/hoJxjjpoZQGCS7Vp9
https://mzl.la/3jlcVfn
https://bit.ly/3DYWxZS
https://bit.ly/3jks1Sj
https://news.ycombinator.com/
https://hn.algolia.com/api
https://mzl.la/2Z1kyjU
https://mzl.la/3jlcVfn
https://forms.gle/hoJxjjpoZQGCS7Vp9

Fundamentals of React 113

Data Re-Fetching in React

So far, the App component fetches a list of stories once with a predefined query (react). After that,
users can search for stories on the client-side. Now we’ll move this feature from client-side to server-
side searching, using the actual searchTerm as a dynamic query for the API request.

First, remove searchedStories because we will receive the stories searched from the API. Pass only
the regular stories to the List component:

src/App.js

const App = () => {

...

return (

<div>

...

{stories.isLoading ? (

<p>Loading ...</p>

) : (

<List list={stories.data} onRemoveItem={handleRemoveStory} />

)}

</div>

);

};

And second, instead of using a hardcoded search term like before, use the actual searchTerm from
the component’s state. If searchTerm is an empty string, do nothing:

src/App.js

const App = () => {

...

React.useEffect(() => {

if (searchTerm === '') return;

dispatchStories({ type: 'STORIES_FETCH_INIT' });

fetch(`${API_ENDPOINT}${searchTerm}`)

.then((response) => response.json())

.then((result) => {

dispatchStories({

Fundamentals of React 114

type: 'STORIES_FETCH_SUCCESS',

payload: result.hits,

});

})

.catch(() =>

dispatchStories({ type: 'STORIES_FETCH_FAILURE' })

);

}, []);

...

};

The initial search respects the search term now. If the searchTerm changes however, we need to run
the side-effect for the data fetching again. In addition, if searchTerm is not present (e.g. null, empty
string, undefined), do nothing (as a more generalized condition):

src/App.js

const App = () => {

...

React.useEffect(() => {

if (!searchTerm) return;

dispatchStories({ type: 'STORIES_FETCH_INIT' });

fetch(`${API_ENDPOINT}${searchTerm}`)

.then((response) => response.json())

.then((result) => {

dispatchStories({

type: 'STORIES_FETCH_SUCCESS',

payload: result.hits,

});

})

.catch(() =>

dispatchStories({ type: 'STORIES_FETCH_FAILURE' })

);

}, [searchTerm]);

...

};

We changed the feature from a client-side to server-side search. Instead of filtering a predefined list
of stories on the client, the searchTerm is used to fetch a server-side filtered list. The server-side

Fundamentals of React 115

search happens not only for the initial data fetching, but also for data fetching if the searchTerm

changes. The feature is fully server-side now. Re-fetching data each time someone types into the
input field isn’t optimal though, so we’ll correct that soon. Because this implementation stresses the
API, you might experience errors if you use requests too often.

Exercises:

• Confirm your source code¹⁷⁰.
– Confirm the changes¹⁷¹.

• Optional: Rate this section¹⁷².

¹⁷⁰https://bit.ly/3lZtjUO
¹⁷¹https://bit.ly/3b9S4aF
¹⁷²https://forms.gle/ywE4bFy6D2HSG8Rd7

https://bit.ly/3lZtjUO
https://bit.ly/3b9S4aF
https://forms.gle/ywE4bFy6D2HSG8Rd7
https://bit.ly/3lZtjUO
https://bit.ly/3b9S4aF
https://forms.gle/ywE4bFy6D2HSG8Rd7

Fundamentals of React 116

Memoized Handler in React (Advanced)

The previous sections have taught you about handlers, callback handlers, and inline handlers. Now
we’ll introduce amemoized handler, which can be applied on top of handlers and callback handlers.
For the sake of learning, we will move all the data fetching logic into a standalone function outside
the side-effect (A); wrap it into a useCallback hook (B), and then invoke it in the useEffect hook
(C):

src/App.js

const App = () => {

...

// A

const handleFetchStories = React.useCallback(() => { // B

if (!searchTerm) return;

dispatchStories({ type: 'STORIES_FETCH_INIT' });

fetch(`${API_ENDPOINT}${searchTerm}`)

.then((response) => response.json())

.then((result) => {

dispatchStories({

type: 'STORIES_FETCH_SUCCESS',

payload: result.hits,

});

})

.catch(() =>

dispatchStories({ type: 'STORIES_FETCH_FAILURE' })

);

}, [searchTerm]); // E

React.useEffect(() => {

handleFetchStories(); // C

}, [handleFetchStories]); // D

...

};

The application behaves the same, only the implementation logic has been refactored. Instead of
using the data fetching logic anonymously in a side-effect, we made it available as a function for
the application. Let’s explore why React’s useCallback Hook is needed here. This hook creates a

Fundamentals of React 117

memoized function every time its dependency array (E) changes. As a result, the useEffect hook
runs again (C) because it depends on the new function (D):

Visualization

1. change: searchTerm

2. implicit change: handleFetchStories

3. run: side-effect

If we didn’t create a memoized function with React’s useCallbackHook, a new handleFetchStories

function would be created each time the App component re-renders, and would be executed in the
useEffect hook to fetch data. The fetched data is then stored as state in the component. Because the
state of the component changed, the component re-renders and creates a new handleFetchStories

function. The side-effect would be triggered to fetch data, and we’d be stuck in an endless loop:

Visualization

1. define: handleFetchStories

2. run: side-effect

3. update: state

4. re-render: component

5. re-define: handleFetchStories

6. run: side-effect

...

React’s useCallback hook changes the function only when the search term changes. That’s when
we want to trigger a re-fetch of the data, because the input field has new input and we want to see
the new data displayed in our list.

Bymoving the data fetching function outside the useEffect hook, it becomes reusable for other parts
of the application. We won’t use it just yet, but it is a way to understand the useCallback hook. Now
the useEffect hook runs implicitly when the searchTerm changes, because the handleFetchStories
is re-defined each time the searchTerm changes. Since the useEffect hook depends on the
handleFetchStories, the side-effect for data fetching runs again.

Exercises:

• Confirm your source code¹⁷³.
– Confirm the changes¹⁷⁴.

• Read more about React’s useCallback Hook¹⁷⁵.
• Optional: Rate this section¹⁷⁶.

¹⁷³https://bit.ly/3aSpb2v
¹⁷⁴https://bit.ly/3G4vkGX
¹⁷⁵https://www.robinwieruch.de/react-usecallback-hook
¹⁷⁶https://forms.gle/HSX9aurgsf5j76HR9

https://bit.ly/3aSpb2v
https://bit.ly/3G4vkGX
https://www.robinwieruch.de/react-usecallback-hook
https://forms.gle/HSX9aurgsf5j76HR9
https://bit.ly/3aSpb2v
https://bit.ly/3G4vkGX
https://www.robinwieruch.de/react-usecallback-hook
https://forms.gle/HSX9aurgsf5j76HR9

Fundamentals of React 118

Explicit Data Fetching with React

Re-fetching all data each time someone types in the input field isn’t optimal. Since we’re using
a third-party API to fetch the data, its internals is out of our reach. Eventually, we will incur rate
limiting¹⁷⁷, which returns an error instead of data. To solve this problem, change the implementation
details from implicit to explicit data (re-)fetching. In other words, the application will refetch data
only if someone clicks a confirmation button.

First, add a button element for the confirmation to the JSX:

src/App.js

const App = () => {

...

return (

<div>

<h1>My Hacker Stories</h1>

<InputWithLabel

id="search"

value={searchTerm}

isFocused

onInputChange={handleSearchInput}

>

Search:

</InputWithLabel>

<button

type="button"

disabled={!searchTerm}

onClick={handleSearchSubmit}

>

Submit

</button>

...

</div>

);

};

Second, the handler, input, and button handler receive implementation logic to update the compo-
nent’s state. The input field handler still updates the searchTerm; the button handler sets the url

¹⁷⁷https://bit.ly/2ZaJXI8

https://bit.ly/2ZaJXI8
https://bit.ly/2ZaJXI8
https://bit.ly/2ZaJXI8

Fundamentals of React 119

derived from the current searchTerm and the static API URL as a new state:

src/App.js

const App = () => {

const [searchTerm, setSearchTerm] = useSemiPersistentState(

'search',

'React'

);

const [url, setUrl] = React.useState(

`${API_ENDPOINT}${searchTerm}`

);

...

const handleSearchInput = (event) => {

setSearchTerm(event.target.value);

};

const handleSearchSubmit = () => {

setUrl(`${API_ENDPOINT}${searchTerm}`);

};

...

};

Third, instead of running the data fetching side-effect on every searchTerm change – which would
happen each time the input field’s value changes – the url is used. The url is set explicitly by the
user when the search is confirmed via our new button:

src/App.js

const App = () => {

...

const handleFetchStories = React.useCallback(() => {

dispatchStories({ type: 'STORIES_FETCH_INIT' });

fetch(url)

.then((response) => response.json())

.then((result) => {

dispatchStories({

type: 'STORIES_FETCH_SUCCESS',

payload: result.hits,

Fundamentals of React 120

});

})

.catch(() =>

dispatchStories({ type: 'STORIES_FETCH_FAILURE' })

);

}, [url]);

React.useEffect(() => {

handleFetchStories();

}, [handleFetchStories]);

...

};

Before the searchTermwas used for two cases: updating the input field’s state and activating the side-
effect for fetching data. One may consider this too many responsibilities for the searchTerm. Now
it’s only used for the former. A second state called url got introduced for triggering the side-effect
for fetching data which only happens when a user clicks the confirmation button.

Exercises:

• Confirm your source code¹⁷⁸.
– Confirm the changes¹⁷⁹.

• Why is useState instead of useSemiPersistentState used for the url state management?
• Why is there no check for an empty searchTerm in the handleFetchStories function anymore?
• Optional: Rate this section¹⁸⁰.

¹⁷⁸https://bit.ly/3n47Qcw
¹⁷⁹https://bit.ly/3AXZk3J
¹⁸⁰https://forms.gle/HuJDuVNZmEDbhGzU9

https://bit.ly/3n47Qcw
https://bit.ly/3AXZk3J
https://forms.gle/HuJDuVNZmEDbhGzU9
https://bit.ly/3n47Qcw
https://bit.ly/3AXZk3J
https://forms.gle/HuJDuVNZmEDbhGzU9

Fundamentals of React 121

Third-Party Libraries in React

We previously introduced the native fetch API to complete requests to the Hacker News API, which
the browser provides. However, not all browsers support this, especially the older ones. Also, once
you start testing your application in a headless browser environment¹⁸¹, issues can arise with the
fetch API. There are a couple of ways to make fetch work in older browsers (polyfills¹⁸²) and in tests
(isomorphic fetch), but these concepts are a bit off-task for the purpose of this learning experience.

One alternative is to substitute the native fetch API with a stable library like axios¹⁸³, which performs
asynchronous requests to remote APIs. In this section, we will discover how to substitute a library
– a native API of the browser in this case – with another library from the npm registry. First, install
axios from the command line:

Command Line

npm install axios

Second, import axios in your App component’s file:

src/App.js

import * as React from 'react';

import axios from 'axios';

...

You can use axios instead of fetch, and its usage looks almost identical to the native fetch API.
It takes the URL as an argument and returns a promise. You don’t have to transform the returned
response to JSON anymore, since axios wraps the result into a data object in JavaScript. Just make
sure to adapt your code to the returned data structure:

src/App.js

const App = () => {

...

const handleFetchStories = React.useCallback(() => {

dispatchStories({ type: 'STORIES_FETCH_INIT' });

axios

.get(url)

.then((result) => {

¹⁸¹https://bit.ly/3ncFfSs
¹⁸²https://bit.ly/3ASC86Y
¹⁸³https://bit.ly/3jjEupg

https://bit.ly/3ncFfSs
https://bit.ly/3ASC86Y
https://bit.ly/3jjEupg
https://bit.ly/3ncFfSs
https://bit.ly/3ASC86Y
https://bit.ly/3jjEupg

Fundamentals of React 122

dispatchStories({

type: 'STORIES_FETCH_SUCCESS',

payload: result.data.hits,

});

})

.catch(() =>

dispatchStories({ type: 'STORIES_FETCH_FAILURE' })

);

}, [url]);

...

};

In this code, we call axios axios.get() for an explicit HTTP GET request¹⁸⁴, which is the same
HTTP method we used by default with the browser’s native fetch API. You can use other HTTP
methods such as HTTP POST with axios.post()as well. We can see with these examples that axios
is a powerful library for performing requests to remote APIs. I recommend it over the native fetch
API when requests become complex, working with older browsers, or for testing.

Exercises:

• Confirm your source code¹⁸⁵.
– Confirm the changes¹⁸⁶.

• Read more about popular libraries in React¹⁸⁷.
• Read more about why frameworks matter¹⁸⁸.
• Read more about axios¹⁸⁹.
• Optional: Rate this section¹⁹⁰.

¹⁸⁴https://mzl.la/3n5kUyi
¹⁸⁵https://bit.ly/3piaFt4
¹⁸⁶https://bit.ly/3jjMruF
¹⁸⁷https://www.robinwieruch.de/react-libraries
¹⁸⁸https://www.robinwieruch.de/why-frameworks-matter
¹⁸⁹https://bit.ly/3jjEupg
¹⁹⁰https://forms.gle/wfDb7r5K4az3TiWN9

https://mzl.la/3n5kUyi
https://bit.ly/3piaFt4
https://bit.ly/3jjMruF
https://www.robinwieruch.de/react-libraries
https://www.robinwieruch.de/why-frameworks-matter
https://bit.ly/3jjEupg
https://forms.gle/wfDb7r5K4az3TiWN9
https://mzl.la/3n5kUyi
https://bit.ly/3piaFt4
https://bit.ly/3jjMruF
https://www.robinwieruch.de/react-libraries
https://www.robinwieruch.de/why-frameworks-matter
https://bit.ly/3jjEupg
https://forms.gle/wfDb7r5K4az3TiWN9

Fundamentals of React 123

Async/Await in React (Advanced)

You’ll work with asynchronous data often in React, so it’s good to know an alternative syntax
for handling promises: async/await. The following refactoring of the handleFetchStories function
(without error handling) shows how:

src/App.js

const App = () => {

...

const handleFetchStories = React.useCallback(async () => {

dispatchStories({ type: 'STORIES_FETCH_INIT' });

const result = await axios.get(url);

dispatchStories({

type: 'STORIES_FETCH_SUCCESS',

payload: result.data.hits,

});

}, [url]);

...

};

To use async/await, our function requires the async keyword. Once you start using the await

keyword on returned promises, everything reads like synchronous code. Actions after the await

keyword are not executed until the promise resolves, meaning the code will wait. To include error
handling as before, the try and catch blocks are there to help. If something goes wrong in the try
block, the code will jump into the catch block to handle the error. then/catch blocks and async/await
with try/catch blocks are both valid for handling asynchronous data in JavaScript and React.

src/App.js

const App = () => {

...

const handleFetchStories = React.useCallback(async () => {

dispatchStories({ type: 'STORIES_FETCH_INIT' });

try {

const result = await axios.get(url);

dispatchStories({

Fundamentals of React 124

type: 'STORIES_FETCH_SUCCESS',

payload: result.data.hits,

});

} catch {

dispatchStories({ type: 'STORIES_FETCH_FAILURE' });

}

}, [url]);

...

};

After all, using async/await with try/catch over then/catch makes it often more readable, because
we avoid using callback functions and instead try to make our code more readable in a synchronous
way.

Exercises:

• Confirm your source code¹⁹¹.
– Confirm the changes¹⁹².

• Read more about data fetching in React¹⁹³.
• Read more about async/await in JavaScript¹⁹⁴.
• Optional: Rate this section¹⁹⁵.

¹⁹¹https://bit.ly/3po4jsf
¹⁹²https://bit.ly/3G4t3LV
¹⁹³https://www.robinwieruch.de/react-hooks-fetch-data
¹⁹⁴https://mzl.la/3AWyWaw
¹⁹⁵https://forms.gle/mtMmwrrsiwioZ8GH6

https://bit.ly/3po4jsf
https://bit.ly/3G4t3LV
https://www.robinwieruch.de/react-hooks-fetch-data
https://mzl.la/3AWyWaw
https://forms.gle/mtMmwrrsiwioZ8GH6
https://bit.ly/3po4jsf
https://bit.ly/3G4t3LV
https://www.robinwieruch.de/react-hooks-fetch-data
https://mzl.la/3AWyWaw
https://forms.gle/mtMmwrrsiwioZ8GH6

Fundamentals of React 125

Forms in React

Earlier we introduced a new button to fetch data explicitly with a button click. We’ll advance its
use with a proper HTML form, which encapsulates the button and input field for the search term
with its label. Forms aren’t much different in React’s JSX than in HTML. We’ll implement it in two
refactoring steps with some HTML/JavaScript. First, wrap the input field and button into an HTML
form element:

src/App.js

const App = () => {

...

return (

<div>

<h1>My Hacker Stories</h1>

<form onSubmit={handleSearchSubmit}>

<InputWithLabel

id="search"

value={searchTerm}

isFocused

onInputChange={handleSearchInput}

>

Search:

</InputWithLabel>

<button type="submit" disabled={!searchTerm}>

Submit

</button>

</form>

<hr />

...

</div>

);

};

Instead of passing the handleSearchSubmit handler to the button, it’s used in the new form element.
The button receives a new type attribute called submit, which indicates that the form element
handles the click and not the button. Since the handler is used for the form event, it executes

Fundamentals of React 126

preventDefault in React’s synthetic event. This prevents the HTML form’s native behavior, which
leads to a browser reload:

src/App.js

const App = () => {

...

const handleSearchSubmit = (event) => {

setUrl(`${API_ENDPOINT}${searchTerm}`);

event.preventDefault();

};

...

};

Now we can execute the search feature with the keyboard’s “Enter” key, because we are using a
form instead of just a standalone button. In the next two steps, we will only separate the component
into its own SearchForm component:

src/App.js

const SearchForm = ({

searchTerm,

onSearchInput,

onSearchSubmit,

}) => (

<form onSubmit={onSearchSubmit}>

<InputWithLabel

id="search"

value={searchTerm}

isFocused

onInputChange={onSearchInput}

>

Search:

</InputWithLabel>

<button type="submit" disabled={!searchTerm}>

Submit

</button>

</form>

);

Fundamentals of React 127

The new component is used by the App component. However, the App component still manages
the state for the form, because the state is used in the App component to fetch data passed as props
(stories.data) to the List component:

src/App.js

const App = () => {

...

return (

<div>

<h1>My Hacker Stories</h1>

<SearchForm

searchTerm={searchTerm}

onSearchInput={handleSearchInput}

onSearchSubmit={handleSearchSubmit}

/>

<hr />

{stories.isError && <p>Something went wrong ...</p>}

{stories.isLoading ? (

<p>Loading ...</p>

) : (

<List list={stories.data} onRemoveItem={handleRemoveStory} />

)}

</div>

);

};

Forms aren’t much different in React than in plain HTML.Whenwe have input fields and a button to
submit data from them, we can give our HTML more structure by wrapping it into a form element
with a onSubmit handler. The button that executes the submission needs only the “submit” type.
After all, it makes it more accessible for keyboard users as well.

Exercises:

• Confirm your source code¹⁹⁶.
– Confirm the changes¹⁹⁷.

¹⁹⁶https://bit.ly/3jfEcjd
¹⁹⁷https://bit.ly/3G43M4I

https://bit.ly/3jfEcjd
https://bit.ly/3G43M4I
https://bit.ly/3jfEcjd
https://bit.ly/3G43M4I

Fundamentals of React 128

• Try what happens without using preventDefault.
– Read more about preventDefault for events in React¹⁹⁸.

• Optional: Rate this section¹⁹⁹.

¹⁹⁸https://www.robinwieruch.de/react-preventdefault
¹⁹⁹https://forms.gle/d14Mf7WzetP25jxq5

https://www.robinwieruch.de/react-preventdefault
https://forms.gle/d14Mf7WzetP25jxq5
https://www.robinwieruch.de/react-preventdefault
https://forms.gle/d14Mf7WzetP25jxq5

React’s Legacy
React has changed a lot since 2013. The iterations of its library, how React applications are written,
and especially its components have all changed drastically. However, many React applications were
built over the last few years, so not everything was created with the current status quo in mind.
This section of the book covers React’s legacy. However, I won’t cover all that’s considered legacy
in React, because some features have been revamped more than once.

Throughout this section, wewill compare amodern React application²⁰⁰ to its legacy version²⁰¹.We’ll
discover that most differences between modern and legacy React are due to class components versus
function components.

²⁰⁰https://bit.ly/3vrKgu9
²⁰¹https://bit.ly/2Z1matY

https://bit.ly/3vrKgu9
https://bit.ly/2Z1matY
https://bit.ly/3vrKgu9
https://bit.ly/2Z1matY

React’s Legacy 130

React Class Components

React components have undergone many changes, from createClass components over class
components, to function components. Going through a React application today, it’s likely that
we’ll see class components next to the modern function components. Fortunately, you will not see
many createClass components anymore.

A typical class component is a JavaScript class with a mandatory render method that returns the
JSX. The class extends from a React.Component to inherit (class inheritance²⁰²) all React’s component
features (e.g. state management, lifecycle methods for side-effects). React props are accessed via the
class instance (this) in any class method (e.g. render):

Code Playground

class InputWithLabel extends React.Component {

render() {

const {

id,

value,

type = 'text',

onInputChange,

children,

} = this.props;

return (

<>

<label htmlFor={id}>{children}</label>

<input

id={id}

type={type}

value={value}

onChange={onInputChange}

/>

</>

);

}

}

For a while, class components were the popular choice for writing React applications. Eventually,
function components were added, and both co-existed with their distinct purposes side by side:

²⁰²https://bit.ly/3vxh3xY

https://bit.ly/3vxh3xY
https://bit.ly/3vxh3xY

React’s Legacy 131

Code Playground

const InputWithLabel = ({

id,

value,

type = 'text',

onInputChange,

children,

}) => (

<>

<label htmlFor={id}>{children}</label>

<input

id={id}

type={type}

value={value}

onChange={onInputChange}

/>

</>

);

If no side-effects and no state were used in legacy apps, we’d use a function component instead of a
class component. Before 2018 – before React Hooks were introduced – React’s function components
couldn’t handle side-effects (useEffect hooks) or state (useState/useReducer hooks). As a result,
these components were known as functional stateless components, there only to input props and
output JSX. To use state or side-effects, it was necessary to refactor from a function component to a
class component. When neither state nor side-effects were used, we used class components or more
commonly the more lightweight function component.

With the addition of React Hooks, function components were granted the same features as class
components, with state and side-effects. And since there was no longer any practical difference
between them, the community chose function components over class components since they are
more lightweight.

Exercises:

• Read more about JavaScript Classes²⁰³.
• Read more about how to refactor from a class component to a function component²⁰⁴.
• Learn more about a different class component syntax²⁰⁵ which wasn’t popular but more
effective.

²⁰³https://mzl.la/3vvc2FO
²⁰⁴https://www.robinwieruch.de/react-hooks-migration
²⁰⁵https://bit.ly/3lYzrfT

https://mzl.la/3vvc2FO
https://www.robinwieruch.de/react-hooks-migration
https://bit.ly/3lYzrfT
https://mzl.la/3vvc2FO
https://www.robinwieruch.de/react-hooks-migration
https://bit.ly/3lYzrfT

React’s Legacy 132

• Read more about class components in depth²⁰⁶.
• Read more about other legacy and modern component types in React²⁰⁷.
• Optional: Rate this section²⁰⁸.

²⁰⁶https://bit.ly/3FXUibf
²⁰⁷https://www.robinwieruch.de/react-component-types
²⁰⁸https://forms.gle/g5qLH1KZ5Y1JE1v57

https://bit.ly/3FXUibf
https://www.robinwieruch.de/react-component-types
https://forms.gle/g5qLH1KZ5Y1JE1v57
https://bit.ly/3FXUibf
https://www.robinwieruch.de/react-component-types
https://forms.gle/g5qLH1KZ5Y1JE1v57

React’s Legacy 133

React Class Components: State

Before React Hooks, class components were superior to function components because they could be
stateful.With a class constructor, we can set an initial state for the component. Also, the component’s
instance (this) gives access to the current state (this.state) and the component’s state updater
method (this.setState):

Code Playground

class App extends React.Component {

constructor(props) {

super(props);

this.state = {

searchTerm: 'React',

};

}

render() {

const { searchTerm } = this.state;

return (

<div>

<h1>My Hacker Stories</h1>

<SearchForm

searchTerm={searchTerm}

onSearchInput={() => this.setState({

searchTerm: event.target.value

})}

/>

</div>

);

}

}

If the state has more than one property in its state object, the setState method performs only a
shallow update. Only the properties passed to setState are overwritten, and all other properties in
the state object stay intact. Since state management is important for frontend applications, there was
no way around class components without hooks for function components.

In a React class component, there are two dedicated APIs (this.state and this.setState) to
manage a component’s state. In a function component, React’s useState and useReducer hooks

React’s Legacy 134

handle this. Related items are packed into one state hook, while a class component must use a
general state API. This was one of the major reasons to introduce React Hooks and move away from
class components.

Exercises:

• Write a stateful class component (e.g. Input component where a user can type something into
it and the text displays somewhere else).

• Optional: Rate this section²⁰⁹.

²⁰⁹https://forms.gle/5UPEsMWSGjWyeaiA9

https://forms.gle/5UPEsMWSGjWyeaiA9
https://forms.gle/5UPEsMWSGjWyeaiA9

React’s Legacy 135

Imperative React

In a React function component, React’s useRef Hook is used mostly for imperative programming.
Throughout React’s history, the ref and its usage had a few versions:

• String Refs (deprecated)
• Callback Refs (used in class and function components)
• createRef Refs (exclusive for class components)
• useRef Hook Refs (exclusive for function components)

The React team introduced React’s createRef with version 16.3 as the latest equivalent to a function
component’s useRef hook which has been integrated with React Hooks in 16.8:

Code Playground

class InputWithLabel extends React.Component {

constructor(props) {

super(props);

this.inputRef = React.createRef();

}

componentDidMount() {

if (this.props.isFocused) {

this.inputRef.current.focus();

}

}

render() {

...

return (

<>

...

<input

ref={this.inputRef}

id={id}

type={type}

value={value}

onChange={onInputChange}

/>

</>

);

React’s Legacy 136

}

}

With the helper function, the ref is created in the class’ constructor, applied in the JSX for the
ref attribute, and here used in a class component’s lifecycle method (equivalent to a function
component’s useEffect Hook). The ref can also be used elsewhere, like focusing the input field on a
button click.

Where createRef is used in React’s class components, React’s useRef Hook is used in React function
components. As React shifts towards function components, today it’s common practice to use the
useRef hook exclusively to manage refs and apply imperative programming principles.

Exercises:

• Read more about the different ref techniques in React²¹⁰.
• Optional: Rate this section²¹¹.

²¹⁰https://bit.ly/3jjhCXa
²¹¹https://forms.gle/xd131YRHy6NdZa7p7

https://bit.ly/3jjhCXa
https://forms.gle/xd131YRHy6NdZa7p7
https://bit.ly/3jjhCXa
https://forms.gle/xd131YRHy6NdZa7p7

Styling in React
There are many ways to style a React application, and there are lengthy debates about the best
styling strategy and styling approach. We’ll go over a few of these approaches without giving
them too much weight. There will be some pro and con arguments, but it’s mostly a matter of what
fits best for developers and teams.

We will begin React styling with common CSS in React, but then explore two alternatives for more
advancedCSS-in-CSS (CSSModules) andCSS-in-JS (Styled Components) strategies. CSSModules
and Styled Components are only two approaches out of many in both groups of strategies. We’ll also
cover how to include scalable vector graphics (SVGs), such as a logo or icons, in our React application.

If you don’t want to build common UI components (e.g. button, dialog, dropdown) from scratch,
you can always pick a popular UI library suited for React²¹², which provides these components by
default. However, it is better for learning React if you try building these components before using a
pre-built solution. As a result, we won’t use any of the UI component libraries.

²¹²https://www.robinwieruch.de/react-libraries

https://www.robinwieruch.de/react-libraries
https://www.robinwieruch.de/react-libraries

Styling in React 138

The following styling approaches and SVGs are pre-configured in create-react-app. If you’re in
control of the build tools (e.g. Webpack) by having a custom setup, they might need to be configured
to enable importing CSS or SVG files. Since we are using create-react-app, we can use these files as
assets right away.

Exercises:

• Read more about the different styling strategies and approaches in React²¹³.

²¹³https://www.robinwieruch.de/react-css-styling

https://www.robinwieruch.de/react-css-styling
https://www.robinwieruch.de/react-css-styling

Styling in React 139

CSS in React

Common CSS in React is similar to the standard CSS you may have already learned. Each web
application gives HTML elements a class (in React it’s className) attribute that is styled via a CSS
file:

src/App.js

const App = () => {

...

return (

<div className="container">

<h1 className="headline-primary">My Hacker Stories</h1>

<SearchForm

searchTerm={searchTerm}

onSearchInput={handleSearchInput}

onSearchSubmit={handleSearchSubmit}

/>

{stories.isError && <p>Something went wrong ...</p>}

{stories.isLoading ? (

<p>Loading ...</p>

) : (

<List list={stories.data} onRemoveItem={handleRemoveStory} />

)}

</div>

);

};

The <hr />was removed because the CSS handles the border in the next steps. We’ll import the CSS
file, which is done with the help of the create-react-app configuration:

src/App.js

import * as React from 'react';

import axios from 'axios';

import './App.css';

This CSS file will define the two (andmore) CSS classes we used (andwill use) in the App component.
In your src/App.css file, define them like the following:

Styling in React 140

src/App.css

.container {

height: 100vw;

padding: 20px;

background: #83a4d4; /* fallback for old browsers */

background: linear-gradient(to left, #b6fbff, #83a4d4);

color: #171212;

}

.headline-primary {

font-size: 48px;

font-weight: 300;

letter-spacing: 2px;

}

You should see the first stylings taking effect in your application when you start it again. Next, we
will head over to the Item component. Some of its elements receive the className attribute too,
however, we are also using a new styling technique here:

src/App.js

const Item = ({ item, onRemoveItem }) => (

<li className="item">

{item.title}

{item.author}

{item.num_comments}

{item.points}

<button

type="button"

onClick={() => onRemoveItem(item)}

className="button button_small"

>

Dismiss

</button>

);

Styling in React 141

As you can see, we can also use the style attribute for HTML elements. In JSX, style can be passed
as an inline JavaScript object to these attributes. This way we can define dynamic style properties
in JavaScript files rather than mostly static CSS files. This approach is called inline style, which
is useful for quick prototyping and dynamic style definitions. Inline style should be used sparingly,
however, since a separate style definition with a CSS file keeps the JSX more concise.

In your src/App.css file, define the new CSS classes. Basic CSS features are used here, because
advanced CSS features (e.g. nesting) from CSS extensions (e.g. Sass) are not included in this example,
as they are optional configurations²¹⁴:

src/App.css

.item {

display: flex;

align-items: center;

padding-bottom: 5px;

}

.item > span {

padding: 0 5px;

white-space: nowrap;

overflow: hidden;

white-space: nowrap;

text-overflow: ellipsis;

}

.item > span > a {

color: inherit;

}

The button style from the previous component is still missing, so we’ll define a base button style and
two more specific button styles (small and large). One of the button specifications has been already
used, the other will be used in the next steps:

²¹⁴https://bit.ly/3E1a2bM

https://bit.ly/3E1a2bM
https://bit.ly/3E1a2bM

Styling in React 142

src/App.css

.button {

background: transparent;

border: 1px solid #171212;

padding: 5px;

cursor: pointer;

transition: all 0.1s ease-in;

}

.button:hover {

background: #171212;

color: #ffffff;

}

.button_small {

padding: 5px;

}

.button_large {

padding: 10px;

}

Apart from styling approaches in React, naming conventions (CSS guidelines²¹⁵) are a whole other
topic. The last CSS snippet followed BEM rules by defining modifications of a class with an
underscore (_). Choose whatever naming convention suits you and your team. Without further ado,
we will style the next React component:

src/App.js

const SearchForm = ({ ... }) => (

<form onSubmit={onSearchSubmit} className="search-form">

<InputWithLabel ... >

Search:

</InputWithLabel>

<button

type="submit"

disabled={!searchTerm}

className="button button_large"

>

Submit

²¹⁵https://mzl.la/3m5avnb

https://mzl.la/3m5avnb
https://mzl.la/3m5avnb

Styling in React 143

</button>

</form>

);

We can also pass the className attribute as a prop to React components. For example, we can
use this option to pass the SearchForm component a flexible style with a className prop from a
range of predefined classes (e.g. button_large or button_small) from a CSS file. Lastly, style the
InputWithLabel component:

src/App.js

const InputWithLabel = ({ ... }) => {

...

return (

<>

<label htmlFor={id} className="label">

{children}

</label>

<input

ref={inputRef}

id={id}

type={type}

value={value}

onChange={onInputChange}

className="input"

/>

</>

);

};

In your src/App.css file, add the remaining classes:

Styling in React 144

src/App.css

.search-form {

padding: 10px 0 20px 0;

display: flex;

align-items: baseline;

}

.label {

border-top: 1px solid #171212;

border-left: 1px solid #171212;

padding-left: 5px;

font-size: 24px;

}

.input {

border: none;

border-bottom: 1px solid #171212;

background-color: transparent;

font-size: 24px;

}

For simplicity, we styled elements like label and input individually in the src/App.css file. However,
in a real application, it may be better to define these elements once in the src/index.css file globally.
As React components are split into multiple files, sharing style becomes a necessity. After all, this
is the basic usage of CSS in React. Without CSS extensions like Sass (Syntactically Awesome Style
Sheets), styling can become more burdensome, though, because features like CSS nesting are not
available in native CSS.

Exercises:

• Confirm your source code²¹⁶.
– Confirm the changes²¹⁷.

• Read more about CSS stylesheets in create-react-app²¹⁸.
– Try to pass className prop from App to SearchForm component, either with the value

button_small or button_large, and use this as className for the button element.
• Read more about Sass in create-react-app²¹⁹ for taking advantage of more advanced CSS
features like nesting.

• Enable Sass in your create-react-app and start to use its features (e.g. nesting) in your CSS file.
• Optional: Rate this section²²⁰.

²¹⁶https://bit.ly/3jk9llQ
²¹⁷https://bit.ly/3vrrnr4
²¹⁸https://bit.ly/3G0fTjn
²¹⁹https://bit.ly/3GeJGF9
²²⁰https://forms.gle/RovYbjYF9McD1h6c7

https://bit.ly/3jk9llQ
https://bit.ly/3vrrnr4
https://bit.ly/3G0fTjn
https://bit.ly/3GeJGF9
https://forms.gle/RovYbjYF9McD1h6c7
https://bit.ly/3jk9llQ
https://bit.ly/3vrrnr4
https://bit.ly/3G0fTjn
https://bit.ly/3GeJGF9
https://forms.gle/RovYbjYF9McD1h6c7

Styling in React 145

CSS Modules in React

CSS Modules are an advanced CSS-in-CSS approach. The CSS file stays the same, where you could
apply CSS extensions like Sass, but its use in React components changes. To enable CSS modules in
create-react-app, rename the src/App.css file to src/App.module.css. This action is performed in the
command line from your project’s directory:

Command Line

mv src/App.css src/App.module.css

In the renamed src/App.module.css, start with the first CSS class definitions, as before:

src/App.module.css

.container {

height: 100vw;

padding: 20px;

background: #83a4d4; /* fallback for old browsers */

background: linear-gradient(to left, #b6fbff, #83a4d4);

color: #171212;

}

.headlinePrimary {

font-size: 48px;

font-weight: 300;

letter-spacing: 2px;

}

Import the src/App.module.css file with a relative path again. This time, import it as a JavaScript
object where the name of the object (here styles) is up to you:

src/App.js

import * as React from 'react';

import axios from 'axios';

import styles from './App.module.css';

Instead of defining the className as a string mapped to a CSS file, access the CSS class directly from
the styles object, and assign it with a JavaScript in JSX expression to your elements.

Styling in React 146

src/App.js

const App = () => {

...

return (

<div className={styles.container}>

<h1 className={styles.headlinePrimary}>My Hacker Stories</h1>

<SearchForm

searchTerm={searchTerm}

onSearchInput={handleSearchInput}

onSearchSubmit={handleSearchSubmit}

/>

{stories.isError && <p>Something went wrong ...</p>}

{stories.isLoading ? (

<p>Loading ...</p>

) : (

<List list={stories.data} onRemoveItem={handleRemoveStory} />

)}

</div>

);

};

There are various ways to add multiple CSS classes via the styles object to the element’s single
className attribute. Here, we use JavaScript template literals:

src/App.js

const Item = ({ item, onRemoveItem }) => (

<li className={styles.item}>

{item.title}

{item.author}

{item.num_comments}

{item.points}

<button

type="button"

onClick={() => onRemoveItem(item)}

className={`${styles.button} ${styles.buttonSmall}`}

Styling in React 147

>

Dismiss

</button>

);

We can also add inline styles as more dynamic styles in JSX again. It’s also possible to add a CSS
extension like Sass to enable advanced features like CSS nesting (see the previous section). We will
stick to native CSS features though:

src/App.module.css

.item {

display: flex;

align-items: center;

padding-bottom: 5px;

}

.item > span {

padding: 0 5px;

white-space: nowrap;

overflow: hidden;

white-space: nowrap;

text-overflow: ellipsis;

}

.item > span > a {

color: inherit;

}

Then the button CSS classes in the src/App.module.css file:

src/App.module.css

.button {

background: transparent;

border: 1px solid #171212;

padding: 5px;

cursor: pointer;

transition: all 0.1s ease-in;

}

Styling in React 148

.button:hover {

background: #171212;

color: #ffffff;

}

.buttonSmall {

padding: 5px;

}

.buttonLarge {

padding: 10px;

}

There is a shift toward pseudo BEM naming conventions here, in contrast to button_small and
button_large from the previous section. If the previous naming convention holds true, we can only
access the style with styles['button_small']which makes it more verbose because of JavaScript’s
limitation with object underscores. The same shortcomings would apply for classes defined with a
dash (-). In contrast, now we can use styles.buttonSmall instead (see: Item component):

src/App.js

const SearchForm = ({ ... }) => (

<form onSubmit={onSearchSubmit} className={styles.searchForm}>

<InputWithLabel ... >

Search:

</InputWithLabel>

<button

type="submit"

disabled={!searchTerm}

className={`${styles.button} ${styles.buttonLarge}`}

>

Submit

</button>

</form>

);

The SearchForm component receives the styles as well. It has to use string interpolation for using
two styles in one element via JavaScript’s template literals. One alternative way is the classnames²²¹
library, which is installed via the command line as a project dependency:

²²¹https://bit.ly/3aSz1Bl

https://bit.ly/3aSz1Bl
https://bit.ly/3aSz1Bl

Styling in React 149

src/App.js

import cs from 'classnames';

...

// somewhere in a className attribute

className={cs(styles.button, styles.buttonLarge)}

The library offers conditional styling too; whereas the left-hand side of the object’s property must
be used as a computed property name²²² and is only applied if the right-hand side evaluates to true:

src/App.js

import cs from 'classnames';

...

// somewhere in a className attribute

className={cs(styles.button, { [styles.buttonLarge]: isLarge })}

Finally, continue with the InputWithLabel component:

src/App.js

const InputWithLabel = ({ ... }) => {

...

return (

<>

<label htmlFor={id} className={styles.label}>

{children}

</label>

<input

ref={inputRef}

id={id}

type={type}

value={value}

onChange={onInputChange}

className={styles.input}

/>

</>

²²²https://mzl.la/2XuN651

https://mzl.la/2XuN651
https://mzl.la/2XuN651

Styling in React 150

);

};

And finish up the remaining style in the src/App.module.css file:

src/App.module.css

.searchForm {

padding: 10px 0 20px 0;

display: flex;

align-items: baseline;

}

.label {

border-top: 1px solid #171212;

border-left: 1px solid #171212;

padding-left: 5px;

font-size: 24px;

}

.input {

border: none;

border-bottom: 1px solid #171212;

background-color: transparent;

font-size: 24px;

}

The same caution as the last section applies: some of these styles like input and labelmight be more
efficient in a global src/index.css file without CSS modules.

Again, CSS Modules – like any other CSS-in-CSS approach – can use Sass for more advanced CSS
features like nesting. The advantage of CSS modules is that we receive an error in JavaScript each
time a style isn’t defined. In the standard CSS approach, unmatched styles in JavaScript and CSS
files might go unnoticed.

Exercises:

• Confirm your source code²²³.
– Confirm the changes²²⁴.

• Read more about CSS Modules in create-react-app²²⁵.
• Optional: Rate this section²²⁶.

²²³https://bit.ly/3lVeoeb
²²⁴https://bit.ly/3pkqgs4
²²⁵https://bit.ly/3phgN51
²²⁶https://forms.gle/iuU7WaeJVwHN2pFCA

https://bit.ly/3lVeoeb
https://bit.ly/3pkqgs4
https://bit.ly/3phgN51
https://forms.gle/iuU7WaeJVwHN2pFCA
https://bit.ly/3lVeoeb
https://bit.ly/3pkqgs4
https://bit.ly/3phgN51
https://forms.gle/iuU7WaeJVwHN2pFCA

Styling in React 151

Styled Components in React

With the previous approaches from CSS-in-CSS, Styled Components is one of several approaches
for CSS-in-JS. I picked Styled Components because it’s the most popular. It comes as a JavaScript
dependency, so we must install it on the command line:

Command Line

npm install styled-components

Then import it in your src/App.js file:

src/App.js

import * as React from 'react';

import axios from 'axios';

import styled from 'styled-components';

As the name suggests, CSS-in-JS happens in your JavaScript file. In your src/App.js file, define your
first styled components:

src/App.js

const StyledContainer = styled.div`

height: 100vw;

padding: 20px;

background: #83a4d4;

background: linear-gradient(to left, #b6fbff, #83a4d4);

color: #171212;

`;

const StyledHeadlinePrimary = styled.h1`

font-size: 48px;

font-weight: 300;

letter-spacing: 2px;

`;

When using Styled Components, you are using the JavaScript template literals the same way as
JavaScript functions. Everything between the backticks can be seen as an argument and the styled
object gives you access to all the necessaryHTML elements (e.g. div, h1) as functions. Once a function
is called with the style, it returns a React component that can be used in your App component:

Styling in React 152

src/App.js

const App = () => {

...

return (

<StyledContainer>

<StyledHeadlinePrimary>My Hacker Stories</StyledHeadlinePrimary>

<SearchForm

searchTerm={searchTerm}

onSearchInput={handleSearchInput}

onSearchSubmit={handleSearchSubmit}

/>

{stories.isError && <p>Something went wrong ...</p>}

{stories.isLoading ? (

<p>Loading ...</p>

) : (

<List list={stories.data} onRemoveItem={handleRemoveStory} />

)}

</StyledContainer>

);

};

This kind of React component follows the same rules as a common React component. Everything
passed between its element tags is passed automatically as React children prop. For the Item
component, we are not using inline styles this time, but defining a dedicated styled component
for it. StyledColumn receives its styles dynamically using a React prop:

src/App.js

const Item = ({ item, onRemoveItem }) => (

<StyledItem>

<StyledColumn width="40%">

{item.title}

</StyledColumn>

<StyledColumn width="30%">{item.author}</StyledColumn>

<StyledColumn width="10%">{item.num_comments}</StyledColumn>

<StyledColumn width="10%">{item.points}</StyledColumn>

<StyledColumn width="10%">

<StyledButtonSmall

type="button"

Styling in React 153

onClick={() => onRemoveItem(item)}

>

Dismiss

</StyledButtonSmall>

</StyledColumn>

</StyledItem>

);

The flexible width prop is accessible in the styled component’s template literal as an argument of
an inline function. The return value from the function is applied there as a string. Since we can use
immediate returns when omitting the arrow function’s body, it becomes a concise inline function:

src/App.js

const StyledItem = styled.li`

display: flex;

align-items: center;

padding-bottom: 5px;

`;

const StyledColumn = styled.span`

padding: 0 5px;

white-space: nowrap;

overflow: hidden;

white-space: nowrap;

text-overflow: ellipsis;

a {

color: inherit;

}

width: ${(props) => props.width};

`;

Advanced features like CSS nesting are available in Styled Components by default. Nested elements
are accessible and the current element can be selected with the & CSS operator:

Styling in React 154

src/App.js

const StyledButton = styled.button`

background: transparent;

border: 1px solid #171212;

padding: 5px;

cursor: pointer;

transition: all 0.1s ease-in;

&:hover {

background: #171212;

color: #ffffff;

}

`;

You can also create specialized versions of styled components by passing another component to the
library’s function. The specialized button receives all the base styles from the previously defined
StyledButton component:

src/App.js

const StyledButtonSmall = styled(StyledButton)`

padding: 5px;

`;

const StyledButtonLarge = styled(StyledButton)`

padding: 10px;

`;

const StyledSearchForm = styled.form`

padding: 10px 0 20px 0;

display: flex;

align-items: baseline;

`;

When we use a styled component like StyledSearchForm, its underlying form element is used in the
real HTML output. We can continue using the native HTML attributes (onSubmit, type, disabled)
there:

Styling in React 155

src/App.js

const SearchForm = ({ ... }) => (

<StyledSearchForm onSubmit={onSearchSubmit}>

<InputWithLabel

id="search"

value={searchTerm}

isFocused

onInputChange={onSearchInput}

>

Search:

</InputWithLabel>

<StyledButtonLarge type="submit" disabled={!searchTerm}>

Submit

</StyledButtonLarge>

</StyledSearchForm>

);

Finally, the InputWithLabel decorated with its yet undefined styled components:

src/App.js

const InputWithLabel = ({ ... }) => {

...

return (

<>

<StyledLabel htmlFor={id}>{children}</StyledLabel>

<StyledInput

ref={inputRef}

id={id}

type={type}

value={value}

onChange={onInputChange}

/>

</>

);

};

And its matching styled components are defined in the same file:

Styling in React 156

src/App.js

const StyledLabel = styled.label`

border-top: 1px solid #171212;

border-left: 1px solid #171212;

padding-left: 5px;

font-size: 24px;

`;

const StyledInput = styled.input`

border: none;

border-bottom: 1px solid #171212;

background-color: transparent;

font-size: 24px;

`;

CSS-in-JS with styled components shifts the focus of defining styles to actual React components.
Styled Components are styles defined as React components without the intermediate CSS file. If a
styled component isn’t used in a JavaScript, your IDE/editor will tell you. Styled Components are
bundled next to other JavaScript assets in JavaScript files for a production-ready application. There
are no extra CSS files, but only JavaScript when using the CSS-in-JS strategy. Both strategies, CSS-
in-JS and CSS-in-CSS, and their approaches (e.g. Styled Components and CSS Modules) are popular
among React developers. Use what suits you and your team best.

Exercises:

• Confirm your source code²²⁷.
– Confirm the changes²²⁸.

• Read more about best practices for Styled Components in React²²⁹.
• Usually there is no src/index.css file for global styles when using Styled Components. Find out
how to use global styles when using Styled Components.

• Optional: Rate this section²³⁰.

²²⁷https://bit.ly/2ZaHeOU
²²⁸https://bit.ly/3n4aH5e
²²⁹https://www.robinwieruch.de/styled-components
²³⁰https://forms.gle/5vFxvg9hSNAna37S8

https://bit.ly/2ZaHeOU
https://bit.ly/3n4aH5e
https://www.robinwieruch.de/styled-components
https://forms.gle/5vFxvg9hSNAna37S8
https://bit.ly/2ZaHeOU
https://bit.ly/3n4aH5e
https://www.robinwieruch.de/styled-components
https://forms.gle/5vFxvg9hSNAna37S8

Styling in React 157

SVGs in React

To create a modern React application, we’ll likely need to use SVGs. Instead of giving every button
element text, for example, we might want to make it lightweight with an icon. In this section, we’ll
use a scalable vector graphic (SVG) as an icon in one of our React components.

This section builds on the “CSS in React” we covered earlier, to give the SVG icon a good look and
feel right away. It’s acceptable to use a different styling approach, or no styling at all, though the
SVG might look off without it.

This icon as SVG is taken from Flaticon’s Freepick²³¹. Many of the SVGs on this website are free to
use, though they require you to mention the author. You can download the icon from here²³² as SVG
and put it in your project as src/check.svg. Downloading the file is the recommended way, however,
for the sake of completion, this is the verbose SVG definition:

Code Playground

<?xml version="1.0" encoding="iso-8859-1"?>

<!-- Generator: Adobe Illustrator 18.0.0, SVG Export Plug-In . SVG Version: 6.00 Bui\

ld 0) -->

<!DOCTYPE svg PUBLIC "-//W3C//DTD SVG 1.1//EN" "http://www.w3.org/Graphics/SVG/1.1/D\

TD/svg11.dtd">

<svg version="1.1" id="Capa_1" xmlns="http://www.w3.org/2000/svg" xmlns:xlink="http:\

//www.w3.org/1999/xlink" x="0px" y="0px"

viewBox="0 0 297 297" style="enable-background:new 0 0 297 297;" xml:space="prese\

rve">

<g>

<path d="M113.636,272.638c-2.689,0-5.267-1.067-7.168-2.97L2.967,166.123c-3.956-3\

.957-3.956-10.371-0.001-14.329l54.673-54.703

c1.9-1.9,4.479-2.97,7.167-2.97c2.689,0,5.268,1.068,7.169,2.969l41.661,41.676L2\

25.023,27.332c1.9-1.901,4.48-2.97,7.168-2.97l0,0

c2.688,0,5.268,1.068,7.167,2.97l54.675,54.701c3.956,3.957,3.956,10.372,0,14.32\

8L120.803,269.668

C118.903,271.57,116.325,272.638,113.636,272.638z M24.463,158.958l89.173,89.209\

l158.9-158.97l-40.346-40.364L120.803,160.264

c-1.9,1.902-4.478,2.971-7.167,2.971c-2.688,0-5.267-1.068-7.168-2.97l-41.66-41.\

674L24.463,158.958z"/>

</g>

</svg>

Because we’re using create-react-app again, we can import SVGs (similar to CSS) as React compo-
nents right away. In src/App.js, use the following syntax for importing the SVG:

²³¹https://bit.ly/3E16SEz
²³²https://bit.ly/2Z2EoeA

https://bit.ly/3E16SEz
https://bit.ly/2Z2EoeA
https://bit.ly/3E16SEz
https://bit.ly/2Z2EoeA

Styling in React 158

src/App.js

import * as React from 'react';

import axios from 'axios';

import './App.css';

import { ReactComponent as Check } from './check.svg';

We are importing an SVG, and this works for many different uses for SVGs (e.g. logo, background).
Instead of a button text, pass the SVG component with a height and width attribute:

src/App.js

const Item = ({ item, onRemoveItem }) => (

<li className="item">

{item.title}

{item.author}

{item.num_comments}

{item.points}

<button

type="button"

onClick={() => onRemoveItem(item)}

className="button button_small"

>

<Check height="18px" width="18px" />

</button>

);

Regardless of the styling approach you are using, you can give your SVG icon in the button a hover
effect too. In the basic CSS approach, it would look like the following in the src/App.css file:

src/App.css

.button:hover > svg > g {

fill: #ffffff;

stroke: #ffffff;

}

Styling in React 159

The create-react-app project makes using SVGs straightforward, with no extra configuration needed.
This is different if you create a React project from scratch with build tools like Webpack, because
you have to take care of it yourself. Anyway, SVGs make your application more approachable, so
use them whenever it suits you.

Exercises:

• Confirm your source code²³³.
– Confirm the changes²³⁴.

• Read more about SVGs in create-react-app²³⁵.
• Read more about SVG background patterns in React²³⁶.
• Add another SVG icon in your application.
• Integrate the third-party library react-fontawesome²³⁷ or react-icons²³⁸ into your application
and use its SVG symbols.

• Optional: Rate this section²³⁹.

²³³https://bit.ly/3DSltSI
²³⁴https://bit.ly/3lYaEZf
²³⁵https://bit.ly/3DVxBT9
²³⁶https://www.robinwieruch.de/react-svg-patterns
²³⁷https://bit.ly/2ZdNXI7
²³⁸https://bit.ly/3nayoJ7
²³⁹https://forms.gle/3yGgMDR2VQ5WksSXA

https://bit.ly/3DSltSI
https://bit.ly/3lYaEZf
https://bit.ly/3DVxBT9
https://www.robinwieruch.de/react-svg-patterns
https://bit.ly/2ZdNXI7
https://bit.ly/3nayoJ7
https://forms.gle/3yGgMDR2VQ5WksSXA
https://bit.ly/3DSltSI
https://bit.ly/3lYaEZf
https://bit.ly/3DVxBT9
https://www.robinwieruch.de/react-svg-patterns
https://bit.ly/2ZdNXI7
https://bit.ly/3nayoJ7
https://forms.gle/3yGgMDR2VQ5WksSXA

React Maintenance
Once a React application grows, maintenance becomes a priority. To prepare for this eventuality,
we’ll cover performance optimization, type safety, testing, and project structure. Each of these topics
will strengthen your app to take on more functionality without losing quality.

Performance optimization prevents applications from slowing down by assuring efficient use
of available resource. Typed programming languages like TypeScript detect bugs earlier in the
feedback loop. Testing gives us more explicit feedback than typed programming, and provides a
way to understand which actions can break the application. Lastly, a project structure supports the
organized management of assets into folders and files, which is especially useful in scenarios where
team members work in different domains.

React Maintenance 161

Performance in React (Advanced)

This section is just here for the sake of learning about performance improvements in React. We
wouldn’t need optimizations in most React applications, as React is fast out of the box. While more
sophisticated tools exist for performance measurements in JavaScript and React, we will stick to a
simple console.log() and our browser’s developer tools for the logging output.

Don’t run on first render

Previously, we have covered React’s useEffect Hook, which is used for side-effects. It runs the first
time a component renders (mounting), and then every re-render (updating). By passing an empty
dependency array to it as a second argument, we can tell the hook to run on the first render only.
Out of the box, there is no way to tell the hook to run only on every re-render (update) and not on
the first render (mount). For example, examine our custom hook for state management with React’s
useState Hook and its semi-persistent state with local storage using React’s useEffect Hook:

src/App.js

const useSemiPersistentState = (key, initialState) => {

const [value, setValue] = React.useState(

localStorage.getItem(key) || initialState

);

React.useEffect(() => {

console.log('A');

localStorage.setItem(key, value);

}, [value, key]);

return [value, setValue];

};

With a closer look at the developer’s tools, we can see the log for the first time when the component
renders using this custom hook. It doesn’t make sense to run the side-effect for the initial rendering
of the component though, because there is nothing to store in the local storage except the initial
value. It’s a redundant function invocation, and should only run for every update (re-rendering) of
the component.

As mentioned, there is no React Hook that runs on every re-render, and there is no way to tell the
useEffect hook in a React idiomatic way to call its function only on every re-render. However, by
using React’s useRef Hook which keeps its ref.current property intact over re-renders, we can keep
amade up state (without re-rendering the component on state updates) with an instance variable of
our component’s lifecycle:

React Maintenance 162

src/App.js

const useSemiPersistentState = (key, initialState) => {

const isMounted = React.useRef(false);

const [value, setValue] = React.useState(

localStorage.getItem(key) || initialState

);

React.useEffect(() => {

if (!isMounted.current) {

isMounted.current = true;

} else {

console.log('A');

localStorage.setItem(key, value);

}

}, [value, key]);

return [value, setValue];

};

We are exploiting the ref and its mutable current property for imperative state management that
doesn’t trigger a re-render. Once the hook is called from its component for the first time (component
render), the ref’s current property is initialized with a false boolean called isMounted. As a result,
the side-effect function in useEffect isn’t called; only the boolean flag for isMounted is toggled to
true in the side-effect. Whenever the hook runs again (component re-render), the boolean flag is
evaluated in the side-effect. Since it’s true, the side-effect function runs. Over the lifetime of the
component, the isMounted boolean will remain true. It was there to avoid calling the side-effect
function for the first time render that uses our custom hook.

The above was only about preventing the invocation of one simple function for a component
rendering for the first time. But imagine you have an expensive computation in your side-effect,
or the custom hook is used frequently in the application. It’s more practical to deploy this technique
to avoid unnecessary function invocations.

Exercises:

• Read more about running useEffect only on update²⁴⁰.
• Read more about running useEffect only once²⁴¹.

²⁴⁰https://www.robinwieruch.de/react-useeffect-only-on-update
²⁴¹https://www.robinwieruch.de/react-useeffect-only-once

https://www.robinwieruch.de/react-useeffect-only-on-update
https://www.robinwieruch.de/react-useeffect-only-once
https://www.robinwieruch.de/react-useeffect-only-on-update
https://www.robinwieruch.de/react-useeffect-only-once

React Maintenance 163

Don’t re-render if not needed

Earlier, we have explored React’s re-rendering mechanism. We’ll repeat this exercise for the App
and List components. For both components, add a logging statement:

src/App.js

const App = () => {

...

console.log('B:App');

return (...);

};

const List = ({ list, onRemoveItem }) =>

console.log('B:List') || (

{list.map((item) => (

<Item

key={item.objectID}

item={item}

onRemoveItem={onRemoveItem}

/>

))}

);

Because the List component has no function body, and developers are lazy folks who don’t want to
refactor the component for a simple logging statement, the List component uses the || operator
instead. This is a neat trick for adding a logging statement to a function component without a
function body. Since the console.log() on the left-hand side of the operator always evaluates to
false, the right-hand side of the operator gets always executed.

Code Playground

function getTheTruth() {

if (console.log('B:List')) {

return true;

} else {

return false;

}

}

React Maintenance 164

console.log(getTheTruth());

// B:List

// false

Let’s focus on the actual logging in the browser’s developer tools. You should see a similar output.
First, the App component renders, followed by its child components (e.g. List component).

Visualization

B:App

B:List

B:App

B:App

B:List

Note: If you are seeing more than these loggings, check whether your *src/index.js file uses
<React.StrictMode> as a wrapper for your App component. If it’s the case, remove the strict mode
and check your logging again. Explanation: In development mode, React’s StrictMode renders a
component twice to detect problems with your implementation in order to warn you about these.
This StrictMode is automatically excluded for applications in production. However, if you don’t
want to be confused by the multiple renders, remove StrictMode from the src/index.js file.*

Since a side-effect triggers data fetching after the first render, only the App component renders,
because the List component is replaced by a loading indicator in a conditional rendering. Once the
data arrives, both components render again.

Visualization

// initial render

B:App

B:List

// data fetching with loading

B:App

// re-rendering with data

B:App

B:List

So far, this behavior is acceptable, since everything renders on time. Now we’ll take this experiment
a step further, by typing into the SearchForm component’s input field. You should see the changes
with every character entered into the element:

React Maintenance 165

Visualization

B:App

B:List

What’s striking is that the List component shouldn’t re-render, but it does. The search feature
isn’t executed via its button, so the list passed to the List component remains the same for every
keystroke. This is React’s default behavior, re-rendering everything below a component with a state
change, which surprises many people. In other words, if a parent component re-renders, its child
components re-render as well. React does this by default, because preventing a re-render of child
components could lead to bugs, and the re-rendering mechanism of React is often fast enough by
default..

Sometimes we want to prevent re-rendering, however. For example, huge data sets displayed in a
table shouldn’t re-render if they are not affected by an update. It’s more efficient to perform an
equality check if something changed for the component. Therefore, we can use React’s memo API
to make this equality check for the props:

src/App.js

const List = React.memo(

({ list, onRemoveItem }) =>

console.log('B:List') || (

{list.map((item) => (

<Item

key={item.objectID}

item={item}

onRemoveItem={onRemoveItem}

/>

))}

)

);

However, the output stays the same when typing into the SearchForm’s input field:

Visualization

B:App

B:List

That’s because the list passed to the List component is the same, but the onRemoveItem callback
handler isn’t. If the App component re-renders, it always creates a new version of this callback
handler as a new function. Earlier, we used React’s useCallback Hook to prevent this behavior, by
creating a function only on a re-render (if one of its dependencies has changed):

React Maintenance 166

src/App.js

const App = () => {

...

const handleRemoveStory = React.useCallback((item) => {

dispatchStories({

type: 'REMOVE_STORY',

payload: item,

});

}, []);

...

console.log('B:App');

return (...);

};

Since the callback handler gets the item passed as an argument in its function signature, it doesn’t
have any dependencies and is declared only once when the App component initially renders. None
of the props passed to the List component should change now. Try it with the combination of React
memo and useCallback, to search via the SearchForm’s input field. The “B:List” logging disappears,
and only the App component re-renders with its “B:App” logging.

While all props passed to a component stay the same, the component renders again if its parent
component is forced to re-render. That’s React’s default behavior, which works most of the
time because the re-rendering mechanism is pretty fast. However, if re-rendering decreases the
performance of a React application, React’s memo API helps prevent re-rendering. As we have seen,
sometimes memo alone doesn’t help, though. Callback handlers are re-defined each time in the parent
component and passed as changed props to the component, which causes another re-render. In

React Maintenance 167

that case, useCallback is used for making the callback handler only change when its dependencies
change.

Exercises:

• Read more about React’s memo API²⁴².
• Read more about React’s useCallback Hook²⁴³.

Don’t rerun expensive computations

Sometimes we’ll have performance-intensive computations in our React components – between a
component’s function signature and return block – which run on every render. For this scenario, we
must create a use case in our current application first:

src/App.js

const getSumComments = (stories) => {

console.log('C');

return stories.data.reduce(

(result, value) => result + value.num_comments,

0

);

};

const App = () => {

...

const sumComments = getSumComments(stories);

return (

<div>

<h1>My Hacker Stories with {sumComments} comments.</h1>

...

</div>

);

};

If all arguments are passed to a function, it’s acceptable to have it outside the component, because it
does not have any further dependency needed from within the component. This prevents creating

²⁴²https://www.robinwieruch.de/react-memo
²⁴³https://www.robinwieruch.de/react-usecallback-hook

https://www.robinwieruch.de/react-memo
https://www.robinwieruch.de/react-usecallback-hook
https://www.robinwieruch.de/react-memo
https://www.robinwieruch.de/react-usecallback-hook

React Maintenance 168

the function on every render, so the useCallback hook becomes unnecessary. However, the function
still computes the value of summed comments on every render, which becomes a problem for more
expensive computations.

Each time text is typed in the input field of the SearchForm component, this computation runs again
with an output of “C”. This may be fine for a non-heavy computation like this one, but imagine this
computationwould takemore than 500ms. It would give the re-rendering a delay, because everything
in the component has to wait for this computation. We can tell React to only run a function if one of
its dependencies has changed. If no dependency changed, the result of the function stays the same.
React’s useMemo Hook helps us here:

src/App.js

const App = () => {

...

const sumComments = React.useMemo(() => getSumComments(stories), [

stories,

]);

return (...);

};

For every time someone types in the SearchForm, the computation shouldn’t run again. It only runs
if the dependency array, here stories, has changed. After all, this should only be used for cost
expensive computations which could lead to a delay of a (re-)rendering of a component.

React Maintenance 169

Now, after we went through these scenarios for useMemo, useCallback, and memo, remember that
these shouldn’t necessarily be used by default. Apply these performance optimizations only if you
run into performance bottlenecks. Most of the time this shouldn’t happen, because React’s rendering
mechanism is pretty efficient by default. Sometimes the check for utilities like memo can be more
expensive than the re-rendering itself.

Exercises:

• Confirm your source code²⁴⁴.
– Confirm the changes²⁴⁵.

• Read more about React’s useMemo Hook²⁴⁶.
• Download React Developer Tools as an extension for your browser. Open it for your application
in the browser via the browser’s developer tools and try its various features. For example, you
can use it to visualize React’s component tree and its updating components.

• Does the SearchForm re-render when removing an item from the List with the “Dismiss”
button? If it’s the case, apply performance optimization techniques to prevent re-rendering.

• Does each Item re-render when removing an item from the List with the “Dismiss” button? If
it’s the case, apply performance optimization techniques to prevent re-rendering.

• Remove all performance optimizations to keep the application simple. Our current application
doesn’t suffer from any performance bottlenecks. Try to avoid premature optimzations²⁴⁷. Use
this section and its further reading material as a reference, in case you run into performance
problems.

• Optional: Rate this section²⁴⁸.

²⁴⁴https://bit.ly/3AYYTpJ
²⁴⁵https://bit.ly/3aVxXgc
²⁴⁶https://www.robinwieruch.de/react-usememo-hook
²⁴⁷https://bit.ly/3AYktL8
²⁴⁸https://forms.gle/FwNrJSdLikquVzsB6

https://bit.ly/3AYYTpJ
https://bit.ly/3aVxXgc
https://www.robinwieruch.de/react-usememo-hook
https://bit.ly/3AYktL8
https://forms.gle/FwNrJSdLikquVzsB6
https://bit.ly/3AYYTpJ
https://bit.ly/3aVxXgc
https://www.robinwieruch.de/react-usememo-hook
https://bit.ly/3AYktL8
https://forms.gle/FwNrJSdLikquVzsB6

React Maintenance 170

TypeScript in React

TypeScript for JavaScript and React has many benefits for developing robust applications. Instead
of getting type errors on runtime in the command line or browser, TypeScript integration presents
them during compile time inside the IDE. It shortens the feedback loop for a developer, while it
improves the developer experience. The code becomes more self-documenting and readable, because
every variable is defined with a type. Also moving code blocks or performing a larger refactoring
of a codebase becomes much more efficient. Statically typed languages like TypeScript are trending
because of their benefits over dynamically typed languages like JavaScript. It’s useful to learn more
about TypeScript²⁴⁹ whenever possible.

To use TypeScript in React, install TypeScript and its dependencies into your application using the
command line. If you run into obstacles, follow the official TypeScript installation instructions for
create-react-app²⁵⁰:

Command Line

npm install --save typescript @types/node @types/react

npm install --save typescript @types/react-dom @types/jest

Next, rename all JavaScript files (.js) to TypeScript files (.tsx).

Command Line

mv src/index.js src/index.tsx

mv src/App.js src/App.tsx

Restart your development server in the command line. You may encounter compile errors in the
browser and IDE. If the latter doesn’t work, try installing a TypeScript plugin for your editor, or
extension for your IDE. After the initial TypeScript in React setup, we’ll add type safety²⁵¹ for the
entire src/App.tsx file, starting with typing the arguments of the custom hook:

²⁴⁹https://bit.ly/3G0l3vL
²⁵⁰https://bit.ly/3DYG880
²⁵¹https://bit.ly/3jhm6xi

https://bit.ly/3G0l3vL
https://bit.ly/3DYG880
https://bit.ly/3jhm6xi
https://bit.ly/3G0l3vL
https://bit.ly/3DYG880
https://bit.ly/3jhm6xi

React Maintenance 171

src/App.tsx

const useSemiPersistentState = (

key: string,

initialState: string

) => {

const [value, setValue] = React.useState(

localStorage.getItem(key) || initialState

);

React.useEffect(() => {

localStorage.setItem(key, value);

}, [value, key]);

return [value, setValue];

};

Adding types to the function’s arguments is more about Javascript than React. We are telling the
function to expect two arguments, which are JavaScript string primitives. Also, we can tell the
function to return an array ([]) with a string (state), and tell functions like the state updater

function that takes a value to return nothing (void):

src/App.tsx

const useSemiPersistentState = (

key: string,

initialState: string

): [string, (newValue: string) => void] => {

const [value, setValue] = React.useState(

localStorage.getItem(key) || initialState

);

React.useEffect(() => {

localStorage.setItem(key, value);

}, [value, key]);

return [value, setValue];

};

Related to React though, considering the previous type safety improvements for the custom hook, we
hadn’t to add types to the internal React hooks in the function’s body. That’s because type inference
works most of the time for React hooks out of the box. If the initial state of a React useState Hook
is a JavaScript string primitive, then the returned current state will be inferred as a string and the
returned state updater function will only take a string as an argument and return nothing:

React Maintenance 172

Code Playground

const [value, setValue] = React.useState('React');

// value is inferred to be a string

// setValue only takes a string as argument

If adding type safety becomes an aftermath for a React application and its components, there are
multiple ways on how to approach it. We will start with the props and state for the leaf components
of our application. For example, the Item component receives a story (here item) and a callback
handler function (here onRemoveItem). Starting out very verbose, we could add the inlined types for
both function arguments as we did before:

src/App.tsx

const Item = ({

item,

onRemoveItem,

}: {

item: {

objectID: string;

url: string;

title: string;

author: string;

num_comments: number;

points: number;

};

onRemoveItem: (item: {

objectID: string;

url: string;

title: string;

author: string;

num_comments: number;

points: number;

}) => void;

}) => (

...

);

There are two problems: the code is verbose, and it has duplicates. Let’s get rid of both problems by
defining a custom Story type outside the component, at the top of src/App.js:

React Maintenance 173

src/App.tsx
type Story = {

objectID: string;

url: string;

title: string;

author: string;

num_comments: number;

points: number;

};

...

const Item = ({

item,

onRemoveItem,

}: {

item: Story;

onRemoveItem: (item: Story) => void;

}) => (

...

);

The item is of type Story; the onRemoveItem function takes an item of type Story as an argument
and returns nothing. Next, clean up the code by defining the props of the Item component outside:

src/App.tsx
type ItemProps = {

item: Story;

onRemoveItem: (item: Story) => void;

};

const Item = ({ item, onRemoveItem }: ItemProps) => (

...

);

That’s the most popular way to type React component’s props with TypeScript. Fortunately, the
return type of the function component is inferred. However, if you want to explicitly use it, you can
do so with JSX.Element. From here, we can navigate up the component tree into the List component
and apply the same type definitions for the props:

React Maintenance 174

src/App.tsx

type Story = {

...

};

type Stories = Array<Story>;

...

type ListProps = {

list: Stories;

onRemoveItem: (item: Story) => void;

};

const List = ({ list, onRemoveItem }: ListProps) => (

{list.map((item) => (

<Item

key={item.objectID}

item={item}

onRemoveItem={onRemoveItem}

/>

))}

);

The onRemoveItem function is typed twice for the ItemProps and ListProps. To be more accurate,
you could extract this to a standalone defined OnRemoveItem TypeScript type and reuse it for both
onRemoveItem prop type definitions. Note, however, that development becomes increasingly difficult
as components are split up into different files. That’s why we will keep the duplication here. Now,
since we already have the Story and Stories types, we can repurpose them for other components.
Add the Story type to the callback handler in the App component:

React Maintenance 175

src/App.tsx

const App = () => {

...

const handleRemoveStory = (item: Story) => {

dispatchStories({

type: 'REMOVE_STORY',

payload: item,

});

};

...

};

The reducer function manages the Story type as well, without really touching it due to state and
action types. As the application’s developer, we know both objects and their shapes that are passed
to this reducer function:

src/App.tsx

type StoriesState = {

data: Stories;

isLoading: boolean;

isError: boolean;

};

type StoriesAction = {

type: string;

payload: any;

};

const storiesReducer = (

state: StoriesState,

action: StoriesAction

) => {

...

};

The Action type with its string and any (TypeScript wildcard) type definitions are still too broad;
and we gain no real type safety through it, because actions are not distinguishable. We can do
better by specifying each action TypeScript type as an interface, and using a union type (here
StoriesAction) for the final type safety:

React Maintenance 176

src/App.tsx

interface StoriesFetchInitAction {

type: 'STORIES_FETCH_INIT';

}

interface StoriesFetchSuccessAction {

type: 'STORIES_FETCH_SUCCESS';

payload: Stories;

}

interface StoriesFetchFailureAction {

type: 'STORIES_FETCH_FAILURE';

}

interface StoriesRemoveAction {

type: 'REMOVE_STORY';

payload: Story;

}

type StoriesAction =

| StoriesFetchInitAction

| StoriesFetchSuccessAction

| StoriesFetchFailureAction

| StoriesRemoveAction;

const storiesReducer = (

state: StoriesState,

action: StoriesAction

) => {

...

};

The reducer’s current state, action, and returned state (inferred) are type safe now. For example, if
you would dispatch an action to the reducer with an action type that’s not defined, you would get
a type error. Or if you would pass something else than a story to the action which removes a story,
you would get a type error as well.

Let’s shift our focus to the SearchForm component, which has callback handlers with events:

React Maintenance 177

src/App.tsx

type SearchFormProps = {

searchTerm: string;

onSearchInput: (event: React.ChangeEvent<HTMLInputElement>) => void;

onSearchSubmit: (event: React.FormEvent<HTMLFormElement>) => void;

};

const SearchForm = ({

searchTerm,

onSearchInput,

onSearchSubmit,

}: SearchFormProps) => (

...

);

Often using React.SyntheticEvent instead of React.ChangeEvent or React.FormEvent is usually
enough. Going up to the App component again, we apply the same type for the callback handler
there:

src/App.tsx

const App = () => {

...

const handleSearchInput = (

event: React.ChangeEvent<HTMLInputElement>

) => {

setSearchTerm(event.target.value);

};

const handleSearchSubmit = (

event: React.FormEvent<HTMLFormElement>

) => {

setUrl(`${API_ENDPOINT}${searchTerm}`);

event.preventDefault();

};

...

};

All that’s left is the InputWithLabel component. Before handling this component’s props, let’s take
a look at the ref from React’s useRef Hook. Unfortunately, the return value isn’t inferred:

React Maintenance 178

src/App.tsx

const InputWithLabel = ({ ... }) => {

const inputRef = React.useRef<HTMLInputElement>(null!);

React.useEffect(() => {

if (isFocused && inputRef.current) {

inputRef.current.focus();

}

}, [isFocused]);

We made the returned ref type safe, and typed it as read-only because we only execute the focus
method on it (read). React takes over for us there, setting the DOM element to the current property.

Lastly, we will apply type safety checks for the InputWithLabel component’s props. Note the
children prop with its React specific type and the optional types are signaled with a question
mark:

src/App.tsx

type InputWithLabelProps = {

id: string;

value: string;

type?: string;

onInputChange: (event: React.ChangeEvent<HTMLInputElement>) => void;

isFocused?: boolean;

children: React.ReactNode;

};

const InputWithLabel = ({

id,

value,

type = 'text',

onInputChange,

isFocused,

children,

}: InputWithLabelProps) => {

...

};

Both the type and isFocused properties are optional. Using TypeScript, you can tell the compiler
that these don’t need to be passed to the component as props. The children prop has a lot of
TypeScript type definitions that could be applicable to this concept, the most universal of which
is React.ReactNode from the React library.

React Maintenance 179

Our entire React application is finally typed by TypeScript, making it easy to spot type errors on
compile time. When adding TypeScript to your React application, start by adding type definitions
to your function’s arguments. These functions can be vanilla JavaScript functions, custom React
hooks, or React function components. Only when using React is it important to know specific types
for form elements, events, and JSX.

Exercises:

• Confirm your source code²⁵².
– Confirm the changes²⁵³.

• Dig into the React + TypeScript Cheatsheet²⁵⁴, because most common use cases we faced in
this section are covered there as well. There is no need to know everything from the top of
your head.

• While you continue with the learning experience in the following sections, remove or keep
your types with TypeScript. If you do the latter, add new types whenever you get a compile
error.

• Optional: Rate this section²⁵⁵.

²⁵²https://bit.ly/3vtF8p4
²⁵³https://bit.ly/3pjxlJr
²⁵⁴https://bit.ly/3phdf2H
²⁵⁵https://forms.gle/Pyw2oUjXV85hwk2t6

https://bit.ly/3vtF8p4
https://bit.ly/3pjxlJr
https://bit.ly/3phdf2H
https://forms.gle/Pyw2oUjXV85hwk2t6
https://bit.ly/3vtF8p4
https://bit.ly/3pjxlJr
https://bit.ly/3phdf2H
https://forms.gle/Pyw2oUjXV85hwk2t6

React Maintenance 180

Testing in React

Testing source code is an essential part of programming and should be seen as a mandatory exercise
for serious developers. The goal is to verify our source code’s quality and functionality before using
it in production. The testing pyramid²⁵⁶ will serve as our guide.

The testing pyramid includes end-to-end tests, integration tests, and unit tests. Unit tests are for
small, isolated blocks of code, such as a single function or component. Integration tests help us figure
out how well these blocks of code work together. An end-to-end test simulates a real-life scenario,
like a user logging into a web application. Unit tests are quick and easy to write and maintain;
end-to-end tests are the opposite.

Many unit tests are required to cover all the functions and components in aworking application, after
which several integration tests make sure that the most important units work together. Finally, a few
end-to-end tests to simulate critical user scenarios. In this learning experience, we will cover unit
and integration tests, in addition to a useful component-specific testing technique called snapshot
tests. E2E tests will be part of the exercise.

Choosing a testing library can be a challenge for React beginners, as there are many options. To
keep things simple, we’ll employ the most popular tools: Jest²⁵⁷ and React Testing Library²⁵⁸ (RTL).
Jest is a full-blown testing framework with test runners, test suites, test cases, and assertions. RTL
is used for rendering React components, triggering events like mouse clicks, and selecting HTML
elements from the DOM to perform assertions. We’ll explore both tools step-by-step, from setup to
unit testing to integration testing.

Test Suites, Test Cases, and Assertions

Test suites and test cases are commonly used in JavaScript and many other programming languages.
A test suite groups the individual test cases into one larger subject. Let’s see how this looks with Jest
²⁵⁶https://bit.ly/3BYEra1
²⁵⁷https://jestjs.io
²⁵⁸https://testing-library.com

https://bit.ly/3BYEra1
https://jestjs.io/
https://testing-library.com/
https://bit.ly/3BYEra1
https://jestjs.io/
https://testing-library.com/

React Maintenance 181

in our src/App.test.js file:

src/App.test.js

describe('something truthy and falsy', () => {

test('true to be true', () => {

expect(true).toBe(true);

});

test('false to be false', () => {

expect(false).toBe(false);

});

});

The “describe” block is our test suite, and the “test” blocks are our test cases. Note that test cases can
be used without test suites, which may apply to code outside the scope of this lesson:

src/App.test.js

test('true to be true', () => {

expect(true).toBe(true);

});

test('false to be false', () => {

expect(false).toBe(false);

});

Large subjects like functions or components often require multiple test cases, so it makes sense to
use them with test suites:

src/App.test.js

describe('App component', () => {

test('removes an item when clicking the Dismiss button', () => {

});

test('requests some initial stories from an API', () => {

});

});

Note that a “test” block can also be written as an “it” block. The blocks have the same purpose, except
the “it” block may be more familiar to programmers from other programming languages:

React Maintenance 182

src/App.test.js

describe('something truthy and falsy', () => {

it('true to be true', () => {

expect(true).toBe(true);

});

it('false to be false', () => {

expect(false).toBe(false);

});

});

Fortunately, create-react-app comes with Jest, so you don’t need to install anything. You can run
tests using the test script from your package.json in the command line as soon as create-react-app
is installed, and then execute your tests with npm test to produce the following output:

Command Line

PASS src/App.test.js

something truthy and falsy

✓ true to be true (3ms)

✓ false to be false (1ms)

Test Suites: 1 passed, 1 total

Tests: 2 passed, 2 total

Snapshots: 0 total

Time: 2.78s, estimated 4s

Ran all test suites related to changed files.

Watch Usage

› Press a to run all tests.

› Press f to run only failed tests.

› Press q to quit watch mode.

› Press p to filter by a filename regex pattern.

› Press t to filter by a test name regex pattern.

› Press Enter to trigger a test run.

When we run the test command, the test runner matches all files with a test.js suffix. Successful tests
are displayed in green, failed tests in red. The interactive test script watches your tests and source
code and executes tests when the files change. Jest also provides a few interactive commands, such
as pressing “f” to run failed tests and “a” for running all tests. Let’s see how this looks for a failed
test:

React Maintenance 183

src/App.test.js

describe('something truthy and falsy', () => {

test('true to be true', () => {

expect(true).toBe(true);

});

test('false to be false', () => {

expect(false).toBe(true);

});

});

The tests run again, and the command line output shows a failed test in red:

Command Line

FAIL src/App.test.js

something truthy and falsy

✓ true to be true (2ms)

� false to be false (4ms)

� something truthy and falsy › false to be false

expect(received).toBe(expected) // Object.is equality

Expected: true

Received: false

5 |

6 | test('false to be false', () => {

> 7 | expect(false).toBe(true);

| ^

8 | });

9 | });

10 |

at Object.<anonymous> (src/App.test.js:7:19)

Test Suites: 1 failed, 1 total

Tests: 1 failed, 1 passed, 2 total

Snapshots: 0 total

Time: 3.385s

Ran all test suites related to changed files.

React Maintenance 184

Watch Usage: Press w to show more.

Familiarize yourself with this test output, because it shows all failed tests, as well as information
on why they failed. Using this information, you can fix certain parts of your code until all tests run
green. Next, we’ll cover test assertions, two of which we’ve already used with Jest’s expect function.
An assertion works by expecting value on the left side (expect) to match a value on the right side
(toBe). toBe is only one of many available assertive functions provided by Jest.

src/App.test.js

describe('something truthy and falsy', () => {

test('true to be true', () => {

expect(true).toBeTruthy();

});

test('false to be false', () => {

expect(false).toBeFalsy();

});

});

Once you start testing, it’s a good practice to keep two command line interfaces open: one for
watching your tests (npm test), and one for developing your application (npm start). Also, source
control platforms like Git may require an additional command line interface for adding your source
code to the repository.

Exercises:

• Confirm your source code²⁵⁹.
– Confirm the changes²⁶⁰.

• Read more about Jest²⁶¹.

Unit Testing: Functions

A unit test is generally used to test components or functions in isolation. For functions, unit tests are
for input and output; for components, we test props or the callback handlers communicating to the
outside. Before we can perform a unit test on our src/App.js file, we must export components and
functions like the reducer from our src/App.js file with a named export:

²⁵⁹https://bit.ly/3C42rII
²⁶⁰https://bit.ly/3B2CesG
²⁶¹https://jestjs.io

https://bit.ly/3C42rII
https://bit.ly/3B2CesG
https://jestjs.io/
https://bit.ly/3C42rII
https://bit.ly/3B2CesG
https://jestjs.io/

React Maintenance 185

src/App.js

...

export default App;

export { storiesReducer, SearchForm, InputWithLabel, List, Item };

The exercises at the end of this chapter will cover all the remaining tests you should consider
performing. For now, we can import all the components and reducers in our src/App.test.js file
and we will focus on the reducer test first. We are also importing React here, because we have to
include it whenever we test React components:

src/App.test.js

import * as React from 'react';

import App, {

storiesReducer,

Item,

List,

SearchForm,

InputWithLabel,

} from './App';

Before we unit test our first React component, we’ll cover how to test just a JavaScript function.
The best candidate for this test use case is the storiesReducer function and one of its actions. Let’s
define some test data and the test suite for the reducer test:

src/App.test.js

import * as React from 'react';

...

const storyOne = {

title: 'React',

url: 'https://reactjs.org/',

author: 'Jordan Walke',

num_comments: 3,

points: 4,

objectID: 0,

};

React Maintenance 186

const storyTwo = {

title: 'Redux',

url: 'https://redux.js.org/',

author: 'Dan Abramov, Andrew Clark',

num_comments: 2,

points: 5,

objectID: 1,

};

const stories = [storyOne, storyTwo];

describe('storiesReducer', () => {

test('removes a story from all stories', () => {

});

});

If you extrapolate the test cases, there should be one test case per reducer action. We will focus on
a single action, which you can use to perform the rest as exercise yourself. The reducer function
accepts a state and an action, and then returns a new state, so reducer tests follow the same pattern:

src/App.test.js

...

describe('storiesReducer', () => {

test('removes a story from all stories', () => {

const action = // TODO: some action

const state = // TODO: some current state

const newState = storiesReducer(state, action);

const expectedState = // TODO: the expected state

expect(newState).toBe(expectedState);

});

});

For our case, we define action, state, and expected state according to our reducer. The expected state
will have one less story, which was removed as it passed to the reducer as action:

React Maintenance 187

src/App.test.js

describe('storiesReducer', () => {

test('removes a story from all stories', () => {

const action = { type: 'REMOVE_STORY', payload: storyOne };

const state = { data: stories, isLoading: false, isError: false };

const newState = storiesReducer(state, action);

const expectedState = {

data: [storyTwo],

isLoading: false,

isError: false,

};

expect(newState).toBe(expectedState);

});

});

This test still fails because we are using toBe instead of toStrictEqual. The toBe assertive function
makes a strict comparison like newState === expectedState. The content of the objects are the
same, however, their object references are not the same. We use toStrictEqual instead of toBe to
limit our comparison to the object’s content:

src/App.test.js

describe('storiesReducer', () => {

test('removes a story from all stories', () => {

const action = { type: 'REMOVE_STORY', payload: storyOne };

const state = { data: stories, isLoading: false, isError: false };

const newState = storiesReducer(state, action);

const expectedState = {

data: [storyTwo],

isLoading: false,

isError: false,

};

expect(newState).toStrictEqual(expectedState);

});

});

There is always the decision to make for JavaScript objects whether you want to make a strict
comparison or just a content comparison. Most often you only want to have a content comparison

React Maintenance 188

here, hence use toStrictEqual. For JavaScript primitives though, like strings or booleans, you can
still use toBe. Also note that there is a toEqual function which works slightly different²⁶² than
toStrictEqual.

We continue to make adjustments until the reducer test turns green, which is really testing a
JavaScript function with a certain input and expecting a certain output. We haven’t done any testing
methods regarding React yet.

Remember, a reducer function will always follow the same test pattern: given a state and action,
we expect the following new state. Every action of the reducer could be another test case in our
reducer’s test suite, so consider using the exercises as a way to move through your entire source
code.

Exercises:

• Confirm your source code²⁶³.
– Confirm the changes²⁶⁴.

• Continue to write a test case for every reducer action and its state transition.
• Read more about Jest’s assertive functions like toBe and toStrictEqual.

Unit Testing: Components

We tested our first function in JavaScript with Jest in the previous sections. Next, we’ll test our first
isolated React component with a unit test. Since we are using create-react-app, we don’t need to
set up the React Testing Library (RTL), which is necessary for our component tests because it is the
default testing library. If you are using a custom React setup like React with Webpack, RTL as a
library would need to be installed.

The following functions from React Testing Library are used for component tests:

src/App.test.js

import * as React from 'react';

import {

render,

screen,

fireEvent,

act,

} from '@testing-library/react';

...

²⁶²https://bit.ly/3jlPpii
²⁶³https://bit.ly/3jjIhD3
²⁶⁴https://bit.ly/3E175aO

https://bit.ly/3jlPpii
https://bit.ly/3jjIhD3
https://bit.ly/3E175aO
https://bit.ly/3jlPpii
https://bit.ly/3jjIhD3
https://bit.ly/3E175aO

React Maintenance 189

Start with the Item component, where we assert whether it renders all expected properties based on
its given props. Based on the input (props), we are asserting an output (rendered HTML). We’ll use
RTL’s render function in each test to render a React component. In this case, we render the Item
component as an element and pass it an item object – one of our previously defined stories – as
props:

src/App.test.js

describe('Item', () => {

test('renders all properties', () => {

render(<Item item={storyOne} />);

});

});

After rendering it, we can use the debug function from RTL’s screen object:

src/App.test.js

describe('Item', () => {

test('renders all properties', () => {

render(<Item item={storyOne} />);

screen.debug();

});

});

Run the tests with npm test, and you’ll see the output from the debug function. It prints all your
component’s and child component’s HTML elements. The output should be similar to the following:

src/App.test.js

<body>

<div>

<a

href="https://reactjs.org/"

>

React

Jordan Walke

React Maintenance 190

3

4

<button

type="button"

>

Dismiss

</button>

</div>

</body>

Here you should form the habit of using RTL’s debug function whenever you render a new
component in a React component test. The function gives a useful overview of what is rendered
and informs the best way to proceed with testing. Based on the current output, we can start with
our first assertion. RTL’s screen object provides a function called getByText, one of many search
functions:

src/App.test.js

describe('Item', () => {

test('renders all properties', () => {

render(<Item item={storyOne} />);

expect(screen.getByText('Jordan Walke')).toBeInTheDocument();

expect(screen.getByText('React')).toHaveAttribute(

'href',

'https://reactjs.org/'

);

});

});

For the two assertions, we use the two assertive functions toBeInTheDocument and toHaveAttribute.
These are to verify an element with the text “Jordan Walke” is in the document, and the presence of
an element with the text “React” with a specific href attribute value. Over time, you will see more
of these assertive functions being used.

RTL’s getByText search function finds the one element with the visible texts “Jordan Walke” and
“React”. We can use the getAllByText equivalent to find more than one element. Similar equivalents
exist for other search functions.

React Maintenance 191

The getByText function returns the element with a text that users can see, which relates to the real-
world use of the application. Note that getByText is not the only search function, though. Another
highly-used search function is the getByRole or getAllByRole function:

src/App.test.js

describe('Item', () => {

test('renders all properties', () => {

...

});

test('renders a clickable dismiss button', () => {

render(<Item item={storyOne} />);

expect(screen.getByRole('button')).toBeInTheDocument();

});

});

The getByRole function is usually used to retrieve elements by aria-label attributes²⁶⁵. However,
there are also implicit roles on HTML elements²⁶⁶ – like button for a button element. Thus you
can select elements not only by visible text, but also by their (implicit) accessibility role with React
Testing Library. A neat feature of getRoleBy is that it suggests roles if you provide a role that’s not
available²⁶⁷. Both, getByText and getByRole are RTL’s most widely used search functions.

We can continue here by asserting not only that everything is in the document, but also by asserting
whether our events work as expected. For example, the Item component’s button element can be
clicked and we want to verify that the callback handler gets called. Therefore, we are using Jest for
creating a mocked function which we provide as a callback handler to the Item component. Then,
after firing a click event with React Testing Library on the button, we want to assert that the callback
handler function has been called:

src/App.test.js

describe('Item', () => {

test('renders all properties', () => {

...

});

test('renders a clickable dismiss button', () => {

...

});

²⁶⁵https://mzl.la/3B3bBDP
²⁶⁶https://mzl.la/3n7SgN7
²⁶⁷https://bit.ly/3pnPXrQ

https://mzl.la/3B3bBDP
https://mzl.la/3n7SgN7
https://bit.ly/3pnPXrQ
https://bit.ly/3pnPXrQ
https://mzl.la/3B3bBDP
https://mzl.la/3n7SgN7
https://bit.ly/3pnPXrQ

React Maintenance 192

test('clicking the dismiss button calls the callback handler', () => {

const handleRemoveItem = jest.fn();

render(<Item item={storyOne} onRemoveItem={handleRemoveItem} />);

fireEvent.click(screen.getByRole('button'));

expect(handleRemoveItem).toHaveBeenCalledTimes(1);

});

});

Jest lets us pass a test-specific function to the Item component as a prop. These test-specific functions
are called spy, stub, or mock; each is used for different test scenarios. The jest.fn() returns us a
mock for the actual function, which lets us capture when it’s called. As a result, we can use Jest
assertions like toHaveBeenCalledTimes, which lets us assert a number of times the function has
been called; and toHaveBeenCalledWith, to verify arguments that are passed to it.

Every time we want to spy a JavaScript function, whether it has been called or whether it received
certain arguments, we can use Jest’s helper function to create a mocked function. Then, after
invoking this function implicitly with RTL’s fireEvent object’s function, we can assert that the
provided callback handler – which is the mocked function – has been called one time.

In the last exercise we tested the Item component’s input and output via rendering assertions and
callback handler assertions. We are not testing real state changes yet, however, as there is no actual
item removed from the DOM after clicking the “Dismiss” button. The logic to remove the item from
the list is in the App component, but we are only testing the Item component in isolation. Sometimes
it’s just useful to test whether a single block works, before testing everything all together. We will
test the actual implementation logic for removing an Item when we cover the App component later.

For now, the SearchForm component will use the InputWithLabel component as a child component.
As before, we will start by rendering the component and providing all the essential props:

src/App.test.js

describe('SearchForm', () => {

const searchFormProps = {

searchTerm: 'React',

onSearchInput: jest.fn(),

onSearchSubmit: jest.fn(),

};

test('renders the input field with its value', () => {

render(<SearchForm {...searchFormProps} />);

screen.debug();

React Maintenance 193

});

});

Again, we start with the debugging. After evaluating what renders, we can make the first assertion
for the SearchForm. With input fields, the getByDisplayValue search function is the perfect
candidate to return the input field as an element:

src/App.test.js

describe('SearchForm', () => {

const searchFormProps = { ... };

test('renders the input field with its value', () => {

render(<SearchForm {...searchFormProps} />);

expect(screen.getByDisplayValue('React')).toBeInTheDocument();

});

});

Since the input element is rendered with a default value, we can use the default value (here “React”),
which is the displayed value in our test assertion. If the input element doesn’t have a default value,
the application could show a placeholder with the placeholder HTML attribute on the input field.
Then we’d use another function from RTL called getByPlaceholderText, which is used for searching
an element with a placeholder text.

Because the debug information presented multiple options to query the HTML, we could continue
with one more test to assert the rendered label:

src/App.test.js

describe('SearchForm', () => {

const searchFormProps = { ... };

test('renders the input field with its value', () => {

...

});

test('renders the correct label', () => {

render(<SearchForm {...searchFormProps} />);

expect(screen.getByLabelText(/Search/)).toBeInTheDocument();

});

});

React Maintenance 194

The getByLabelText search function allows us to find an element by a label in a form. This is useful
for components that render multiple labels and HTML controls. However, you may have noticed
we used a regular expression²⁶⁸ here. If we used a string instead, the colon for “Search:” must be
included. By using a regular expression, we are matching strings that include the “Search” string,
which makes finding elements much more efficient. For this reason, you may find yourself using
regular expressions instead of strings quite often.

Anyway, perhaps it would be more interesting to test the interactive parts of the SearchForm
component. Since our callback handlers, which are passed as props to the SearchForm component,
are already mocked with Jest, we can assert whether these functions get called appropriately:

src/App.test.js

describe('SearchForm', () => {

const searchFormProps = {

searchTerm: 'React',

onSearchInput: jest.fn(),

onSearchSubmit: jest.fn(),

};

...

test('calls onSearchInput on input field change', () => {

render(<SearchForm {...searchFormProps} />);

fireEvent.change(screen.getByDisplayValue('React'), {

target: { value: 'Redux' },

});

expect(searchFormProps.onSearchInput).toHaveBeenCalledTimes(1);

});

test('calls onSearchSubmit on button submit click', () => {

render(<SearchForm {...searchFormProps} />);

fireEvent.submit(screen.getByRole('button'));

expect(searchFormProps.onSearchSubmit).toHaveBeenCalledTimes(1);

});

});

Similar to the Item component, we tested input (props) and output (callback handler) for the Search-
Form component. The difference is that the SearchForm component renders a child component called

²⁶⁸https://mzl.la/3CdDjiZ

https://mzl.la/3CdDjiZ
https://mzl.la/3CdDjiZ

React Maintenance 195

InputWithLabel. If you check the debug output, you’ll likely notice that the React Testing Library
doesn’t bother with this child component. This happens because the end-user wouldn’t care about
the component either, so the React Testing Library outputs all the HTML that matters for the test.

All the callback handler tests for Item and SearchForm component test only whether the functions
have been called. No React re-rendering occurs, because all the components are tested in isolation
without statemanagement, which solely happens in the App component. Real testingwith RTL starts
further up the component tree, where state changes and side-effects can be evaluated. Therefore, let
me introduce integration testing next.

Exercises:

• Confirm your source code²⁶⁹.
– Confirm the changes²⁷⁰.

• Read more about React Testing Library²⁷¹.
– Read more about search functions²⁷².

• Add tests for your List and InputWithLabel components.

Integration Testing: Component

React Testing Library adheres to a single core philosophy: instead of testing implementation details
of React components, it tests how users interact with the application and if it works as expected.
This becomes especially powerful for integration tests.

We’ll need to provide some data before we test the App component, since it makes requests for data
from the remote API after its initial render. We’ll start by using axios in the App component for our
data request, after which we’ll mock it with Jest at the top of the testing file:

src/App.test.js

...

import axios from 'axios';

...

jest.mock('axios');

...

Next, implement the data you want to be returned from the mocked API request with a JavaScript
Promise, and use it for the axios mock. Afterward, we can render our component and assume the
correct data is mocked for our API request:

²⁶⁹https://bit.ly/2Z3Vc54
²⁷⁰https://bit.ly/3E28IoZ
²⁷¹https://bit.ly/30KueQH
²⁷²https://bit.ly/3jjUw2t

https://bit.ly/2Z3Vc54
https://bit.ly/3E28IoZ
https://bit.ly/30KueQH
https://bit.ly/3jjUw2t
https://bit.ly/2Z3Vc54
https://bit.ly/3E28IoZ
https://bit.ly/30KueQH
https://bit.ly/3jjUw2t

React Maintenance 196

src/App.test.js

describe('App', () => {

test('succeeds fetching data', () => {

const promise = Promise.resolve({

data: {

hits: stories,

},

});

axios.get.mockImplementationOnce(() => promise);

render(<App />);

screen.debug();

});

});

Now we’ll use React Testing Library’s act helper function to wait until the promise resolves after
the component’s initial render. With async/await, we can implement this like synchronous code.
The debug function from RTL is useful because it outputs the App component’s elements before and
after the request:

src/App.test.js

describe('App', () => {

test('succeeds fetching data', async () => {

const promise = Promise.resolve({

data: {

hits: stories,

},

});

axios.get.mockImplementationOnce(() => promise);

render(<App />);

screen.debug();

await act(() => promise);

screen.debug();

});

});

React Maintenance 197

In the debug’s output, we see the loading indicator renders for the first debug function, but not the
second. This is because the data fetching and component re-render complete after we resolve the
promise in our test with act. Let’s assert the loading indicator for this case:

src/App.test.js

describe('App', () => {

test('succeeds fetching data', async () => {

const promise = Promise.resolve({

data: {

hits: stories,

},

});

axios.get.mockImplementationOnce(() => promise);

render(<App />);

expect(screen.queryByText(/Loading/)).toBeInTheDocument();

await act(() => promise);

expect(screen.queryByText(/Loading/)).toBeNull();

});

});

Because we’re testing for a returned element that is absent, this time we use RTL’s queryByText
instead of the getByText function. Using getByText in this instance would produce an error, because
the element can’t be found; but with queryByText the value just returns null.

Again, we’re using a regular expression /Loading/ instead of a string 'Loading'. To use a string,
we’d have to explicitly use 'Loading ...' instead of 'Loading'. With a regular expression, we
don’t need to provide the whole string, we just need to match a part of it.

Next, we can assert whether or not our fetched data gets rendered as expected:

React Maintenance 198

src/App.test.js

describe('App', () => {

test('succeeds fetching data', async () => {

const promise = Promise.resolve({

data: {

hits: stories,

},

});

axios.get.mockImplementationOnce(() => promise);

render(<App />);

expect(screen.queryByText(/Loading/)).toBeInTheDocument();

await act(() => promise);

expect(screen.queryByText(/Loading/)).toBeNull();

expect(screen.getByText('React')).toBeInTheDocument();

expect(screen.getByText('Redux')).toBeInTheDocument();

expect(screen.getAllByText('Dismiss').length).toBe(2);

});

});

The happy path²⁷³ for the data fetching is tested now. Similarly, we can test the unhappy path in case
of a failed API request. The promise needs to reject and the error should be caught with a try/catch
block:

src/App.test.js

describe('App', () => {

test('succeeds fetching data', async () => {

...

});

test('fails fetching data', async () => {

const promise = Promise.reject();

axios.get.mockImplementationOnce(() => promise);

render(<App />);

²⁷³https://bit.ly/3jiAbuB

https://bit.ly/3jiAbuB
https://bit.ly/3jiAbuB

React Maintenance 199

expect(screen.getByText(/Loading/)).toBeInTheDocument();

try {

await act(() => promise);

} catch (error) {

expect(screen.queryByText(/Loading/)).toBeNull();

expect(screen.queryByText(/went wrong/)).toBeInTheDocument();

}

});

});

There may be some confusion about when to use getBy or the queryBy search variants. As a rule of
thumb, use getBy for single elements, and getAllBy for multiple elements. If you are checking for
elements that aren’t present, use queryBy (or queryAllBy). In this code, I preferred using queryBy for
the sake of alignment and readability.

Now we know the initial data fetching works for our App component, so we can move to testing
user interactions. We have only tested user actions in the child components thus far, by firing events
without any state and side-effect. Next, we’ll remove an item from the list after the data has been
fetched successfully. Since the item with “Jordan Walke” is the first rendered item in the list, it gets
removed if we click the first “Dismiss” button:

src/App.test.js

describe('App', () => {

...

test('removes a story', async () => {

const promise = Promise.resolve({

data: {

hits: stories,

},

});

axios.get.mockImplementationOnce(() => promise);

render(<App />);

await act(() => promise);

expect(screen.getAllByText('Dismiss').length).toBe(2);

expect(screen.getByText('Jordan Walke')).toBeInTheDocument();

React Maintenance 200

fireEvent.click(screen.getAllByText('Dismiss')[0]);

expect(screen.getAllByText('Dismiss').length).toBe(1);

expect(screen.queryByText('Jordan Walke')).toBeNull();

});

});

To test the search feature, we set up the mocking differently, because we’re handling initial request,
plus another request once the user searches for more stories by a specific search term:

src/App.test.js

describe('App', () => {

...

test('searches for specific stories', async () => {

const reactPromise = Promise.resolve({

data: {

hits: stories,

},

});

const anotherStory = {

title: 'JavaScript',

url: 'https://en.wikipedia.org/wiki/JavaScript',

author: 'Brendan Eich',

num_comments: 15,

points: 10,

objectID: 3,

};

const javascriptPromise = Promise.resolve({

data: {

hits: [anotherStory],

},

});

axios.get.mockImplementation((url) => {

if (url.includes('React')) {

return reactPromise;

}

React Maintenance 201

if (url.includes('JavaScript')) {

return javascriptPromise;

}

throw Error();

});

});

});

Instead of mocking the request once with Jest (mockImplementationOnce), now we mock multiple
requests (mockImplementation). Depending on the incoming URL, the request either returns the
initial list (“React”-related stories), or the new list (“JavaScript”-related stories). If we provide an
incorrect URL to the request, the test throws an error for confirmation. As before, let’s render the
App component:

src/App.test.js

describe('App', () => {

...

test('searches for specific stories', async () => {

const reactPromise = Promise.resolve({ ... });

const anotherStory = { ... };

const javascriptPromise = Promise.resolve({ ... });

axios.get.mockImplementation((url) => {

...

});

// Initial Render

render(<App />);

// First Data Fetching

await act(() => reactPromise);

expect(screen.queryByDisplayValue('React')).toBeInTheDocument();

expect(screen.queryByDisplayValue('JavaScript')).toBeNull();

expect(screen.queryByText('Jordan Walke')).toBeInTheDocument();

React Maintenance 202

expect(

screen.queryByText('Dan Abramov, Andrew Clark')

).toBeInTheDocument();

expect(screen.queryByText('Brendan Eich')).toBeNull();

});

});

We are resolving the first promise for the initial render. We expect the input field to render “React”,
and the two items in the list to render the creators of React and Redux. We also make sure that
no stories related to JavaScript are rendered yet. Next, change the input field’s value by firing an
event, and asserting that the new value is rendered from the App component through all its child
components in the actual input field:

src/App.test.js

describe('App', () => {

...

test('searches for specific stories', async () => {

...

expect(screen.queryByText('Jordan Walke')).toBeInTheDocument();

expect(

screen.queryByText('Dan Abramov, Andrew Clark')

).toBeInTheDocument();

expect(screen.queryByText('Brendan Eich')).toBeNull();

// User Interaction -> Search

fireEvent.change(screen.queryByDisplayValue('React'), {

target: {

value: 'JavaScript',

},

});

expect(screen.queryByDisplayValue('React')).toBeNull();

expect(

screen.queryByDisplayValue('JavaScript')

).toBeInTheDocument();

});

});

React Maintenance 203

Lastly, we can submit this search request by firing a submit event with the button. The new search
term is used from the App component’s state, so the new URL searches for JavaScript-related stories
that we have mocked before:

src/App.test.js

describe('App', () => {

...

test('searches for specific stories', async () => {

...

expect(screen.queryByDisplayValue('React')).toBeNull();

expect(

screen.queryByDisplayValue('JavaScript')

).toBeInTheDocument();

fireEvent.submit(screen.queryByText('Submit'));

// Second Data Fetching

await act(() => javascriptPromise);

expect(screen.queryByText('Jordan Walke')).toBeNull();

expect(

screen.queryByText('Dan Abramov, Andrew Clark')

).toBeNull();

expect(screen.queryByText('Brendan Eich')).toBeInTheDocument();

});

});

Brendan Eich is rendered as the creator of JavaScript, while the creators of React and Redux are
removed. This test depicts an entire test scenario in one test case. We can move through each step –
initial fetching, changing the input field value, submitting the form, and retrieving new data from
the API – with the tools we’ve used.

React Testing Library with Jest is the most popular library combination for React testing. RTL
provides relevant testing tools, while Jest has a general testing framework for test suites, test cases,
assertions, and mocking capabilities. If you need an alternative to RTL, consider trying Enzyme²⁷⁴
by Airbnb.

²⁷⁴https://www.robinwieruch.de/react-testing-jest-enzyme

https://www.robinwieruch.de/react-testing-jest-enzyme
https://www.robinwieruch.de/react-testing-jest-enzyme

React Maintenance 204

Exercises:

• Confirm your source code²⁷⁵.
– Confirm the changes²⁷⁶.

• Read more about React Testing Library in React²⁷⁷.
• Read more about E2E tests in React²⁷⁸.
• While you continue with the upcoming sections, keep your tests green and add new tests when
needed.

Snapshot Testing

Facebook created snapshot tests as a more lightweight way to test React components and their
structure. A snapshot test creates an instance of your rendered component’s output as HTML
elements and their structure. This snapshot is compared to the same snapshot in the next test to
give more output on how the rendered component changed and show why any tests failed in the
difference. You can accept or deny any differences in your source code until the component functions
as intended.

Snapshot tests are lightweight, with less focus on the implementation details of the component. Let’s
perform a snapshot test for our SearchForm component:

src/App.test.js

describe('SearchForm', () => {

...

test('renders snapshot', () => {

const { container } = render(<SearchForm {...searchFormProps} />);

expect(container.firstChild).toMatchSnapshot();

});

});

Run these tests with npm test and you’ll see a new src/_snapshots_ folder has been created in your
project folder. Similar to RTL’s debug function, there’s a snapshot of your rendered SearchForm
component as an HTML element structure in the file. Next, head to src/App.js file and change the
HTML. For example, try removing the bold text from the SearchForm component:

²⁷⁵https://bit.ly/3DOSIqe
²⁷⁶https://bit.ly/3jf3pKM
²⁷⁷https://www.robinwieruch.de/react-testing-library
²⁷⁸https://www.robinwieruch.de/react-testing-cypress

https://bit.ly/3DOSIqe
https://bit.ly/3jf3pKM
https://www.robinwieruch.de/react-testing-library
https://www.robinwieruch.de/react-testing-cypress
https://bit.ly/3DOSIqe
https://bit.ly/3jf3pKM
https://www.robinwieruch.de/react-testing-library
https://www.robinwieruch.de/react-testing-cypress

React Maintenance 205

src/App.js

const SearchForm = ({

searchTerm,

onSearchInput,

onSearchSubmit,

}) => (

<form onSubmit={onSearchSubmit}>

<InputWithLabel

id="search"

value={searchTerm}

isFocused

onInputChange={onSearchInput}

>

Search:

</InputWithLabel>

<button type="submit" disabled={!searchTerm}>

Submit

</button>

</form>

);

After the next test, the command line should look similar to the following:

Command Line

- Snapshot

+ Received

<label

for="search"

>

-

- Search:

-

+ Search:

</label>

This is a typical case for a breaking snapshot test. When a component’s HTML structure is changed
unintentionally, the snapshot test informs us in the command line. To fix it, we’d go into the
src/App.js file and edit the SearchForm component. For intentional changes, press “u” on the
command line for interactive tests and a new snapshot will be created. Try it and see how the
snapshot file in your src/_snapshots_ folder changes.

React Maintenance 206

Jest stores snapshots in a folder so it can validate the difference against future snapshot tests. Users
can share these snapshots across teams using version control platforms like git. This is how we make
sure the DOM stays the same.

Snapshot tests are useful for setting up tests quickly in React, though it’s best to avoid using them
exclusively. Instead, use snapshot tests for components that don’t update often, are less complex,
and where it’s easier to compare component results.

Exercises:

• Confirm your source code²⁷⁹.
– Confirm the changes²⁸⁰.

• Add one snapshot test for each of all the other components and check the content of your
snapshots folder.

• Optional: Rate this section²⁸¹.

²⁷⁹https://bit.ly/3G7tF3M
²⁸⁰https://bit.ly/3lUYpge
²⁸¹https://forms.gle/tMJyXvxS1AmRvSUU9

https://bit.ly/3G7tF3M
https://bit.ly/3lUYpge
https://forms.gle/tMJyXvxS1AmRvSUU9
https://bit.ly/3G7tF3M
https://bit.ly/3lUYpge
https://forms.gle/tMJyXvxS1AmRvSUU9

React Maintenance 207

React Project Structure

With multiple React components in one file, you might wonder why we didn’t put components
into different files from the start. We already have multiple components in the src/App.js file that
can be defined in their own files/folders (sometimes also called modules). For learning, it’s more
practical to keep these components in one place. Once your application grows, consider splitting
these components into multiple files/folders/modules so it scales properly.

Before we restructure our React project, recap JavaScript’s import and export statements²⁸². Im-
porting and exporting files are two fundamental concepts in JavaScript you must learn before
React. There’s no right way to structure a React application, as they evolve naturally along with
the project’s structure. We’ll complete a simple refactoring for the project’s folder/file structure
for the sake of learning about the process. Afterward, there will be a few additional options about
restructuring this project or React projects in general. You can continue with the restructured project,
though we’ll continue developing with the src/App.js file to keep things simple.

On the command line in your project’s folder, navigate into the src/ folder and create the following
component dedicated files:

Command Line

touch src/List.js src/InputWithLabel.js src/SearchForm.js

Move every component from the src/App.js file in its own file, except for the List component which
has to share its place with the Item component in the src/List.js file. Then in every file make sure
to import React and to export the component which needs to be used from the file. For example, in
src/List.js file:

src/List.js

import * as React from 'react';

const List = ({ list, onRemoveItem }) => (

{list.map((item) => (

<Item

key={item.objectID}

item={item}

onRemoveItem={onRemoveItem}

/>

))}

);

²⁸²https://www.robinwieruch.de/javascript-import-export

https://www.robinwieruch.de/javascript-import-export
https://www.robinwieruch.de/javascript-import-export

React Maintenance 208

const Item = ({ item, onRemoveItem }) => (

{item.title}

{item.author}

{item.num_comments}

{item.points}

<button type="button" onClick={() => onRemoveItem(item)}>

Dismiss

</button>

);

export { List };

Since only the List component uses the Item component, we can keep it in the same file. If this
changes because the Item component is used elsewhere, we can give the Item component its own
file. The SearchForm component in the src/SearchForm.js file must import the InputWithLabel
component. Like the Item component, we could have left the InputWithLabel component next to the
SearchForm; but our goal is to make InputWithLabel component reusable with other components:

src/SearchForm.js

import * as React from 'react';

import { InputWithLabel } from './InputWithLabel';

const SearchForm = ({

searchTerm,

onSearchInput,

onSearchSubmit,

}) => (

<form onSubmit={onSearchSubmit}>

<InputWithLabel

id="search"

value={searchTerm}

isFocused

onInputChange={onSearchInput}

>

Search:

</InputWithLabel>

React Maintenance 209

<button type="submit" disabled={!searchTerm}>

Submit

</button>

</form>

);

export { SearchForm };

The App component has to import all the components it needs to render. It doesn’t need to import
InputWithLabel, because it’s only used for the SearchForm component.

src/App.js

import * as React from 'react';

import axios from 'axios';

import { SearchForm } from './SearchForm';

import { List } from './List';

...

const App = () => {

...

};

export default App;

Components that are used in other components now have their own file. If a component should be
used as a reusable component (e.g. InputWithLabel), it receives its own file. Only if a component
(e.g. Item) is dedicated to another component (e.g. List) do we keep it in the same file. From here,
there are several strategies to structure your folder/file hierarchy. One scenario is to create a folder
for every component:

React Maintenance 210

Project Structure

- List/

-- index.js

- SearchForm/

-- index.js

- InputWithLabel/

-- index.js

The index.js file holds the implementation details for the component, while other files in the same
folder have different responsibilities like styling, testing, and types:

Project Structure

- List/

-- index.js

-- style.css

-- test.js

-- types.js

If using CSS-in-JS, where no CSS file is needed, one could still have a separate style.js file for all the
styled components:

Project Structure

- List/

-- index.js

-- style.js

-- test.js

-- types.js

Sometimes we’ll need to move from a technical-oriented folder structure to a domain-oriented
folder structure, especially once the project grows. Universal shared/ folder is shared across domain
specific components:

Project Structure

- Messages.js

- Users.js

- shared/

-- Button.js

-- Input.js

If you scale this to the deeper level folder structure, each component will have its own folder in a
domain-oriented project structure as well:

React Maintenance 211

Project Structure

- Messages/

-- index.js

-- style.css

-- test.js

-- types.js

- Users/

-- index.js

-- style.css

-- test.js

-- types.js

- shared/

-- Button/

--- index.js

--- style.css

--- test.js

--- types.js

-- Input/

--- index.js

--- style.css

--- test.js

--- types.js

There are many ways on how to structure your React project from small to large project: simple
to complex folder structure; one-level nested to two-level nested folder nesting; dedicated folders
for styling, types, and testing next to implementation logic. There is no right way for folder/file
structures. However, in the exercises, you will find my 5 steps approach to structure a React project.
After all, a project’s requirements evolve over time and so should its structure. If keeping all assets
in one file feels right, then there is no rule against it.

Exercises:

• Confirm your source code²⁸³.
– Confirm the changes²⁸⁴.

• Read more about JavaScript’s import and export statements²⁸⁵.
• Read more about React Folder Structures²⁸⁶.
• Keep the current folder structure if you feel confident. The ongoing sections will omit it, only
using the src/App.js file.

• Optional: Rate this section²⁸⁷.

²⁸³https://bit.ly/2XxzDcG
²⁸⁴https://bit.ly/3DW8109
²⁸⁵https://www.robinwieruch.de/javascript-import-export
²⁸⁶https://www.robinwieruch.de/react-folder-structure
²⁸⁷https://forms.gle/yLzszsmtdB1DQBCe7

https://bit.ly/2XxzDcG
https://bit.ly/3DW8109
https://www.robinwieruch.de/javascript-import-export
https://www.robinwieruch.de/react-folder-structure
https://forms.gle/yLzszsmtdB1DQBCe7
https://bit.ly/2XxzDcG
https://bit.ly/3DW8109
https://www.robinwieruch.de/javascript-import-export
https://www.robinwieruch.de/react-folder-structure
https://forms.gle/yLzszsmtdB1DQBCe7

Real World React (Advanced)
We’ve covered most of React’s fundamentals, its legacy features, and techniques for maintaining
applications. Now it’s time to dive into developing real-world React features. Each of the following
sections will come with a task. Try to tackle these tasks without the optional hints first, but be aware
that these are going to be challenging on your first attempt. If you need help, use the optional hints
or follow the instructions from the section.

Real World React (Advanced) 213

Sorting

Task: Working with a list of items often includes interactions that make data more approachable
by users. So far, every item was listed with each of its properties. To make it explorable, the list
should enable the sorting of each property by title, author, comments, and points in ascending or
descending order. Sorting in only one direction is fine, because sorting in the other direction will be
part of the next task.

Optional Hints:

• Introduce a new sort state in the App or List component.
• For each property (e.g. title, author, points, num_comments) implement an HTML button
which sets the sort state for this property.

• Use the sort state to apply an appropriate sort function on the list.
• Using a utility library like Lodash²⁸⁸ for its sortBy function is encouraged.

Okay, let’s tackle this task! We will treat the list of data like a table. Each row represents an item of
the list and each column represents one property of the item. Introducing headers should provide
the user more guidance about each column:

²⁸⁸https://lodash.com

https://lodash.com/
https://lodash.com/

Real World React (Advanced) 214

src/App.js

const List = ({ list, onRemoveItem }) => (

<li style={{ display: 'flex' }}>

Title

Author

Comments

Points

Actions

{list.map((item) => (

<Item

key={item.objectID}

item={item}

onRemoveItem={onRemoveItem}

/>

))}

);

We are using inline style for the most basic layout. To match the layout of the header with the rows,
give the rows in the Item component a layout as well:

src/App.js

const Item = ({ item, onRemoveItem }) => (

<li style={{ display: 'flex' }}>

{item.title}

{item.author}

{item.num_comments}

{item.points}

<button type="button" onClick={() => onRemoveItem(item)}>

Dismiss

</button>

);

Real World React (Advanced) 215

In the ongoing implementation, we will remove the style attributes, because it takes up lots of space
and clutters the actual implementation logic (hence extracting it into proper CSS). But I encourage
you to keep it for yourself.

The List component will handle the new sort state. This can also be done in the App component,
but in the end, only the List component needs it, so we can lift the state directly to it. The sort state
initializes with a 'NONE' state, so the list items are displayed in the order they are fetched from the
API. Furthermore, we will add a new handler to set the sort state with a sort-specific key:

src/App.js

const List = ({ list, onRemoveItem }) => {

const [sort, setSort] = React.useState('NONE');

const handleSort = (sortKey) => {

setSort(sortKey);

};

return (

...

);

};

In the List component’s header, buttons can help us to set the sort state for each column/property.
An inline handler is used to sneak in the sort-specific key (sortKey). When the button for the “Title”
column is clicked, 'TITLE' becomes the new sort state:

src/App.js

const List = ({ list, onRemoveItem }) => {

...

return (

<div>

<div>

<button type="button" onClick={() => handleSort('TITLE')}>

Title

</button>

<button type="button" onClick={() => handleSort('AUTHOR')}>

Author

</button>

Real World React (Advanced) 216

<button type="button" onClick={() => handleSort('COMMENT')}>

Comments

</button>

<button type="button" onClick={() => handleSort('POINT')}>

Points

</button>

Actions

</div>

{list.map((item) => ...)}

</div>

);

};

The state management for the new feature is implemented, but we don’t see anything when our
buttons are clicked yet. This happens because the sorting mechanism hasn’t been applied to the
actual list. Sorting an array with JavaScript isn’t trivial, because every JavaScript primitive (e.g.
string, boolean, number) comes with edge cases when an array is sorted by its properties. We will
use a library called Lodash²⁸⁹ to solve this, which comes with many JavaScript utility functions (e.g.
sortBy). First, install it via the command line:

Command Line

npm install lodash

Second, at the top of your file, import the utility function for sorting:

src/App.js

import * as React from 'react';

import axios from 'axios';

import { sortBy } from 'lodash';

...

Third, create a JavaScript object (also called dictionary in this case) with all the possible sortKey and
sort function mappings. Each specific sort key is mapped to a function that sorts the incoming list.
Sorting by 'NONE' returns the unsorted list; sorting by 'POINT' returns a list and its items sorted by
the points property, and so on:

²⁸⁹https://lodash.com

https://lodash.com/
https://lodash.com/

Real World React (Advanced) 217

src/App.js

const SORTS = {

NONE: (list) => list,

TITLE: (list) => sortBy(list, 'title'),

AUTHOR: (list) => sortBy(list, 'author'),

COMMENT: (list) => sortBy(list, 'num_comments').reverse(),

POINT: (list) => sortBy(list, 'points').reverse(),

};

const List = ({ list, onRemoveItem }) => {

...

};

With the sort (sortKey) state and all possible sort variations (SORTS) at our disposal, we can sort the
list before mapping it:

src/App.js

const List = ({ list, onRemoveItem }) => {

const [sort, setSort] = React.useState('NONE');

const handleSort = (sortKey) => {

setSort(sortKey);

};

const sortFunction = SORTS[sort];

const sortedList = sortFunction(list);

return (

<div>

...

{sortedList.map((item) => (

<Item

key={item.objectID}

item={item}

onRemoveItem={onRemoveItem}

/>

))}

</div>

);

};

Real World React (Advanced) 218

Task’s done and here comes the recap: First we extracted the sort function from the dictionary by
its sortKey (state), then we applied the function to the list before mapping it to render each Item
component. Second, we rendered HTML buttons as header columns to give our users interaction.
Then, we added implementation details for each button by changing the sort state. Finally, we used
the sort state to sort the actual list.

Exercises:

• Confirm your source code²⁹⁰.
– Confirm the changes²⁹¹.

• Read more about Lodash²⁹².
• Why did we use numeric properties like points and num_comments for a reverse sort?
• Use your styling skills to give the user feedback about the current active sort. This mechanism
can be as straightforward as giving the active sort button a different color.

• Optional: Rate this section²⁹³.

²⁹⁰https://bit.ly/3aUfX5W
²⁹¹https://bit.ly/2ZfbVTb
²⁹²https://lodash.com
²⁹³https://forms.gle/GM71SDZZWPQWEwmB7

https://bit.ly/3aUfX5W
https://bit.ly/2ZfbVTb
https://lodash.com/
https://forms.gle/GM71SDZZWPQWEwmB7
https://bit.ly/3aUfX5W
https://bit.ly/2ZfbVTb
https://lodash.com/
https://forms.gle/GM71SDZZWPQWEwmB7

Real World React (Advanced) 219

Reverse Sort

Task: The sort feature works, but the ordering only includes one direction. Implement a reverse sort
when a sort button is clicked twice, so it becomes a toggle between normal (ascending) and reverse
(descending) sort.

Optional Hints:

• Consider that reverse or normal sort could be just another state (e.g. isReverse) next to the
sortKey.

• Set the new state in the handleSort handler based on the previous sort.
• Use the new isReverse state for sorting the list with the sort function from the dictionary with
the optionally applied reverse() function from JavaScript arrays.

Let’s get to the task. The initial sort direction works for strings, as well as numeric sorts like the
reverse sort for JavaScript numbers that arranges them from high to low. Now we need another
state to track whether the sort is reversed or normal:

src/App.js

const List = ({ list, onRemoveItem }) => {

const [sort, setSort] = React.useState({

sortKey: 'NONE',

isReverse: false,

});

...

};

Next, give the sort handler logic to see if the incoming sortKey triggers are a normal or reverse sort.
If the sortKey is the same as the one in the state, it should be a reverse sort, but only if the sort state
wasn’t already reversed:

src/App.js

const List = ({ list, onRemoveItem }) => {

const [sort, setSort] = React.useState({

sortKey: 'NONE',

isReverse: false,

});

const handleSort = (sortKey) => {

const isReverse = sort.sortKey === sortKey && !sort.isReverse;

Real World React (Advanced) 220

setSort({ sortKey: sortKey, isReverse: isReverse });

};

const sortFunction = SORTS[sort.sortKey];

const sortedList = sortFunction(list);

return (

...

);

};

Lastly, depending on the new isReverse state, apply the sort function from the dictionary with or
without the built-in JavaScript reverse method for arrays:

src/App.js

const List = ({ list, onRemoveItem }) => {

const [sort, setSort] = React.useState({

sortKey: 'NONE',

isReverse: false,

});

const handleSort = (sortKey) => {

const isReverse = sort.sortKey === sortKey && !sort.isReverse;

setSort({ sortKey, isReverse });

};

const sortFunction = SORTS[sort.sortKey];

const sortedList = sort.isReverse

? sortFunction(list).reverse()

: sortFunction(list);

return (

...

);

};

The reverse sort is now operational! Congratulations, you have a fully sortable list now. And by the
way: For the object passed to the state updater function, we use what is called a shorthand object
initializer notation:

Real World React (Advanced) 221

src/App.js

const firstName = 'Robin';

const user = {

firstName: firstName,

};

console.log(user);

// { firstName: "Robin" }

When the property name in your object is the same as your variable name, you can omit the
key/value pair and just write the name:

src/App.js

const firstName = 'Robin';

const user = {

firstName,

};

console.log(user);

// { firstName: "Robin" }

If necessary, read more about JavaScript Object Initializers²⁹⁴.

Exercises:

• Confirm your source code²⁹⁵.
– Confirm the changes²⁹⁶.

• Consider the drawback of keeping the sort state in the List instead of the App component. If
you don’t know, sort the list by “Title” and search for other stories afterward. What would be
different if the sort state would be in the App component.

• Use your styling skills to give the user feedback about the current active sort and its reverse
state. It could be an arrow up or arrow down SVG²⁹⁷ next to each active sort button.

• Optional: Rate this section²⁹⁸.

²⁹⁴https://mzl.la/2XuN651
²⁹⁵https://bit.ly/3lVe7Ib
²⁹⁶https://bit.ly/3jerTE3
²⁹⁷https://bit.ly/3lXfLZN
²⁹⁸https://forms.gle/ZoJSHFJf2swcBHXM6

https://mzl.la/2XuN651
https://bit.ly/3lVe7Ib
https://bit.ly/3jerTE3
https://bit.ly/3lXfLZN
https://forms.gle/ZoJSHFJf2swcBHXM6
https://mzl.la/2XuN651
https://bit.ly/3lVe7Ib
https://bit.ly/3jerTE3
https://bit.ly/3lXfLZN
https://forms.gle/ZoJSHFJf2swcBHXM6

Real World React (Advanced) 222

Remember Last Searches

Task: Remember the last five search terms which hit the API, and provide a button to move quickly
between searches. When the buttons are clicked, stories for the search term should be fetched again.

Optional Hints:

• Don’t use a new state for this feature. Instead, reuse the url state and setUrl state updater
function to fetch stories from the API. Adapt them to multiple urls as state, and to set multiple
urlswith setUrls. The last URL from urls can be used to fetch the data, and the last five URLs
from urls can be used to display the buttons.

Let’s get to it. First, we will refactor all url to urls state and all setUrl to setUrls state updater
functions. Instead of initializing the state with an url as a string, make it an array with the initial
url as its only entry:

src/App.js
const App = () => {

...

const [urls, setUrls] = React.useState([

`${API_ENDPOINT}${searchTerm}`,

]);

...

};

Second, instead of using the current url state for data fetching, use the last url entry from the urls
array. If another url is added to the list of urls, it is used to fetch data instead:

Real World React (Advanced) 223

src/App.js

const App = () => {

...

const handleFetchStories = React.useCallback(async () => {

dispatchStories({ type: 'STORIES_FETCH_INIT' });

try {

const lastUrl = urls[urls.length - 1];

const result = await axios.get(lastUrl);

dispatchStories({

type: 'STORIES_FETCH_SUCCESS',

payload: result.data.hits,

});

} catch {

dispatchStories({ type: 'STORIES_FETCH_FAILURE' });

}

}, [urls]);

...

};

And third, instead of storing the url string as state with the state updater function, concatenate the
new url using the concat method with the previous urls in an array for the new state:

src/App.js

const App = () => {

...

const handleSearchSubmit = (event) => {

const url = `${API_ENDPOINT}${searchTerm}`;

setUrls(urls.concat(url));

event.preventDefault();

};

...

};

Real World React (Advanced) 224

With each search, another URL is stored in our state of urls. Next, render a button for each of the
last five URLs. We’ll include a new universal handler for these buttons, and each passes a specific
url with a more specific inline handler:

src/App.js

const getLastSearches = (urls) => urls.slice(-5);

...

const App = () => {

...

const handleLastSearch = (url) => {

// do something

};

const lastSearches = getLastSearches(urls);

return (

<div>

<h1>My Hacker Stories</h1>

<SearchForm ... />

{lastSearches.map((url) => (

<button

key={url}

type="button"

onClick={() => handleLastSearch(url)}

>

{url}

</button>

))}

...

</div>

);

};

Next, instead of showing the whole URL of the last search in the button as button text, show only
the search term by replacing the API’s endpoint with an empty string:

Real World React (Advanced) 225

src/App.js

const extractSearchTerm = (url) => url.replace(API_ENDPOINT, '');

const getLastSearches = (urls) =>

urls.slice(-5).map((url) => extractSearchTerm(url));

...

const App = () => {

...

const lastSearches = getLastSearches(urls);

return (

<div>

...

{lastSearches.map((searchTerm) => (

<button

key={searchTerm}

type="button"

onClick={() => handleLastSearch(searchTerm)}

>

{searchTerm}

</button>

))}

...

</div>

);

};

The getLastSearches function now returns search terms instead of URLs. The actual searchTerm is
passed to the inline handler instead of the url. By mapping over the list of urls in getLastSearches,
we can extract the search term for each urlwithin the array’s map method. Making it more concise,
it can also look like this:

Real World React (Advanced) 226

src/App.js

const getLastSearches = (urls) =>

urls.slice(-5).map(extractSearchTerm);

Now we’ll provide functionality for the new handler used by every button, since clicking one of
these buttons should trigger another search. Since we use the urls state for fetching data, and since
we know the last URL is always used for data fetching, concatenate a new url to the list of urls to
trigger another search request:

src/App.js

const App = () => {

...

const handleLastSearch = (searchTerm) => {

const url = `${API_ENDPOINT}${searchTerm}`;

setUrls(urls.concat(url));

};

...

};

If you compare this new handler’s implementation logic to the handleSearchSubmit, you may
see some common functionality. Extract this common functionality to a new handler and a new
extracted utility function:

src/App.js

const getUrl = (searchTerm) => `${API_ENDPOINT}${searchTerm}`;

...

const App = () => {

...

const handleSearchSubmit = (event) => {

handleSearch(searchTerm);

event.preventDefault();

};

const handleLastSearch = (searchTerm) => {

handleSearch(searchTerm);

Real World React (Advanced) 227

};

const handleSearch = (searchTerm) => {

const url = getUrl(searchTerm);

setUrls(urls.concat(url));

};

...

};

The new utility function can be used somewhere else in the App component. If you extract
functionality that can be used by two parties, always check to see if it can be used by a third party:

src/App.js

const App = () => {

...

// important: still wraps the returned value in []

const [urls, setUrls] = React.useState([getUrl(searchTerm)]);

...

};

The functionality should work, but it complains or breaks if the same search term is used more
than once, because searchTerm is used for each button element as key attribute. Make the key more
specific by concatenating it with the index of the mapped array.

src/App.js

const App = () => {

...

return (

<div>

...

{lastSearches.map((searchTerm, index) => (

<button

key={searchTerm + index}

type="button"

onClick={() => handleLastSearch(searchTerm)}

>

{searchTerm}

Real World React (Advanced) 228

</button>

))}

...

</div>

);

};

It’s not the perfect solution, because the index isn’t a stable key (especially when adding items to
the list); however, it doesn’t break in this scenario. The feature works now, but you can add further
UX improvements by following the tasks below.

More Tasks:

• (1) Do not show the current search as a button, only the five preceding searches. Hint: Adapt
the getLastSearches function.

• (2) Don’t show duplicated searches. Searching twice for “React” shouldn’t create two different
buttons. Hint: Adapt the getLastSearches function.

• (3) Set the SearchForm component’s input field value with the last search term if one of the
buttons is clicked.

The source of the five rendered buttons is the getLastSearches function. There, we take the array
of urls and return the last five entries from it. Now we’ll change this utility function to return the
last six entries instead of five by removing the last one, in order to not show the current search as a
button. Afterward, only the five previous searches are displayed as buttons:

src/App.js

const getLastSearches = (urls) =>

urls

.slice(-6)

.slice(0, -1)

.map(extractSearchTerm);

If the same search is executed two or more times in a row, duplicate buttons appear, which is likely
not your desired behavior. It would be acceptable to group identical searches into one button if they
followed each other. We will solve this problem in the utility function as well. Before separating the
array into the five previous searches, group the identical searches:

Real World React (Advanced) 229

src/App.js

const getLastSearches = (urls) =>

urls

.reduce((result, url, index) => {

const searchTerm = extractSearchTerm(url);

if (index === 0) {

return result.concat(searchTerm);

}

const previousSearchTerm = result[result.length - 1];

if (searchTerm === previousSearchTerm) {

return result;

} else {

return result.concat(searchTerm);

}

}, [])

.slice(-6)

.slice(0, -1);

The reduce function starts with an empty array as its result. The first iteration concatenates the
searchTermwe extracted from the first url into the result. Every extracted searchTerm is compared
to the one before it. If the previous search term is different from the current, concatenate the
searchTerm to the result. If the search terms are identical, return the result without adding anything.

The SearchForm component’s input field should be set with the new searchTerm if one of the last
search buttons is clicked. We can solve this using the state updater function for the specific value
used in the SearchForm component.

src/App.js

const App = () => {

...

const handleLastSearch = (searchTerm) => {

setSearchTerm(searchTerm);

handleSearch(searchTerm);

};

...

};

Real World React (Advanced) 230

Lastly, extract the feature’s new rendered content from this section as a standalone component, to
keep the App component lightweight:

src/App.js

const App = () => {

...

const lastSearches = getLastSearches(urls);

return (

<div>

...

<SearchForm ... />

<LastSearches

lastSearches={lastSearches}

onLastSearch={handleLastSearch}

/>

<hr />

...

</div>

);

};

const LastSearches = ({ lastSearches, onLastSearch }) => (

<>

{lastSearches.map((searchTerm, index) => (

<button

key={searchTerm + index}

type="button"

onClick={() => onLastSearch(searchTerm)}

>

{searchTerm}

</button>

))}

</>

);

This feature wasn’t an easy one. Lots of fundamental React but also JavaScript knowledge was
needed to accomplish it. If you had no problems implementing it yourself or in following the

Real World React (Advanced) 231

instructions, you are very well set. If you had one or the other issue, don’t worry too much about
it. Maybe you even figured out another way to solve this task and it may have turned out simpler
than the one I showed here.

Exercises:

• Confirm your source code²⁹⁹.
– Confirm the changes³⁰⁰.

• Read more about grouping in JavaScript³⁰¹.
• Optional: Rate this section³⁰².

²⁹⁹https://bit.ly/3vtAYgZ
³⁰⁰https://bit.ly/3jlnHm1
³⁰¹https://www.robinwieruch.de/javascript-groupby/
³⁰²https://forms.gle/LhNVodZgu8qTqHhN6

https://bit.ly/3vtAYgZ
https://bit.ly/3jlnHm1
https://www.robinwieruch.de/javascript-groupby/
https://forms.gle/LhNVodZgu8qTqHhN6
https://bit.ly/3vtAYgZ
https://bit.ly/3jlnHm1
https://www.robinwieruch.de/javascript-groupby/
https://forms.gle/LhNVodZgu8qTqHhN6

Real World React (Advanced) 232

Paginated Fetch

Searching for popular stories via Hacker News API is only one step towards a fully functional search
engine, and there are many ways to fine-tune the search. Take a closer look at the data structure
and observe how the Hacker News API³⁰³ returns more than a list of hits. Specifically, it returns a
paginated list. The page property, which is 0 in the first response, can be used to fetchmore paginated
lists as results. You only need to pass the next page with the same search term to the API.

The following shows how to implement a paginated fetch with the Hacker News data structure. If
you are used to pagination from other applications, you may have a row of buttons from 1-10 in
your mind – where the currently selected page is highlighted 1-[3]-10 and where clicking one of the
buttons leads to fetching and displaying this subset of data.

In contrast, we will implement the feature as infinite pagination. Instead of rendering a single
paginated list on a button click, we will render all paginated lists as one list with one button to fetch
the next page. Every additional paginated list is concatenated at the end of the one list.

³⁰³https://hn.algolia.com/api

https://hn.algolia.com/api
https://hn.algolia.com/api

Real World React (Advanced) 233

Task: Rather than fetching only the first page of a list, extend the functionality for fetching
succeeding pages. Implement this as infinite pagination on button click.

Optional Hints:

• Extend the API_ENDPOINT with the parameters needed for the paginated fetch.
• Store the page from the result as state after fetching the data.
• Fetch the first page (0) of data with every search.
• Fetch the succeeding page (page + 1) for every additional request triggered with a new HTML
button.

Let’s do this! First, extend the API constant so it can deal with paginated data later. We will turn
this one constant:

src/App.js

const API_ENDPOINT = 'https://hn.algolia.com/api/v1/search?query=';

const getUrl = (searchTerm) => `${API_ENDPOINT}${searchTerm}`;

Into a composable API constant with its parameters:

Real World React (Advanced) 234

src/App.js

const API_BASE = 'https://hn.algolia.com/api/v1';

const API_SEARCH = '/search';

const PARAM_SEARCH = 'query=';

// careful: notice the ? in between

const getUrl = (searchTerm) =>

`${API_BASE}${API_SEARCH}?${PARAM_SEARCH}${searchTerm}`;

Fortunately, we don’t need to adjust the API endpoints at other places of the application, because
we extracted a common getUrl function for it. However, there is one spot where we must address
this logic for the future:

src/App.js

const extractSearchTerm = url => url.replace(API_ENDPOINT, '');

In the next steps, it won’t be sufficient to replace the base of our API endpoint, which is no longer
in our code. With more parameters for the API endpoint, the URL becomes more complex. It will
change from X to Y:

src/App.js

// X

https://hn.algolia.com/api/v1/search?query=react

// Y

https://hn.algolia.com/api/v1/search?query=react&page=0

It’s better to extract the search term by extracting everything between ? and &. Also consider that
the query parameter is directly after the ? and all other parameters like page follow it:

src/App.js

const extractSearchTerm = (url) =>

url.substring(url.lastIndexOf('?') + 1, url.lastIndexOf('&'));

The key (query=) also needs to be replaced, leaving only the value (searchTerm):

Real World React (Advanced) 235

src/App.js

const extractSearchTerm = (url) =>

url

.substring(url.lastIndexOf('?') + 1, url.lastIndexOf('&'))

.replace(PARAM_SEARCH, '');

Essentially, we’ll trim the string until we leave only the search term:

src/App.js

// url

https://hn.algolia.com/api/v1/search?query=react&page=0

// url after substring

query=react

// url after replace

react

Next, the returned result from the Hacker News API delivers us the page data:

src/App.js

const App = () => {

...

const handleFetchStories = React.useCallback(async () => {

dispatchStories({ type: 'STORIES_FETCH_INIT' });

try {

const lastUrl = urls[urls.length - 1];

const result = await axios.get(lastUrl);

dispatchStories({

type: 'STORIES_FETCH_SUCCESS',

payload: {

list: result.data.hits,

page: result.data.page,

},

});

} catch {

dispatchStories({ type: 'STORIES_FETCH_FAILURE' });

}

}, [urls]);

Real World React (Advanced) 236

...

};

We need to store this data to make paginated fetches later:

src/App.js

const storiesReducer = (state, action) => {

switch (action.type) {

case 'STORIES_FETCH_INIT':

...

case 'STORIES_FETCH_SUCCESS':

return {

...state,

isLoading: false,

isError: false,

data: action.payload.list,

page: action.payload.page,

};

case 'STORIES_FETCH_FAILURE':

...

case 'REMOVE_STORY':

...

default:

throw new Error();

}

};

const App = () => {

...

const [stories, dispatchStories] = React.useReducer(

storiesReducer,

{ data: [], page: 0, isLoading: false, isError: false }

);

...

};

Extend the API endpoint with the new page parameter. This change was supported by our premature
optimizations earlier, when we extracted the search term from the URL:

Real World React (Advanced) 237

src/App.js

const API_BASE = 'https://hn.algolia.com/api/v1';

const API_SEARCH = '/search';

const PARAM_SEARCH = 'query=';

const PARAM_PAGE = 'page=';

// careful: notice the ? and & in between

const getUrl = (searchTerm, page) =>

`${API_BASE}${API_SEARCH}?${PARAM_SEARCH}${searchTerm}&${PARAM_PAGE}${page}`;

Next, we must adjust all getUrl invocations by passing the page argument. Since the initial search
and the last search always fetch the first page (0), we pass this page as an argument to the function
for retrieving the appropriate URL:

src/App.js

const App = () => {

...

const [urls, setUrls] = React.useState([getUrl(searchTerm, 0)]);

...

const handleSearchSubmit = (event) => {

handleSearch(searchTerm, 0);

event.preventDefault();

};

const handleLastSearch = (searchTerm) => {

setSearchTerm(searchTerm);

handleSearch(searchTerm, 0);

};

const handleSearch = (searchTerm, page) => {

const url = getUrl(searchTerm, page);

setUrls(urls.concat(url));

};

...

};

Real World React (Advanced) 238

To fetch the next page when a button is clicked, we’ll need to increment the page argument in this
new handler:

src/App.js

const App = () => {

...

const handleMore = () => {

const lastUrl = urls[urls.length - 1];

const searchTerm = extractSearchTerm(lastUrl);

handleSearch(searchTerm, stories.page + 1);

};

...

return (

<div>

...

{stories.isLoading ? (

<p>Loading ...</p>

) : (

<List list={stories.data} onRemoveItem={handleRemoveStory} />

)}

<button type="button" onClick={handleMore}>

More

</button>

</div>

);

};

We’ve implemented data fetching with the dynamic page argument. The initial and last searches
always use the first page, and every fetch with the new “More” button uses an incremented page.
There is one crucial bug when trying the feature, though: the new fetches don’t extend the previous
list, but completely replace it.

Real World React (Advanced) 239

We solve this in the reducer by avoiding the replacement of current data with new data, concate-
nating the paginated lists:

src/App.js

const storiesReducer = (state, action) => {

switch (action.type) {

case 'STORIES_FETCH_INIT':

...

case 'STORIES_FETCH_SUCCESS':

return {

...state,

isLoading: false,

isError: false,

data:

action.payload.page === 0

? action.payload.list

: state.data.concat(action.payload.list),

page: action.payload.page,

};

case 'STORIES_FETCH_FAILURE':

...

case 'REMOVE_STORY':

...

default:

throw new Error();

}

};

The displayed list grows after fetching more data with the new button. However, there is still a

Real World React (Advanced) 240

flicker straining the UX. When fetching paginated data, the list disappears for a moment because
the loading indicator appears and reappears after the request resolves.

The desired behavior is to render the list – which is an empty list in the beginning – and replace the
“More” button with the loading indicator only for the next requests. This is a common UI refactoring
for conditional rendering when the task evolves from a single list to paginated lists:

src/App.js

const App = () => {

...

return (

<div>

...

<List list={stories.data} onRemoveItem={handleRemoveStory} />

{stories.isLoading ? (

<p>Loading ...</p>

) : (

<button type="button" onClick={handleMore}>

More

</button>

)}

</div>

);

};

It’s possible to fetch ongoing data for popular stories now. When working with third-party APIs, it’s
always a good idea to explore its API surface. Every remote API returns different data structures, so
its features may vary.

Real World React (Advanced) 241

Exercises:

• Confirm your source code³⁰⁴.
– Confirm the changes³⁰⁵.

• Revisit the Hacker News API documentation³⁰⁶: Is there a way to fetch more items in a list for
a page by just adding further parameters to the API endpoint?

• Revisit the beginning of this section which speaks about pagination and infinite pagination.
Howwould you implement a normal pagination component with buttons from 1-[3]-10, where
each button fetches and displays only one page of the list?

• Instead of having one “More” button, how would you implement infinite pagination with an
infinite scroll technique? Rather than clicking a button for fetching the next page explicitly, the
infinite scroll could fetch the next page once the viewport of the browser hits the bottom of
the displayed list.

• Optional: Rate this section³⁰⁷.

³⁰⁴https://bit.ly/3plSBym
³⁰⁵https://bit.ly/3vu8OT1
³⁰⁶https://hn.algolia.com/api
³⁰⁷https://forms.gle/maPsfzHLba8gheCQA

https://bit.ly/3plSBym
https://bit.ly/3vu8OT1
https://hn.algolia.com/api
https://forms.gle/maPsfzHLba8gheCQA
https://bit.ly/3plSBym
https://bit.ly/3vu8OT1
https://hn.algolia.com/api
https://forms.gle/maPsfzHLba8gheCQA

Deploying a React Application
Now it’s time to get out into the world with your React application. There are many ways to deploy
a React application to production, and many competing providers that offer this service. We’ll keep
it simple here by narrowing it down on one provider, after which you’ll be equipped to check out
other hosting providers on your own.

Deploying a React Application 243

Build Process

So far, everything we’ve done has been the development stage of the application, when the
development server handles everything: packaging all files to one application and serving it on
localhost on your local machine. As a result, our code isn’t available for anyone else.

The next step is to take your application to the production stage by hosting it on a remote server,
called deployment, making it accessible for users of your application. Before an application can
go public, it needs to be packaged as one essential application. Redundant code, testing code, and
duplications are removed. There is also a process called minification at work which reduces the code
size once more.

Fortunately, optimizations and packaging, also called bundling, comes with the build tools in create-
react-app. First, build your application on the command line:

Command Line

npm run build

This creates a new build/ folder in your project with the bundled application. You could take this
folder and deploy it on a hosting provider now, but we’ll use a local server to mimic this process
before engaging in the real thing. First, install an HTTP server on your machine:

Command Line

npm install -g http-server

Next, serve your application with this local HTTP server:

Command Line

http-server build/

The process can also be done on demand with a single command:

Command Line

npx http-server build/

After entering one of the commands, a URL is presented that provides access to your optimized,
packaged and hosted application. It’s sent through a local IP address that can be made available
over your local network, meaning we’re hosting the application on our local machine.

Exercises:

• Optional: Rate this section³⁰⁸.

³⁰⁸https://forms.gle/hFsut8q7eYsWfYL7A

https://forms.gle/hFsut8q7eYsWfYL7A
https://forms.gle/hFsut8q7eYsWfYL7A

Deploying a React Application 244

Deploy to Firebase

After we’ve built a full-fledged application in React, the final step is deployment. It is the tipping
point of getting your ideas into the world, from learning how to code to producing applications. We
will use Firebase Hosting for deployment.

Firebase works for create-react-app, as well as most libraries and frameworks like Angular and Vue.
First, install the Firebase CLI globally to the node modules:

Command Line

npm install -g firebase-tools

Using a global installation of the Firebase CLI lets us deploy applications without concern over
project dependency. For any globally-installed node package, remember to update it to a newer
version with the same command as often as you can:

Command Line

npm install -g firebase-tools

If you don’t have a Firebase project yet, sign up for a Firebase account³⁰⁹ and create a new project
there. Then you can associate the Firebase CLI with the Firebase account (Google account):

Command Line

firebase login

A URL will display in the command line that you can open in a browser, or the Firebase CLI opens
it. Choose a Google account to create a Firebase project, and give Google the necessary permissions.
Return to the command line to verify a successful login.

Next, move to the project’s folder and execute the following command, which initializes a Firebase
project for the Firebase hosting features:

Command Line

firebase init

Next, choose the Hosting option. If you’re interested in using another tool next to Firebase Hosting,
add other options:

³⁰⁹https://console.firebase.google.com

https://console.firebase.google.com/
https://console.firebase.google.com/

Deploying a React Application 245

Command Line

? Which Firebase CLI features do you want to set up for this folder? Press Space to \

select features, then Enter to confirm your choices.

? Database: Deploy Firebase Realtime Database Rules

? Firestore: Deploy rules and create indexes for Firestore

? Functions: Configure and deploy Cloud Functions

-> Hosting: Configure and deploy Firebase Hosting sites

? Storage: Deploy Cloud Storage security rules

Google becomes aware of all Firebase projects associated with an account after login, and we can
select one from the Firebase platform:

Command Line

First, let's associate this project directory with a Firebase project.

You can create multiple project aliases by running firebase use --add,

but for now we'll just set up a default project.

? Select a default Firebase project for this directory:

-> my-react-project-abc123 (my-react-project)

i Using project my-react-project-abc123 (my-react-project)

There are a few other configuration steps to define. Instead of using the default public/ folder, we
want to use the build/ folder from create-react-app. If you set up the bundling with a tool like
Webpack yourself, you can choose the appropriate name for the build folder:

Command Line

? What do you want to use as your public directory? build

? Configure as a single-page app (rewrite all urls to /index.html)? Yes

? File public/index.html already exists. Overwrite? No

The create-react-app application creates a build/ folder after we perform the npm run build for the
first time. The folder contains all the merged content from the public/ folder and the src/ folder.
Since it is a single page application, we want to redirect the user to the index.html file, so the React
router can handle client-side routing.

Now your Firebase initialization is complete. This step created a few configuration files for Firebase
Hosting in your project’s folder. You can read more about them in Firebase’s documentation³¹⁰ for
configuring redirects, a 404 page, or headers. Finally, deploy your React application with Firebase in
the command line:

³¹⁰https://bit.ly/3DVgbpG

https://bit.ly/3DVgbpG
https://bit.ly/3DVgbpG

Deploying a React Application 246

Command Line

firebase deploy

After a successful deployment, you should see a similar output with your project’s identifier:

Command Line

Project Console: https://console.firebase.google.com/project/my-react-project-abc123\

/overview

Hosting URL: https://my-react-project-abc123.firebaseapp.com

Visit both pages to observe the results. The first link navigates to your Firebase project’s dashboard,
where you’ll see a new panel for the Firebase Hosting. The second link navigates to your deployed
React application.

If you see a blank page for your deployed React application, make sure the public key/value pair
in the firebase.json is set to build, or whichever name you chose for this folder. Second, verify
you’ve run the build script for your React app with npm run build. Finally, check out the official
troubleshoot area for deploying create-react-app applications to Firebase³¹¹. Try another deployment
with firebase deploy.

Exercises:

• Read more about Firebase Hosting³¹².
• Connect your domain to your Firebase deployed application³¹³.
• Optional: If you want to have a managed cloud server, check out DigitalOcean³¹⁴. It’s more
work, but it allows more control. I host all my websites, web applications, and backend APIs
there³¹⁵.

• Optional: Rate this section³¹⁶.

³¹¹https://bit.ly/2ZaLMoE
³¹²https://bit.ly/3lXypAC
³¹³https://bit.ly/3phFxdp
³¹⁴https://m.do.co/c/fb27c90322f3
³¹⁵https://www.robinwieruch.de/deploy-applications-digital-ocean
³¹⁶https://forms.gle/QPjydK8UbaXkxCEj9

https://bit.ly/2ZaLMoE
https://bit.ly/2ZaLMoE
https://bit.ly/3lXypAC
https://bit.ly/3phFxdp
https://m.do.co/c/fb27c90322f3
https://www.robinwieruch.de/deploy-applications-digital-ocean
https://www.robinwieruch.de/deploy-applications-digital-ocean
https://forms.gle/QPjydK8UbaXkxCEj9
https://bit.ly/2ZaLMoE
https://bit.ly/3lXypAC
https://bit.ly/3phFxdp
https://m.do.co/c/fb27c90322f3
https://www.robinwieruch.de/deploy-applications-digital-ocean
https://forms.gle/QPjydK8UbaXkxCEj9

Outline
We’ve reached the end of the Road to React, and I hope you enjoyed reading it, and that it helped
you gain some traction in React. If you liked the book, share it with your friends who are interested
in learning more about React. Also, a review on Amazon³¹⁷, Google³¹⁸, or Goodreads³¹⁹ would be
very much appreciated.

From here, I recommend you extend the application to create your own React projects before
engaging another book, course, or tutorial. Try it for a week, take it to production by deploying
it, and reach out to me or others to showcase it. I am always interested in seeing what my readers
built, and learning how I can help them along.

If you’re looking for extensions for your application, I recommend several learning paths after you’ve
mastered the basics:

• Connecting to a Database and/or Authentication: Growing React applications will eventu-
ally require persistent data. The data should be stored in a database so that keeps it intact
after browser sessions, to be shared with different users. Firebase is one of the simplest ways
to introduce a database without writing a backend application. In my book titled “The Road
to Firebase”³²⁰, you will find a step-by-step guide on how to use Firebase authentication and
database in React.

• Connecting to a Backend: React handles frontend applications, and we’ve only requested
data from a third-party backend’s API thus far. You can also introduce an API with a backend
application that connects to a database and manages authentication/authorization. In “The
Road to GraphQL”³²¹, I teach you how to use GraphQL for client-server communication. You’ll
learn how to connect your backend to a database, how to manage user sessions, and how to
talk from a frontend to your backend application via a GraphQL API.

• State Management: You have used React to manage local component state exclusively in this
learning experience. It’s a good start for most applications, but there are also external state
management solutions for React. I explore the most popular one in my book “The Road to
Redux”³²².

• Tooling with Webpack and Babel:We used create-react-app to set up the application in this
book. At some point you may want to learn the tooling around it, to create projects without
create-react-app. I recommend a minimal setup with Webpack³²³, after which you can apply
additional tooling.

³¹⁷https://amzn.to/2JHlP42
³¹⁸https://books.google.de/books/about?id=RRLmDwAAQBAJ
³¹⁹https://www.goodreads.com/book/show/37503118-the-road-to-learn-react
³²⁰https://www.roadtofirebase.com/
³²¹https://www.roadtographql.com/
³²²https://www.roadtoredux.com/
³²³https://www.robinwieruch.de/minimal-react-webpack-babel-setup/

https://amzn.to/2JHlP42
https://books.google.de/books/about?id=RRLmDwAAQBAJ
https://www.goodreads.com/book/show/37503118-the-road-to-learn-react
https://www.roadtofirebase.com/
https://www.roadtofirebase.com/
https://www.roadtographql.com/
https://www.roadtographql.com/
https://www.roadtoredux.com/
https://www.roadtoredux.com/
https://www.robinwieruch.de/minimal-react-webpack-babel-setup/
https://amzn.to/2JHlP42
https://books.google.de/books/about?id=RRLmDwAAQBAJ
https://www.goodreads.com/book/show/37503118-the-road-to-learn-react
https://www.roadtofirebase.com/
https://www.roadtographql.com/
https://www.roadtoredux.com/
https://www.robinwieruch.de/minimal-react-webpack-babel-setup/

Outline 248

• Code Organization: Recall the chapter about code organization and apply these changes, if
you haven’t already. It will help organize your components into structured files and folders,
and it will help you understand the principles of code splitting, reusability, maintainability, and
module API design. Your application will grow and need structured modules eventually; so it’s
better to start now.

• Testing: We only scratched the surface of testing. If you are unfamiliar with testing web
applications, dive deeper into unit testing and integration testing³²⁴, especially with React
applications. Cypress³²⁵ is a useful tool to explore for end-to-end testing in React.

• Type Checking: Earlier we used TypeScript in React, which is good practice to prevent bugs
and improve the developer experience. Dive deeper into this topic to make your JavaScript
applications more robust. Maybe you’ll end up using TypeScript instead of JavaScript all along.

• UI Components: Many beginners introduce UI component libraries like Bootstrap too early
in their projects. It is more practical to use a dropdown, checkbox, or dialog in React with
standard HTML elements. Most of these components will manage their own local state. A
checkbox has to know whether it is checked or unchecked, so you should implement them
as controlled components. After you cover the basic implementations of these crucial UI
components, introducing a UI component library should be easier.

• Routing:You can implement routing for your applicationwith react-router³²⁶. There is only one
page in the application we’ve created, but that will grow. React Router helps manage multiple
pages across multiple URLs. When you introduce routing to your application, no requests are
made to the web server for the next page. The router handles this client-side.

• React Native: React Native³²⁷ brings your application to mobile devices like iOS and Android.
Once you’vemastered React, the learning curve for React Native shouldn’t be that steep, as they
share the same principles. The only difference with mobile devices are the layout components,
the build tools, and the APIs of your mobile device.

I invite you to visit my website³²⁸ to find more interesting topics about web development and
software engineering. You can also subscribe to my Newsletter³²⁹ or Twitter page³³⁰ to get updates
about articles, books, and courses.

Thank you for reading the Road to React.

Regards,

Robin Wieruch

³²⁴https://www.robinwieruch.de/react-testing-tutorial
³²⁵https://www.robinwieruch.de/react-testing-cypress
³²⁶https://github.com/ReactTraining/react-router
³²⁷https://facebook.github.io/react-native/
³²⁸https://www.robinwieruch.de
³²⁹https://www.getrevue.co/profile/rwieruch
³³⁰https://twitter.com/rwieruch

https://www.robinwieruch.de/react-testing-tutorial
https://www.robinwieruch.de/react-testing-cypress
https://github.com/ReactTraining/react-router
https://facebook.github.io/react-native/
https://www.robinwieruch.de/
https://www.getrevue.co/profile/rwieruch
https://twitter.com/rwieruch
https://www.robinwieruch.de/react-testing-tutorial
https://www.robinwieruch.de/react-testing-cypress
https://github.com/ReactTraining/react-router
https://facebook.github.io/react-native/
https://www.robinwieruch.de/
https://www.getrevue.co/profile/rwieruch
https://twitter.com/rwieruch

	Table of Contents
	Foreword
	About the Author
	FAQ
	Who is this book for?

	Fundamentals of React
	Hello React
	Requirements
	Setting up a React Project
	Meet the React Component
	React JSX
	Lists in React
	Meet another React Component
	React Component Instantiation
	React DOM
	React Component Definition (Advanced)
	Handler Function in JSX
	React Props
	React State
	Callback Handlers in JSX
	Lifting State in React
	React Controlled Components
	Props Handling (Advanced)
	React Side-Effects
	React Custom Hooks (Advanced)
	React Fragments
	Reusable React Component
	React Component Composition
	Imperative React
	Inline Handler in JSX
	React Asynchronous Data
	React Conditional Rendering
	React Advanced State
	React Impossible States
	Data Fetching with React
	Data Re-Fetching in React
	Memoized Handler in React (Advanced)
	Explicit Data Fetching with React
	Third-Party Libraries in React
	Async/Await in React (Advanced)
	Forms in React

	React's Legacy
	React Class Components
	React Class Components: State
	Imperative React

	Styling in React
	CSS in React
	CSS Modules in React
	Styled Components in React
	SVGs in React

	React Maintenance
	Performance in React (Advanced)
	TypeScript in React
	Testing in React
	React Project Structure

	Real World React (Advanced)
	Sorting
	Reverse Sort
	Remember Last Searches
	Paginated Fetch

	Deploying a React Application
	Build Process
	Deploy to Firebase

	Outline

