

Learning	React	Native
Building	Mobile	Applications	with	JavaScript

Bonnie	Eisenman

Learning	React	Native

by	Bonnie	Eisenman

Copyright	©	2016	Bonnie	Eisenman.	All	rights	reserved.

Printed	in	the	United	States	of	America.

Published	by	O’Reilly	Media,	Inc.,	1005	Gravenstein	Highway	North,	Sebastopol,	CA
95472.

O’Reilly	books	may	be	purchased	for	educational,	business,	or	sales	promotional	use.
Online	editions	are	also	available	for	most	titles	(http://safaribooksonline.com).	For	more
information,	contact	our	corporate/institutional	sales	department:	800-998-9938	or
corporate@oreilly.com.

Editor:	Meg	Foley

Production	Editor:	Nicholas	Adams

Copyeditor:	Jasmine	Kwityn

Proofreader:	Christina	Edwards

Indexer:	Ellen	Troutman-Zaig

Interior	Designer:	David	Futato

Cover	Designer:	Randy	Comer

Illustrator:	Rebecca	Demarest

December	2015:	First	Edition

http://safaribooksonline.com

Revision	History	for	the	First	Edition
2015-12-01:	First	Release

See	http://oreilly.com/catalog/errata.csp?isbn=9781491929001	for	release	details.

The	O’Reilly	logo	is	a	registered	trademark	of	O’Reilly	Media,	Inc.	Learning	React
Native,	the	cover	image,	and	related	trade	dress	are	trademarks	of	O’Reilly	Media,	Inc.

While	the	publisher	and	the	author	have	used	good	faith	efforts	to	ensure	that	the
information	and	instructions	contained	in	this	work	are	accurate,	the	publisher	and	the
author	disclaim	all	responsibility	for	errors	or	omissions,	including	without	limitation
responsibility	for	damages	resulting	from	the	use	of	or	reliance	on	this	work.	Use	of	the
information	and	instructions	contained	in	this	work	is	at	your	own	risk.	If	any	code
samples	or	other	technology	this	work	contains	or	describes	is	subject	to	open	source
licenses	or	the	intellectual	property	rights	of	others,	it	is	your	responsibility	to	ensure	that
your	use	thereof	complies	with	such	licenses	and/or	rights.

978-1-491-92900-1

[LSI]

http://oreilly.com/catalog/errata.csp?isbn=9781491929001

Preface

This	book	is	an	introduction	to	React	Native,	Facebook’s	JavaScript	framework	for
building	mobile	applications.	Using	your	existing	knowledge	of	JavaScript	and	React,
you’ll	be	able	to	build	and	deploy	fully	featured	mobile	applications	for	both	iOS	and
Android	that	truly	render	natively.	Just	because	it’s	JavaScript	doesn’t	mean	we	should
settle	for	less.	There	are	plenty	of	advantages	to	working	with	React	Native	over
traditional	means	of	mobile	development,	and	we	don’t	need	to	sacrifice	the	native	look
and	feel.

We’ll	start	with	the	basics,	and	work	our	way	up	to	deploying	a	full-fledged	application	to
both	the	iOS	App	Store	and	the	Google	Play	Store,	with	100%	code	reuse	between	the	two
platforms.	In	addition	to	the	essentials	of	the	framework,	we’ll	discuss	how	to	work
beyond	it,	including	how	to	make	use	of	third-party	libraries	and	even	how	to	write	your
own	Java	or	Objective-C	libraries	to	extend	React	Native.

If	you’re	coming	to	mobile	development	from	the	perspective	of	a	frontend	software
engineer	or	web	developer,	this	is	the	book	for	you.	React	Native	is	a	pretty	amazing
thing,	and	I	hope	you’re	as	excited	to	explore	it	as	I	am!

Prerequisites
This	book	is	not	an	introduction	to	React,	in	general.	We’ll	assume	that	you	have	some
working	knowledge	of	React.	If	you’re	brand	new	to	React,	I	suggest	reading	through	a
tutorial	or	two	before	coming	back	to	take	the	plunge	into	mobile	development.
Specifically,	you	should	be	familiar	with	the	role	of	props	and	state,	the	component
lifecycle,	and	how	to	create	React	components.

We’ll	also	be	using	some	ES6	syntax,	as	well	as	JSX.	If	you	aren’t	familiar	with	these,
don’t	worry;	we’ll	cover	JSX	in	Chapter	2,	and	ES6	syntax	in	Appendix	A.	These	features
are	essentially	1:1	translations	of	the	JavaScript	code	you’re	already	accustomed	to
writing.

This	book	assumes	you	are	developing	on	OS	X.	Developing	on	OS	X	is	a	requirement	for
writing	iOS	apps.	Linux	and	Windows	support	for	writing	Android	applications	is	a	work-
in-progress.	You	can	read	more	about	Linux	and	Android	support	here.

https://facebook.github.io/react-native/docs/linux-windows-support.html

Conventions	Used	in	This	Book
The	following	typographical	conventions	are	used	in	this	book:

Italic

Indicates	new	terms,	URLs,	email	addresses,	filenames,	and	file	extensions.
Constant	width

Used	for	program	listings,	as	well	as	within	paragraphs	to	refer	to	program	elements
such	as	variable	or	function	names,	databases,	data	types,	environment	variables,
statements,	and	keywords.

Constant	width	bold

Shows	commands	or	other	text	that	should	be	typed	literally	by	the	user.
Constant	width	italic

Shows	text	that	should	be	replaced	with	user-supplied	values	or	by	values	determined
by	context.

TIP
This	element	signifies	a	tip	or	suggestion.

NOTE
This	element	signifies	a	general	note.

WARNING
This	element	indicates	a	warning	or	caution.

Using	Code	Examples
Supplemental	material	(code	examples,	exercises,	etc.)	is	available	for	download	at:
https://github.com/bonniee/learning-react-native.

This	book	is	here	to	help	you	get	your	job	done.	In	general,	if	example	code	is	offered
with	this	book,	you	may	use	it	in	your	programs	and	documentation.	You	do	not	need	to
contact	us	for	permission	unless	you’re	reproducing	a	significant	portion	of	the	code.	For
example,	writing	a	program	that	uses	several	chunks	of	code	from	this	book	does	not
require	permission.	Selling	or	distributing	a	CD-ROM	of	examples	from	O’Reilly	books
does	require	permission.	Answering	a	question	by	citing	this	book	and	quoting	example
code	does	not	require	permission.	Incorporating	a	significant	amount	of	example	code
from	this	book	into	your	product’s	documentation	does	require	permission.

We	appreciate,	but	do	not	require,	attribution.	An	attribution	usually	includes	the	title,
author,	publisher,	and	ISBN.	For	example:	“Learning	React	Native	by	Bonnie	Eisenman
(O’Reilly).	Copyright	2016	Bonnie	Eisenman,	978-1-491-92900-1.”

If	you	feel	your	use	of	code	examples	falls	outside	fair	use	or	the	permission	given	above,
feel	free	to	contact	us	at	permissions@oreilly.com.

https://github.com/bonniee/learning-react-native
mailto:permissions@oreilly.com

Safari®	Books	Online
NOTE

Safari	Books	Online	is	an	on-demand	digital	library	that	delivers	expert	content	in	both
book	and	video	form	from	the	world’s	leading	authors	in	technology	and	business.

Technology	professionals,	software	developers,	web	designers,	and	business	and	creative
professionals	use	Safari	Books	Online	as	their	primary	resource	for	research,	problem
solving,	learning,	and	certification	training.

Safari	Books	Online	offers	a	range	of	plans	and	pricing	for	enterprise,	government,
education,	and	individuals.

Members	have	access	to	thousands	of	books,	training	videos,	and	prepublication
manuscripts	in	one	fully	searchable	database	from	publishers	like	O’Reilly	Media,
Prentice	Hall	Professional,	Addison-Wesley	Professional,	Microsoft	Press,	Sams,	Que,
Peachpit	Press,	Focal	Press,	Cisco	Press,	John	Wiley	&	Sons,	Syngress,	Morgan
Kaufmann,	IBM	Redbooks,	Packt,	Adobe	Press,	FT	Press,	Apress,	Manning,	New	Riders,
McGraw-Hill,	Jones	&	Bartlett,	Course	Technology,	and	hundreds	more.	For	more
information	about	Safari	Books	Online,	please	visit	us	online.

http://safaribooksonline.com
https://www.safaribooksonline.com/explore/
https://www.safaribooksonline.com/pricing/
https://www.safaribooksonline.com/enterprise/
https://www.safaribooksonline.com/government/
https://www.safaribooksonline.com/academic-public-library/
https://www.safaribooksonline.com/our-library/
http://safaribooksonline.com

How	to	Contact	Us
Please	address	comments	and	questions	concerning	this	book	to	the	publisher:

O’Reilly	Media,	Inc.

1005	Gravenstein	Highway	North

Sebastopol,	CA	95472

800-998-9938	(in	the	United	States	or	Canada)

707-829-0515	(international	or	local)

707-829-0104	(fax)

We	have	a	web	page	for	this	book,	where	we	list	errata,	examples,	and	any	additional
information.	You	can	access	this	page	at	http://bit.ly/learning-react-native.

To	comment	or	ask	technical	questions	about	this	book,	send	email	to
bookquestions@oreilly.com.

For	more	information	about	our	books,	courses,	conferences,	and	news,	see	our	website	at
http://www.oreilly.com.

Find	us	on	Facebook:	http://facebook.com/oreilly

Follow	us	on	Twitter:	http://twitter.com/oreillymedia

Watch	us	on	YouTube:	http://www.youtube.com/oreillymedia

http://bit.ly/learning-react-native
mailto:bookquestions@oreilly.com
http://www.oreilly.com
http://facebook.com/oreilly
http://twitter.com/oreillymedia
http://www.youtube.com/oreillymedia

Resources
It’s	dangerous	to	go	alone!	Well,	not	really,	but	that	doesn’t	mean	you	have	to.	Here	are
some	resources	you	may	find	useful	as	you	work	through	the	book:

The	GitHub	repository	for	this	book	contains	all	of	the	code	samples	we’ll	be
discussing.	If	you	get	stumped,	or	want	more	context,	try	looking	here	first.

Join	the	mailing	list	at	LearningReactNative.com	for	follow-up	articles,	suggestions,
and	helpful	resources.

The	official	documentation	has	a	lot	of	good	reference	material.

Additionally,	the	React	Native	community	is	a	useful	resource:

Brent	Vatne’s	React	Native	newsletter

The	react-native	tag	on	Stack	Overflow

#reactnative	(irc://chat.freenode.net/reactnative)	on	Freenode

https://github.com/bonniee/learning-react-native
http://learningreactnative.com
https://facebook.github.io/react-native/
http://bit.ly/react-native-newsletter
http://bit.ly/react-native-so

Acknowledgments
As	is	traditional:	this	book	would	not	have	been	possible	without	the	help	and	support	of
many	others.	Thank	you	to	my	editor,	Meg	Foley,	and	the	rest	of	the	O’Reilly	team,	for
bringing	this	project	into	the	world.	Thank	you	also	to	my	technical	reviewers,	for	your
time	and	insightful	feedback:	David	Bieber,	Jason	Brown,	Erica	Portnoy,	and	Jonathan
Stark.	I	would	also	like	to	thank	the	React	Native	team,	without	whose	stellar	work	this
book	would	naturally	be	impossible.	Thanks	also	to	Zachary	Elliot	for	his	help	with	the
Zebreto	application	and	Android	in	general.

And	many	thanks	are	owed	to	my	dear	friends,	who	put	up	with	me	throughout	this
process	and	provided	moral	support,	guidance,	and	distraction,	as	the	situation	required.
Thank	you.

Chapter	1.	What	Is	React	Native?

React	Native	is	a	JavaScript	framework	for	writing	real,	natively	rendering	mobile
applications	for	iOS	and	Android.	It’s	based	on	React,	Facebook’s	JavaScript	library	for
building	user	interfaces,	but	instead	of	targeting	the	browser,	it	targets	mobile	platforms.
In	other	words:	web	developers	can	now	write	mobile	applications	that	look	and	feel	truly
“native,”	all	from	the	comfort	of	a	JavaScript	library	that	we	already	know	and	love.	Plus,
because	most	of	the	code	you	write	can	be	shared	between	platforms,	React	Native	makes
it	easy	to	simultaneously	develop	for	both	Android	and	iOS.

Similar	to	React	for	the	Web,	React	Native	applications	are	written	using	a	mixture	of
JavaScript	and	XML-esque	markup,	known	as	JSX.	Then,	under	the	hood,	the	React
Native	“bridge”	invokes	the	native	rendering	APIs	in	Objective-C	(for	iOS)	or	Java	(for
Android).	Thus,	your	application	will	render	using	real	mobile	UI	components,	not
webviews,	and	will	look	and	feel	like	any	other	mobile	application.	React	Native	also
exposes	JavaScript	interfaces	for	platform	APIs,	so	your	React	Native	apps	can	access
platform	features	like	the	phone	camera,	or	the	user’s	location.

React	Native	currently	supports	both	iOS	and	Android,	and	has	the	potential	to	expand	to
future	platforms	as	well.	In	this	book,	we’ll	cover	both	iOS	and	Android.	The	vast
majority	of	the	code	we	write	will	be	cross-platform.	And	yes:	you	can	really	use	React
Native	to	build	production-ready	mobile	applications!	Some	anecdota:	Facebook,	Palantir,
and	TaskRabbit	are	already	using	it	in	production	for	user-facing	applications.

http://bit.ly/1YipO7A
http://bit.ly/1PPEiZH
http://bit.ly/1PPEjNg

Advantages	of	React	Native
The	fact	that	React	Native	actually	renders	using	its	host	platform’s	standard	rendering
APIs	enables	it	to	stand	out	from	most	existing	methods	of	cross-platform	application
development,	like	Cordova	or	Ionic.	Existing	methods	of	writing	mobile	applications
using	combinations	of	JavaScript,	HTML,	and	CSS	typically	render	using	webviews.
While	this	approach	can	work,	it	also	comes	with	drawbacks,	especially	around
performance.	Additionally,	they	do	not	usually	have	access	to	the	host	platform’s	set	of
native	UI	elements.	When	these	frameworks	do	try	to	mimic	native	UI	elements,	the
results	usually	“feel”	just	a	little	off;	reverse-engineering	all	the	fine	details	of	things	like
animations	takes	an	enormous	amount	of	effort,	and	they	can	quickly	become	out	of	date.

In	contrast,	React	Native	actually	translates	your	markup	to	real,	native	UI	elements,
leveraging	existing	means	of	rendering	views	on	whatever	platform	you	are	working	with.
Additionally,	React	works	separately	from	the	main	UI	thread,	so	your	application	can
maintain	high	performance	without	sacrificing	capability.	The	update	cycle	in	React
Native	is	the	same	as	in	React:	when	props	or	state	change,	React	Native	re-renders	the
views.	The	major	difference	between	React	Native	and	React	in	the	browser	is	that	React
Native	does	this	by	leveraging	the	UI	libraries	of	its	host	platform,	rather	than	using
HTML	and	CSS	markup.

For	developers	accustomed	to	working	on	the	Web	with	React,	this	means	you	can	write
mobile	apps	with	the	performance	and	look	and	feel	of	a	native	application,	while	using
familiar	tools.	React	Native	also	represents	an	improvement	over	normal	mobile
development	in	two	other	areas:	the	developer	experience	and	cross-platform	development
potential.

Developer	Experience
If	you’ve	ever	developed	for	mobile	before,	you	might	be	surprised	by	how	easy	React
Native	is	to	work	with.	The	React	Native	team	has	baked	strong	developer	tools	and
meaningful	error	messages	into	the	framework,	so	working	with	robust	tools	is	a	natural
part	of	your	development	experience.

For	instance,	because	React	Native	is	“just”	JavaScript,	you	don’t	need	to	rebuild	your
application	in	order	to	see	your	changes	reflected;	instead,	you	can	hit	Command+R	to
refresh	your	application	just	as	you	would	any	other	web	page.	All	of	those	minutes	spent
waiting	for	your	application	to	build	can	really	add	up,	and	in	contrast	React	Native’s
quick	iteration	cycle	feels	like	a	godsend.

Additionally,	React	Native	lets	you	take	advantage	of	intelligent	debugging	tools	and	error
reporting.	If	you	are	comfortable	with	Chrome	or	Safari’s	developer	tools	(Figure	1-1),
you	will	be	happy	to	know	that	you	can	use	them	for	mobile	development,	as	well.
Likewise,	you	can	use	whatever	text	editor	you	prefer	for	JavaScript	editing:	React	Native
does	not	force	you	to	work	in	Xcode	to	develop	for	iOS,	or	Android	Studio	for	Android
development.

Figure	1-1.	Using	the	Chrome	Debugger

Besides	the	day-to-day	improvements	to	your	development	experience,	React	Native	also
has	the	potential	to	positively	impact	your	product	release	cycle.	For	instance,	Apple
permits	JavaScript-based	changes	to	an	app’s	behavior	to	be	loaded	over	the	air	with	no
additional	review	cycle	necessary.

All	of	these	small	perks	add	up	to	saving	you	and	your	fellow	developers	time	and	energy,
allowing	you	to	focus	on	the	more	interesting	parts	of	your	work	and	be	more	productive
overall.

Code	Reuse	and	Knowledge	Sharing
Working	with	React	Native	can	dramatically	shrink	the	resources	required	to	build	mobile
applications.	Any	developer	who	knows	how	to	write	React	code	can	now	target	the	Web,
iOS,	and	Android,	all	with	the	same	skillset.	By	removing	the	need	to	“silo”	developers
based	on	their	target	platform,	React	Native	lets	your	team	iterate	more	quickly,	and	share
knowledge	and	resources	more	effectively.

Besides	shared	knowledge,	much	of	your	code	can	be	shared,	too.	Not	all	the	code	you
write	will	be	cross-platform,	and	depending	on	what	functionality	you	need	on	a	specific
platform,	you	may	occasionally	need	to	dip	into	Objective-C	or	Java.	(Happily,	this	isn’t
too	bad,	and	we’ll	cover	how	so-called	native	modules	work	in	Chapter	7.)	But	reusing
code	across	platforms	is	surprisingly	easy	with	React	Native.	For	example,	the	Facebook
Ads	Manager	application	for	Android	shares	87%	of	its	codebase	with	the	iOS	version,	as
noted	in	the	React	Europe	2015	keynote.	The	final	application	we’ll	look	at	in	this	book,	a
flashcard	app,	has	total	code	reuse	between	Android	and	iOS.	It’s	hard	to	beat	that!

https://youtu.be/PAA9O4E1IM4

Risks	and	Drawbacks
As	with	anything,	using	React	Native	is	not	without	its	downsides,	and	whether	or	not
React	Native	is	a	good	fit	for	your	team	really	depends	on	your	individual	situation.

The	largest	risk	is	probably	React	Native’s	maturity,	as	the	project	is	still	relatively	young.
iOS	support	was	released	in	March	2015,	and	Android	support	was	released	in	September
2015.	The	documentation	certainly	has	room	for	improvement,	and	continues	to	evolve.
Some	features	on	iOS	and	Android	still	aren’t	supported,	and	the	community	is	still
discovering	best	practices.	The	good	news	is	that	in	the	vast	majority	of	cases,	you	can
implement	support	for	missing	APIs	yourself,	which	we’ll	cover	in	Chapter	7.

Because	React	Native	introduces	another	layer	to	your	project,	it	can	also	make	debugging
hairier,	especially	at	the	intersection	of	React	and	the	host	platform.	We’ll	cover
debugging	for	React	Native	in	more	depth	in	Chapter	8,	and	try	to	address	some	of	the
most	common	issues.

React	Native	is	still	young,	and	the	usual	caveats	that	go	along	with	working	with	new
technologies	apply	here.	Still,	on	the	whole,	I	think	you’ll	see	that	the	benefits	outweigh
the	risks.

Summary
React	Native	is	an	exciting	framework	that	enables	web	developers	to	create	robust	mobile
applications	using	their	existing	JavaScript	knowledge.	It	offers	faster	mobile
development,	and	more	efficient	code	sharing	across	iOS,	Android,	and	the	Web,	without
sacrificing	the	end	user’s	experience	or	application	quality.	The	tradeoff	is	that	it’s	new,
and	still	a	work	in	progress.	If	your	team	can	handle	the	uncertainty	that	comes	with
working	with	a	new	technology,	and	wants	to	develop	mobile	applications	for	more	than
just	one	platform,	you	should	be	looking	at	React	Native.

In	the	next	chapter,	we’ll	go	over	some	of	the	main	ways	in	which	React	Native	differs
from	React	for	the	Web,	and	cover	some	key	concepts.	If	you’d	like	to	skip	straight	to
developing,	feel	free	to	jump	to	Chapter	3,	in	which	we’ll	handle	setting	up	our
development	environment	and	write	our	very	first	React	Native	application.

Chapter	2.	Working	with	React	Native

In	this	chapter,	we’ll	cover	the	“bridge,”	and	review	how	React	Native	works	under	the
hood.	Then,	we’ll	look	at	how	React	Native	components	differ	from	their	web
counterparts,	and	cover	what	you’ll	need	to	know	in	order	to	create	and	style	components
for	mobile.

NOTE
If	you’d	prefer	to	dig	into	the	development	process	and	see	React	Native	in	action,	feel	free	to	jump	ahead
to	the	next	chapter!

How	Does	React	Native	Work?
The	idea	of	writing	mobile	applications	in	JavaScript	feels	a	little	odd.	How	is	it	possible
to	use	React	in	a	mobile	environment?	In	order	to	understand	the	technical	underpinnings
of	React	Native,	first	we’ll	need	to	recall	one	of	React’s	features,	the	Virtual	DOM.

In	React,	the	Virtual	DOM	acts	as	a	layer	between	the	developer’s	description	of	how
things	ought	to	look,	and	the	work	done	to	actually	render	your	application	onto	the	page.
To	render	interactive	user	interfaces	in	a	browser,	developers	must	edit	the	browser’s
DOM,	or	Document	Object	Model.	This	is	an	expensive	step,	and	excessive	writes	to	the
DOM	have	a	significant	impact	on	performance.	Rather	than	directly	render	changes	on
the	page,	React	computes	the	necessary	changes	by	using	an	in-memory	version	of	the
DOM,	and	rerenders	the	minimal	amount	necessary.	Figure	2-1	shows	how	this	works.

Figure	2-1.	Performing	calculations	in	the	Virtual	DOM	limits	rerendering	in	the	Browser	DOM

In	the	context	of	React	on	the	Web,	most	developers	think	of	the	Virtual	DOM	primarily
as	a	performance	optimization.	The	Virtual	DOM	certainly	has	performance	benefits,	but
its	real	potential	lies	in	the	power	of	its	abstraction.	Placing	a	clean	abstraction	layer
between	the	developer’s	code	and	the	actual	rendering	opens	up	a	lot	of	interesting
possibilities.	What	if	React	could	render	to	a	target	other	than	the	browser’s	DOM?	After
all,	React	already	“understands”	what	your	application	is	supposed	to	look	like.

Indeed,	this	is	how	React	Native	works,	as	shown	in	Figure	2-2.	Instead	of	rendering	to
the	browser’s	DOM,	React	Native	invokes	Objective-C	APIs	to	render	to	iOS

components,	or	Java	APIs	to	render	to	Android	components.	This	sets	React	Native	apart
from	other	cross-platform	app	development	options,	which	often	end	up	rendering	web-
based	views.

Figure	2-2.	React	can	render	to	different	targets

This	is	all	possible	because	of	the	“bridge,”	which	provides	React	with	an	interface	into
the	host	platform’s	native	UI	elements.	React	components	return	markup	from	their
render	function,	which	describes	how	they	should	look.	With	React	for	the	Web,	this
translates	directly	to	the	browser’s	DOM.	For	React	Native,	this	markup	is	translated	to
suit	the	host	platform,	so	a	<View>	might	become	an	iOS-specific	UIView.

React	Native	currently	supports	iOS	and	Android.	Because	of	the	abstraction	layer
provided	by	the	Virtual	DOM,	React	Native	could	target	other	platforms,	too	—	someone
just	needs	to	write	the	bridge.

Rendering	Lifecycle
If	you	are	accustomed	to	working	in	React,	the	React	lifecycle	should	be	familiar	to	you.
When	React	runs	in	the	browser,	the	render	lifecycle	begins	by	mounting	your	React
components	(Figure	2-3).

Figure	2-3.	Mounting	components	in	React

After	that,	React	handles	the	rendering	and	rerendering	of	your	component	as	necessary
(Figure	2-4).

Figure	2-4.	Rerendering	components	in	React

For	the	render	stage,	the	developer	returns	HTML	markup	from	a	React	component’s
render	method,	which	React	then	renders	directly	into	the	page	as	necessary.

For	React	Native,	the	lifecycle	is	the	same,	but	the	rendering	process	is	slightly	different,
because	React	Native	depends	on	the	bridge.	We	looked	at	the	bridge	briefly	earlier	in
Figure	2-2.	The	bridge	translates	JavaScript	calls	and	invokes	the	host	platform’s
underlying	APIs	and	UI	elements	(i.e.,	in	Objective-C	or	Java,	as	appropriate).	Because
React	Native	doesn’t	run	on	the	main	UI	thread,	it	can	perform	these	asynchronous	calls
without	impacting	the	user’s	experience.

Creating	Components	in	React	Native
All	React	code	lives	in	React	components.	React	Native	components	are	largely	the	same
as	ordinary	React	components,	with	some	important	differences	around	rendering	and
styling.

Working	with	Views
When	writing	in	React	for	the	Web,	you	render	normal	HTML	elements	(<div>,	<p>,
,	<a>,	etc.).	With	React	Native,	all	of	these	elements	are	replaced	by	platform-
specific	React	components	(see	Table	2-1).	The	most	basic	is	the	cross-platform	<View>,	a
simple	and	flexible	UI	element	that	can	be	thought	of	as	analogous	to	the	<div>.	On	iOS,
for	instance,	the	<View>	component	renders	to	a	UIView,	while	on	Android	it	renders	to	a
View.

Table	2-1.	Basic
elements	for	the

Web,	compared	with
React	Native

React React	Native

<div> <View>

 <Text>

,	 <ListView>

 <Image>

Other	components	are	platform-specific.	For	instance,	the	<DatePickerIOS>	component
(predictably)	renders	the	iOS	standard	date	picker.	Here	is	an	excerpt	from	the	UIExplorer
sample	app,	demonstrating	an	iOS	date	picker.	The	usage	is	straightforward,	as	you	would
expect:

<DatePickerIOS

		date={this.state.date}

		mode="date"

		timeZoneOffsetInMinutes={this.state.timeZoneOffsetInHours	*	60}

/>

This	renders	to	the	standard	iOS	date	picker	(Figure	2-5).

Figure	2-5.	The	DatePickerIOS	is,	as	the	name	would	suggest,	iOS-specific

Because	all	of	our	UI	elements	are	now	React	components,	rather	than	basic	HTML
elements	like	the	<div>,	you	will	need	to	explicitly	import	each	component	you	wish	to
use.	For	instance,	we	needed	to	import	the	<DatePickerIOS>	component	like	so:

var	React	=	require('react-native');

var	{

		DatePickerIOS

}	=	React;

The	UIExplorer	application,	which	is	bundled	into	the	standard	React	Native	examples,
allows	you	to	view	all	of	the	supported	UI	elements.	I	encourage	you	to	examine	the
various	elements	included	in	the	UIExplorer	app.	It	also	demonstrates	many	styling
options	and	interactions.

TIP
Platform-specific	components	and	APIs	have	special	tags	in	the	documentation,	and	typically	use	the
platform	name	as	a	suffix	—	for	example,	<SwitchAndroid>	and	<SwitchIOS>.

Because	these	components	vary	from	platform	to	platform,	how	you	structure	your	React
components	becomes	even	more	important	when	working	in	React	Native.	In	React	for
the	Web,	we	often	have	a	mix	of	React	components:	some	manage	logic	and	their	child
components,	while	other	components	render	raw	markup.	If	you	want	to	reuse	code	when
working	in	React	Native,	maintaining	separation	between	these	types	of	components
becomes	critical.	A	React	component	that	renders	a	<DatePickerIOS>	element	obviously
cannot	be	reused	for	Android.	However,	a	component	that	encapsulates	the	associated
logic	can	be	reused.	Then,	the	view	component	can	be	swapped	out	based	on	your

https://github.com/facebook/react-native#examples

platform.	You	can	also	designate	platform-specific	versions	of	components,	if	you	want,
so	you	can	have	a	picker.ios.js	and	a	picker.android.js	file,	for	instance.	We’ll	cover	this	in
“Components	with	Platform-Specific	Versions”.

Using	JSX
In	React	Native,	just	as	in	React,	we	write	our	views	using	JSX,	combining	markup	and
the	JavaScript	that	controls	it	into	a	single	file.	JSX	met	with	strong	reactions	when	React
first	debuted.	For	many	web	developers,	the	separation	of	files	based	on	technologies	is	a
given:	you	keep	your	CSS,	HTML,	and	JavaScript	files	separate.	The	idea	of	combining
markup,	control	logic,	and	even	styling	into	one	language	can	be	confusing.

JSX	prioritizes	the	separation	of	concerns	over	the	separation	of	technologies.	In	React
Native,	this	is	even	more	strictly	enforced.	In	a	world	without	the	browser,	it	makes	even
more	sense	to	unify	our	styles,	markup,	and	behavior	in	a	single	file	for	each	component.
Accordingly,	your	.js	files	in	React	Native	are	in	fact	JSX	files.	If	you	were	using	vanilla
JavaScript	when	working	with	React	for	web,	you	will	want	to	transition	to	JSX	syntax	for
your	work	in	React	Native.

If	you’ve	never	seen	JSX	before,	don’t	worry:	it’s	pretty	simple.	As	an	example,	a	pure-
JavaScript	React	component	for	the	Web	might	look	something	like	this:

var	HelloMessage	=	React.createClass({

		displayName:	"HelloMessage",

		render:	function	render()	{

				return	React.createElement(

						"div",

						null,

						"Hello	",

						this.props.name

);

		}

});

React.render(React.createElement(HelloMessage,	{	name:	"Bonnie"	}),	mountNode);

We	can	render	this	more	succinctly	by	using	JSX.	Instead	of	calling
React.createElement	and	passing	in	a	list	of	HTML	attributes,	we	use	XML-like
markup:

var	HelloMessage	=	React.createClass({

		render:	function()	{

				//	Instead	of	calling	createElement,	we	return	markup

				return	<div>Hello	{this.props.name}</div>;

		}

});

//	We	no	longer	need	a	createElement	call	here

React.render(<HelloMessage	name="Bonnie"	/>,	mountNode);

Both	of	these	will	render	the	following	HTML	onto	the	page:

<div>Hello	Bonnie</div>

Styling	Native	Components
On	the	Web,	we	style	React	components	using	CSS,	just	as	we	would	any	other	HTML
element.	Whether	you	love	it	or	hate	it,	CSS	is	a	necessary	part	of	the	Web.	React	usually
does	not	affect	the	way	we	write	CSS.	It	does	make	it	easier	to	use	(sane,	useful)	inline
styles,	and	to	dynamically	build	class	names	based	on	props	and	state,	but	otherwise
React	is	mostly	agnostic	about	how	we	handle	styles	on	the	Web.

Non-web	platforms	have	a	wide	array	of	approaches	to	layout	and	styling.	When	we	work
with	React	Native,	thankfully,	we	utilize	one	standardized	approach	to	styling.	Part	of	the
bridge	between	React	and	the	host	platform	includes	the	implementation	of	a	heavily
pruned	subset	of	CSS.	This	narrow	implementation	of	CSS	relies	primarily	on	flexbox	for
layout,	and	focuses	on	simplicity	rather	than	implementing	the	full	range	of	CSS	rules.
Unlike	the	Web,	where	CSS	support	varies	across	browsers,	React	Native	is	able	to
enforce	consistent	support	of	style	rules.	Much	like	the	various	UI	elements,	you	can	see
many	examples	of	supported	styles	in	the	UIExplorer	application,	which	is	one	of	the
examples	that	ships	with	React	Native.

React	Native	also	insists	on	the	use	of	inline	styles,	which	exist	as	JavaScript	objects.	The
React	team	has	advocated	for	this	approach	before	in	React	for	web	applications.	If	you
have	previously	experimented	with	inline	styles	in	React,	the	syntax	will	look	familiar	to
you:

//	Define	a	style…

var	style	=	{

		backgroundColor:	'white',

		fontSize:	'16px'

};

//	...and	then	apply	it.

var	tv	=	(

		<Text	style={style}>

				A	styled	Text

		</Text>);

React	Native	also	provides	us	with	some	utilities	for	creating	and	extending	style	objects
that	make	dealing	with	inline	styles	a	more	manageable	process.	We	will	explore	those
later,	in	Chapter	5.

Does	looking	at	inline	styles	make	you	twitch?	Coming	from	a	web-based	background,
this	is	admittedly	a	break	from	standard	practices.	Working	with	style	objects,	as	opposed
to	stylesheets,	takes	some	mental	adjustments,	and	changes	the	way	you	need	to	approach
writing	styles.	However,	in	the	context	of	React	Native,	it	is	a	useful	shift.	We	will	be
discussing	styling	best	practices	and	workflow	later	on,	in	Chapter	5.	Just	try	not	to	be
surprised	when	you	see	them	in	use!

http://bit.ly/1MXpGlK

Host	Platform	APIs
Perhaps	the	biggest	difference	between	React	for	the	Web	and	React	Native	is	the	way	we
think	about	host	platform	APIs.	On	the	Web,	the	issue	at	hand	is	often	fragmented	and
inconsistent	adoption	of	standards;	still,	most	browsers	support	a	common	core	of	shared
features.	With	React	Native,	however,	platform-specific	APIs	play	a	much	larger	role	in
creating	an	excellent,	natural-feeling	user	experience.	There	are	also	many	more	options	to
consider.	Mobile	APIs	include	everything	from	data	storage,	to	location	services,	to
accessing	hardware	such	as	the	camera.	As	React	Native	expands	to	other	platforms,	we
can	expect	to	see	other	sorts	of	APIs,	too;	what	would	the	interface	look	like	between
React	Native	and	a	virtual	reality	headset,	for	instance?

By	default,	React	Native	for	iOS	and	Android	includes	support	for	many	of	the	commonly
used	features,	and	React	Native	can	support	any	asynchronous	native	API.	We	will	take	a
look	at	many	of	them	throughout	this	book.	React	Native	makes	it	straightforward	and
simple	to	make	use	of	host	platform	APIs,	so	you	can	experiment	freely.	Be	sure	to	think
about	what	feels	“right”	for	your	target	platform,	and	design	with	natural	interactions	in
mind.

Inevitably,	the	React	Native	bridge	will	not	expose	all	host	platform	functionality.	If	you
find	yourself	in	need	of	an	unsupported	feature,	you	have	the	option	of	adding	it	to	React
Native	yourself.	Alternatively,	chances	are	good	that	someone	else	has	done	so	already,	so
be	sure	to	check	in	with	the	community	to	see	whether	or	not	support	will	be	forthcoming.
We’ll	cover	this	in	Chapter	7.

Also	worth	noting	is	that	utilizing	host	platform	APIs	has	implications	for	code	reuse.
React	components	that	need	platform-specific	functionality	will	be	platform-specific	as
well.	Isolating	and	encapsulating	those	components	will	bring	added	flexibility	to	your
application.	Of	course,	this	applies	for	the	Web,	too:	if	you	plan	on	sharing	code	between
React	Native	and	React,	keep	in	mind	that	things	like	the	DOM	do	not	actually	exist	in
React	Native.

Summary
Writing	components	for	mobile	is	a	bit	different	in	React	Native	when	compared	with
React	for	the	Web.	JSX	is	mandatory,	and	our	basic	building	blocks	are	now	components
such	as	<View>	in	lieu	of	HTML	elements	such	as	<div>.	Styling	is	also	quite	different,
based	on	a	subset	of	CSS,	and	we	assign	styles	with	inline	syntax.	Still,	these	adjustments
are	quite	manageable.	In	the	next	chapter,	we’ll	put	this	into	practice	as	we	build	our	first
application!

Chapter	3.	Building	Your	First
Application

In	this	chapter,	we	will	cover	how	to	set	up	your	local	development	environment	for
working	with	React	Native.	Then,	we	will	go	through	the	basics	of	creating	a	simple
application,	which	you	will	then	be	able	to	deploy	to	your	own	iOS	or	Android	device.

Setting	Up	Your	Environment
Setting	up	your	development	environment	will	enable	you	to	follow	along	with	the
examples	in	the	book,	and	will	let	you	write	your	own	applications!

Instructions	for	installing	React	Native	can	be	found	in	the	official	React	Native
documentation.	The	official	site	will	be	your	most	up-to-date	reference	point	for	specific
installation	steps,	but	we’ll	walk	through	them	here	as	well.

You	will	need	to	use	Homebrew,	a	common	package	manager	for	OS	X,	in	order	to	install
React	Native’s	dependencies.	Throughout	this	book,	we	will	assume	that	you	are
developing	on	OS	X,	which	allows	you	to	write	both	iOS	and	Android	applications.

Once	you	have	Homebrew	installed,	run	the	following	from	the	command	line:

brew	install	node

brew	install	watchman

brew	install	flow

The	React	Native	packager	uses	both	node	and	watchman,	so	if	the	packager	gives	you
trouble	in	the	future	it’s	worth	updating	these	dependencies.	flow	is	Facebook’s	type-
checking	library,	and	is	also	used	by	React	Native.	(If	you	want	to	enable	type-checking	in
your	React	Native	projects,	you	can	use	flow!)

If	you	encounter	difficulties,	you	may	need	to	update	brew	and	upgrade	any	packages
(note	that	these	commands	may	take	a	little	while	to	run):

brew	update

brew	upgrade

If	you	see	errors	after	doing	so,	you’ll	need	to	fix	your	local	brew	setup.	brew	doctor	can
point	you	to	probable	issues.

http://facebook.github.io/react-native/
http://brew.sh/

Installing	React	Native
Now	that	you	have	node	installed,	you	can	use	npm	(the	Node	Package	Manager)	to	install
the	React	Native	command-line	tools:

npm	install	-g	react-native-cli

This	installs	the	React	Native	command-line	tools	globally	on	your	system.	After	this	is
done,	congrats;	React	Native	is	installed!

Next,	you’ll	have	to	handle	the	platform-specific	setup.	In	order	to	develop	for	a	given
mobile	platform,	you	will	need	to	install	that	platform’s	development	dependencies.	To
continue	on	with	this	chapter,	you	can	choose	iOS,	Android,	or	both.

iOS	Dependencies
In	order	to	develop	and	release	apps	for	iOS,	you	will	need	to	acquire	an	iOS	developer’s
account.	The	account	is	free,	and	is	sufficient	for	development.	For	deploying	applications
to	the	iOS	App	Store,	you’ll	eventually	need	a	license,	which	is	priced	at	$99/year.

If	you	haven’t	done	so	already,	you’ll	want	to	download	and	install	Xcode,	which	includes
the	Xcode	IDE,	the	iOS	simulators,	and	the	iOS	SDK.	You	can	download	Xcode	from	the
App	Store	or	from	the	Xcode	website.

After	Xcode	is	installed,	accept	the	license,	and	you	should	be	good	to	go.

https://developer.apple.com/xcode/download/

Android	Dependencies
Android	setup	is	a	multistep	process.	You	should	check	the	official	documentation	for	the
most	up-to-date	instructions.	Note	that	these	instructions	assume	you	don’t	already	have
your	environment	setup	for	Android	development.	In	general	terms,	there	are	three	main
phases:	installing	the	SDKs,	installing	the	simulator	tools,	and	creating	simulators	for	use.

First,	you’ll	need	to	install	the	JDK	(Java	Development	Kit)	and	Android	SDKs:

1.	 Install	the	latest	JDK.

2.	 Install	the	Android	SDK,	using	brew	install	android-sdk.

3.	 Export	your	ANDROID_HOME	variable	appropriately	in	your	shell	config	file	(~/.bashrc,
~/.zshrc,	or	whichever	your	shell	uses):

export	ANDROID_HOME=/usr/local/opt/android-sdk

This	environment	variable	is	used	for	many	Android-related	development	tasks;	make	sure
to	source	your	shell	config	after	adding	it.

Next,	run	android	from	the	command	line	to	open	the	Android	SDK	Manager.	This	will
show	you	the	available	packages	that	you	can	install	(see	Figure	3-1).

https://facebook.github.io/react-native/docs/android-setup.html
http://bit.ly/1X9h0Ea

Figure	3-1.	The	Android	SDK	Manager	allows	you	to	choose	which	packages	to	install

Wait	for	the	SDK	Manager	to	update	and	download	the	package	listing.	Some	packages
will	already	be	checked	by	default.	Also	make	sure	to	check	the	boxes	for:

Android	SDK	Build-tools	version	23.0.1

Android	6.0	(API	23)

Android	Support	Repository

Then,	click	Install	Packages	and	accept	any	applicable	licenses.	It’ll	take	a	little	while	for
everything	to	install.

Next,	you’ll	want	to	install	the	simulator	and	related	tools.

Start	a	new	shell	and	run	android	again	to	launch	the	Android	SDK	Manager.	We’re
going	to	install	a	few	more	packages:

Intel	x86	Atom	System	Image	(for	Android	5.1.1–API	22)

Intel	x86	Emulator	Accelerator	(HAXM	installer)

Once	again,	click	Install	Packages	and	accept	any	applicable	licenses.

These	packages	give	us	the	ability	to	create	Android	Virtual	Devices	(AVDs),	or
emulators,	but	we	don’t	actually	have	any	emulators	created	yet.	Let’s	correct	that.	Launch
the	AVD	Manager	(shown	in	Figure	3-2)	by	running:

android	avd

Figure	3-2.	The	AVD	manager	lets	you	create	and	launch	emulators

Then,	click	Create…	and	fill	out	the	emulator	creation	form,	shown	in	Figure	3-3.	For
Emulation	Options,	be	sure	to	check	Use	Host	GPU	(see	Figure	3-4).

Figure	3-3.	You	can	create	whichever	emulators	you	like	(in	this	example,	I’ve	created	a	Galaxy	Nexus	emulator)

Figure	3-4.	Be	sure	to	check	Use	Host	GPU	—	otherwise	your	emulator	will	be	very	slow!

You	can	create	as	many	AVDs	as	you	like.	Because	Android	devices	vary	so	much	—	in
screen	size,	resolution,	and	capabilities	—	having	multiple	emulators	to	use	for	testing	is
often	helpful.	To	get	started,	though,	we	just	need	one.

Creating	a	New	Application
You	can	use	the	React	Native	command-line	tools	to	create	a	new	application.	This	will
generate	a	fresh	project	with	all	of	the	React	Native,	iOS,	and	Android	boilerplate	for	you:

react-native	init	FirstProject

The	resulting	directory	should	have	the	structure	shown	in	Figure	3-5.

Figure	3-5.	File	structure	in	the	default	project

The	ios/	and	android/	directories	contain	boilerplate	relevant	to	those	platforms.	Your
React	code	is	located	in	the	index.ios.js	and	android.ios.js	files,	which	are	the	respective
entry	points	for	your	React	application.	Dependencies	installed	via	npm	can,	as	usual,	be
found	in	the	node_modules/	folder.

If	you	would	prefer,	you	can	download	the	project	from	the	GitHub	repository	for	this
book.

https://github.com/bonniee/learning-react-native

Running	a	React	Native	Application	for	iOS
For	starters,	we’ll	try	running	the	iOS	version	of	our	React	Native	application,	both	in	the
simulator	and	on	a	physical	device.

Open	the	FirstProject.xcodeproj	file,	located	in	the	ios/	directory,	in	Xcode.	In	the	top	left,
you’ll	notice	a	Run	button,	as	shown	in	Figure	3-6.	Pressing	this	will	build	and	run	your
application.	You	can	also	change	the	deploy	target	here	to	a	different	iOS	simulator.

Figure	3-6.	The	Run	button,	with	deploy	target	selector

When	you	press	Run,	the	React	packager	should	automatically	launch	in	a	new	terminal
window.	If	it	fails	to	launch,	or	prints	an	error,	try	running	npm	install	and	npm	start
from	the	FirstProject/	directory.

It	should	look	like	the	screenshot	shown	in	Figure	3-7.

Figure	3-7.	The	React	packager

Once	the	packager	is	ready,	the	iOS	simulator	will	launch	with	the	default	application.	It
should	look	something	like	Figure	3-8.

Figure	3-8.	Screenshot	of	the	default	app

You	need	the	packager	running	at	all	times	while	developing	in	order	to	have	changes	in
your	code	reflected	in	the	app.	If	the	packager	crashes,	you	can	restart	it	by	navigating	to
your	project’s	directory	and	running	npm	start.

Uploading	to	Your	iOS	Device
To	upload	your	React	Native	application	to	a	physical	iOS	device,	you	will	need	an	iOS
developer	account	with	Apple.	You	will	then	need	to	generate	a	certificate	and	register
your	device.	After	registering	with	Apple,	open	Xcode’s	preferences	and	add	your
account,	as	shown	in	Figure	3-9.

Figure	3-9.	Add	your	account	in	Xcode’s	Preferences	pane

Next,	you	will	need	to	obtain	a	certificate	for	your	account.	The	easiest	way	to	do	this	is	to
check	the	General	pane	in	Xcode.	As	shown	in	Figure	3-10,	you	will	notice	a	warning
symbol.	Click	on	the	Fix	Issue	button	to	resolve	this	problem.	Xcode	should	walk	you
through	the	next	few	steps	required	in	order	to	get	a	certificate	from	Apple.

Figure	3-10.	Screenshot	of	the	default	app

Having	obtained	a	certificate,	you’re	nearly	done.	The	final	step	is	to	log	on	to	Apple
Developer	and	register	your	device	(see	Figure	3-11).

Figure	3-11.	Registering	your	device	in	the	iOS	developer	member	center

Obtaining	your	device’s	UDID	is	simple.	Open	iTunes,	and	select	your	device.	Then,	click
on	the	serial	number;	it	should	now	display	the	UDID	instead,	and	the	UDID	will	be
copied	over	to	your	clipboard.

Once	you	have	registered	your	device	with	Apple,	it	should	appear	in	your	list	of
approved	devices.

This	registration	process	can	also	be	used	later	on,	if	you	wish	to	distribute	an	early
release	to	other	test	devices.	For	individual	developers,	Apple	gives	you	an	allotment	of
100	devices	per	year	through	the	developer	program.

Lastly,	we	need	to	make	a	quick	change	to	our	code	before	we	can	deploy.	You	will	need
to	alter	your	AppDelegate.m	file	to	include	your	Mac’s	IP	address	instead	of	localhost.	If
you	do	not	know	how	to	find	your	computer’s	IP	address,	you	can	run	ifconfig	and	then
use	the	inet	value	under	en0.

For	example,	if	your	IP	address	was	10.10.12.345,	you	should	edit	the	jsCodeLocation	to
look	like	this:

jsCodeLocation	=

http://developer.apple.com

[NSURL	URLWithString:@"http://10.10.12.345:8081/index.ios.bundle"];

Phew!	With	all	of	that	out	of	the	way,	we	can	select	a	physical	device	as	the	deploy	target
in	Xcode	(see	Figure	3-12).

Figure	3-12.	Select	your	iOS	device	as	the	deploy	target

Once	that	is	done,	click	the	Run	button.	The	app	should	load	onto	your	device,	just	as	it
did	in	the	simulator!	If	you	close	the	app,	you	will	see	that	it’s	been	loaded	onto	your
home	screen,	too.

Running	a	React	Native	Application	for	Android
To	run	a	React	Native	application	for	Android,	you’ll	need	to	do	two	things:	start	the
emulator,	and	then	run	your	application.

Earlier,	in	Figure	3-2,	we	saw	that	we	can	launch	the	AVD	Manager	by	running:

android	avd

Select	the	emulator	you	would	like	to	run	and	then	click	the	Start…	button

Alternatively,	you	can	launch	your	emulators	from	the	command	line.	To	view	available
emulators,	type:

emulator	-list-avds

Then	launch	them	by	name,	prefixed	by	the	@	symbol.	For	instance,	I	have	an	AVD	named
“galaxy,”	so	I	can	run	the	following:

emulator	@galaxy

Regardless	of	how	you	chose	to	start	your	emulator,	once	it’s	running,	launch	your	React
Native	application	by	running	the	following	from	your	project’s	root	directory:

react-native	run-android

Recap:	Creating	and	Running	Projects
We	covered	a	lot	of	ground	here!	Because	we	needed	to	install	dependencies	for	React
Native,	iOS,	and	Android	development,	that	might	have	felt	like	a	lot	of	work.

The	good	news	is	that	now	that	you’ve	done	the	initial	legwork,	things	will	be	simpler	in
the	future.	Creating	the	React	Native	equivalent	of	“Hello,	World”	is	as	easy	as	running
react-native	init	HelloWorld	from	the	command	line.

Exploring	the	Sample	Code
Now	that	you	have	launched	and	deployed	the	default	application	from	the	last	section,
let’s	figure	out	how	it	works.	In	this	section,	we	will	dig	into	the	source	code	of	the	default
application	and	explore	the	structure	of	a	React	Native	project.

Attaching	a	Component	to	the	View
When	a	React	Native	application	launches,	how	does	a	React	component	get	bound	to	the
view?	What	determines	which	component	is	rendered?

This	answer	is	platform-specific.	We’ll	start	by	looking	at	the	iOS	version	of	our	project.

We	can	find	the	answer	inside	of	AppDelegate.m.	Notice,	in	particular,	the	lines	shown	in
Example	3-1.

Example	3-1.	Declaring	the	root	view	in	ios/AppDelegate.m
		RCTRootView	*rootView	=

				[[RCTRootView	alloc]	initWithBundleURL:jsCodeLocation

				moduleName:@"FirstProject"

				launchOptions:launchOptions];

The	React	Native	library	prefixes	all	of	its	classes	with	RCT,	meaning	that	RCTRootView	is
a	React	Native	class.	In	this	case,	the	RCTRootView	represents	the	root	React	view.	The
remainder	of	the	boilerplate	code	in	AppDelegate.m	handles	attaching	this	view	to	a
UIViewController	and	rendering	the	view	to	the	screen.	These	steps	are	analogous	to
mounting	a	React	component	to	a	DOM	node	with	a	call	to	React.render.

For	now,	the	AppDelegate.m	file	contains	two	things	that	you	ought	to	know	how	to
modify.

The	first	is	the	jsCodeLocation	line,	which	we	edited	earlier	in	order	to	deploy	to	a
physical	device.	As	the	comments	in	the	generated	file	explain,	the	first	option	is	used	for
development,	while	the	second	option	is	used	for	deploying	with	a	prebundled	file	on	disk.
For	now,	we	will	leave	the	first	option	uncommented.	Later,	once	we	prepare	to	deploy
applications	to	the	App	Store,	we	will	discuss	these	two	approaches	in	more	detail.

You’ll	also	need	to	modify	the	moduleName,	which	is	passed	to	the	RCTRootView	and
determines	which	component	will	be	mounted	in	the	view.	This	is	where	you	can	choose
which	component	should	be	rendered	by	your	application.

In	order	to	use	the	FirstProject	component	here,	you	need	to	register	a	React	component
with	the	same	name.	If	you	open	up	index.ios.js,	you’ll	see	that	this	is	accomplished	on	the
last	line	(Example	3-2).

Example	3-2.	Registering	the	top-level	component
AppRegistry.registerComponent('FirstProject',	()	=>	FirstProject);

This	exposes	the	FirstProject	component	so	that	we	can	use	it	in	AppDelegate.m.	For	the
most	part,	you	will	not	need	to	modify	this	boilerplate,	but	it’s	good	to	know	that	it’s	there.

What	about	on	Android?	The	story	is	pretty	similar.	If	you	look	at	MainActivity.java,
you’ll	notice	the	line	shown	in	Example	3-3.

Example	3-3.	React	entry	point	for	Android	is	in	MainActivity.java
mReactRootView.startReactApplication(mReactInstanceManager,	"FirstProject",	null);

Like	AppDelegate.m	for	iOS,	the	MainActivity.java	file	for	Android	will	look	to	the

AppRegistry	for	a	React	component	bound	to	the	name	FirstProject.

Imports	in	React	Native
Let’s	take	a	closer	look	at	the	index.ios.js	file.	As	you	can	see	in	Example	3-4,	the	require
statements	used	are	a	bit	different	than	normal.

Example	3-4.	require	statements	in	React	Native,	and	importing	UI	elements
var	React	=	require('react-native');

var	{

		AppRegistry,

		StyleSheet,

		Text,

		View,

}	=	React;

There’s	some	interesting	syntax	going	on	here.	React	is	required	as	usual,	but	what	is
happening	on	the	next	line?

One	quirk	of	working	with	React	Native	is	that	you	need	to	explicitly	require	every
Native-provided	module	you	work	with.	Things	like	<div>	don’t	simply	exist;	instead,
you	need	to	explicitly	import	components	such	as	<View>	and	<Text>.	Library	functions
such	as	Stylesheet	and	AppRegistry	are	also	explicitly	imported	using	this	syntax.	Once
we	start	building	our	own	applications,	we	will	explore	the	other	React	Native	functions
that	you	may	need	to	import.

If	the	syntax	is	unfamiliar	to	you,	check	out	Example	A-2	in	Appendix	A	for	an
explanation	of	destructuring	in	ES6.

The	FirstProject	Component
Let’s	take	a	look	at	the	<FirstProject>	component	(Example	3-5),	which	is	duplicated
between	index.ios.js	and	index.android.js	(in	other	words,	you	can	examine	either,	as
they’re	identical).

This	should	all	look	comfortably	familiar,	because	<FirstProject>	is	written	just	like	an
ordinary	React	component.	The	main	difference	is	its	use	of	<Text>	and	<View>
components	instead	of	<div>	and	,	and	the	use	of	style	objects.

Example	3-5.	FirstProject	component,	with	styles
var	FirstProject	=	React.createClass({

		render:	function()	{

				return	(

						<View	style={styles.container}>

								<Text	style={styles.welcome}>

										Welcome	to	React	Native!

								</Text>

								<Text	style={styles.instructions}>

										To	get	started,	edit	index.ios.js

								</Text>

								<Text	style={styles.instructions}>

										Press	Cmd+R	to	reload,{'\n'}

										Cmd+D	or	shake	for	dev	menu

								</Text>

						</View>

);

		}

});

var	styles	=	StyleSheet.create({

		container:	{

				flex:	1,

				justifyContent:	'center',

				alignItems:	'center',

				backgroundColor:	'#F5FCFF',

		},

		welcome:	{

				fontSize:	20,

				textAlign:	'center',

				margin:	10,

		},

		instructions:	{

				textAlign:	'center',

				color:	'#333333',

				marginBottom:	5,

		},

});

As	I	mentioned	earlier,	all	styling	in	React	Native	is	done	with	style	objects	rather	than
stylesheets.	The	standard	method	of	doing	this	is	by	utilizing	the	StyleSheet	library.	You
can	see	how	the	style	objects	are	defined	toward	the	bottom	of	the	file.	Note	that	only
<Text>	components	can	take	text-specific	styles	like	fontSize,	and	that	all	layout	logic	is
handled	by	flexbox.	We	will	discuss	how	to	build	layouts	with	flexbox	at	greater	length
later	on	in	Chapter	5.

The	sample	application	is	a	good	demonstration	of	the	basic	functions	you	will	need	to
create	React	Native	applications.	It	mounts	a	React	component	for	rendering,	and
demonstrates	the	basics	of	styling	and	rendering	in	React	Native.	It	also	gave	us	a	simple
way	to	test	our	development	setup,	and	try	deploying	to	a	real	device.	However,	it’s	still	a
very	basic	application,	with	no	user	interaction.	Let’s	try	building	a	more	full-featured

application.

Building	a	Weather	App
We	will	be	building	off	of	the	sample	application	to	create	a	weather	app	(you	can	create	a
new	one	for	this	example	with	react-native	init	WeatherProject).	This	will	give	us	a
chance	to	explore	how	to	utilize	and	combine	stylesheets,	flexbox,	network
communication,	user	input,	and	images	into	a	useful	app	we	can	then	deploy	to	an
Android	or	iOS	device.

This	section	may	feel	like	a	bit	of	a	blur,	as	we’ll	be	focusing	on	an	overview	of	these
features	rather	than	deep	explanations	of	them.	The	Weather	App	will	serve	as	a	useful
reference	in	future	sections	as	we	discuss	these	features	in	more	detail.	Don’t	worry	if	it
feels	like	we’re	moving	quickly!

As	shown	in	Figure	3-13,	the	final	application	includes	a	text	field	where	users	can	input	a
zip	code.	It	will	then	fetch	data	from	the	OpenWeatherMap	API	and	display	the	current
weather.

Figure	3-13.	The	finished	weather	app

The	first	thing	we’ll	do	is	replace	the	default	code.	Move	the	initial	component	out	into	its
own	file,	WeatherProject.js,	and	replace	the	contents	of	index.ios.js	and	index.android.js.

Example	3-6.	Simplified	contents	of	index.ios.js	and	index.android.js	(they	should	be
identical)
var	React	=	require('react-native');

var	{	AppRegistry	}	=	React;

var	WeatherProject	=	require('./WeatherProject');

AppRegistry.registerComponent('WeatherProject',	()	=>	WeatherProject);

Handling	User	Input
We	want	the	user	to	be	able	to	input	a	zip	code	and	get	the	forecast	for	that	area,	so	we
need	to	add	a	text	field	for	user	input.	We	can	start	by	adding	zip	code	information	to	our
component’s	initial	state	(see	Example	3-7).

Example	3-7.	Add	this	to	your	component,	before	the	render	function
		getInitialState:	function()	{

				return	{

						zip:	''

				};

		}

Remember	that	getInitialState	is	how	we	set	up	the	initial	state	values	for	React
components.	If	you	need	a	review	of	the	React	component	lifecycle,	see	the	React	docs.

Then,	we	should	also	change	one	of	the	<Text>	components	to	display	this.state.zip:

<Text	style={styles.welcome}>

		You	input	{this.state.zip}.

</Text>

With	that	out	of	the	way,	let’s	add	a	<TextInput>	component	(this	is	a	basic	component
that	allows	the	user	to	enter	text):

<TextInput

		style={styles.input}

		onSubmitEditing={this._handleTextChange}/>

The	<TextInput>	component	is	documented	on	the	React	Native	site,	along	with	its
properties.	You	can	also	pass	the	<TextInput>	additional	callbacks	in	order	to	listen	to
other	events,	such	as	onChange	or	onFocus,	but	we	do	not	need	them	at	the	moment.

Note	that	we’ve	added	a	simple	style	to	the	<TextInput>.	Add	the	input	style	to	your
stylesheet:

var	styles	=	StyleSheet.create({

		...

		input:	{

				fontSize:	20,

				borderWidth:	2,

				height:	40

				}

		...

});

The	callback	we	passed	as	the	onSubmitEditing	prop	looks	like	this,	and	should	be	added
as	a	function	on	the	component:

_handleTextChange(event)	{

	console.log(event.nativeEvent.text);

	this.setState({zip:	event.nativeEvent.text})

}

The	console	statement	is	extraneous,	but	it	will	allow	you	to	test	out	the	debugger	tools	if

https://facebook.github.io/react/docs/component-specs.html
http://bit.ly/1N6vHN5

you	so	desire.

You	will	also	need	to	update	your	import	statements:

var	React	=	require('react-native');

var	{

		...

		TextInput

		...

}	=	React;

Now,	try	running	your	application	using	the	iOS	simulator.	It	won’t	be	pretty,	but	you
should	be	able	to	successfully	submit	a	zip	code	and	have	it	be	reflected	in	the	<Text>
component.

If	we	wanted,	we	could	add	some	simple	input	validation	here	to	ensure	that	the	user	typed
in	a	five-digit	number,	but	we	will	skip	that	for	now.

Example	3-8	shows	the	full	code	for	the	WeatherProject.js	component.

Example	3-8.	WeatherProject.js:	this	version	simply	accepts	and	records	user	input
var	React	=	require('react-native');

var	{

		StyleSheet,

		Text,

		View,

		TextInput,

		Image

}	=	React;

var	WeatherProject	=	React.createClass({

		//	If	you	want	to	have	a	default	zip	code,	you	could	add	one	here

		getInitialState()	{

				return	({

						zip:	''

				});

		},

		//	We'll	pass	this	callback	to	the	<TextInput>

		_handleTextChange(event)	{

				//	log	statements	are	viewable	in	Xcode,

				//	or	the	Chrome	debug	tools

				console.log(event.nativeEvent.text);

				this.setState({

						zip:	event.nativeEvent.text

				});

		},

		render()	{

				return	(

						<View	style={styles.container}>

								<Text	style={styles.welcome}>

										You	input	{this.state.zip}.

								</Text>

								<TextInput

														style={styles.input}

														onSubmitEditing={this._handleTextChange}/>

						</View>

);

		}

});

var	styles	=	StyleSheet.create({

		container:	{

				flex:	1,

				justifyContent:	'center',

				alignItems:	'center',

				backgroundColor:	'#F5FCFF',

		},

		welcome:	{

				fontSize:	20,

				textAlign:	'center',

				margin:	10,

		},

		input:	{

				fontSize:	20,

				borderWidth:	2,

				height:	40

				}

});

module.exports	=	WeatherProject;

Displaying	Data
Now	let’s	work	on	displaying	the	forecast	for	that	zip	code.	We	will	start	by	adding	some
mock	data	to	getInitialState	in	WeatherProject.js:

getInitialState()	{

		return	{

				zip:	'',

				forecast:	{

						main:	'Clouds',

						description:	'few	clouds',

						temp:	45.7

				}

		}

}

For	sanity’s	sake,	let’s	also	pull	the	forecast	rendering	into	its	own	component.	Make	a
new	file	called	Forecast.js	(see	Example	3-9).

Example	3-9.	Forecast	component	in	Forecast.js
var	React	=	require('react-native');

var	{

		StyleSheet,

		Text,

		View

}	=	React;

var	Forecast	=	React.createClass({

		render:	function()	{

				return	(

						<View>

								<Text	style={styles.bigText}>

										{this.props.main}

								</Text>

								<Text	style={styles.mainText}>

										Current	conditions:	{this.props.description}

								</Text>

								<Text	style={styles.bigText}>

										{this.props.temp}°F

								</Text>

						</View>

);

		}

});

var	styles	=	StyleSheet.create({

		bigText:	{

				flex:	2,

				fontSize:	20,

				textAlign:	'center',

				margin:	10,

				color:	'#FFFFFF'

		},

		mainText:	{

				flex:	1,

				fontSize:	16,

				textAlign:	'center',

				color:	'#FFFFFF'

		}

})

module.exports	=	Forecast;

The	<Forecast>	component	just	renders	some	<Text>	based	on	its	props.	We’ve	also
included	some	simple	styles	at	the	bottom	of	the	file,	to	control	things	like	text	color.

Require	the	<Forecast>	component	and	then	add	it	to	your	app’s	render	method,	passing

it	props	based	on	the	this.state.forecast	(see	Example	3-10).	We’ll	address	issues	with
layout	and	styling	later.	You	can	see	how	the	<Forecast>	component	appears	in	the
resulting	application	in	Figure	3-14.

Example	3-10.	WeatherProject.js	should	be	updated	with	new	state	and	the	Forecast
component
var	React	=	require('react-native');

var	{

		StyleSheet,

		Text,

		View,

		TextInput,

		Image

}	=	React;

var	Forecast	=	require('./Forecast');

var	WeatherProject	=	React.createClass({

		getInitialState()	{

				return	{

						zip:	'',

						forecast:	{

								main:	'Clouds',

								description:	'few	clouds',

								temp:	45.7

						}

				}

		},

		_handleTextChange(event)	{

				console.log(event.nativeEvent.text);

				this.setState({

						zip:	event.nativeEvent.text

				});

		},

		render()	{

				return	(

						<View	style={styles.container}>

								<Text	style={styles.welcome}>

										You	input	{this.state.zip}.

								</Text>

								<Forecast

										main={this.state.forecast.main}

										description={this.state.forecast.description}

										temp={this.state.forecast.temp}/>

								<TextInput

										style={styles.input}

										returnKeyType='go'

										onSubmitEditing={this._handleTextChange}/>

						</View>

);

		}

});

var	styles	=	StyleSheet.create({

		container:	{

				flex:	1,

				justifyContent:	'center',

				alignItems:	'center',

				backgroundColor:	'#4D4D4D',

		},

		welcome:	{

				fontSize:	20,

				textAlign:	'center',

				margin:	10,

		},

		input:	{

				fontSize:	20,

				borderWidth:	2,

				height:	40

				}

});

module.exports	=	WeatherProject;

Figure	3-14.	The	weather	app	so	far

Adding	a	Background	Image
Plain	background	colors	are	boring.	Let’s	display	a	background	image	to	go	along	with
our	forecast.

ASSET	INCLUSION	IS	PLATFORM-SPECIFIC
Android	and	iOS	have	different	requirements	for	adding	assets	to	your	projects.	We’ll	cover	both	here.

Assets	such	as	images	need	to	be	added	to	your	project	based	on	which	platform	you’re
building	for.	We’ll	start	with	Xcode.

Select	the	Images.xcassets/	folder,	and	then	select	the	New	Image	Set	option,	as	shown	in
Figure	3-15.	Then,	you	can	drag	and	drop	an	image	into	the	set.	Figure	3-16	shows	the
resulting	Image	Set.	Make	sure	the	image	set’s	name	matches	the	filename,	otherwise
React	Native	will	have	difficulty	importing	it.

Figure	3-15.	Add	a	new	image	set

Figure	3-16.	Drag	your	image	files	into	the	image	set	to	add	them

The	@2x	and	@3x	decorators	indicate	an	image	with	a	resolution	of	twice	and	thrice	the
base	resolution,	respectively.	Because	the	WeatherApp	is	designated	as	a	universal
application	(meaning	one	that	can	run	on	iPhone	or	iPad),	Xcode	gives	us	the	option	of
uploading	images	at	the	various	appropriate	resolutions.

For	Android,	we	have	to	add	our	files	as	bitmap	drawable	resources	to	the	appropriate
folders	in	WeatherProject/android/app/src/main/res.	You’ll	want	to	copy	the	.png	file	into
the	following	resolution-specific	directories	(see	Figure	3-17):

drawable-mdpi/	(1x)

drawable-hdpi/	(1.5x)

drawable-xhdpi/	(2x)

drawable-xxhdpi/	(3x)

http://bit.ly/1N93oSC

Figure	3-17.	Adding	image	files	to	Android

After	that,	the	image	will	be	available	to	your	Android	application.

If	this	workflow	feels	suboptimal,	that’s	because	it	is.	It	will	probably	change	in	future
versions	of	React	Native.

Now	that	the	image	files	have	been	imported	into	both	our	Android	and	iOS	projects,	let’s
hop	back	to	our	React	code.	To	add	a	background	image,	we	don’t	set	a	background
property	on	a	<div>	like	we	can	do	on	the	Web.	Instead,	we	use	an	<Image>	component	as
a	container:

<Image	source={require('image!flowers')}

							resizeMode='cover'

							style={styles.backdrop}>

		//	Your	content	here

</Image>

The	<Image>	component	expects	a	source	prop,	which	we	get	by	using	require.	The	call
to	require(image!flowers)	will	cause	React	Native	to	search	for	a	file	named	flowers.

Don’t	forget	to	style	it	with	flexDirection	so	that	its	children	render	as	we’d	like	them
to:

backdrop:	{

		flex:	1,

		flexDirection:	'column'

}

Now	let’s	give	the	<Image>	some	children.	Update	the	render	method	of	the
<WeatherProject>	component	to	return	the	following:

<Image	source={require('image!flowers')}

							resizeMode='cover'

							style={styles.backdrop}>

		<View	style={styles.overlay}>

			<View	style={styles.row}>

					<Text	style={styles.mainText}>

							Current	weather	for

					</Text>

					<View	style={styles.zipContainer}>

							<TextInput

									style={[styles.zipCode,	styles.mainText]}

									returnKeyType='go'

									onSubmitEditing={this._handleTextChange}/>

					</View>

			</View>

			<Forecast

						main={this.state.forecast.main}

						description={this.state.forecast.description}

						temp={this.state.forecast.temp}/>

	</View>

</Image>

You’ll	notice	that	I’m	using	some	additional	styles	that	we	haven’t	discussed	yet,	such	as
row,	overlay,	and	the	zipContainer	and	zipCode	styles.	You	can	skip	ahead	to	the	end	of
this	section	to	see	the	full	stylesheet.

Fetching	Data	from	the	Web
Next,	let’s	explore	using	the	networking	APIs	available	in	React	Native.	You	won’t	be
using	jQuery	to	send	AJAX	requests	from	mobile	devices!	Instead,	React	Native
implements	the	Fetch	API.	The	Promise-based	syntax	is	fairly	simple:

fetch('http://www.somesite.com')

		.then((response)	=>	response.text())

		.then((responseText)	=>	{

				console.log(responseText);

		});

We	will	be	using	the	OpenWeatherMap	API,	which	provides	us	with	a	simple	endpoint
that	returns	the	current	weather	for	a	given	zip	code.

To	integrate	this	API,	we	can	change	the	callback	on	the	<TextInput>	component	to	query
the	OpenWeatherMap	API:

_handleTextChange:	function(event)	{

		var	zip	=	event.nativeEvent.text;

		this.setState({zip:	zip});

		fetch('http://api.openweathermap.org/data/2.5/weather?q='	+

		zip	+	'&units=imperial')

				.then((response)	=>	response.json())

				.then((responseJSON)	=>	{

						//	Take	a	look	at	the	format,	if	you	want.

						console.log(responseJSON);

						this.setState({

								forecast:	{

										main:	responseJSON.weather[0].main,

										description:	responseJSON.weather[0].description,

										temp:	responseJSON.main.temp

								}

						});

				})

				.catch((error)	=>	{

						console.warn(error);

				});

}

Note	that	we	want	the	JSON	from	the	response.	The	Fetch	API	is	pretty	straightforward	to
work	with,	so	this	is	all	we	will	need	to	do.

The	other	thing	that	we	can	do	is	to	remove	the	placeholder	data,	and	make	sure	that	the
forecast	does	not	render	if	we	do	not	have	data	yet.

First,	clear	the	mock	data	from	getInitialState:

getInitialState:	function()	{

		return	{

				zip:	'',

				forecast:	null

		};

}

Then,	in	the	render	function,	update	the	rendering	logic:

var	content	=	null;

if	(this.state.forecast	!==	null)	{

		content	=	<Forecast

														main={this.state.forecast.main}

														description={this.state.forecast.description}

														temp={this.state.forecast.temp}/>;

}

Finally,	replace	your	rendered	<Forecast>	component	with	{content}	in	the	render
function.

Putting	It	Together
For	the	final	version	of	the	application,	I’ve	reorganized	the	<WeatherProject>
component’s	render	function	and	tweaked	the	styles.	The	main	change	is	to	the	layout
logic,	diagrammed	in	Figure	3-18.

Figure	3-18.	Layout	of	the	finished	weather	application

OK.	Ready	to	see	it	all	in	one	place?	Example	3-11	shows	the	finished	code	for	the
<WeatherProject>	component	in	full,	including	the	stylesheets.	The	<Forecast>
component	will	be	the	same	as	above	in	Example	3-9.

Example	3-11.	Finished	code	for	WeatherProject.js
var	React	=	require('react-native');

var	{

		StyleSheet,

		Text,

		View,

		TextInput,

		Image

}	=	React;

var	Forecast	=	require('./Forecast');

var	WeatherProject	=	React.createClass({

		getInitialState:	function()	{

				return	{

						zip:	'',

						forecast:	null

				};

		},

		_handleTextChange:	function(event)	{

				var	zip	=	event.nativeEvent.text;

				this.setState({zip:	zip});

				fetch('http://api.openweathermap.org/data/2.5/weather?q='

						+	zip	+	'&units=imperial')

						.then((response)	=>	response.json())

						.then((responseJSON)	=>	{

								this.setState({

										forecast:	{

												main:	responseJSON.weather[0].main,

												description:	responseJSON.weather[0].description,

												temp:	responseJSON.main.temp

										}

								});

						})

						.catch((error)	=>	{

								console.warn(error);

						});

		},

		render:	function()	{

				var	content	=	null;

				if	(this.state.forecast	!==	null)	{

						content	=	<Forecast

																		main={this.state.forecast.main}

																		description={this.state.forecast.description}

																		temp={this.state.forecast.temp}/>;

				}

				return	(

						<View	style={styles.container}>

								<Image	source={require('image!flowers')}

															resizeMode='cover'

															style={styles.backdrop}>

										<View	style={styles.overlay}>

											<View	style={styles.row}>

													<Text	style={styles.mainText}>

															Current	weather	for

													</Text>

													<View	style={styles.zipContainer}>

															<TextInput

																	style={[styles.zipCode,	styles.mainText]}

																	returnKeyType='go'

																	onSubmitEditing={this._handleTextChange}/>

													</View>

											</View>

											{content}

									</View>

								</Image>

						</View>

);

		}

});

var	baseFontSize	=	16;

var	styles	=	StyleSheet.create({

		container:	{

				flex:	1,

				alignItems:	'center',

				paddingTop:	30

		},

		backdrop:	{

				flex:	1,

				flexDirection:	'column'

		},

		overlay:	{

				paddingTop:	5,

				backgroundColor:	'#000000',

				opacity:	0.5,

				flexDirection:	'column',

				alignItems:	'center'

		},

		row:	{

				flex:	1,

				flexDirection:	'row',

				flexWrap:	'nowrap',

				alignItems:	'flex-start',

				padding:	30

		},

		zipContainer:	{

				flex:	1,

				borderBottomColor:	'#DDDDDD',

				borderBottomWidth:	1,

				marginLeft:	5,

				marginTop:	3

		},

		zipCode:	{

				width:	50,

				height:	baseFontSize,

		},

		mainText:	{

				flex:	1,

				fontSize:	baseFontSize,

				color:	'#FFFFFF'

		}

});

module.exports	=	WeatherProject;

Now	that	we’re	done,	try	launching	the	application.	It	should	work	on	both	Android	and
iOS,	in	an	emulator	or	on	your	physical	device.	What	would	you	like	to	change	or
improve?

You	can	view	the	completed	application	in	the	GitHub	repository.

https://github.com/bonniee/learning-react-native

Summary
For	our	first	real	application,	we’ve	already	covered	a	lot	of	ground.	We	introduced	a	new
UI	component,	<TextInput>,	and	learned	how	to	use	it	to	get	information	from	the	user.
We	demonstrated	how	to	implement	basic	styling	in	React	Native,	as	well	as	how	to	use
images	and	include	assets	in	our	application.	Finally,	we	learned	how	to	use	the	React
Native	networking	API	to	request	data	from	external	web	sources.	Not	bad	for	a	first
application!

Hopefully,	this	has	demonstrated	how	quickly	you	can	build	React	Native	applications
with	useful	features	that	feel	at	home	on	a	mobile	device.

If	you	want	to	extend	your	application	further,	here	are	some	things	to	try:

Add	more	images,	and	change	them	based	on	the	forecast

Add	validation	to	the	zip	code	field

Switch	to	using	a	more	appropriate	keypad	for	the	zip	code	input

Display	the	five-day	weather	forecast

Once	we	cover	more	topics,	such	as	geolocation,	you	will	be	able	to	extend	the	weather
application	in	even	more	ways.

Of	course,	this	has	been	a	pretty	quick	survey.	In	the	next	few	chapters,	we	will	focus	on
gaining	a	deeper	understanding	of	React	Native	best	practices,	and	look	at	how	to	use	a	lot
more	features,	too!

Chapter	4.	Components	for	Mobile

In	Chapter	3,	we	built	a	simple	weather	app.	In	doing	so,	we	touched	upon	the	basics	of
building	interfaces	with	React	Native.	In	this	chapter,	we	will	take	a	closer	look	at	the
mobile-based	components	used	for	React	Native,	and	how	they	compare	to	basic	HTML
elements.	Mobile	interfaces	are	based	on	different	primitive	UI	elements	than	web	pages,
and	thus	we	need	to	use	different	components.

This	chapter	starts	with	a	more	detailed	overview	of	the	most	basic	components:	<View>,
<Image>,	and	<Text>.	Then,	we	will	discuss	how	touch	and	gestures	factor	into	React
Native	components,	and	how	to	handle	touch	events.	Next,	we	will	cover	higher-level
components,	such	as	the	<ListView>,	<TabView>,	and	<NavigatorView>,	which	allow	you
to	combine	other	views	into	standard	mobile	interface	patterns.

Analogies	Between	HTML	Elements	and	Native
Components
When	developing	for	the	Web,	we	make	use	of	a	variety	of	basic	HTML	elements.	These
include	<div>,	,	and	,	as	well	as	organizational	elements	such	as	,	,
and	<table>.	(We	could	include	a	consideration	of	elements	such	as	<audio>,	<svg>,
<canvas>,	and	so	on,	but	we’ll	ignore	them	for	now.)

When	dealing	with	React	Native,	we	don’t	use	these	HTML	elements,	but	we	use	a	variety
of	components	that	are	nearly	analogous	to	them	(Table	4-1).

Table	4-1.	Analogous
HTML	and	Native
components

HTML React	Native

div View

img Image

span,	p Text

ul/ol,	li ListView,	child	items

Although	these	elements	serve	roughly	the	same	purposes,	they	are	not	interchangeable.
Let’s	take	a	look	at	how	these	components	work	on	mobile	with	React	Native,	and	how
they	differ	from	their	browser-based	counterparts.

CAN	I	SHARE	CODE	BETWEEN	REACT	NATIVE	AND	MY	WEB	APP?

Unfortunately,	React	Native’s	basic	components	currently	can’t	render	to	basic	HTML	elements.	Your	React	Native
code	can	be	reused	across	iOS	and	Android	(and	any	future	React	Native	platforms),	but	it	can’t	render	to	web-
compatible	views.	However,	any	JavaScript	code,	including	React	components,	which	don’t	render	any	basic
elements	can	be	shared.	So,	if	your	business	logic	is	isolated	from	your	rendering	code,	you	can	see	some	reuse
there.

The	Text	Component
Rendering	text	is	a	deceptively	basic	function;	nearly	any	application	will	need	to	render
text	somewhere.	However,	text	within	the	context	of	React	Native	and	mobile
development	works	differently	from	text	rendering	for	the	Web.

When	working	with	text	in	HTML,	you	can	include	raw	text	strings	in	a	variety	of
elements.	Furthermore,	you	can	style	them	with	child	tags	such	as		and	.	So,
you	might	end	up	with	an	HTML	snippet	that	looks	like	this:

<p>The	quick	brown	fox	jumped	over	the	lazy	dog.</p>

In	React	Native,	only	<Text>	components	may	have	plain	text	nodes	as	children.	In	other
words,	this	is	not	valid:

<View>

		Text	doesn't	go	here!

</View>

Instead,	wrap	your	text	in	a	<Text>	component:

<View>

		<Text>This	is	OK!</Text>

</View>

When	dealing	with	<Text>	components	in	React	Native,	you	no	longer	have	access	to
subtags	such	as		and	,	though	you	can	apply	styles	to	achieve	similar	effects
through	use	of	attributes	such	as	fontWeight	and	fontStyle.	Here’s	how	you	might
achieve	a	similar	effect	by	making	use	of	inline	styles:

<Text>

		The	quick	<Text	style={{fontStyle:	"italic"}}>brown</Text>	fox

		jumped	over	the	lazy	<Text	style={{fontWeight:	"bold"}}>dog</Text>.

</Text>

This	approach	could	quickly	become	verbose.	You’ll	likely	want	to	create	styled
components	as	a	sort	of	shorthand	when	dealing	with	text,	as	shown	in	Example	4-1.

Example	4-1.	Creating	reusable	components	for	styling	text
var	styles	=	StyleSheet.create({

		bold:	{

						fontWeight:	"bold"

		},

		italic:	{

						fontStyle:	"italic"

		}

});

var	Strong	=	React.createClass({

		render:	function()	{

				return	(

				<Text	style={styles.bold}>

						{this.props.children}

				</Text>);

		}

});

var	Em	=	React.createClass({

		render:	function()	{

				return	(

				<Text	style={styles.italic}>

						{this.props.children}

				</Text>);

		}

});

Once	you	have	declared	these	styled	components,	you	can	freely	make	use	of	styled
nesting.	Now	the	React	Native	version	looks	quite	similar	to	the	HTML	version	(see
Example	4-2).

Example	4-2.	Using	styled	components	for	rendering	text
<Text>

		The	quick	brown	fox	jumped

		over	the	lazy	dog.

</Text>

Similarly,	React	Native	does	not	inherently	have	any	concept	of	header	elements	(h1,	h2,
etc.),	but	it’s	easy	to	declare	your	own	styled	<Text>	elements	and	use	them	as	needed.

In	general,	when	dealing	with	styled	text,	React	Native	forces	you	to	change	your
approach.	Style	inheritance	is	limited,	so	you	lose	the	ability	to	have	default	font	settings
for	all	text	nodes	in	the	tree.	One	again,	Facebook	recommends	solving	this	by	using
styled	components:

You	also	lose	the	ability	to	set	up	a	default	font	for	an	entire	subtree.	The	recommended
way	to	use	consistent	fonts	and	sizes	across	your	application	is	to	create	a	component
MyAppText	that	includes	them	and	use	this	component	across	your	app.	You	can	also
use	this	component	to	make	more	specific	components	like	MyAppHeaderText	for
other	kinds	of	text.

React	Native	Documentation

The	Text	component	documentation	has	more	details	on	this.

You’ve	probably	noticed	a	pattern	here:	React	Native	is	very	opinionated	in	its	preference
for	the	reuse	of	styled	components	over	the	reuse	of	styles.	We’ll	discuss	this	further	in	the
next	chapter.

http://bit.ly/1SVQxU3

The	Image	Component
If	text	is	the	most	basic	element	in	an	application,	images	are	a	close	contender,	for	both
mobile	and	for	the	Web.	When	writing	HTML	and	CSS	for	the	Web,	we	include	images	in
a	variety	of	ways:	sometimes	we	use	the		tag,	while	at	other	times	we	apply	images
via	CSS,	such	as	when	we	use	the	background-image	property.	In	React	Native,	we	have	a
similar	<Image>	component,	but	it	behaves	a	little	differently.

The	basic	usage	of	the	<Image>	component	is	straightforward;	just	set	the	source	prop:

<Image	source={require('image!puppies')}	/>

How	does	that	require	call	work?	Where	does	this	resource	live?	Here’s	one	part	of	React
Native	that	you’ll	have	to	adjust	based	on	which	platform	you’re	targeting.	On	iOS,	this
means	that	you’ll	need	to	import	it	into	the	assets	folder	within	your	Xcode	project.	By
providing	the	appropriate	@2x	and	@3x	resolution	files,	you	will	enable	Xcode	to	serve
the	correct	asset	file	for	the	correct	platform.	This	is	a	nice	change	from	web	development:
the	relatively	limited	possible	combinations	of	screen	size	and	resolution	on	iOS	means
that	it’s	easier	to	create	targeted	assets.

For	React	Native	on	other	platforms,	we	can	expect	that	the	image!	require	syntax	will
point	to	a	similar	assets	directory.

It’s	worth	mentioning	that	it	is	also	possible	to	include	web-based	image	sources	instead
of	bundling	your	assets	with	your	application.	Facebook	does	this	as	one	of	the	examples
in	the	UIExplorer	application:

<Image	source={{uri:	'https://facebook.github.io/react/img/logo_og.png'}}

							style={{width:	400,	height:	400}}	/>

When	utilizing	network	resources,	you	will	need	to	specify	dimensions	manually.

Downloading	images	via	the	network	rather	than	including	them	as	assets	has	some
advantages.	During	development,	for	instance,	it	may	be	easier	to	use	this	approach	while
prototyping,	rather	than	carefully	importing	all	of	your	assets	ahead	of	time.	It	also
reduces	the	size	of	your	bundled	mobile	application,	so	that	users	needn’t	download	all	of
your	assets.	However,	it	means	that	instead	you’ll	be	relying	on	the	user’s	data	plan
whenever	they	access	your	application	in	the	future.	For	most	cases,	you’ll	want	to	avoid
using	the	URI-based	method.

If	you’re	wondering	about	working	with	the	user’s	own	images,	we’ll	cover	the	camera
roll	in	Chapter	6.

Because	React	Native	emphasizes	a	component-based	approach,	images	must	be	included
as	an	<Image>	component	instead	of	being	referenced	via	styles.	For	instance,	in
Chapter	3,	we	wanted	to	use	an	image	as	a	background	for	our	weather	application.
Whereas	in	plain	HTML	and	CSS	you	would	likely	use	the	background-image	property	to

apply	a	background	image,	in	React	Native	you	instead	use	the	<Image>	as	a	container
component,	like	so:

<Image	source={require('image!puppies')}>

		{/*	Your	content	here…	*/}

</Image>

Styling	the	images	themselves	is	fairly	straightforward.	In	addition	to	applying	styles,
certain	props	control	how	the	image	will	be	rendered.	You’ll	often	make	use	of	the
resizeMode	prop,	for	instance,	which	can	be	set	to	resize,	cover,	or	contain.	The
UIExplorer	app	demonstrates	this	well	(Figure	4-1).

Figure	4-1.	The	difference	between	resize,	cover,	and	contain

The	<Image>	component	is	easy	to	work	with,	and	very	flexible.	You	will	likely	make
extensive	use	of	it	in	your	own	applications.

Working	with	Touch	and	Gestures
Web-based	interfaces	are	usually	designed	for	mouse-based	controllers.	We	use	things	like
hover	state	to	indicate	interactivity	and	respond	to	user	interaction.	For	mobile,	it’s	touch
that	matters.	Mobile	platforms	have	their	own	norms	around	interactions	that	you’ll	want
to	design	for.	This	varies	somewhat	from	platform	to	platform:	iOS	behaves	differently
from	Android,	which	behaves	differently	yet	again	from	Windows	Phone.

React	Native	provides	a	number	of	APIs	for	you	to	leverage	as	you	build	touch-ready
interfaces.	In	this	section,	we’ll	look	at	the	<TouchableHighlight>	container	component,
as	well	as	the	lower-level	APIs	provided	by	PanResponder	and	the	Gesture	Responder
system.

Using	TouchableHighlight
Any	interface	elements	that	respond	to	user	touch	(think	buttons,	control	elements,	etc.)
should	usually	have	a	<TouchableHighlight>	wrapper.	<TouchableHighlight>	causes	an
overlay	to	appear	when	the	view	is	touched,	giving	the	user	visual	feedback.	This	is	one	of
the	key	interactions	that	causes	a	mobile	application	to	feel	native,	as	opposed	to	a	mobile-
optimized	website,	where	touch	feedback	is	limited.	As	a	general	rule	of	thumb,	you
should	use	<TouchableHighlight>	anywhere	there	would	be	a	button	or	a	link	on	the
Web.

At	its	most	basic	usage,	you	just	need	to	wrap	your	component	in	a
<TouchableHighlight>,	which	will	add	a	simple	overlay	when	pressed.	The
<TouchableHighlight>	component	also	gives	you	hooks	for	events	such	as	onPressIn,
onPressOut,	onLongPress,	and	the	like,	so	you	can	use	these	events	in	your	React
applications.

Example	4-3	shows	how	you	can	wrap	a	component	in	a	<TouchableHighlight>	in	order
to	give	the	user	feedback.

Example	4-3.	Using	the	<TouchableHighlight>	component
<TouchableHighlight

		onPressIn={this._onPressIn}

		onPressOut={this._onPressOut}

		style={styles.touchable}>

				<View	style={styles.button}>

						<Text	style={styles.welcome}>

								{this.state.pressing	?	'EEK!'	:	'PUSH	ME'}

						</Text>

				</View>

</TouchableHighlight>

When	the	user	taps	the	button,	an	overlay	appears,	and	the	text	changes	(Figure	4-2).

Figure	4-2.	Using	<TouchableHighlight>	to	give	the	user	visual	feedback	—	the	unpressed	state	(left)	and	the	pressed
state,	with	highlight	(right)

This	is	a	contrived	example,	but	it	illustrates	the	basic	interactions	that	make	a	button
“feel”	touchable	on	mobile.	The	overlay	is	a	key	piece	of	feedback	that	informs	the	user
that	an	element	can	be	pressed.	Note	that	in	order	to	apply	the	overlay,	we	don’t	need	to
apply	any	logic	to	our	styles;	the	<TouchableHighlight>	handles	the	logic	of	that	for	us.

Example	4-4	shows	the	full	code	for	this	button	component.

Example	4-4.	Touch/PressDemo.js	illustrates	the	use	of	<TouchableHighlight>
'use	strict';

var	React	=	require('react-native');

var	{

		StyleSheet,

		Text,

		View,

		TouchableHighlight

}	=	React;

var	Button	=	React.createClass({

		getInitialState:	function()	{

				return	{

						pressing:	false

				}

		},

		_onPressIn:	function()	{

				this.setState({pressing:	true});

		},

		_onPressOut:	function()	{

				this.setState({pressing:	false});

		},

		render:	function()	{

				return	(

						<View	style={styles.container}>

								<TouchableHighlight

										onPressIn={this._onPressIn}

										onPressOut={this._onPressOut}

										style={styles.touchable}>

										<View	style={styles.button}>

												<Text	style={styles.welcome}>

														{this.state.pressing	?	'EEK!'	:	'PUSH	ME'}

												</Text>

										</View>

								</TouchableHighlight>

						</View>

);

		}

});

var	styles	=	StyleSheet.create({

		container:	{

				flex:	1,

				justifyContent:	'center',

				alignItems:	'center',

				backgroundColor:	'#F5FCFF',

		},

		welcome:	{

				fontSize:	20,

				textAlign:	'center',

				margin:	10,

				color:	'#FFFFFF'

		},

		touchable:	{

				borderRadius:	100

		},

		button:	{

				backgroundColor:	'#FF0000',

				borderRadius:	100,

				height:	200,

				width:	200,

				justifyContent:	'center'

		},

});

module.exports	=	Button;

Try	editing	this	button	to	respond	to	other	events,	by	using	hooks	like	onPress	and
onLongPress.	The	best	way	to	get	a	sense	for	how	these	events	map	onto	user	interactions
is	to	experiment	using	a	real	device.

The	GestureResponder	System
What	if	you	want	to	do	more	than	just	make	things	“tappable”?	React	Native	also	exposes
two	APIs	for	custom	touch	handling:	GestureResponder	and	PanResponder.
GestureResponder	is	a	lower-level	API,	while	PanResponder	provides	a	useful
abstraction.	We’ll	start	by	looking	at	how	the	GestureResponder	system	works,	because
it’s	the	basis	for	the	PanResponder	API.

Touch	on	mobile	is	fairly	complicated.	Most	mobile	platforms	support	multitouch,	which
means	that	there	can	be	multiple	touch	points	active	on	the	screen	at	once.	(Not	all	of
these	are	necessarily	fingers,	either;	think	about	the	difficulty	of,	for	example,	detecting
the	user’s	palm	resting	on	the	corner	of	the	screen.)	Additionally,	there’s	the	issue	of
which	view	should	handle	a	given	touch.	This	problem	is	similar	to	how	mouse	events	are
processed	on	the	Web,	and	the	default	behavior	is	also	similar:	the	topmost	child	handles
the	touch	event	by	default.	With	React	Native’s	gesture	responder	system,	however,	we
can	override	this	behavior	if	we	so	choose.

The	touch	responder	is	the	view	that	handles	a	given	touch	event.	In	the	previous	section,
we	saw	that	the	<TouchableHighlight>	component	acts	as	a	touch	responder.	We	can
cause	our	own	components	to	become	the	touch	responder,	too.	The	lifecycle	by	which
this	process	is	negotiated	is	a	little	complicated.	A	view	that	wishes	to	obtain	touch
responder	status	should	implement	four	props:

View.props.onStartShouldSetResponder

View.props.onMoveShouldSetResponder

View.props.onResponderGrant

View.props.onResponderReject

These	then	get	invoked	according	to	the	flow	illustrated	in	Figure	4-3,	in	order	to
determine	if	the	view	will	receive	responder	status.

Figure	4-3.	Obtaining	touch	responder	status

Yikes,	that	looks	complicated!	Let’s	tease	this	apart.	First,	a	touch	event	has	three	main
lifecycle	stages:	start,	move,	and	release	(these	correspond	to	mouseDown,	mouseMove,	and
mouseUp	in	the	browser).	A	view	can	request	to	be	the	touch	responder	during	the	start	or
the	move	phase.	This	behavior	is	specified	by	onStartShouldSetResponder	and
onMoveShouldSetResponder.	When	one	of	those	functions	returns	true,	the	view	attempts
to	claim	responder	status.

After	a	view	has	attempted	to	claim	responder	status,	its	attempt	may	be	granted	or
rejected.	The	appropriate	callback	—	either	onResponderGrant	or	onResponderReject	—
will	be	invoked.

The	responder	negotiation	functions	are	called	in	a	bubbling	pattern.	If	multiple	views
attempt	to	claim	responder	status,	the	deepest	component	will	become	the	responder.	This
is	typically	the	desired	behavior;	otherwise,	you	would	have	difficulty	adding	touchable
components	such	as	buttons	to	a	larger	view.	If	you	want	to	override	this	behavior,	parent
components	can	make	use	of	onStartShouldSetResponderCapture	and
onMoveShouldSetResponderCapture.	Returning	true	from	either	of	these	will	prevent	a
component’s	children	from	becoming	the	touch	responder.

After	a	view	has	successfully	claimed	touch	responder	status,	its	relevant	event	handlers
may	be	called.	Here’s	the	excerpt	from	the	Gesture	Responder	documentation:

http://bit.ly/1jfZ5ZL

View.props.onResponderMove

The	user	is	moving	her	finger
View.props.onResponderRelease

Fired	at	the	end	of	the	touch	(i.e.,	“touchUp”)
View.props.onResponderTerminationRequest

Something	else	wants	to	become	responder.	Should	this	view	release	the	responder?
Returning	true	allows	release

View.props.onResponderTerminate

The	responder	has	been	taken	from	the	view.	It	might	be	taken	by	other	views	after	a
call	to	onResponderTerminationRequest,	or	by	the	OS	without	asking	(happens	with
control	center/notification	center	on	iOS)

Most	of	the	time,	you	will	primarily	be	concerned	with	onResponderMove	and
onResponderRelease.

All	of	these	methods	receive	a	synthetic	touch	event	object,	which	adheres	to	the
following	format	(again,	excerpted	from	the	documentation):
changedTouches

Array	of	all	touch	events	that	have	changed	since	the	last	event
identifier

The	ID	of	the	touch
locationX

The	X	position	of	the	touch,	relative	to	the	element
locationY

The	Y	position	of	the	touch,	relative	to	the	element
pageX

The	X	position	of	the	touch,	relative	to	the	screen
pageY

The	Y	position	of	the	touch,	relative	to	the	screen
target

The	node	id	of	the	element	receiving	the	touch	event
timestamp

A	time	identifier	for	the	touch,	useful	for	velocity	calculation
touches

Array	of	all	current	touches	on	the	screen

You	can	make	use	of	this	information	when	deciding	whether	or	not	to	respond	to	a	touch
event.	Perhaps	your	view	only	cares	about	two-finger	touches,	for	example.

This	is	a	fairly	low-level	API;	if	you	want	to	detect	and	respond	to	gestures	in	this	way,
you	will	need	to	spend	a	decent	amount	of	time	tuning	the	correct	parameters	and	figuring
out	which	values	you	should	care	about.	In	the	next	section,	we	will	take	a	look	at
PanResponder,	which	supplies	a	somewhat	higher-level	interpretation	of	user	gestures.

PanResponder
Unlike	<TouchableHighlight>,	PanResponder	is	not	a	component,	but	rather	a	class
provided	by	React	Native.	It	provides	a	slightly	higher-level	API	than	the	basic	events
returned	by	the	Gesture	Responder	system,	while	still	providing	access	to	those	raw
events.	A	PanResponder	gestureState	object	gives	you	access	to	the	following,	in
accordance	with	the	PanResponder	documentation:
stateID

ID	of	the	gestureState	(persisted	as	long	as	there	at	least	one	touch	on	screen)
moveX

The	latest	screen	coordinates	of	the	recently	moved	touch
moveY

The	latest	screen	coordinates	of	the	recently	moved	touch
x0

The	screen	coordinates	of	the	responder	grant
y0

The	screen	coordinates	of	the	responder	grant
dx

Accumulated	distance	of	the	gesture	since	the	touch	started
dy

Accumulated	distance	of	the	gesture	since	the	touch	started
vx

Current	velocity	of	the	gesture
vy

Current	velocity	of	the	gesture
numberActiveTouches

Number	of	touches	currently	on	screeen

As	you	can	see,	in	addition	to	raw	position	data,	a	gestureState	object	also	includes
information	such	as	the	current	velocity	of	the	touch	and	the	accumulated	distance.

To	make	use	of	PanResponder	in	a	component,	we	need	to	create	a	PanResponder	object
and	then	attach	it	to	a	component	in	the	render	method.

Creating	a	PanResponder	requires	us	to	specify	the	proper	handlers	for	PanResponder
events	(Example	4-5).

Example	4-5.	Creating	a	PanResponder	requires	us	to	pass	a	bunch	of	callbacks
this._panResponder	=	PanResponder.create({

		onStartShouldSetPanResponder:	this._handleStartShouldSetPanResponder,

		onMoveShouldSetPanResponder:	this._handleMoveShouldSetPanResponder,

http://bit.ly/1jfZ5ZL

		onPanResponderGrant:	this._handlePanResponderGrant,

		onPanResponderMove:	this._handlePanResponderMove,

		onPanResponderRelease:	this._handlePanResponderEnd,

		onPanResponderTerminate:	this._handlePanResponderEnd,

});

Then,	we	use	spread	syntax	to	attach	the	PanResponder	to	the	view	in	the	component’s
render	method	(Example	4-6).

Example	4-6.	Attaching	the	PanResponder	using	spread	sytax
render:	function()	{

		return	(

				<View

						{...this._panResponder.panHandlers}>

						{	/*	View	contents	here	*/	}

				</View>

);

}

After	this,	the	handlers	that	you	passed	to	the	PanResponder.create	call	will	be	invoked
during	the	appropriate	move	events,	if	the	touch	originates	within	this	view.

Example	4-7	shows	a	modified	version	of	the	PanResponder	example	code	provided	by
React	Native.	This	version	listens	to	touch	events	on	the	container	view,	as	opposed	to	just
the	circle,	and	so	that	the	values	are	printed	to	the	screen	as	you	interact	with	the
application.	If	you	plan	on	implementing	your	own	gesture	recognizers,	I	suggest
experimenting	with	this	application	on	a	real	device,	so	that	you	can	get	a	feel	for	how
these	values	respond.	Figure	4-4	shows	a	screenshot	of	this	example,	but	you’ll	want	to
experience	it	on	a	device	with	a	real	touchscreen.

Figure	4-4.	PanResponder	demo

Example	4-7.	Touch/PanDemo.js	illustrates	the	use	of	PanResponder
//	Adapted	from

//	https://github.com/facebook/react-native/blob/master/

//	Examples/UIExplorer/PanResponderExample.js

'use	strict';

var	React	=	require('react-native');

var	{

		StyleSheet,

		PanResponder,

		View,

		Text

}	=	React;

var	CIRCLE_SIZE	=	40;

var	CIRCLE_COLOR	=	'blue';

var	CIRCLE_HIGHLIGHT_COLOR	=	'green';

var	PanResponderExample	=	React.createClass({

		//	Set	some	initial	values.

		_panResponder:	{},

		_previousLeft:	0,

		_previousTop:	0,

		_circleStyles:	{},

		circle:	null,

		getInitialState:	function()	{

				return	{

						numberActiveTouches:	0,

						moveX:	0,

						moveY:	0,

						x0:	0,

						y0:	0,

						dx:	0,

						dy:	0,

						vx:	0,

						vy:	0,

				}

		},

		componentWillMount:	function()	{

				this._panResponder	=	PanResponder.create({

						onStartShouldSetPanResponder:	this._handleStartShouldSetPanResponder,

						onMoveShouldSetPanResponder:	this._handleMoveShouldSetPanResponder,

						onPanResponderGrant:	this._handlePanResponderGrant,

						onPanResponderMove:	this._handlePanResponderMove,

						onPanResponderRelease:	this._handlePanResponderEnd,

						onPanResponderTerminate:	this._handlePanResponderEnd,

				});

				this._previousLeft	=	20;

				this._previousTop	=	84;

				this._circleStyles	=	{

						left:	this._previousLeft,

						top:	this._previousTop,

				};

		},

		componentDidMount:	function()	{

				this._updatePosition();

		},

		render:	function()	{

				return	(

						<View	style={styles.container}>

								<View

										ref={(circle)	=>	{

												this.circle	=	circle;

										}}

										style={styles.circle}

										{...this._panResponder.panHandlers}/>

								<Text>

										{this.state.numberActiveTouches}	touches,

										dx:	{this.state.dx},

										dy:	{this.state.dy},

										vx:	{this.state.vx},

										vy:	{this.state.vy}

								</Text>

						</View>

);

		},

		//	_highlight	and	_unHighlight	get	called	by	PanResponder	methods,

		//	providing	visual	feedback	to	the	user.

		_highlight:	function()	{

				this.circle	&&	this.circle.setNativeProps({

						backgroundColor:	CIRCLE_HIGHLIGHT_COLOR

				});

		},

		_unHighlight:	function()	{

				this.circle	&&	this.circle.setNativeProps({

						backgroundColor:	CIRCLE_COLOR

				});

		},

		//	We're	controlling	the	circle's	position	directly	with	setNativeProps.

		_updatePosition:	function()	{

				this.circle	&&	this.circle.setNativeProps(this._circleStyles);

		},

		_handleStartShouldSetPanResponder:

	function(e:	Object,	gestureState:	Object):	boolean	{

				//	Should	we	become	active	when	the	user	presses	down	on	the	circle?

				return	true;

		},

		_handleMoveShouldSetPanResponder:

		function(e:	Object,	gestureState:	Object):	boolean	{

				//	Should	we	become	active	when	the	user	moves	a	touch	over	the	circle?

				return	true;

		},

		_handlePanResponderGrant:	function(e:	Object,	gestureState:	Object)	{

				this._highlight();

		},

		_handlePanResponderMove:	function(e:	Object,	gestureState:	Object)	{

				this.setState({

						stateID:	gestureState.stateID,

						moveX:	gestureState.moveX,

						moveY:	gestureState.moveY,

						x0:	gestureState.x0,

						y0:	gestureState.y0,

						dx:	gestureState.dx,

						dy:	gestureState.dy,

						vx:	gestureState.vx,

						vy:	gestureState.vy,

						numberActiveTouches:	gestureState.numberActiveTouches

				});

				//	Calculate	current	position	using	deltas

				this._circleStyles.left	=	this._previousLeft	+	gestureState.dx;

				this._circleStyles.top	=	this._previousTop	+	gestureState.dy;

				this._updatePosition();

		},

		_handlePanResponderEnd:	function(e:	Object,	gestureState:	Object)	{

				this._unHighlight();

				this._previousLeft	+=	gestureState.dx;

				this._previousTop	+=	gestureState.dy;

		},

});

var	styles	=	StyleSheet.create({

		circle:	{

				width:	CIRCLE_SIZE,

				height:	CIRCLE_SIZE,

				borderRadius:	CIRCLE_SIZE	/	2,

				backgroundColor:	CIRCLE_COLOR,

				position:	'absolute',

				left:	0,

				top:	0,

		},

		container:	{

				flex:	1,

				paddingTop:	64,

		},

});

module.exports	=	PanResponderExample;

Choosing	how	to	handle	touch

How	should	you	decide	when	to	use	the	touch	and	gesture	APIs	discussed	in	this	section?
It	depends	on	what	you	want	to	build.

In	order	to	provide	the	user	with	basic	feedback,	and	indicate	that	a	button	or	another
element	is	“tappable,”	use	the	<TouchableHighlight>	component.

In	order	to	implement	your	own	custom	touch	interfaces,	use	either	the	raw	Gesture
Responder	system,	or	a	PanResponder.	Chances	are	that	you	will	almost	always	prefer	the
PanResponder	approach,	because	it	also	gives	you	access	to	the	simpler	touch	events
provided	by	the	Gesture	Responder	system.	If	you	are	designing	a	game,	or	an	application
with	an	unusual	interface,	you’ll	need	to	spend	some	time	building	out	the	interactions	you
want	by	using	these	APIs.

For	many	applications,	you	won’t	need	to	implement	any	custom	touch	handling	with
either	the	Gesture	Responder	system	or	the	PanResponder.	In	the	next	section,	we’ll	look
at	some	of	the	higher-level	components	that	implement	common	UI	patterns	for	you.

Working	with	Organizational	Components
In	this	section,	we’re	going	to	look	at	organizational	components	that	you	can	use	to
control	general	flow	within	your	application.	This	includes	the	<TabView>,
<NavigatorView>,	and	<ListView>,	which	all	implement	some	of	the	most	common
mobile	interaction	and	navigational	patterns.	Once	you	have	planned	out	your
application’s	navigational	flow,	you’ll	find	that	these	components	are	very	helpful	in
making	your	application	a	reality.

Using	ListView
Let’s	start	by	using	the	<ListView>	component.	In	this	section,	we	are	going	to	build	an
app	that	displays	the	New	York	Times	Best	Seller	List	and	lets	us	view	data	about	each
book,	as	shown	in	Figure	4-5.	If	you’d	like,	you	can	grab	your	own	API	token	from	the
New	York	Times.	Otherwise,	use	the	API	token	included	in	the	sample	code.

http://developer.nytimes.com/apps/mykeys

Figure	4-5.	The	BookList	application	we’ll	be	building

Lists	are	extremely	useful	for	mobile	development,	and	you	will	notice	that	many	mobile
user	interfaces	feature	them	as	a	central	element.	A	<ListView>	is	literally	just	a	list	of
views,	optionally	with	special	views	for	section	dividers,	headers,	or	footers.	For	example,
you	can	see	this	interaction	pattern	in	the	Dropbox,	Twitter,	and	iOS	Settings	apps
(Figure	4-6).

Figure	4-6.	Lists	as	used	by	Dropbox,	Twitter,	and	the	iOS	Settings	app

<ListView>s	are	a	good	example	of	where	React	Native	shines,	because	it	can	leverage	its
host	platform.	On	mobile,	the	native	<ListView>	element	is	usually	highly	optimized	so
that	rendering	is	smooth	and	stutter-free.	If	you	expect	to	render	a	very	large	number	of
items	in	your	<ListView>,	you	should	try	to	keep	the	child	views	relatively	simple,	to	try
and	reduce	stutter.

The	basic	React	Native	<ListView>	component	requires	two	props:	dataSource	and
renderRow.	dataSource	is,	as	the	name	implies,	a	source	of	information	about	the	data
that	needs	to	be	rendered.	renderRow	should	return	a	component	based	on	the	data	from
one	element	of	the	dataSource.

This	basic	usage	is	demonstrated	in	SimpleList.js.	We’ll	start	by	adding	a	dataSource	to
our	<SimpleList>	component.	A	ListView.DataSource	needs	to	implement	the
rowHasChanged	method.	Here’s	a	simple	example:

var	ds	=	new	ListView.DataSource({rowHasChanged:	(r1,	r2)	=>	r1	!==	r2});

To	set	the	actual	contents	of	a	dataSource,	we	use	cloneWithRows.	Let’s	return	the
dataSource	in	our	getInitialState	call:

getInitialState:	function()	{

		var	ds	=	new	ListView.DataSource({rowHasChanged:	(r1,	r2)	=>	r1	!==	r2});

		return	{

				dataSource:	ds.cloneWithRows(['a',	'b',	'c',	'a	longer	example',	'd',	'e'])

		};

}

The	other	prop	we	need	is	renderRow,	which	should	be	a	function	that	returns	some	JSX
based	on	the	data	for	a	given	row:

_renderRow:	function(rowData)	{

		return	<Text	style={styles.row}>{rowData}</Text>;

}

Now	we	can	put	it	all	together	to	see	a	simple	<ListView>,	by	rendering	a	<ListView>
like	so:

<ListView

		dataSource={this.state.dataSource}

		renderRow={this._renderRow}

		/>

It	looks	like	Figure	4-7.

Figure	4-7.	The	SimpleList	component	renders	a	barebones	<ListView>

What	if	we	want	to	do	a	little	more?	Let’s	create	a	<ListView>	with	more	complex	data.
We	will	be	using	the	New	York	Times	API	to	create	a	simple	Best	Sellers	application,
which	renders	the	New	York	Times	Best	Seller	list.

First,	we	initialize	our	data	source	to	be	empty,	because	we’ll	need	to	fetch	the	data:

getInitialState:	function()	{

		var	ds	=	new	ListView.DataSource({rowHasChanged:	(r1,	r2)	=>	r1	!==	r2});

		return	{

				dataSource:	ds.cloneWithRows([])

		};

}

Then,	we	add	a	method	for	fetching	data,	and	update	the	data	source	once	we	have	it.	This
method	will	get	called	from	componentDidMount:

_refreshData:	function()	{

		var	endpoint	=

		'http://api.nytimes.com/svc/books/v3/lists/hardcover-fiction?response-format

		=json&api-key='	+	API_KEY;

		fetch(endpoint)

				.then((response)	=>	response.json())

				.then((rjson)	=>	{

						this.setState({

								dataSource:	this.state.dataSource.cloneWithRows(rjson.results.books)

						});

				});

}

Each	book	returned	by	the	New	York	Times	API	has	three	properties:	coverURL,	author,
and	title.	We	update	the	<ListView>’s	render	function	to	return	a	component	based	on
those	props.

Example	4-8.	For	_renderRow,	we	just	pass	along	the	relevant	data	to	the	<BookItem>
		_renderRow:	function(rowData)	{

				return	<BookItem	coverURL={rowData.book_image}

																					title={rowData.title}

																				author={rowData.author}/>;

		},

We’ll	also	toss	in	a	header	and	footer	component,	to	demonstrate	how	these	work
(Example	4-9).	Note	that	for	a	<ListView>,	the	header	and	footer	are	not	sticky;	they
scroll	with	the	rest	of	the	list.	If	you	want	a	sticky	header	or	footer,	it’s	probably	easiest	to
render	them	separately	from	the	<ListView>	component.

Example	4-9.	Adding	methods	to	render	header	and	footer	elements	in	BookListV2.js
		_renderHeader:	function()	{

				return	(<View	style={styles.sectionDivider}>

						<Text	style={styles.headingText}>

								Bestsellers	in	Hardcover	Fiction

						</Text>

						</View>);

		},

		_renderFooter:	function()	{

				return(

						<View	style={styles.sectionDivider}>

								<Text>

										Data	from	the	New	York	Times	Best	Seller	list.

								</Text>

						</View>

);

		},

All	together,	the	Best	Sellers	application	consists	of	two	files:	BookListV2.js	and
BookItem.js.	BookListV2.js	is	shown	in	Example	4-10.	(BookList.js	is	a	simpler	file	that
omits	fetching	data	from	an	API,	and	is	included	in	the	GitHub	repository	for	your
reference.)

Example	4-10.	Bestsellers/BookListV2.js
'use	strict';

var	React	=	require('react-native');

var	{

		StyleSheet,

		Text,

		View,

		Image,

		ListView,

}	=	React;

var	BookItem	=	require('./BookItem');

var	API_KEY	=	'73b19491b83909c7e07016f4bb4644f9:2:60667290';

var	QUERY_TYPE	=	'hardcover-fiction';

var	API_STEM	=	'http://api.nytimes.com/svc/books/v3/lists'

var	ENDPOINT	=	`${API_STEM}/${QUERY_TYPE}?response-format=json&api-key=${API_KEY}`;

var	BookList	=	React.createClass({

		getInitialState:	function()	{

				var	ds	=	new	ListView.DataSource({rowHasChanged:	(r1,	r2)	=>	r1	!==	r2});

				return	{

						dataSource:	ds.cloneWithRows([])

				};

		},

		componentDidMount:	function()	{

				this._refreshData();

		},

		_renderRow:	function(rowData)	{

				return	<BookItem	coverURL={rowData.book_image}

				title={rowData.title}

				author={rowData.author}/>;

		},

		_renderHeader:	function()	{

				return	(<View	style={styles.sectionDivider}>

						<Text	style={styles.headingText}>

								Bestsellers	in	Hardcover	Fiction

						</Text>

						</View>);

		},

		_renderFooter:	function()	{

				return(

						<View	style={styles.sectionDivider}>

								<Text>Data	from	the	New	York	Times	Best	Seller	list.</Text>

						</View>

);

		},

		_refreshData:	function()	{

				fetch(ENDPOINT)

						.then((response)	=>	response.json())

						.then((rjson)	=>	{

								this.setState({

										dataSource:	this.state.dataSource.cloneWithRows(rjson.results.books)

								});

						});

		},

		render:	function()	{

				return	(

								<ListView

										style=

										dataSource={this.state.dataSource}

										renderRow={this._renderRow}

										renderHeader={this._renderHeader}

										renderFooter={this._renderFooter}

										/>

);

		}

});

var	styles	=	StyleSheet.create({

		container:	{

				flex:	1,

				justifyContent:	'center',

				alignItems:	'center',

				backgroundColor:	'#FFFFFF',

				paddingTop:	24

		},

		list:	{

				flex:	1,

				flexDirection:	'row'

		},

		listContent:	{

				flex:	1,

				flexDirection:	'column'

		},

		row:	{

				flex:	1,

				fontSize:	24,

				padding:	42,

				borderWidth:	1,

				borderColor:	'#DDDDDD'

		},

		sectionDivider:	{

				padding:	8,

				backgroundColor:	'#EEEEEE',

				alignItems:	'center'

		},

		headingText:	{

				flex:	1,

				fontSize:	24,

				alignSelf:	'center'

		}

});

module.exports	=	BookList;

The	<BookItem>	is	a	simple	component	that	handles	rendering	each	child	view	in	the	list
(Example	4-11).

Example	4-11.	Bestsellers/BookItem.js
'use	strict';

var	React	=	require('react-native');

var	{

		StyleSheet,

		Text,

		View,

		Image,

		ListView,

}	=	React;

var	styles	=	StyleSheet.create({

		bookItem:	{

				flex:	1,

				flexDirection:	'row',

				backgroundColor:	'#FFFFFF',

				borderBottomColor:	'#AAAAAA',

				borderBottomWidth:	2,

				padding:	5

		},

		cover:	{

				flex:	1,

				height:	150,

				resizeMode:	'contain'

		},

		info:	{

				flex:	3,

				alignItems:	'flex-end',

				flexDirection:	'column',

				alignSelf:	'center',

				padding:	20

		},

		author:	{

				fontSize:	18

		},

		title:	{

				fontSize:	18,

				fontWeight:	'bold'

		}

});

var	BookItem	=	React.createClass({

		propTypes:	{

				coverURL:	React.PropTypes.string.isRequired,

				author:	React.PropTypes.string.isRequired,

				title:	React.PropTypes.string.isRequired

		},

		render:	function()	{

				return	(

						<View	style={styles.bookItem}>

								<Image	style={styles.cover}	source=/>

								<View	style={styles.info}>

										<Text	style={styles.author}>{this.props.author}</Text>

										<Text	style={styles.title}>{this.props.title}</Text>

								</View>

						</View>

);

		}

});

module.exports	=	BookItem;

If	you	have	complex	data,	or	very	long	lists,	you	will	need	to	pay	attention	to	the
performance	optimizations	enabled	by	some	of	<ListView>’s	more	complex,	optional
properties.	For	most	uses,	however,	this	will	suffice.

Using	Navigators
The	<ListView>	is	a	good	example	of	combining	multiple	views	together	into	a	more
usable	interaction.	On	a	higher	level,	we	can	use	components	such	as	the	<Navigator>	to
present	different	screens	of	an	app,	much	as	we	might	have	various	pages	on	a	website.

The	<Navigator>	is	a	subtle	but	important	component,	and	is	used	in	many	common
applications.	For	instance,	the	iOS	Settings	app	could	be	implemented	as	a	combination	of
<Navigator>	with	many	<ListView>	components	(Figure	4-8).	The	Dropbox	app	also
makes	use	of	a	Navigator.

Figure	4-8.	The	iOS	Settings	app	is	a	good	example	of	Navigator	behavior

A	<Navigator>	allows	your	application	to	transition	between	different	screens	(often
referred	to	as	“scenes”),	while	maintaining	a	“stack”	of	routes,	so	that	you	can	push,	pop,
or	replace	states.	You	can	think	of	this	as	analogous	to	the	history	API	on	the	Web.	A
“route”	is	the	title	of	a	screen,	coupled	with	an	index.

For	instance,	in	the	Settings	app,	initially	the	stack	is	empty.	When	you	select	one	of	the
submenus,	the	initial	scene	is	pushed	onto	the	stack.	Tapping	“back,”	in	the	top-left	corner
of	the	screen,	will	pop	it	back	off.

If	you’re	interested	in	how	this	plays	out,	the	UIExplorer	app	has	a	good	demo	of	the
various	ways	of	using	the	Navigator	API.

Note	that	there	are	actually	two	Navigator	options:	the	cross-platform	<Navigator>
component	and	the	<NavigatorIOS>	component.	In	this	book,	we’ll	be	opting	to	use	the
<Navigator>.

SHOULD	I	USE	NAVIGATOR	OR	NAVIGATORIOS?

Funny	you	should	ask!	The	React	Native	docs	have	a	page	addressing	that	exact	question.	The	short	answer	is:	you
should	use	the	<Navigator>.	<NavigatorIOS>	is	not	supported	by	the	core	team,	and	hence	has	some	bugs.

The	longer	answer:	<Navigator>	is	a	JavaScript	reimplementation	of	the	Navigator	behavior	for	both	Android	and
iOS.	As	such,	it’s	fully	cross-platform	and	flexible.	The	iOS-specific	<NavigatorIOS>	wraps	the	UIKit	version,	so
you	get	Apple’s	behavior	and	animations.	Its	API	is	more	limited,	and	because	it’s	not	a	priority	for	the	core	team,
you	probably	won’t	want	to	use	it.

http://facebook.github.io/react-native/docs/navigator-comparison.html

Other	Organizational	Components
There	are	plenty	of	other	organizational	components,	too.	For	example,	a	few	useful	ones
include	<TabBarIOS>	and	<SegmentedControlIOS>	(illustrated	in	Figure	4-9)	and
<DrawerLayoutAndroid>	and	<ToolbarAndroid>	(illustrated	in	Figure	4-10).

You’ll	notice	that	these	are	all	named	with	platform-specific	suffixes.	That’s	because	they
wrap	native	APIs	for	platform-specific	UI	elements.

Figure	4-9.	An	iOS	segmented	control	(top),	and	an	iOS	tab	bar	(bottom)

Figure	4-10.	An	Android	toolbar	(left),	and	an	Android	drawer	(right)

These	components	are	very	useful	for	organizing	multiple	screens	within	your	application.
<TabBarIOS>	and	<DrawerLayoutAndroid>,	for	example,	give	you	an	easy	way	to	switch

between	multiple	modes	or	functions.	<SegmentedControlIOS>	and	<ToolbarAndroid>
are	better	suited	for	more	fine-grained	controls.

You’ll	want	to	refer	to	the	platform-specific	design	guidelines	for	how	best	to	use	these
components:

Android	Design	Guide

iOS	Human	Interface	Guidelines

But	wait!	How	do	we	make	use	of	platform-specific	components?	Let’s	now	take	a	look	at
how	to	handle	platform-specific	components	in	cross-platform	applications.

http://bit.ly/android_design_guide
http://bit.ly/designing_for_ios

Platform-Specific	Components
Not	all	components	are	available	on	all	platforms,	and	not	all	interaction	patterns	are
appropriate	for	all	devices.	That	doesn’t	mean	that	you	can’t	use	platform-specific	code	in
your	application,	though!	In	this	section,	we’ll	cover	platform-specific	components,	as
well	as	strategies	for	how	to	incorporate	them	in	your	cross-platform	applications.

TIP
Writing	cross-platform	code	in	React	Native	is	not	an	all-or-nothing	endeavor!	You	can	mix	cross-platform
and	platform-specific	code	in	your	application,	as	we’ll	do	in	this	section.

iOS-	or	Android-Only	Components
Some	components	are	only	available	on	a	specific	platform.	This	includes	things	like
<TabBarIOS>	or	<SwitchAndroid>.	They’re	usually	platform-specific	because	they	wrap
some	kind	of	underlying	platform-specific	API.	For	some	components,	having	a	platform-
agnostic	version	doesn’t	make	sense.	For	instance,	the	<ToolbarAndroid>	component
exposes	an	Android-specific	API	for	a	view	type	that	doesn’t	exist	on	iOS	anyway.

Platform-specific	components	are	named	with	an	appropriate	suffix:	either	IOS	or
Android.	If	you	try	to	include	one	on	the	wrong	platform,	your	application	will	crash.

Components	can	also	have	platform-specific	props.	These	are	tagged	in	the	documentation
with	a	small	badge	indicating	their	usage.	For	instance,	<TextInput>	has	some	props	that
are	platform-agnostic,	and	others	that	are	specific	to	iOS	or	Android	(Figure	4-11).

Figure	4-11.	<TextInput>	has	Android	and	iOS-specific	props

Components	with	Platform-Specific	Versions
So,	how	do	you	handle	platform-specific	components	or	props	in	a	cross-platform
application?	The	good	news	is	that	you	can	still	use	these	components.	Remember	how
our	app	has	both	an	index.ios.js	and	an	index.android.js	file?	This	naming	convention	can
be	used	for	any	file,	to	create	a	component	that	has	different	implementations	on	Android
and	iOS.

As	an	example,	we’ll	use	the	<SwitchIOS>	and	<SwitchAndroid>	components.	They
expose	slightly	different	APIs,	but	what	if	we	just	want	to	use	a	simple	switch?	Let’s
create	a	wrapper	component,	<Switch>,	which	renders	the	appropriate	platform-specific
component.

We’ll	start	by	implementing	switch.ios.js	(Example	4-12).	It’s	a	very	simple	wrapper
around	<SwitchIOS>,	and	allows	us	to	provide	a	callback	for	when	the	switch	value
changes.

Example	4-12.	Switch.ios.js
var	React	=	require('react-native');

var	{	SwitchIOS	}	=	React;

var	Switch	=	React.createClass({

		getInitialState()	{

				return	{value:	false};

		},

		_onValueChange(value)	{

				this.setState({value:	value});

				if	(this.props.onValueChange)	{

						this.props.onValueChange(value);

				}

		},

		render()	{

				return	(

						<SwitchIOS

								onValueChange={this._onValueChange}

								value={this.state.value}/>

);

		}

});

module.exports	=	Switch;

Next,	let’s	implement	switch.android.js	(Example	4-13).

Example	4-13.	Switch.android.js
var	React	=	require('react-native');

var	{	SwitchAndroid	}	=	React;

var	Switch	=	React.createClass({

		getInitialState()	{

				return	{value:	false};

		},

		_onValueChange(value)	{

				this.setState({value:	value});

				if	(this.props.onValueChange)	{

						this.props.onValueChange(value);

				}

		},

		render()	{

				return	(

						<SwitchAndroid

								onValueChange={this._onValueChange}

								value={this.state.value}/>

);

		}

});

module.exports	=	Switch;

Note	that	it	looks	almost	identical	to	switch.ios.js,	and	it	implements	the	same	API.	The
only	difference	is	that	it	uses	<SwitchAndroid>	internally	instead	of	<SwitchIOS>.

We	can	now	import	our	<Switch>	component	from	another	file	with	the	syntax:

var	Switch	=	require('./switch');

...

var	switchComp	=	<Switch	onValueChange={(val)	=>	{console.log(val);	}}/>;

Let’s	actually	use	the	<Switch>	component.	Create	a	new	file,	CrossPlatform.js,	and
include	the	code	shown	in	Example	4-14.	We’ll	have	the	background	color	change	based
on	the	current	value	of	a	<Switch>.

Example	4-14.	CrossPlatform.js	makes	use	of	the	<Switch>	component
var	React	=	require('react-native');

var	{

		StyleSheet,

		Text,

		View,

}	=	React;

var	Switch	=	require('./switch');

var	CrossPlatform	=	React.createClass({

		getInitialState()	{

				return	{val:	false};

		},

		_onValueChange(val)	{

				this.setState({val:	val});

		},

		render:	function()	{

				var	colorClass	=	this.state.val	?	styles.blueContainer	:	styles.redContainer;

				return	(

						<View	style={[styles.container,	colorClass]}>

								<Text	style={styles.welcome}>

										Make	me	blue!

								</Text>

								<Switch	onValueChange={this._onValueChange}/>

						</View>

);

		}

});

var	styles	=	StyleSheet.create({

		container:	{

				flex:	1,

				justifyContent:	'center',

				alignItems:	'center',

		},

		blueContainer:	{

				backgroundColor:	'#5555FF'

		},

		redContainer:	{

				backgroundColor:	'#FF5555'

		},

		welcome:	{

				fontSize:	20,

				textAlign:	'center',

				margin:	10,

		}

});

module.exports	=	CrossPlatform;

Note	that	there’s	no	switch.js	file,	but	we	can	call	require(./switch).	The	React	Native
packager	will	automatically	select	the	correct	implementation	based	on	our	platform,	and
use	either	switch.ios.js	or	switch.android.js	as	appropriate.

Finally,	replace	the	contents	of	index.android.js	and	index.ios.js	so	that	we	can	render	the
<CrossPlatform>	component.

Example	4-15.	The	index.ios.js	and	index.android.js	files	should	be	identical,	and	simply
import	the	crossplatform.js	file
var	React	=	require('react-native');

var	{	AppRegistry	}	=	React;

var	CrossPlatform	=	require('./crossplatform');

AppRegistry.registerComponent('PlatformSpecific',	()	=>	CrossPlatform);

Now	we	can	run	our	application	on	both	iOS	and	Android	(Figure	4-12).

Figure	4-12.	The	CrossPlatform	application	should	render	on	both	iOS	and	Android,	using	the	appropriate	<Switch>
component

When	to	Use	Platform-Specific	Components
When	is	it	appropriate	to	use	a	platform-specific	component?	In	most	cases,	you’ll	want	to
do	so	when	there’s	a	platform-specific	interaction	pattern	that	you	want	your	application	to
adhere	to.	If	you	want	your	application	to	feel	truly	“native,”	it’s	worth	paying	attention	to
platform-specific	UI	norms.

Apple	and	Google	both	provide	human	interface	guidelines	for	their	platforms,	which	are
worth	consulting:

iOS	Human	Interface	Guidelines

Android	Design	Reference

By	creating	platform-specific	versions	of	only	certain	components,	you	can	strike	a
balance	between	code	reuse	and	platform-based	customization.	In	most	cases,	you	should
only	need	separate	implementations	of	a	handful	of	components	in	order	to	support	both
iOS	and	Android.

http://bit.ly/designing_for_ios
http://bit.ly/android_design_reference

Summary
In	this	chapter,	we	dug	into	the	specifics	of	a	variety	of	the	most	important	components	in
React	Native.	We	discussed	how	to	utilize	basic	low-level	components,	like	<Text>	and
<Image>,	as	well	as	higher-order	components	like	<ListView>,	<Navigator>,	and
<TabBarIOS>.	We	also	took	a	look	at	how	to	use	various	touch-focused	APIs	and
components,	in	case	you	want	to	build	your	own	custom	touch	handlers.	Finally,	we	saw
how	to	use	platform-specific	components	in	our	applications.

At	this	point,	you	should	be	equipped	to	build	basic,	functional	applications	using	React
Native!	Now	that	you’ve	acquainted	yourself	with	the	components	discussed	in	this
chapter,	building	upon	them	and	combining	them	to	create	your	own	applications	should
feel	remarkably	similar	to	working	with	React	on	the	Web.

Of	course,	building	up	basic,	functioning	applications	is	only	part	of	the	battle.	In	the	next
chapter,	we’ll	focus	on	styling,	and	how	to	use	React	Native’s	implementation	of	styles	to
get	the	look	and	feel	you	want	on	mobile.

Chapter	5.	Styles

It’s	great	to	be	able	to	build	functional	applications,	but	if	you	can’t	style	them	effectively,
you	won’t	get	very	far!	In	Chapter	3,	we	built	a	simple	weather	application	with	some
basic	styles.	While	this	gave	us	an	overview	of	how	to	style	React	Native	components,	we
glossed	over	many	of	the	details.	In	this	chapter,	we	will	take	a	closer	look	at	how	styles
work	in	React	Native.	We’ll	cover	how	to	create	and	manage	your	stylesheets,	as	well	as
the	details	of	React	Native’s	implementation	of	CSS	rules.	By	the	end	of	this	chapter,	you
should	feel	comfortable	creating	and	styling	your	own	React	Native	components	and
applications.

If	you	want	to	share	styles	between	your	React	Native	and	web	applications,	the	React
Style	project	on	GitHub	provides	a	version	of	React	Native’s	style	system	for	the	Web.

https://github.com/js-next/react-style

Declaring	and	Manipulating	Styles
When	working	with	React	for	the	Web,	we	typically	use	separate	stylesheet	files,	which
may	be	written	in	CSS,	SASS,	or	LESS.	React	Native	takes	a	radically	different	approach,
bringing	styles	entirely	into	the	world	of	JavaScript	and	forcing	you	to	link	style	objects
explicitly	to	components.	Needless	to	say,	this	approach	tends	to	provoke	strong	reactions,
as	it	represents	a	significant	departure	from	CSS-based	styling	norms.

To	understand	the	design	of	React	Native’s	styles,	first	we	need	to	consider	some	of	the
headaches	associated	with	traditional	CSS	stylesheets.1	CSS	has	a	number	of	problems.
All	CSS	rules	and	class	names	are	global	in	scope,	meaning	that	styling	one	component
can	easily	break	another	if	you’re	not	careful.	For	instance,	if	you	include	the	popular
Twitter	Bootstrap	library,	you	will	introduce	over	600	new	global	variables.	Because	CSS
is	not	explicitly	connected	to	the	HTML	elements	it	styles,	dead	code	elimination	is
difficult,	and	it	can	be	nontrivial	to	determine	which	styles	will	apply	to	a	given	element.

Languages	like	SASS	and	LESS	attempt	to	work	around	some	of	CSS’s	uglier	parts,	but
many	of	the	same	fundamental	problems	remain.	With	React,	we	have	the	opportunity	to
keep	the	desirable	parts	of	CSS,	but	also	the	freedom	for	significant	divergence.	React
Native	implements	a	subset	of	the	available	CSS	styles,	focusing	on	keeping	the	styling
API	narrow	yet	still	highly	expressive.	Positioning	is	dramatically	different,	as	we’ll	see
later	in	this	chapter.	Additionally,	React	Native	does	not	support	pseudoclasses,
animations,	or	selectors.	A	full	list	of	supported	properties	can	be	found	in	the	docs.

Instead	of	stylesheets,	in	React	Native	we	work	with	JavaScript-based	style	objects.	One
of	React’s	greatest	strengths	is	that	it	forces	you	to	keep	your	JavaScript	code	—	your
components	—	modular.	By	bringing	styles	into	the	realm	of	JavaScript,	React	Native
pushes	us	to	write	modular	styles,	too.

In	this	section,	we’ll	cover	the	mechanics	of	how	these	style	objects	are	created	and
manipulated	in	React	Native.

https://facebook.github.io/react-native/docs/view.html#style

Inline	Styles
Inline	styles	are	the	simplest	way,	syntactically,	to	style	a	component	in	React	Native,
though	they	are	not	usually	the	best	way.	As	you	can	see	in	Example	5-1,	the	syntax	for
inline	styles	in	React	Native	is	the	same	as	for	React	for	the	browser.

Example	5-1.	Using	inline	styles
<Text>

		The	quick	<Text	style={{fontStyle:	"italic"}}>brown</Text>	fox

		jumped	over	the	lazy	<Text	style={{fontWeight:	"bold"}}>dog</Text>.

</Text>

Inline	styles	have	some	advantages.	They’re	quick	and	dirty,	allowing	you	to	rapidly
experiment.

However,	you	should	avoid	them	in	general,	because	they’re	less	efficient.	Inline	style
objects	must	be	recreated	during	each	render	pass.	Even	when	you	want	to	modify	styles
in	response	to	props	or	state,	you	need	not	use	inline	styles,	as	we’ll	see	in	a	moment.

Styling	with	Objects
If	you	take	a	look	at	the	inline	style	syntax,	you	will	see	that	it’s	simply	passing	an	object
to	the	style	attribute.	There’s	no	need	to	create	the	style	object	in	the	render	call,	though;
instead,	you	can	separate	it	out,	as	shown	in	Example	5-2.

Example	5-2.	Style	attribute	will	accept	a	JavaScript	object
var	italic	=	{

		fontStyle:	'italic'

};

var	bold	=	{

		fontWeight:	'bold'

};

...

render()	{

		return	(

				<Text>

						The	quick	<Text	style={italic}>brown</Text>	fox

						jumped	over	the	lazy	<Text	style={bold}>dog</Text>.

				</Text>

);

}

PanDemo.js,	from	Example	4-7,	gives	us	a	good	example	of	a	use	case	in	which	the
immutability	provided	by	Stylesheet.Create	is	a	hindrance	rather	than	a	help.	Recall
that	we	wanted	to	update	the	location	of	a	circle	based	on	movement	—	in	other	words,
each	time	we	received	an	update	from	the	PanResponder,	we	needed	to	update	state	as
well	as	change	the	styles	on	the	circle.	In	this	circumstance,	we	don’t	want	immutability	at
all,	at	least	not	for	the	style	controlling	the	circle’s	location.

Therefore,	we	can	use	a	plain	object	to	store	the	style	for	the	circle.

Using	Stylesheet.Create
You	will	notice	that	almost	all	of	the	React	Native	example	code	makes	use	of
StyleSheet.create.	Using	StyleSheet.create	is	strictly	optional,	but	in	general	you’ll
want	to	use	it.	Here’s	what	the	docs	have	to	say:

StyleSheet.create	construct	is	optional	but	provides	some	key	advantages.	It	ensures	that
the	values	are	immutable	and	opaque	by	transforming	them	into	plain	numbers	that
reference	an	internal	table.	By	putting	it	at	the	end	of	the	file,	you	also	ensure	that	they
are	only	created	once	for	the	application	and	not	on	every	render.

In	other	words,	StyleSheet.create	is	really	just	a	bit	of	syntactic	sugar	designed	to
protect	you.	Use	it!	The	vast	majority	of	the	time,	the	immutability	provided	by
StyleSheet.create	is	helpful.	It	also	gives	you	the	ability	to	do	prop	validation	via
propTypes:	styles	created	with	StyleSheet.create	can	be	verified	using	the
View.propTypes.Style	and	Text.propTypes.Style	types.

http://facebook.github.io/react-native/docs/style.html

Style	Concatenation
What	happens	if	you	want	to	combine	two	or	more	styles?

Recall	that	earlier	we	said	that	we	should	prefer	reusing	styled	components	over	styles.
That’s	true,	but	sometimes	style	reuse	is	also	useful.	For	instance,	if	you	have	a	button
style	and	an	accentText	style,	you	may	want	to	combine	them	to	create	an	AccentButton
component.

If	the	styles	look	like	this:

var	styles	=	Stylesheet.create({

		button:	{

				borderRadius:	'8px',

				backgroundColor:	'#99CCFF'

		},

		accentText:	{

				fontSize:	18,

				fontWeight:	'bold'

		}

});

Then	you	can	create	a	component	that	has	both	of	those	styles	applied	through	simple
concatenation	(Example	5-3).

Example	5-3.	Style	attribute	also	accepts	an	array	of	objects
var	AccentButton	=	React.createClass({

		render:	function()	{

				return	(

						<Text	style={[styles.button,	styles.accentText]}>

								{this.props.children}

						</Text>

);

		}

});

As	you	can	see,	the	style	attribute	can	take	an	array	of	style	objects.	You	can	also	add
inline	styles	here,	if	you	want	(Example	5-4).

Example	5-4.	You	can	mix	style	objects	and	inline	styles
var	AccentButton	=	React.createClass({

		render:	function()	{

				return	(

						<Text	style={[styles.button,	styles.accentText,	{color:	'#FFFFFF'}]}>

								{this.props.children}

						</Text>

);

		}

});

In	the	case	of	a	conflict,	such	as	when	two	objects	both	specify	the	same	property,	React
Native	will	resolve	the	conflict	for	you.	The	rightmost	elements	in	the	style	array	take
precedence,	and	falsy	values	(false,	null,	undefined)	are	ignored.

You	can	leverage	this	pattern	to	apply	conditional	styles.	For	example,	if	we	had	a
<Button>	component	and	wanted	to	apply	extra	style	rules	if	it’s	being	touched,	we	could
use	the	code	shown	in	Example	5-5.

Example	5-5.	Using	conditional	styles
<View	style={[styles.button,	this.state.touching	&&	styles.highlight]}	/>

This	shortcut	can	help	you	keep	your	rendering	logic	concise.

In	general,	style	concatenation	is	a	useful	tool	for	combining	styles.	It’s	interesting	to
contrast	concatenation	with	web-based	stylesheet	approaches:	@extend	in	SASS,	or
nesting	and	overriding	classes	in	vanilla	CSS.	Style	concatenation	is	a	more	limited	tool,
which	is	arguably	a	good	thing:	it	keeps	the	logic	simple	and	makes	it	easier	to	reason
about	which	styles	are	being	applied	and	how.

Organization	and	Inheritance
In	most	of	the	examples	so	far,	we	append	our	style	code	to	the	end	of	the	main	JavaScript
file	with	a	single	call	to	Stylesheet.create.	For	example	code,	this	works	well	enough,
but	it’s	not	something	you’ll	likely	want	to	do	in	an	actual	application.	How	should	we
actually	organize	styles?	In	this	section,	we	will	take	a	look	at	ways	of	organizing	your
styles,	and	how	to	share	and	inherit	styles.

Exporting	Style	Objects
As	your	styles	grow	more	complex,	you	will	want	to	keep	them	separate	from	your
components’	JavaScript	files.	One	common	approach	is	to	have	a	separate	folder	for	each
component.	If	you	have	a	component	named	<ComponentName>,	you	would	create	a	folder
named	ComponentName/	and	structure	it	like	so:

-	ComponentName

		|-	index.js

		|-	styles.js

Within	styles.js,	you	create	a	stylesheet,	and	export	it	(Example	5-6).

Example	5-6.	Exporting	styles	from	a	JavaScript	file
'use	strict';

var	React	=	require('react-native');

var	{

		StyleSheet,

}	=	React;

var	styles	=	Stylesheet.create({

		text:	{

				color:	'#FF00FF',

				fontSize:	16

		},

		bold:	{

				fontWeight:	'bold'

		}

});

module.exports	=	styles;

Within	index.js,	we	can	import	our	styles	like	so:

var	styles	=	require('./styles.js');

Then	we	can	use	them	in	our	component	(Example	5-7).

Example	5-7.	Importing	styles	from	an	external	JavaScript	file
'use	strict';

var	React	=	require('react-native');

var	styles	=	require('./styles.js');

var	{

		View,

		Text,

		StyleSheet

}	=	React;

var	ComponentName	=	React.createClass({

		render:	function()	{

				return	(

						<Text	style={[styles.text,	styles.bold]}>

								Hello,	world

						</Text>

);

		}

});

Passing	Styles	as	Props
You	can	also	pass	styles	as	properties.	The	propType	View.propTypes.style	ensures	that
only	valid	styles	are	passed	as	props.

You	can	use	this	pattern	to	create	extensible	components,	which	can	be	more	effectively
controlled	and	styled	by	their	parents.	For	example,	a	component	might	take	in	an	optional
style	prop	(Example	5-8).

Example	5-8.	Components	can	receive	style	objects	via	props
'use	strict';

var	React	=	require('react-native');

var	{

		View,

		Text

}	=	React;

var	CustomizableText	=	React.createClass({

		propTypes:	{

				style:	Text.propTypes.Style

		},

		getDefaultProps:	function()	{

				return	{

						style:	{}

				};

		},

		render:	function()	{

				return	(

						<Text	style={[myStyles.text,	this.props.style]}>

								Hello,	world

						</Text>

);

		}

});

By	adding	this.props.style	to	the	end	of	the	styles	array,	we	ensure	that	you	can
override	the	default	props.

Reusing	and	Sharing	Styles
We	typically	prefer	to	reuse	styled	components,	rather	than	reusing	styles,	but	there	are
clearly	some	instances	in	which	you	will	want	to	share	styles	between	components.	In	this
case,	a	common	pattern	is	to	organize	your	project	roughly	like	so:

-	js

		|-	components

					|-	Button

								|-	index.js

								|-	styles.js

		|-	styles

					|-	styles.js

					|-	colors.js

					|-	fonts.js

By	having	separate	directories	for	components	and	for	styles,	you	can	keep	the	intended
use	of	each	file	clear	based	on	context.	A	component’s	folder	should	contain	its	React
class,	as	well	as	any	component-specific	files.	Shared	styles	should	be	kept	out	of
component	folders.	Shared	styles	may	include	things	such	as	your	palette,	fonts,
standardized	margins	and	padding,	and	so	on.

styles/styles.js	requires	the	other	shared	styles	files,	and	exposes	them;	then	your
components	can	require	styles.js	and	use	shared	files	as	needed.	Or,	you	may	prefer	to
have	components	require	specific	stylesheets	from	the	styles/	directory	instead.

Because	we’ve	now	moved	our	styles	into	JavaScript,	organizing	your	styles	is	really	a
question	of	general	code	organization;	there’s	no	single	correct	approach	here.

Positioning	and	Designing	Layouts
One	of	the	biggest	changes	when	working	with	styling	in	React	Native	is	positioning.	CSS
supports	a	proliferation	of	positioning	techniques.	Between	float,	absolute	positioning,
tables,	block	layout,	and	more,	it’s	easy	to	get	lost!	React	Native’s	approach	to	positioning
is	more	focused,	relying	primarily	on	flexbox	as	well	as	absolute	positioning,	along	with
the	familiar	properties	of	margin	and	padding.	In	this	section,	we’ll	look	at	how	layouts
are	constructed	in	React	Native,	and	finish	off	by	building	a	layout	in	the	style	of	a
Mondrian	painting.

Layouts	with	Flexbox
Flexbox	is	a	CSS3	layout	mode.	Unlike	existing	layout	modes	such	as	block	and	inline,
flexbox	gives	us	a	direction-agnostic	way	of	constructing	layouts.	(That’s	right:	finally,
vertically	centering	is	easy!)	React	Native	leans	heavily	on	flexbox.	If	you	want	to	read
more	about	the	general	specification,	the	MDN	documentation	is	a	good	place	to	start.

With	React	Native,	the	following	flexbox	props	are	available:

flex

flexDirection

flexWrap

alignSelf

alignItems

Additionally,	these	related	values	impact	layout:

height

width

margin

border

padding

If	you	have	worked	with	flexbox	on	the	Web	before,	there	won’t	be	many	surprises	here.
Because	flexbox	is	so	important	to	constructing	layouts	in	React	Native,	though,	we’ll
spend	some	time	now	exploring	how	it	works.

The	basic	idea	behind	flexbox	is	that	you	should	be	able	to	create	predictably	structured
layouts	even	given	dynamically	sized	elements.	Because	we’re	designing	for	mobile,	and
need	to	accommodate	multiple	screen	sizes	and	orientations,	this	is	a	useful	feature.

We’ll	start	with	a	parent	<View>,	and	some	children:

<View	style={styles.parent}>

		<Text	style={styles.child}>	Child	One	</Text>

		<Text	style={styles.child}>	Child	Two	</Text>

		<Text	style={styles.child}>	Child	Three	</Text>

</View>

To	start,	we’ve	applied	some	basic	styles	to	the	views,	but	haven’t	touched	the	positioning
yet:

var	styles	=	StyleSheet.create({

		parent:	{

http://mzl.la/1Ta8Zcj

				backgroundColor:	'#F5FCFF',

				borderColor:	'#0099AA',

				borderWidth:	5,

				marginTop:	30

		},

		child:	{

				borderColor:	'#AA0099',

				borderWidth:	2,

				textAlign:	'center',

				fontSize:	24,

		}

});

The	resulting	layout	is	shown	in	Figure	5-1.

Figure	5-1.	The	layout	before	we	add	flex	properties

Next,	we	will	set	flex	on	both	the	parent	and	the	child.	By	setting	the	flex	property,	we
are	explicitly	opting	in	to	flexbox	behavior.	flex	takes	a	number.	This	number	determines
the	relative	weight	each	child	gets;	by	setting	it	to	1	for	each	child,	we	weight	them
equally.

We	also	set	flexDirection:	'column'	so	that	the	children	are	laid	out	vertically.	If	we
switch	this	to	flexDirection:	'row',	the	children	will	be	laid	out	horizontally	instead.
These	changes	to	the	styles	can	be	seen	in	Example	5-9.	Figure	5-2	illustrates	the
difference	in	how	these	values	impact	the	layout.

Figure	5-2.	Setting	basic	flex	properties	and	flexDirection;	setting	flexDirection	to	column	(left)	and	setting	flexDirection
to	row	(right)

Example	5-9.	Changing	the	flex	and	flexDirection	properties
var	styles	=	StyleSheet.create({

		parent:	{

				flex:	1,

				flexDirection:	'column',

				backgroundColor:	'#F5FCFF',

				borderColor:	'#0099AA',

				borderWidth:	5,

				marginTop:	30

		},

		child:	{

				flex:	1,

				borderColor:	'#AA0099',

				borderWidth:	2,

				textAlign:	'center',

				fontSize:	24,

		}

});

If	we	set	alignItems,	the	children	will	no	longer	expand	to	fill	all	available	space	in	both
directions.	Because	we	have	set	flexDirection:	'row',	they	will	expand	to	fill	the	row.
However,	now	they	will	only	take	up	as	much	vertical	space	as	they	need.

Then,	the	alignItems	value	determines	where	they	are	positioned	along	the	cross-axis.
The	cross-axis	is	the	axis	orthogonal	to	the	flexDirection.	In	this	case,	the	cross	axis	is
vertical.	flex-start	places	the	children	at	the	top,	center	centers	them,	and	flex-end
places	them	at	the	bottom.

Let’s	see	what	happens	when	we	set	alignItems	(the	result	is	shown	in	Figure	5-3):

var	styles	=	StyleSheet.create({

		parent:	{

				flex:	1,

				flexDirection:	'row',

				alignItems:	'flex-start',

				backgroundColor:	'#F5FCFF',

				borderColor:	'#0099AA',

				borderWidth:	5,

				marginTop:	30

		},

		child:	{

				flex:	1,

				borderColor:	'#AA0099',

				borderWidth:	2,

				textAlign:	'center',

				fontSize:	24,

		}

});

Figure	5-3.	Setting	alignItems	positions	children	on	the	cross-axis,	which	is	the	axis	orthogonal	to	the	flexDirection;
here,	we	see	flex-start,	center,	and	flex-end

Using	Absolute	Positioning
In	addition	to	flexbox,	React	Native	supports	absolute	positioning.	It	works	much	as	it
does	on	the	Web.	You	can	enable	it	by	setting	the	position	property:

position:	absolute

Then,	you	can	control	the	component’s	positioning	with	the	familiar	properties	of	left,
right,	top,	and	bottom.

An	absolutely	positioned	child	will	apply	these	coordinates	relative	to	its	parent’s	position,
so	you	can	lay	out	a	parent	element	using	flexbox	and	then	use	absolute	position	for	a
child	within	it.

There	are	some	limitations	to	this.	We	don’t	have	z-index,	for	instance,	so	layering	views
on	top	of	each	other	is	a	bit	complicated.	The	last	view	in	a	stack	typically	takes
precedence.

Absolute	positioning	can	be	very	useful.	For	instance,	if	you	want	to	create	a	container
view	that	sits	below	the	phone’s	status	bar,	absolute	positioning	makes	this	easy:

container:	{

		position:	'absolute',

		top:	30,

		left:	0,

		right:	0,

		bottom:	0

}

Putting	It	Together
Let’s	try	using	these	positioning	techniques	to	create	a	more	complicated	layout.	Say	we
want	to	mimic	a	Mondrian	painting.	Figure	5-4	shows	the	end	result.

Figure	5-4.	We’ll	use	flexbox	to	construct	this	layout

How	should	we	go	about	constructing	this	kind	of	layout?

To	start	with,	we	create	a	parent	style	to	act	as	the	container.	We	will	use	absolute
positioning	on	the	parent,	because	it’s	most	appropriate:	we	want	it	to	fill	all	available
space,	except	with	a	30-pixel	offset	at	the	top,	due	to	the	status	bar	at	the	top	of	the	screen.
We’ll	also	set	its	flexDirection	to	column:

parent:	{

		flexDirection:	'column',

		position:	'absolute',

		top:	30,

		left:	0,

		right:	0,

		bottom:	0

}

Looking	back	at	the	image,	we	can	divide	the	layout	up	into	larger	blocks.	These	divisions
are	in	many	ways	arbitrary,	so	we’ll	pick	an	option	and	roll	with	it.	Figure	5-5	shows	one
way	we	can	segment	the	layout.

Figure	5-5.	The	order	in	which	we’ll	style	the	sections

We	start	by	cutting	the	layout	into	a	top	and	bottom	block:

<View	style={styles.parent}>

		<View	style={styles.topBlock}>

		</View>

		<View	style={styles.bottomBlock}>

		</View>

</View>

Then	we	add	in	the	next	layer.	This	includes	both	a	“left	column”	and	“bottom	right”
sector,	as	well	as	the	actual	<View>	components	for	cells	three,	four,	and	five:

<View	style={styles.parent}>

		<View	style={styles.topBlock}>

				<View	style={styles.leftCol}>

				</View>

				<View	style={[styles.cellThree,	styles.base]}	/>

		</View>

		<View	style={styles.bottomBlock}>

				<View	style={[styles.cellFour,	styles.base]}/>

				<View	style={[styles.cellFive,	styles.base]}/>

				<View	style={styles.bottomRight}>

				</View>

		</View>

</View>

The	final	markup	contains	all	seven	cells.	Example	5-10	shows	the	full	component.

Example	5-10.	Styles/Mondrian/index.js
'use	strict';

var	React	=	require('react-native');

var	{

		AppRegistry,

		StyleSheet,

		Text,

		View,

}	=	React;

var	styles	=	require('./style');

var	Mondrian	=	React.createClass({

		render:	function()	{

				return	(

						<View	style={styles.parent}>

								<View	style={styles.topBlock}>

										<View	style={styles.leftCol}>

												<View	style={[styles.cellOne,	styles.base]}	/>

												<View	style={[styles.base,	styles.cellTwo]}	/>

										</View>

										<View	style={[styles.cellThree,	styles.base]}	/>

								</View>

								<View	style={styles.bottomBlock}>

										<View	style={[styles.cellFour,	styles.base]}/>

										<View	style={[styles.cellFive,	styles.base]}/>

										<View	style={styles.bottomRight}>

												<View	style={[styles.cellSix,	styles.base]}	/>

												<View	style={[styles.cellSeven,	styles.base]}	/>

										</View>

								</View>

						</View>

);

		}

});

module.exports	=	Mondrian;

Now	let’s	add	the	styles	that	make	it	work	(Example	5-11).

Example	5-11.	Styles/Mondrian/style.js
var	React	=	require('react-native');

var	{	StyleSheet	}	=	React;

var	styles	=	StyleSheet.create({

		parent:	{

				flexDirection:	'column',

				position:	'absolute',

				top:	30,

				left:	0,

				right:	0,

				bottom:	0

		},

		base:	{

				borderColor:	'#000000',

				borderWidth:	5

		},

		topBlock:	{

				flexDirection:	'row',

				flex:	5

		},

		leftCol:	{

				flex:	2

		},

		bottomBlock:	{

				flex:	2,

				flexDirection:	'row'

		},

		bottomRight:	{

				flexDirection:	'column',

				flex:	2

		},

		cellOne:	{

				flex:	1,

				borderBottomWidth:	15

		},

		cellTwo:	{

				flex:	3

		},

		cellThree:	{

				backgroundColor:	'#FF0000',

				flex:	5

		},

		cellFour:	{

				flex:	3,

				backgroundColor:	'#0000FF'

		},

		cellFive:	{

				flex:	6

		},

		cellSix:	{

				flex:	1

		},

		cellSeven:	{

				flex:	1,

				backgroundColor:	'#FFFF00'

		}

});

module.exports	=	styles;

Summary
In	this	chapter,	we	looked	at	how	styles	work	in	React	Native.	While	in	many	ways	styling
is	similar	to	how	CSS	works	on	the	Web,	React	Native	introduces	a	different	structure	and
approach	to	styling.	There’s	plenty	of	new	material	to	digest	here!	At	this	point,	you
should	be	able	to	use	styles	effectively	to	create	the	mobile	UIs	you	need	with	React
Native.	And	best	of	all,	experimenting	with	styles	is	easy:	being	able	to	hit	“reload”	in	the
simulator	grants	us	a	tight	feedback	loop.	(It’s	worth	noting	that	with	traditional	mobile
development,	editing	a	style	would	typically	require	rebuilding	your	application.	Yikes.)

If	you	want	more	practice	with	styles,	try	going	back	to	the	Best	Sellers	or	Weather
applications,	and	adjusting	their	styling	and	layouts.	As	we	build	more	sample
applications	in	future	chapters,	you’ll	have	plenty	of	material	to	practice	with,	too!
1	Christopher	Chedeau,	aka	Vjeux’s	“CSS	in	JS”	slidedeck	provides	a	good	overview.

https://speakerdeck.com/vjeux/react-css-in-js

Chapter	6.	Platform	APIs

When	building	mobile	applications,	you	will	naturally	want	to	take	advantage	of	the	host
platform’s	specific	APIs.	React	Native	makes	it	easy	to	access	things	like	the	phone’s
camera	roll,	location,	and	persistent	storage.	These	platform	APIs	are	made	available	to
React	Native	through	included	modules,	which	provide	us	with	easy-to-use	asynchronous
JavaScript	interfaces	to	these	functions.

React	Native	does	not	wrap	all	of	its	host	platform’s	functionality	by	default;	some
platform	APIs	will	require	you	to	either	write	your	own	modules,	or	use	modules	written
by	others	in	the	React	Native	community.	We	will	cover	that	process	in	Chapter	7.	The
docs	are	the	best	place	to	check	if	an	API	is	supported.

This	chapter	covers	some	of	the	available	platform	APIs.	For	our	example,	we’ll	make
some	modifications	to	the	Weather	application	from	earlier.	We’ll	add	geolocation	to	the
app,	so	that	it	detects	the	user’s	location	automatically.	We	will	also	add	“memory”	to	the
app,	so	it	will	remember	your	previously	searched	locations.	Finally,	we’ll	use	the	camera
roll	to	change	the	background	image	to	one	of	the	user’s	photos.

While	relevant	code	snippets	will	be	presented	in	each	section,	the	full	code	for	the
application	is	included	in	“The	SmarterWeather	Application”.

https://facebook.github.io/react-native/docs/getting-started.html

IOS	AND	ANDROID	COMPATIBILITY
Cross-platform	support	for	these	APIs	is	a	work	in	progress,	so	while	AsyncStorage	is	supported	on	both
iOS	and	Android,	geolocation	and	the	camera	roll	are	currently	iOS-only.	See	the	list	of	known	issues	for
which	modules	are	still	being	ported	to	Android.

https://facebook.github.io/react-native/docs/known-issues.html

Using	Geolocation
For	mobile	applications,	knowing	the	user’s	location	is	often	critical.	It	allows	you	to
serve	the	user	contextually	relevant	information.	Many	mobile	applications	make
extensive	use	of	this	data.

Happily,	React	Native	has	built-in	support	for	geolocation.	This	is	provided	as	a	platform-
agnostic	“polyfill.”	It	returns	data	based	on	the	MDN	Geolocation	API	web	specification.
Because	we’re	using	the	Geolocation	specification,	you	won’t	need	to	deal	with	platform-
specific	APIs	like	Location	Services,	and	any	location-aware	code	you	write	should	be
fully	portable.

http://mzl.la/1lELM6N

GEOLOCATION	IS	CURRENTLY	IOS-ONLY
The	Geolocation	module	will	be	supported	on	Android	soon,	but	for	now	it’s	iOS-only.

Getting	the	User’s	Location
Using	the	Geolocation	API	to	get	a	user’s	location	is	a	breeze.	As	shown	in	Example	6-1,
we	need	to	make	a	call	to	navigator.geolocation.

Example	6-1.	Getting	the	user’s	location	with	a	navigator.geolocation	call
navigator.geolocation.getCurrentPosition(

		(position)	=>	{

				console.log(position);

		},

		(error)	=>	{alert(error.message)},

		{enableHighAccuracy:	true,	timeout:	20000,	maximumAge:	1000}

);

In	conformance	to	the	Geolocation	specification,	we	don’t	import	this	API	as	a	separate
module;	it’s	simply	available	for	our	use.

The	getCurrentPosition	call	takes	three	arguments:	a	success	callback,	an	error	callback,
and	a	set	of	geoOptions.	Only	the	success	callback	is	required.

The	position	object	passed	to	the	success	callback	will	contain	coordinates,	as	well	as	a
timestamp.	Example	6-2	shows	the	format	and	possible	values.

Example	6-2.	Shape	of	the	response	returned	from	a	getCurrentPosition	call
{

		coords:	{

				speed:-1,

				longitude:-122.03031802,

				latitude:37.33259551999998,

				accuracy:500,

				heading:-1,

				altitude:0,

				altitudeAccuracy:-1

		},

		timestamp:459780747046.605

}

geoOptions	should	be	an	object,	which	optionally	includes	the	keys	timoeut,
enableHighAccuracy,	and	maximumAge.	timeout	is	probably	the	most	relevant	of	the
bunch	when	it	comes	to	affecting	your	application	logic.

Handling	Permissions
Location	data	is	sensitive	information,	and	therefore	will	not	be	accessible	to	your
application	by	default.	Your	application	should	be	able	to	handle	permissions	being
accepted	or	rejected.

Most	mobile	platforms	have	some	notion	of	location	permissions.	A	user	may	opt	to	block
Location	Services	entirely	on	iOS,	for	instance,	or	they	may	manage	permissions	on	a	per-
app	basis.	If	the	user	denies	your	application	access,	the	cancellation	callback	you	pass	to
getCurrentPosition	will	be	invoked.

It’s	important	to	note	that	location	permissions	can	be	revoked	at	essentially	any	point	in
time.	Your	application	should	always	be	prepared	for	a	geolocation	call	to	fail.

The	first	time	your	application	attempts	to	access	the	user’s	location,	the	user	will	be
presented	with	a	permissions	dialog	like	the	one	shown	in	Figure	6-1.

Figure	6-1.	Location	request

While	this	dialog	is	active,	neither	callback	will	fire;	once	they	select	an	option,	the
appropriate	callback	will	be	invoked.	This	setting	will	persist	for	your	application,	so	the
next	time,	such	a	check	won’t	be	necessary.

If	the	user	denies	permissions,	you	can	fail	silently	if	you	want,	but	most	apps	use	an	alert
dialog	to	request	permissions	again.

Testing	Geolocation	In	the	iOS	Simulator
Chances	are	you’ll	be	doing	most	of	your	testing	and	development	from	within	a
simulator,	or	at	the	very	least,	at	your	desk.	How	can	you	test	how	your	app	will	behave	at
different	locations?

The	iOS	simulator	allows	you	to	easily	spoof	a	different	location.	By	default,	you’ll	be
placed	near	Apple	HQ	in	California,	but	you	can	specify	any	other	coordinates	as	well	by
navigating	to	Debug	→	Location	→	Custom	Location…,	as	shown	in	Figure	6-2.

Figure	6-2.	Picking	a	location

It’s	good	practice	to	try	out	different	locations	as	part	of	your	testing	process.	For	rigorous
testing,	of	course,	you	will	want	to	load	your	application	onto	an	actual	device.

Watching	the	User’s	Location
You	can	also	set	a	watch	on	the	user’s	location,	and	receive	updates	whenever	it	changes.
This	can	be	used	to	track	a	user’s	location	over	time,	or	just	to	ensure	that	your	app
receives	the	most	up-to-date	position:

this.watchID	=	navigator.geolocation.watchPosition((position)	=>	{

		this.setState({position:	position});

});

Note	that	you’ll	want	to	clear	the	watch	when	your	component	unmounts	as	well:

componentWillUnmount:	function()	{

		navigator.geolocation.clearWatch(this.watchID);

}

Limitations
Because	geolocation	is	based	on	the	MDN	specification,	it	leaves	out	more	advanced
location-based	features.	For	example,	iOS	provides	a	Geofencing	API,	which	allows	your
application	to	receive	notifications	when	the	user	enters	or	leaves	a	designated
geographical	region	(the	geofence).	React	Native	currently	does	not	expose	this	API.

This	means	that	if	you	want	to	use	location-based	features	that	aren’t	currently	included	in
the	Geolocation	MDN	specification,	you’ll	need	to	port	them	yourself.

Updating	the	Weather	Application
The	SmarterWeather	application	is	an	updated	version	of	the	Weather	application,	which
now	makes	use	of	the	Geolocation	API.	You	can	see	these	changes	in	Figure	6-3.

Most	notable	is	a	new	component,	<LocationButton>,	which	fetches	the	user’s	current
location	and	invokes	a	callback	when	pressed.	The	code	for	the	<LocationButton>	is
shown	in	Example	6-3.

Figure	6-3.	Displaying	forecast	based	on	the	user’s	current	location

Example	6-3.	SmarterWeather/LocationButton/index.js:	when	pressed,	the	button	gets	the
user’s	location
var	React	=	require('react-native');

var	styles	=	require('./style.js');

var	Button	=	require('./../Button');

var	LocationButton	=	React.createClass({

		propTypes:	{

				onGetCoords:	React.PropTypes.func.isRequired

		},

		_onPress:	function()	{

				navigator.geolocation.getCurrentPosition(

						(initialPosition)	=>	{

								this.props.onGetCoords(initialPosition.coords.latitude,

										initialPosition.coords.longitude);

						},

						(error)	=>	{alert(error.message)},

						{enableHighAccuracy:	true,	timeout:	20000,	maximumAge:	1000}

);

		},

		render:	function()	{

				return	(

						<Button	label="Use	CurrentLocation"

								style={styles.locationButton}

								onPress={this._onPress}/>

);

		}

});

module.exports	=	LocationButton;

The	Button	component	used	by	LocationButton	is	included	at	the	end	of	this	chapter;	it
simply	wraps	a	<Text>	component	in	an	appropriate	<TouchableHighlight>	with	some
basic	styling.

We’ve	also	had	to	update	the	main	weather_project.js	file	to	accommodate	two	kinds	of
queries	(Example	6-4).	Happily,	the	OpenWeatherMap	API	allows	us	to	query	by	latitude
and	longitude	as	well	as	zip	code.

Example	6-4.	Adding	_getForecastForCoords	and	_getForecastForZip	functions
var	WEATHER_API_KEY	=	'bbeb34ebf60ad50f7893e7440a1e2b0b';

var	API_STEM	=	'http://api.openweathermap.org/data/2.5/weather?';

...

_getForecastForZip:	function(zip)	{

		this._getForecast(

				`${API_STEM}q=${zip}&units=imperial&APPID=${WEATHER_API_KEY}`);

},

_getForecastForCoords:	function(lat,	lon)	{

		this._getForecast(

				`${API_STEM}lat=${lat}&lon=${lon}&units=imperial&APPID=${WEATHER_API_KEY}`);

},

_getForecast:	function(url,	cb)	{

		fetch(url)

				.then((response)	=>	response.json())

				.then((responseJSON)	=>	{

						console.log(responseJSON);

						this.setState({

								forecast:	{

										main:	responseJSON.weather[0].main,

										description:	responseJSON.weather[0].description,

										temp:	responseJSON.main.temp

								}

						});

				})

				.catch((error)	=>	{

						console.warn(error);

				});

}

Then	we	include	the	LocationButton	in	the	main	view	with	_getForecastForCoords	as
the	callback:

<LocationButton	onGetCoords={this._getForecastForCoords}/>

I’ve	omitted	the	relevant	style	updates	and	so	on,	as	the	fully	updated	application	code
will	be	included	at	the	end	of	this	chapter.

There’s	plenty	of	work	left	to	be	done	here,	if	you	wanted	to	actually	ship	this	to	users	—
for	example,	a	more	complete	app	would	include	better	error	messages	and	additional	UI
feedback.	But	basic	location	fetching	is	surprisingly	straightforward!

Accessing	the	User’s	Images	and	Camera
Having	access	to	a	phone’s	local	images,	as	well	as	the	camera,	is	another	critical	part	of
many	mobile	applications.	In	this	section,	we’ll	explore	your	options	for	interacting	with
users’	image	data	as	well	as	the	camera.

We’ll	still	be	using	the	SmarterWeather	project.	Let’s	change	the	background	image	to	use
an	image	from	the	user’s	photos.

The	CameraRoll	Module
React	Native	provides	an	interface	into	the	CameraRoll	—	the	images	that	are	stored	on
the	user’s	phone,	taken	from	the	camera.

CAMERAROLL	IS	CURRENTLY	IOS-ONLY
The	CameraRoll	module	will	be	supported	on	Android	soon,	but	for	now	it’s	iOS-only.

Interacting	with	the	CameraRoll,	in	its	most	basic	form,	is	not	too	complicated.	First	we
require	the	module,	as	per	usual:

var	React	=	require('react-native');

var	{	CameraRoll	}	=	React;

Then,	we	make	use	of	the	module	to	fetch	information	about	the	user’s	photos,	as	shown
in	Example	6-5.

Example	6-5.	Basic	usage	of	CameraRoll.getPhotos
CameraRoll.getPhotos(

		{first:	1},

		(data)	=>	{

				console.log(data);

		},

		(error)	=>	{

				console.warn(error);

		});

We	make	a	call	to	getPhotos	with	the	appropriate	query,	and	it	returns	some	data	related
to	the	CameraRoll	images.

In	SmarterWeather,	let’s	replace	the	top-level	<Image>	component	with	a	new	component,
PhotoBackdrop	(Example	6-6).	For	now,	PhotoBackdrop	simply	pulls	the	most	recent
photo	from	the	user’s	CameraRoll.

Example	6-6.	SmarterWeather/PhotoBackdrop/camera_roll_example.js
var	React	=	require('react-native');

var	{	Image,	CameraRoll	}	=	React;

var	styles	=	require('./style.js');

var	PhotoBackdrop	=	React.createClass({

		getInitialState()	{

				return	{

						photoSource:	null

				}

		},

		componentDidMount()	{

				CameraRoll.getPhotos(

						{first:	5},

						(data)	=>	{

								this.setState({

										photoSource:	{uri:	data.edges[3].node.image.uri}

								})},

						(error)	=>	{

								console.warn(error);

						});

		},

		render()	{

				return	(

						<Image

								style={styles.backdrop}

								source={	this.state.photoSource	}

								resizeMode='cover'>

								{this.props.children}

						</Image>

);

		}

});

module.exports	=	PhotoBackdrop;

CameraRoll.getPhotos	takes	three	arguments:	an	object	with	params,	a	success	callback,
and	an	error	callback.

Requesting	Images	with	GetPhotoParams
The	getPhotoParams	object	can	take	a	variety	of	options,	which	are	oddly	not	included	in
the	web	documentation.	We	can	take	a	look	at	the	React	Native	source	code	to	see	which
options	are	available	to	us:
first

number,	the	number	of	photos	wanted	in	reverse	order	of	the	photo	application	(i.e.,
most	recent	first	for	SavedPhotos)

after

string,	a	cursor	that	matches	page_info	{end_cursor}	returned	from	a	previous	call
to	getPhotos

groupTypes

string,	specifies	which	group	to	use	to	filter	results.	May	be	Album,	All,	Event,	etc.;
full	list	of	GroupTypes	are	specified	in	the	source

groupName

string,	specifies	a	filter	on	group	names,	such	as	Recent	Photos	or	an	album	title
assetType

one	of	All,	Photos,	or	Videos,	specifies	a	filter	on	asset	type
mimeTypes

array	of	strings,	filters	based	on	mimetype	(such	as	image/jpeg)

In	our	basic	invocation	of	getPhotos	in	Example	6-5,	our	getPhotoParams	object	was
quite	simple:

{first:	1}

This	means,	simply,	that	we	were	looking	for	the	most	recent	photo.

http://bit.ly/1kPZnrQ

Rendering	an	Image	from	the	Camera	Roll
How	do	we	render	an	image	we’ve	received	from	the	camera	roll?	Let’s	take	a	look	at	that
success	callback:

(data)	=>	{

		this.setState({

				photoSource:	{uri:	data.edges[0].node.image.uri}

		})},

The	structure	of	the	data	object	is	not	immediately	apparent,	so	you’ll	likely	want	to	use
the	debugger	to	inspect	the	object.	Each	of	the	objects	in	data.edges	has	a	node	that
represents	a	photo;	from	there,	you	can	get	the	URI	of	the	actual	asset.

You	may	recall	that	an	<Image>	component	can	take	a	URI	as	its	source	property.	So,	we
can	render	an	image	obtained	from	the	camera	roll	by	setting	the	source	property
appropriately:

<Image	source={this.state.photoSource}	/>

That’s	it!	You	can	see	the	resulting	application,	including	the	image,	in	Figure	6-4.

Figure	6-4.	Rendering	an	image	from	the	CameraRoll

Displaying	a	List	of	Photos
In	many	apps,	we	give	the	user	the	ability	to	select	a	photo.	How	do	you	render	that	photo
selection	screen?

If	you’re	an	iOS	user,	you	may	have	noticed	that	while	there	is	a	default	iOS	photo
selection	screen,	many	applications	actually	implement	their	own	custom	screen.	As
shown	in	Figure	6-5,	Twitter	and	Tumblr	both	have	custom	screens.	In	Twitter’s	case,	this
allows	you	to	select	a	photo	from	the	Tweet	composition	screen.

Figure	6-5.	Photo	selection	screens	in	the	Tumblr	(left)	and	Twitter	(right)	iOS	applications

The	default	screen	is	a	full-page	dialog,	and	it	looks	a	bit	different	(Figure	6-6).

Figure	6-6.	Default	dialog

So,	you	can	either	use	the	built-in	element	for	this,	or	roll	your	own.	Applications	often
build	custom	solutions	in	order	to	provide	additional	functionality	over	the	standard
interface.	The	UIExplorer	application	gives	us	a	very	basic	example	of	how	to	use	the
CameraRoll	to	create	a	simple	custom	view	of	the	user’s	photo	library,	shown	in	Figure	6-
7.

https://github.com/facebook/react-native/tree/master/Examples/UIExplorer

Figure	6-7.	The	CameraRoll	example	from	the	UIExplorer	application

It’s	little	more	than	the	CameraRoll	interactions	we	saw	earlier,	couped	with	a
<ListView>.	You	could	use	this	approach	to	develop	a	cross-platform	image	selection
component	for	both	Android	and	iOS.

On	iOS,	the	native	UI	element	is	the	UIImagePickerController,	which	React	Native
supports	via	the	ImagePickerIOS	module.

ANDROID	SUPPORT	FOR	PHOTO	SELECTION
Currently,	React	Native	provides	the	ImagePickerIOS	API	for	selecting	photos	or	accessing	the	camera	on
iOS,	but	there	isn’t	an	equivalent	for	Android	yet.	Check	the	documentation	for	the	most	up-to-date
information.

You	can	import	the	ImagePickerIOS	module	in	the	usual	way:

var	{	ImagePickerIOS	}	=	React;

Then,	using	it	is	simple.	We	can	query	ImagePickerIOS	to	see	if	we	are	able	to	use	the
camera	or	record	videos	(Example	6-7).

Example	6-7.	Checking	if	we	may	access	the	camera	or	record	videos	using
ImagePickerIOS
ImagePickerIOS.canUseCamera((result)	=>	{

		console.log(result);	//	boolean

});

ImagePickerIOS.canRecordVideos((result)	=>	{

		console.log(result);	//	boolean

});

Then,	to	trigger	the	photo	selection	dialog,	we	call	openSelectDialog,	furnishing	it	with
some	options	as	well	as	callbacks	for	successful	photo	selection,	and	user	cancellation
(Example	6-8).

Example	6-8.	Triggering	the	photo	selection	dialog	using	ImagePickerIOS
ImagePickerIOS.openSelectDialog(

		{

				showImages:	true,

				showVideos:	false,

		},

		(data)	=>	{

				this.setState({

						photoSource:	{uri:	data}

				});

		},

		()	=>	{

				console.log('User	canceled	the	action');

		});

This	call	opens	up	the	standard	iOS	photo	selection	dialog	(Figure	6-8).

https://facebook.github.io/react-native/docs

Figure	6-8.	iOS	selection	dialog

The	data	passed	to	the	success	callback	is	a	URI,	which	can	be	used	as	an	<Image>	source
prop.

Uploading	an	Image	to	a	Server
What	if	you	want	to	upload	a	photo	somewhere?	React	Native	ships	with	built-in	image
uploading	functionality	in	the	XHR	module.	The	UIExplorer	example	demonstrates	one
approach:

var	formdata	=	new	FormData();

...

formdata.append('image',	{...this.state.randomPhoto,	name:	'image.jpg'});

...

xhr.send(formdata);

XHR	is	short	for	XMLHttpRequest.	React	Native	implements	the	XHR	API	on	top	of	the
iOS	networking	APIs.	Similar	to	geolocation,	React	Native’s	XHR	implementation	is
based	on	the	MDN	specification.

Using	XHR	for	network	requests	is	somewhat	more	complex,	compared	with	the	Fetch
API,	but	the	basic	approach	should	look	something	like	Example	6-9.

Example	6-9.	Basic	structure	for	POSTing	a	photo	using	XHR
var	xhr	=	new	XMLHttpRequest();

xhr.open('POST',	'http://posttestserver.com/post.php');

var	formdata	=	new	FormData();

formdata.append('image',	{...this.state.photo,	name:	'image.jpg'});

xhr.send(formdata);

Omitted	here	are	the	various	callbacks	you	will	want	to	register	with	the	XHR	request.

http://bit.ly/1jjz37G
http://bit.ly/xmlhttpreq

Storing	Persistent	Data	with	AsyncStore
Most	applications	will	need	to	keep	track	of	some	variety	of	data,	persistently.	How	do
you	accomplish	this	with	React	Native?

iOS	provides	us	with	AsyncStorage,	a	key-value	store	that	is	global	to	your	application.	If
you	have	used	LocalStorage	on	the	Web,	AsyncStorage	ought	to	feel	quite	similar.
AsyncStorage,	as	the	name	suggests,	is	asynchronous;	its	API	is	quite	simple,	too,	and	a
React	Native	module	for	it	is	included	by	default.	Let’s	take	a	look	at	how	to	use	it.

The	storage	key	used	by	AsyncStorage	can	be	any	string;	it’s	customary	to	use	the	format
@AppName:key,	like	so:

var	STORAGE_KEY	=	'@SmarterWeather:zip';

The	AsyncStorage	module	returns	a	promise	in	response	to	both	getItem	and	setItem.
For	SmarterWeather,	let’s	load	the	stored	zip	code	in	componentDidMount:

AsyncStorage.getItem(STORAGE_KEY)

		.then((value)	=>	{

				if	(value	!==	null)	{

						this._getForecastForZip(value);

				}

		})

		.catch((error)	=>	console.log('AsyncStorage	error:	'	+	error.message))

		.done();

Then,	in	_getForecaseForZip,	we	can	store	the	zip	code	value:

AsyncStorage.setItem(STORAGE_KEY,	zip)

		.then(()	=>	console.log('Saved	selection	to	disk:	'	+	zip))

		.catch((error)	=>	console.log('AsyncStorage	error:	'	+	error.message))

		.done();

AsyncStorage	also	provides	methods	for	deleting	keys,	merging	keys,	and	fetching	all
available	keys.

Other	Storage	Options
If	you	are	working	with	more	complicated,	structured	data,	or	simply	more	of	it,	you	will
likely	want	options	beyond	a	simple	key-value	store.

One	common	database	on	iOS	is	SQLite;	however,	this	is	not	available	as	a	built-in	React
Native	module.	In	the	next	chapter,	we	will	look	at	how	to	wrap	native	modules	for	use
with	React	Native,	and	how	to	install	modules	that	others	have	written.

The	SmarterWeather	Application
All	of	the	example	code	in	this	chapter	can	be	found	in	the	SmarterWeather/	directory.	The
application	from	Chapter	3	has	changed	quite	a	bit,	so	let’s	take	a	look	at	the	structure	of
the	entire	appliation	again	(Figure	6-9).

Figure	6-9.	Contents	of	the	SmarterWeather	project

The	top-level	component	is	located	in	weather_project.js.	Shared	font	styles	are	located	in
styles/typography.js.	The	folders	Forecast/,	PhotoBackdrop/,	Button/,	and	LocationButton/
all	contain	React	components	used	in	the	new	SmarterWeather	application.

The	WeatherProject	Component
The	top-level	component	is	located	in	weather_project.js	(Example	6-10).	This	includes
the	use	of	AsyncStorage	to	store	the	most	recent	location.

Example	6-10.	SmarterWeather/weather_project.js
var	React	=	require('react-native');

var	{

		StyleSheet,

		Text,

		View,

		TextInput,

		AsyncStorage,

		Image

}	=	React;

var	Forecast	=	require('./Forecast');

var	LocationButton	=	require('./LocationButton');

var	STORAGE_KEY	=	'@SmarterWeather:zip';

var	WEATHER_API_KEY	=	'bbeb34ebf60ad50f7893e7440a1e2b0b';

var	API_STEM	=	'http://api.openweathermap.org/data/2.5/weather?';

//	This	version	uses	flowers.png	from	local	assets

//	var	PhotoBackdrop	=	require('./PhotoBackdrop/local_image');

//	This	version	has	you	to	pick	a	photo

var	PhotoBackdrop	=	require('./PhotoBackdrop');

//	This	version	pulls	a	specified	photo	from	the	camera	roll

//	var	PhotoBackdrop	=	require('./PhotoBackdrop/camera_roll_example');

var	WeatherProject	=	React.createClass({

		getInitialState()	{

				return	{

						forecast:	null

				};

		},

		componentDidMount:	function()	{

				AsyncStorage.getItem(STORAGE_KEY)

						.then((value)	=>	{

								if	(value	!==	null)	{

										this._getForecastForZip(value);

								}

						})

						.catch((error)	=>	console.log('AsyncStorage	error:	'	+	error.message))

						.done();

		},

		_getForecastForZip:	function(zip)	{

				//	Store	zip	code

				AsyncStorage.setItem(STORAGE_KEY,	zip)

						.then(()	=>	console.log('Saved	selection	to	disk:	'	+	zip))

						.catch((error)	=>	console.log('AsyncStorage	error:	'	+	error.message))

						.done();

				this._getForecast(

						`${API_STEM}q=${zip}&units=imperial&APPID=${WEATHER_API_KEY}`);

		},

		_getForecastForCoords:	function(lat,	lon)	{

				this._getForecast(

						`${API_STEM}lat=${lat}&lon=${lon}&units=imperial&APPID=${WEATHER_API_KEY}`);

		},

		_getForecast:	function(url,	cb)	{

				fetch(url)

						.then((response)	=>	response.json())

						.then((responseJSON)	=>	{

								console.log(responseJSON);

								this.setState({

										forecast:	{

												main:	responseJSON.weather[0].main,

												description:	responseJSON.weather[0].description,

												temp:	responseJSON.main.temp

										}

								});

						})

						.catch((error)	=>	{

								console.warn(error);

						});

		},

		_handleTextChange:	function(event)	{

				var	zip	=	event.nativeEvent.text;

				this._getForecastForZip(zip);

		},

		render:	function()	{

				var	content	=	null;

				if	(this.state.forecast	!==	null)	{

						content	=	(

								<View	style={styles.row}>

										<Forecast

												main={this.state.forecast.main}

												description={this.state.forecast.description}

												temp={this.state.forecast.temp}/>

								</View>);

				}

				return	(

								<PhotoBackdrop>

										<View	style={styles.overlay}>

											<View	style={styles.row}>

													<Text	style={textStyles.mainText}>

															Current	weather	for

													</Text>

													<View	style={styles.zipContainer}>

															<TextInput

																	style={[textStyles.mainText,	styles.zipCode]}

																	returnKeyType='go'

																	onSubmitEditing={this._handleTextChange}/>

													</View>

											</View>

											<View	style={styles.row}>

													<LocationButton	onGetCoords={this._getForecastForCoords}/>

											</View>

											{content}

									</View>

								</PhotoBackdrop>

);

		}

});

var	textStyles	=	require('./styles/typography.js');

var	styles	=	StyleSheet.create({

		overlay:	{

				paddingTop:	5,

				backgroundColor:	'#000000',

				opacity:	0.5,

		},

		row:	{

				width:	400,

				flex:	1,

				flexDirection:	'row',

				flexWrap:	'nowrap',

				alignItems:	'center',

				justifyContent:	'center',

				padding:	30

		},

		zipContainer:	{

				flex:	1,

				borderBottomColor:	'#DDDDDD',

				borderBottomWidth:	1,

				marginLeft:	5,

				marginTop:	3,

				width:	10

		},

		zipCode:	{

				width:	50,

				height:	textStyles.baseFontSize,

		}

});

module.exports	=	WeatherProject;

It	makes	use	of	shared	styles	located	in	styles/typography.js	(Example	6-11).

Example	6-11.	Shared	font	styles	are	located	in	SmarterWeather/styles/typography.js
var	React	=	require('react-native');

var	{	StyleSheet	}	=	React;

var	baseFontSize	=	18;

var	styles	=	StyleSheet.create({

		bigText:	{

				fontSize:	baseFontSize	+	8,

				color:	'#FFFFFF'

		},

		mainText:	{

				fontSize:	baseFontSize,

				color:	'#FFFFFF'

		}

});

//	For	use	elsewhere…

styles['baseFontSize']	=	baseFontSize;

module.exports	=	styles;

The	Forecast	Component
This	component	displays	the	forecast	information,	including	the	temperature.	It’s	used	by
the	<WeatherProject>	component	above.	The	code	for	the	<Forecast>	component	is
provided	in	Example	6-12.

Example	6-12.	Forecast	component	renders	information	about	the	forecast
var	React	=	require('react-native');

var	{	Text,	View,	StyleSheet	}	=	React;

var	styles	=	require('../styles/typography.js');

var	Forecast	=	React.createClass({

		render:	function()	{

				return	(

						<View	style={forecastStyles.forecast}>

								<Text	style={styles.bigText}>

										{this.props.main}

								</Text>

								<Text	style={styles.mainText}>

										Current	conditions:	{this.props.description}

								</Text>

								<Text	style={styles.bigText}>

										{this.props.temp}°F

								</Text>

						</View>

);

		}

});

var	forecastStyles	=	StyleSheet.create({

		forecast:	{

				alignItems:	'center'

		}

});

module.exports	=	Forecast;

The	Button	Component
The	<Button>	component	is	a	reusable	container-style	component.	It	provides	a	properly-
styled	<Text>	wrapped	by	a	<TouchableHighlight>.	The	main	component	file	is	provided
in	Example	6-13,	and	its	associated	styles	are	provided	in	Example	6-14.

Example	6-13.	Button	component	provides	an	appropriately	styled	<TouchableHighlight>
containing	a	<Text>
var	React	=	require('react-native');

var	{

		Text,

		View,

		TouchableHighlight

}	=	React;

var	styles	=	require('./style.js');

var	Button	=	React.createClass({

		propTypes:	{

				onPress:	React.PropTypes.func,

				label:	React.PropTypes.string

		},

		render:	function()	{

				return	(

						<TouchableHighlight	onPress={this.props.onPress}>

								<View	style={[styles.button,	this.props.style]}>

										<Text>

												{this.props.label}

										</Text>

								</View>

						</TouchableHighlight>

);

		}

});

module.exports	=	Button;

Example	6-14.	Styles	for	the	Button	component
var	React	=	require('react-native');

var	{	StyleSheet	}	=	React;

var	baseFontSize	=	16;

var	styles	=	StyleSheet.create({

		button:	{

				backgroundColor:	'#FFDDFF',

				width:	200,

				padding:	25,

				borderRadius:	5

		},

});

module.exports	=	styles;

The	LocationButton	Component
When	pressed,	the	<LocationButton>	fetches	the	user’s	location	and	invokes	a	callback.
The	component’s	main	JavaScript	file	is	provided	in	Example	6-15,	and	its	styles	are
provided	in	Example	6-16.

Example	6-15.	<LocationButton>	component
var	React	=	require('react-native');

var	styles	=	require('./style.js');

var	Button	=	require('./../Button');

var	LocationButton	=	React.createClass({

		propTypes:	{

				onGetCoords:	React.PropTypes.func.isRequired

		},

		_onPress:	function()	{

				navigator.geolocation.getCurrentPosition(

						(initialPosition)	=>	{

								this.props.onGetCoords(initialPosition.coords.latitude,

										initialPosition.coords.longitude);

						},

						(error)	=>	{alert(error.message)},

						{enableHighAccuracy:	true,	timeout:	20000,	maximumAge:	1000}

);

		},

		render:	function()	{

				return	(

						<Button	label="Use	CurrentLocation"

								style={styles.locationButton}

								onPress={this._onPress}/>

);

		}

});

module.exports	=	LocationButton;

Example	6-16.	Styles	for	<LocationButton>
var	React	=	require('react-native');

var	{	StyleSheet	}	=	React;

var	baseFontSize	=	16;

var	styles	=	StyleSheet.create({

		locationButton:	{

				backgroundColor:	'#FFDDFF',

				width:	200,

				padding:	25,

				borderRadius:	5

		},

});

module.exports	=	styles;

The	PhotoBackdrop	Component
There	are	three	versions	of	<PhotoBackdrop>	provided,	to	demonstrate	different	methods
of	selecting	an	image	for	the	background.	The	first,	provided	in	Example	6-17	and	listed
as	local_image.js	in	the	Github	repository,	uses	a	simple	require	call	to	load	a	standard
image	asset.	The	second,	as	seen	in	Example	6-18	and	provided	as
camera_roll_example.js	in	the	Github	repository,	selects	an	image	from	the	user’s
CameraRoll.	Finally,	the	third	version,	is	provided	in	Example	6-19	and	as	index.js	in	the
Github	repository.	This	version	uses	ImagePickerIOS	to	prompt	the	user	to	select	a
background	image.

Example	6-17.	local_image.js	is	the	original	version;	it	uses	a	simple	require	call
var	React	=	require('react-native');

var	{	Image	}	=	React;

var	styles	=	require('./style.js');

var	PhotoBackdrop	=	React.createClass({

		render()	{

				return	(

								<Image

										style={styles.backdrop}

										source={require('image!flowers')}

										resizeMode='cover'>

										{this.props.children}

								</Image>

);

		}

});

module.exports	=	PhotoBackdrop;

Example	6-18.	camera_roll_example.js	programmatically	selects	an	image	from	the
CameraRoll
var	React	=	require('react-native');

var	{	Image,	CameraRoll	}	=	React;

var	styles	=	require('./style.js');

var	PhotoBackdrop	=	React.createClass({

		getInitialState()	{

				return	{

						photoSource:	null

				}

		},

		componentDidMount()	{

				CameraRoll.getPhotos(

						{first:	5},

						(data)	=>	{

								this.setState({

										photoSource:	{uri:	data.edges[3].node.image.uri}

								})},

						(error)	=>	{

								console.warn(error);

						});

		},

		render()	{

				return	(

						<Image

								style={styles.backdrop}

								source={	this.state.photoSource	}

								resizeMode='cover'>

								{this.props.children}

						</Image>

);

		}

});

module.exports	=	PhotoBackdrop;

Example	6-19.	index.js,	the	final	version,	uses	ImagePickerIOS	and	asks	the	user	to	select
an	image
var	React	=	require('react-native');

var	{

		Image,

		ImagePickerIOS

}	=	React;

var	styles	=	require('./style.js');

var	Button	=	require('./../Button');

var	PhotoBackdrop	=	React.createClass({

		getInitialState()	{

				return	{

						photoSource:	require('image!flowers')

				}

		},

		_pickImage()	{

				ImagePickerIOS.openCameraDialog(

						{},

						(data)	=>	{

								this.setState({

										photoSource:	{uri:	data}

								});

						},

						()	=>	{

								console.log('User	canceled	the	action');

						});

		},

		render()	{

				return	(

						<Image

								style={styles.backdrop}

								source={	this.state.photoSource	}

								resizeMode='cover'>

								{this.props.children}

								<Button

										style={styles.button}

										label="Load	Image"

										onPress={this._pickImage}/>

						</Image>

);

		}

});

module.exports	=	PhotoBackdrop;

All	three	versions	share	the	same	stylesheet,	shown	below	in	Example	6-20.

Example	6-20.	All	three	versions	of	the	<PhotoBackdrop>	use	this	stylesheet
var	React	=	require('react-native');

var	{	StyleSheet	}	=	React;

var	styles	=	StyleSheet.create({

		backdrop:	{

				flex:	1,

				flexDirection:	'column'

		},

		button:	{

				flex:	1,

				margin:	100,

				alignItems:	'center'

		}

});

module.exports	=	styles;

Summary
In	this	chapter,	we	made	some	modifications	to	the	Weather	application.	We	looked	at	the
Geolocation,	Camera	Roll,	and	AsyncStorage	APIs,	and	learned	how	to	incorporate	these
modules	into	our	applications.	Because	support	for	these	APIs	varies	by	platform,	you’ll
want	to	isolate	components	that	make	use	of	them,	so	that	you	can	provide	platform-
agnostic	wrappers	around	them,	like	we	saw	in	Chapter	4.

Issues	of	compatibility	aside,	when	React	Native	ships	with	support	for	a	host	platform
API,	it	makes	usage	a	breeze.	But	what	happens	if	React	Native	does	not	yet	support	a
given	API,	such	as	in	the	case	of	video	playback,	and	you	want	to	use	a	library	or	module
that	isn’t	yet	available	in	JavaScript?	In	the	next	chapter,	we’ll	take	a	closer	look	at	this
scenario.

Chapter	7.	Modules

In	Chapter	6,	we	looked	at	some	of	the	APIs	that	React	Native	exposes	for	interacting	with
the	host	platform.	Things	like	the	camera	roll	and	geolocation	are	platform-specific,	but
React	Native	exposes	interfaces	for	them	for	our	convenience.	Because	support	for	those
APIs	is	built	into	React	Native,	they’re	quite	easy	to	use.

What	happens	when	we	want	to	use	an	API	that	isn’t	supported	by	React	Native?	In	this
chapter,	we’ll	look	at	how	to	install	modules	written	by	members	of	the	React	Native
community	using	npm.	We’ll	also	take	a	closer	look	at	one	such	module	for	iOS,	react-
native-video,	and	learn	how	the	RCTBridgeModule	can	allow	you	to	add	JavaScript
interfaces	to	existing	Objective-C	APIs.	We’ll	also	look	at	importing	pure	JavaScript
libraries	into	your	project,	and	how	to	manage	dependencies.

While	we’ll	be	looking	at	some	Objective-C	and	Java	code	this	chapter,	don’t	be	alarmed!
We’ll	be	taking	it	slowly.	A	full	introduction	to	mobile	development	for	iOS	and	Android
is	beyond	the	scope	of	this	book,	but	we’ll	walk	through	some	examples	together.

Installing	JavaScript	Libraries	with	npm
Before	we	discuss	how	native	modules	work,	first	we	should	cover	how	to	install	external
dependenies	in	general.	React	Native	uses	npm	to	manage	dependencies.	npm	is	the
package	manager	for	Node.js,	but	the	npm	registry	includes	packages	for	all	sorts	of
JavaScript	projects,	not	just	Node.	npm	uses	a	file	called	package.json	to	store	metadata
about	your	project,	including	the	list	of	dependencies.

Let’s	start	by	creating	a	fresh	project:

react-native	init	Depends

After	creating	a	new	project,	your	package.json	will	look	something	like	this:

{

		"name":	"Depends",

		"version":	"0.0.1",

		"private":	true,

		"scripts":	{

				"start":	"node_modules/react-native/packager/packager.sh"

		},

		"dependencies":	{

				"react-native":	"^0.12.0"

		}

}

Note	that	for	now,	the	only	top-level	dependency	in	your	project	is	react-native.	Let’s
add	another	dependency!

The	lodash	library	is	similar	to	Underscore.js;	it	provides	a	number	of	helpful	utility
functions,	like	a	shuffle	function	for	arrays.	We	install	it	with	the	--save	flag	to	indicate
that	it	should	be	added	to	our	list	of	dependencies:

npm	install	--save	lodash

Now	your	dependencies	hash	in	package.json	should	be	updated:

"dependencies":	{

		"lodash":	"^3.10.1",

		"react-native":	"^0.12.0"

}

If	you	want	to	use	lodash	in	your	React	Native	application,	you	can	now	require	it	by
name:

var	_	=	require('lodash');

Let’s	use	lodash	to	print	a	random	number:

var	_	=	require('lodash');

console.log('Random	number:	'	+	_.random(0,	5));

It	works!	But	what	about	other	modules?	Can	you	include	arbitrary	packages	by	using	npm
install?

The	answer	is	“yes,”	with	some	caveats.	Any	methods	that	touch	the	DOM,	for	instance,
will	fail.	Integrating	with	existing	packages	may	require	some	finagling,	because	so	many
packages	make	assumptions	about	the	environment	they’ll	be	running	in.	But	in	general,
you	can	take	advantage	of	arbitrary	JavaScript	packages,	and	use	npm	to	manage	your
dependencies	just	like	you	would	on	any	other	JavaScript	project.

Native	Modules	for	iOS
Now	that	we’ve	seen	what	it’s	like	to	add	an	outside	JavaScript	library,	let’s	add	a	React
Native	component	using	npm.	For	this	section,	we	are	going	to	be	using	react-native-
video,	a	React	Native	component	implemented	by	Brent	Vatne,	as	our	primary	example.
This	module	provides	us	with	a	<Video>	component,	which	can	be	used	(surprise!)	to	play
videos.	Then,	we’ll	peek	under	the	hood	and	see	how	native	modules	work	with
Objective-C	and	iOS.

Including	a	Third-Party	Component
The	react-native-video	component	is	listed	in	the	npm	registry.	We	can	add	it	to	our
project	with	npm	install:

npm	install	react-native-video	--save

If	we	were	working	with	traditional	web	development,	we	would	be	done!	react-native-
video	would	now	be	available	to	our	project.	Unfortunately,	that’s	not	the	case	here;	for
iOS	development,	we	need	to	tell	Xcode	about	this	library.

With	your	project	open	in	Xcode,	right-click	on	Libraries,	then	Add	Files	to
“Depends”…	(Figure	7-1).

Figure	7-1.	Right-click	on	your	project	and	select	Add	Files	to	“Depends”…

Then	add	the	RCTVideo.xcodeproj	file	to	your	project	(Figure	7-2).

https://www.npmjs.com/package/react-native-video

Figure	7-2.	Select	RCTVideo.xcodeproj	from	the	list	of	files;	it	should	be	located	under	node_modules/react-native-video

You’ll	also	have	to	add	the	video	framework	to	your	project’s	build	process.	Under	Build
Phases,	go	to	the	Link	Binary	With	Libraries	submenu,	and	click	the	“+”	button.	Then	add
libRCTVideo.a	to	your	project	(Figure	7-3).

Figure	7-3.	Add	the	libRCTVideo.a	file	(you	can	use	the	search	bar	to	help	you	locate	the	correct	file)

With	that,	you’re	done	importing	the	RCTVideo	module	into	your	project!	We	also	need	to
import	our	mp4	video	file	into	our	Xcode	project,	so	that	it	is	available	as	a	resource.
Right-click	on	your	project	and	select	Add	Files	to	Depends	again,	as	shown	in	Figure	7-4.

Any	mp4	video	file	ought	to	work;	I	used	a	video	of	a	past	project,	as	I	had	it	on	hand.
You	can	download	it	from	GitHub.

Figure	7-4.	Select	the	video	file	you	want	to	use;	here,	we’re	using	PianoStairs.mp4

Afterward,	you	should	see	the	video	file	in	your	project	(Figure	7-5).

http://bit.ly/1MH8JwT

Figure	7-5.	After	the	video	file	has	been	successfully	added	to	your	project,	you	should	see	it	in	Xcode

Using	the	Video	Component
OK,	now	that	you’ve	imported	it	into	Xcode,	we	can	require	the	Video	component	from
our	JavaScript	code:

var	Video	=	require('react-native-video');

Then	use	the	component,	just	as	you	normally	would.	Here	I’ve	set	a	few	of	the	optional
props:

<Video	source={{uri:	"PianoStairs"}}	//	Can	be	a	URL	or	a	local	file.

							rate={1.0}																			//	0	is	paused,	1	is	normal.

							volume={1.0}																	//	0	is	muted,	1	is	normal.

							muted={false}																//	Mutes	the	audio	entirely.

							paused={false}															//	Pauses	playback	entirely.

							resizeMode="cover"											//	Fill	the	whole	screen	at	aspect	ratio.

							repeat={true}																//	Repeat	forever.

							style={styles.backgroundVideo}	/>

Ta-da!	We	have	a	working	video	component!

Though	the	process	of	using	third-party	modules	with	React	Native	is	somewhat	more
involved	than	a	simple	npm	install,	it’s	not	too	bad.	The	most	confusing	part,	potentially,
is	including	libraries	properly	into	your	Xcode	project	and	dealing	with	the	Xcode	GUI.
For	modules	like	react-native-video,	which	was	developed	specifically	for	React
Native	and	provides	detailed	instructions	on	this	procedure	in	the	README,	this	is
mostly	a	nonissue.	Don’t	let	the	interactions	with	Xcode	deter	you	from	incorporating
outside	modules	into	your	code!

Many	such	components	are	listed	in	the	npm	registry,	and	often	use	the	prefix	react-
native-.	Take	a	look	around	and	see	what	the	community	has	built!

Anatomy	of	an	Objective-C	Native	Module
Now	that	we’re	using	the	react-native-video	module,	let’s	look	at	how	modules	like
these	work	under	the	hood.

The	react-native-video	component	is	what	React	refers	to	as	a	native	module.	The
React	Native	documentation	defines	a	native	module	as	“an	Objective-C	class	that
implements	the	RCTBridgeModule	protocol.”	(RCT	is	an	abbreviation	for	ReaCT.)

Writing	Objective-C	code	is	not	part	of	the	standard	development	process	with	React
Native,	so	don’t	worry	—	this	is	not	necessary	stuff!	But	having	basic	reading	knowledge
of	what’s	going	on	will	be	helpful,	even	if	you	don’t	plan	on	implementing	your	own
native	modules	(yet).

If	you	have	never	worked	with	Objective-C	before,	much	of	the	syntax	you’ll	encounter
may	seem	confusing.	That’s	OK!	We’ll	take	things	slowly.	Let’s	start	by	building	a	basic
“Hello,	World”	module.

Objective-C	classes	usually	have	a	header	file	that	ends	in	.h,	which	contains	the	interface
for	a	class.	The	actual	implementation	goes	in	a	.m	file.	Let’s	start	by	writing	our
HelloWorld.h	file,	shown	in	Example	7-1.

Example	7-1.	Depends/iOS/HelloWorld.h
#import	"RCTBridgeModule.h"

@interface	HelloWorld	:	NSObject	<RCTBridgeModule>

@end

What	does	this	file	do?	On	the	first	line,	we	import	the	RCTBridgeModule	header.	(Note
that	the	#	symbol	does	not	denote	a	comment,	but	rather	an	import	statement.)	Then,	on
the	next	line,	we	declare	that	the	HelloWorld	class	subclasses	NSObject	and	implements
the	RCTBridgeModule	interface,	and	end	the	interface	declaration	with	@end.

Due	to	historical	reasons,	many	basic	types	in	Objective-C	are	prefixed	with	NS
(NSString,	NSObject,	etc.).

Now	let’s	move	on	to	the	implemenation	(Example	7-2).

Example	7-2.	Depends/iOS/HelloWorld.m
#import	"HelloWorld.h"

#import	"RCTLog.h"

@implementation	HelloWorld

RCT_EXPORT_MODULE();

RCT_EXPORT_METHOD(greeting:(NSString	*)name)

{

		RCTLogInfo(@"Saluton,	%@",	name);

}

@end

In	a	.m	file,	you’ll	want	to	import	the	corresponding	.h	file,	as	we	do	here	on	the	first	line.
I’ve	also	imported	RCTLog.h,	so	that	we	can	log	things	to	the	console	using	RCTLogInfo.

http://bit.ly/1PVBCcZ

When	importing	other	classes	in	Objective-C,	you’ll	almost	always	want	to	import	the
header	file,	not	the	.m	file.

The	@implementation	and	@end	lines	indicate	that	the	contents	between	them	are	the
implementation	of	the	HelloWorld	class.

The	remaining	lines	do	the	work	of	making	this	a	React	Native	module.	With
RCT_EXPORT_MODULE(),	we	invoke	a	special	React	Native	macro	that	makes	this	class
accessible	to	the	React	Native	bridge.	Similarly,	our	method	definition	for	greeting:name
is	prefixed	with	a	macro,	RCT_EXPORT_METHOD,	which	exports	the	method	and	thus	will
expose	it	to	our	JavaScript	code.

Note	that	Objective-C	methods	are	named	with	a	somewhat	odd	syntax.	Each	parameter’s
name	is	included	in	the	method	name.	It’s	React	Native	convention	that	the	JavaScript
function	name	is	the	Objective-C	name,	up	until	the	first	colon,	so	greeting:name
becomes	greeting	in	JavaScript.	You	may	use	the	macro	RCT_REMAP_METHOD	to	remap	this
naming	if	you	like.

We	can	then	invoke	the	method	from	our	JavaScript	files	(Example	7-3).

Example	7-3.	Using	the	HelloWorld	module	from	our	JavaScript	code
var	HelloWorld	=	require('react-native').NativeModules.HelloWorld;

HelloWorld.greeting('Bonnie');

The	output	should	appear	in	the	console	(Figure	7-6),	both	in	Xcode	and	in	the	Chrome
developer	tools,	if	you	choose	to	enable	them.

Figure	7-6.	Console	output,	as	viewed	through	the	Xcode	interface

Note	that	the	syntax	for	importing	native	modules	is	a	bit	verbose.	A	common	approach	is
to	wrap	your	native	module	in	a	JavaScript	module	(Example	7-4).

Example	7-4.	Depends/HelloWorld.js:	a	JavaScript	wrapper	for	the	HelloWorld	native
module
var	HelloWorld	=	require('react-native').NativeModules.HelloWorld;

module.exports	=	HelloWorld;

Then,	requiring	it	becomes	much	more	straightforward:

var	HelloWorld	=	require('./HelloWorld');

The	HelloWorld.js	JavaScript	file	is	also	a	good	opportunity	to	add	any	JavaScript-side
functionality	to	your	module.

Phew.	Objective-C	can	feel	verbose,	and	we	have	to	keep	track	of	a	couple	of	different
files.	But	congratulations	—	you’ve	written	a	“Hello,	World”	for	your	Objective-C

module!

To	review,	an	Objective-C	module	must	do	the	following	in	order	to	be	available	in	React
Native:

Import	the	RCTBridgeModule	header

Declare	that	your	module	implements	the	RCTBridgeModule	interface

Call	the	RCT_EXPORT_MODULE()	macro

Have	at	least	one	method	that	is	exported	using	the	RCT_EXPORT_METHOD	macro

Native	modules	can	then	make	use	of	any	API	provided	by	the	iOS	SDK.	(Note	that	the
API	you	provide	to	React	Native	must	be	asynchronous.)	Apple	provides	extensive
documentation	for	the	iOS	SDK,	and	there	are	many	resources	available	from	third	parties
as	well.	Note	that	your	developer	licenses	will	come	in	handy	here	—	it’s	often	difficult	to
access	the	SDK	documentation	without	one.

Now	that	we’ve	written	our	own	basic	“Hello,	World,”	let’s	take	a	deeper	look	at	how
react-native-video	is	implemented.

Implementation	of	RCTVideo
Just	like	our	HelloWorld	module,	RCTVideo	is	a	native	module,	and	it	implements	the
RCTBridgeModule	protocol.	You	can	see	the	full	code	for	RCTVideo	in	the	react-native-
video	GitHub	repository.	We’ll	be	looking	at	version	0.6.0.

react-native-video	is	basically	a	wrapper	around	the	AVPlayer	API	provided	by	the	iOS
SDK.	Let’s	take	a	closer	look	at	how	it	works,	beginning	with	the	JavaScript	entry	points
Video.ios.js	and	Video.android.js.	In	this	version,	Video.android.js	is	still	unimplemented,
so	let’s	look	at	Video.ios.js.

We	can	see	that	it	provides	a	thin	wrapper	around	the	native	component,	RCTVideo,
performing	some	props	normalization	and	a	bit	of	extra	rendering	logic.	The	native
component	is	imported	at	the	end:

var	RCTVideo	=	requireNativeComponent('RCTVideo',	Video);

As	we	saw	in	our	HelloWorld	example,	that	means	that	somewhere	the	RCTVideo
component	must	be	exported	from	Objective-C.	Let’s	look	at	RCTVideo.h:

//	RCTVideo.h

#import	"RCTView.h"

@class	RCTEventDispatcher;

@interface	RCTVideo	:	UIView

-	(instancetype)initWithEventDispatcher:

(RCTEventDispatcher	*)eventDispatcher	NS_DESIGNATED_INITIALIZER;

@end

This	time,	instead	of	subclassing	NSObject,	RCTVideo	subclasses	UIView.	That	makes
sense,	because	it’s	rendering	a	view	component.

If	we	look	at	the	implementation	file,	RCTVideo.m,	there’s	a	lot	going	on.	At	the	top	are
instance	variables,	keeping	track	of	things	like	volume,	playback	rate,	and	the	AVPlayer
itself.

There’s	one	interesting	method,	methodQueue,	which	we	should	look	at:

-	(dispatch_queue_t)methodQueue

{

		return	dispatch_get_main_queue();

}

This	tells	it	to	use	the	iOS	main	queue,	necessary	because	the	module	uses	main-thread-
only	iOS	APIs.

There	are	also	various	methods	for	things	like	calculating	the	duration	of	the	video,
loading	in	the	video	and	setting	it	as	the	source,	and	more.	Feel	free	to	step	through	these
methods	and	figure	out	what	role	they	play.

https://github.com/brentvatne/react-native-video
http://bit.ly/1MDYGsr
http://bit.ly/1Mp0k3e
http://bit.ly/1HaVveX

The	other	piece	of	the	puzzle	is	the	RCTVideoManager.	To	create	a	native	UI	component,
as	opposed	to	just	a	module,	we	also	need	a	view	manager.	As	the	name	implies,	while	the
view	actually	handles	rendering	logic	and	similar	tasks,	the	view	manager	deals	with	other
stuff	(event	handling,	property	exports,	etc.).	At	a	minimum,	the	view	manager	class	needs
to:

Subclass	RCTViewManager

Use	the	RCT_EXPORT_MODULE()	macro

Implement	the	-(UIView	*)view	method

The	view	method	should	return	a	UIView	instance.	In	this	case,	we	can	see	that	it
instantiates	and	returns	a	RCTVideo:

-	(UIView	*)view

{

		return	[[RCTVideo	alloc]	initWithEventDispatcher:self.bridge.eventDispatcher];

}

The	RCTVideoManager	also	exports	a	number	of	properties	and	constants:

RCT_EXPORT_VIEW_PROPERTY(src,	NSDictionary);

RCT_EXPORT_VIEW_PROPERTY(resizeMode,	NSString);

RCT_EXPORT_VIEW_PROPERTY(repeat,	BOOL);

RCT_EXPORT_VIEW_PROPERTY(paused,	BOOL);

RCT_EXPORT_VIEW_PROPERTY(muted,	BOOL);

RCT_EXPORT_VIEW_PROPERTY(volume,	float);

RCT_EXPORT_VIEW_PROPERTY(rate,	float);

RCT_EXPORT_VIEW_PROPERTY(seek,	float);

-	(NSDictionary	*)constantsToExport

{

		return	@{

				@"ScaleNone":	AVLayerVideoGravityResizeAspect,

				@"ScaleToFill":	AVLayerVideoGravityResize,

				@"ScaleAspectFit":	AVLayerVideoGravityResizeAspect,

				@"ScaleAspectFill":	AVLayerVideoGravityResizeAspectFill

		};

Together,	RCTVideo	and	RCTVideoManager	comprise	the	RCTVideo	native	UI	component,
which	we	can	use	freely	from	within	our	application.	As	you	can	see,	writing	native
modules	that	make	use	of	the	iOS	SDK	is	a	nontrivial	endeavor,	though	not	an
insurmountable	one.	This	is	definitely	one	area	where	previous	iOS	development
experience	will	serve	you	well.	A	full	explanation	of	iOS	development	is	certainly	beyond
the	scale	of	this	book,	but	by	looking	at	others’	native	modules,	even	if	you	don’t	have
much	Objective-C	experience,	you	should	be	able	to	start	experimenting	with	your	own
attempts	at	native	module	development.

Native	Modules	for	Android
Native	modules	for	Android	behave	similarly	to	native	modules	for	iOS.	You	can	find
more	information	about	Android	native	modules	in	the	docs.

For	this	section,	we’ll	work	in	the	AndroidDepends/	project	directory.	Go	ahead	and	make
a	new	project:

react-native	init	AndroidDepends

http://bit.ly/1kQ3STm

Installing	a	Third-Party	Component
For	this	section,	we’ll	install	the	react-native-linear-gradient	package,	which
provides	us	with	a	<LinearGradient>	component.	Because	creating	gradients	is	a
relatively	graphics-heavy	task,	it	makes	sense	to	utilize	native	platform	APIs	for	this
component.	So,	<LinearGradient>	provides	a	unified	React	Native	component,	which
uses	the	android.graphics	package	and	CAGradientLayer	APIs	under	the	hood	for
Android	and	iOS,	respectively.	You	can	find	the	project	on	GitHub.

Like	on	iOS,	installing	native	modules	for	Android	requires	us	to	touch	the	Android-
specific	project	code.	Generally	speaking,	to	include	a	third-party	Android	native	module,
you’ll	need	to	do	three	things:

1.	 Update	your	android/settings.gradle	so	that	the	module	is	included	in	your	Android
build.

2.	 List	the	module	as	a	dependency	in	android/app/build.gradle.

3.	 Import	the	package	in	MainActivity.java	and	include	it	as	a	package	available	to
React	Native.

Let’s	go	through	these	one	by	one.	First,	we	update	settings.gradle	to	include	the	react-
native-linear-gradient	directory.	The	settings.gradle	file	should	look	like	Example	7-5.

Example	7-5.	AndroidDepends/android/settings.gradle
rootProject.name	=	'AndroidDepends'

include	':app',	':react-native-linear-gradient'

project(':react-native-linear-gradient').projectDir	=

		new	File(rootProject.projectDir,

				'../node_modules/react-native-linear-gradient/android')

Gradle	is	a	build	system	for	Android.	When	we	use	npm	install	to	install	the	react-
native-linear-gradient	package,	the	relevant	Android-specific	files	get	downloaded
into	our	node_modules/	folder.	Updating	settings.gradle	includes	that	folder	in	our	build.

Next,	we	need	to	list	the	react-native-linear-gradient	module	as	a	dependency	in	our
build.gradle	file	(Example	7-6).	You	can	see	that	this	file	includes	a	number	of	build
settings,	such	as	the	target	Android	SDK	version,	as	well	as	application	dependencies,
such	as	React	Native.	We	need	to	add	react-native-linear-gradient	to	the	list	of
dependencies	at	the	bottom	of	the	file.

Example	7-6.	AndroidDepends/android/app/build.gradle
apply	plugin:	'com.android.application'

android	{

				compileSdkVersion	23

				buildToolsVersion	"23.0.1"

				defaultConfig	{

								applicationId	"com.androiddepends"

								minSdkVersion	16

								targetSdkVersion	22

								versionCode	1

https://github.com/brentvatne/react-native-linear-gradient

								versionName	"1.0"

								ndk	{

												abiFilters	"armeabi-v7a",	"x86"

								}

				}

				buildTypes	{

								release	{

												minifyEnabled	false

												proguardFiles	getDefaultProguardFile('proguard-android.txt'),

												'proguard-rules.pro'

								}

				}

}

dependencies	{

				compile	fileTree(dir:	'libs',	include:	['*.jar'])

				compile	'com.android.support:appcompat-v7:23.0.1'

				compile	'com.facebook.react:react-native:0.12.+'

				compile	project(':react-native-linear-gradient')

}

Finally,	we	need	to	update	our	MainActivity.java.	There	are	two	steps	here:	importing	the
LinearGradientPackage,	and	then	adding	it	to	our	ReactInstanceManager.

You	can	add	the	following	import	statement	anywhere	at	the	top	of	the	file,	as	long	as	it’s
before	the	class	declaration:

import	com.BV.LinearGradient.LinearGradientPackage;

Then,	add	the	package	to	your	ReactInstanceManager,	by	adding	another	addPackage()
call	after	the	existing	one:

mReactInstanceManager	=	ReactInstanceManager.builder()

								.setApplication(getApplication())

								.setBundleAssetName("index.android.bundle")

								.setJSMainModuleName("index.android")

								.addPackage(new	MainReactPackage())

								.addPackage(new	LinearGradientPackage())	//	Add	this	line!

								.setUseDeveloperSupport(BuildConfig.DEBUG)

								.setInitialLifecycleState(LifecycleState.RESUMED)

								.build();

OK!	After	you	do	that,	we	can	import	the	package	from	our	JavaScript	code	like	so:

var	LinearGradient	=	require('react-native-linear-gradient');

Then	we	can	use	the	component	from	React	Native:

<LinearGradient	colors={['#FFFFFF',	'#00A8A8']}	style={styles.container}>

		<Text	style={styles.welcome}>

				A	Lovely	Gradient

		</Text>

</LinearGradient>

Let’s	use	this	to	make	a	new	<Gradient>	component,	to	replace	the	default	application
screen	(Example	7-7).

Example	7-7.	AndroidDepends/gradient.js
var	React	=	require('react-native');

var	{

		StyleSheet,

		Text

}	=	React;

var	LinearGradient	=	require('react-native-linear-gradient');

var	Gradient	=	React.createClass({

		render:	function()	{

				return	(

								<LinearGradient	colors={['#FFFFFF',	'#00A8A8']}	style={styles.container}>

										<Text	style={styles.welcome}>

												A	Lovely	Gradient

										</Text>

								</LinearGradient>

);

		}

});

var	styles	=	StyleSheet.create({

		container:	{

				flex:	1,

				justifyContent:	'center',

				alignItems:	'center'

		},

		welcome:	{

				fontSize:	20,

				textAlign:	'center',

				margin:	10,

				height:	50,

				padding:	20

		}

});

module.exports	=	Gradient;

And	that	should	be	all	we	need	to	make	use	of	the	<LinearGradient>	component.	Change
your	index.android.js	file	to	render	the	<Gradient>	component.	It	should	render	a	gradient
with	some	text,	as	shown	in	Figure	7-7.

Figure	7-7.	The	<Gradient>	component

Cool!	Now	that	we’ve	covered	how	to	include	a	third-party	native	module	for	Android,
we’ll	look	at	how	native	modules	in	general	work	by	building	another	“Hello,	World”
module,	but	this	time	in	Java	instead	of	Objective-C.	After	that,	we	can	take	a	closer	look
at	how	react-native-linear-gradient	works.

Anatomy	of	a	Java	Native	Module
In	order	to	better	understand	how	Java	native	modules	work,	we’ll	write	our	own.	Just	like
with	Objective-C,	we’ll	start	with	a	simpe	“Hello,	World”	module.

We’ll	begin	by	adding	a	HelloWorld.java	file	(Example	7-8).	Remember	that	Android
projects	have	a	pretty	deep	nesting	structure.	Let’s	make	HelloWorld.java	a	sibling	to	our
MainActivity.java	file.

Example	7-8.
AndroidDepends/android/app/src/main/java/com/androiddepends/HelloWorld.java
package	com.androiddepends;

import	com.facebook.react.bridge.NativeModule;

import	com.facebook.react.bridge.ReactApplicationContext;

import	com.facebook.react.bridge.ReactContext;

import	com.facebook.react.bridge.ReactContextBaseJavaModule;

import	com.facebook.react.bridge.ReactMethod;

import	android.util.Log;

public	class	HelloWorld	extends	ReactContextBaseJavaModule	{

		public	HelloWorld(ReactApplicationContext	reactContext)	{

				super(reactContext);

		}

		@Override

		public	String	getName()	{

				return	"HelloWorld";

		}

		@ReactMethod

		public	void	greeting(String	name)	{

				Log.i("HelloWorld",	"Hello,	"	+	name);

		}

}

There’s	quite	a	bit	of	boilerplate	here!	Let’s	take	this	piece	by	piece.

First,	we	begin	with	a	package	statement:

package	com.androiddepends;

All	source	files	in	the	com.androiddepends	package	must	begin	with	this	line.	We’re
using	the	same	package	as	our	MainActivity.java	file	for	convenience’s	sake.

Next,	we	import	a	bunch	of	React	Native-specific	files,	as	well	as	android.util.Log.	Any
module	you	write	should	import	the	same	React	Native	files.

Then,	we	declare	our	HelloWorld	class.	It’s	public,	meaning	that	external	files	can	use	it;
and	it	extends	the	ReactContextBaseJavaModule,	meaning	that	it	inherits	methods	from
ReactContextBaseJavaModule:

public	class	HelloWorld	extends	ReactContextBaseJavaModule	{	...	}

There	are	three	methods	implemented	here:	HelloWorld,	getName,	and	greeting.

In	Java,	a	method	with	the	same	name	as	the	class	is	called	the	constructor.	The

HelloWorld	method	is	thus	a	bit	of	boilerplate;	we	invoke	the
ReactContextBaseJavaModule	constructor	with	a	call	to	super(reactContext)	and	don’t
do	anything	else.

getName	determines	which	name	we’ll	use	later	on	to	access	this	module	from	our
JavaScript	code,	so	make	sure	it’s	correct!	In	this	case,	we	name	it	“HelloWorld.”	Note
that	we	add	an	@Override	decorator	here.	You’ll	want	to	implement	getName	for	any	other
modules	you	write.

Finally,	greeting	is	our	own	method,	which	we	want	to	be	available	in	our	JavaScript
code.	We	add	a	@ReactMethod	decorator	so	that	React	Native	knows	this	method	should
be	exposed.	To	log	something	when	greeting	is	called,	we	call	Log.i	like	so:

Log.i("HelloWorld",	"Hello,	"	+	name);

The	Log	object	in	Android	provides	different	levels	of	logging.	The	three	most	commonly
used	are	INFO,	WARN,	and	ERROR,	and	are	invoked	with	Log.i,	Log.w,	and	Log.e,
respectively.	Each	of	these	methods	takes	in	two	parameters:	the	“tag”	for	your	log,	and
the	message.	It’s	standard	practice	to	use	the	class	name	for	the	tag.	View	the	Android
documentation	for	more	details.

We	also	need	to	create	a	Package	file	to	wrap	this	module	(Example	7-9),	so	that	we	can
include	it	in	our	build.	It	should	also	be	a	sibling	to	HelloWorld.java.

Example	7-9.
AndroidDepends/android/app/src/main/java/com/androiddepends/HelloWorldPackage.java
package	com.androiddepends;

import	com.facebook.react.ReactPackage;

import	com.facebook.react.bridge.JavaScriptModule;

import	com.facebook.react.bridge.NativeModule;

import	com.facebook.react.bridge.ReactApplicationContext;

import	com.facebook.react.uimanager.ViewManager;

import	java.util.ArrayList;

import	java.util.Collections;

import	java.util.List;

public	class	HelloWorldPackage	implements	ReactPackage	{

		@Override

		public	List<NativeModule>

		createNativeModules(ReactApplicationContext	reactContext)	{

				List<NativeModule>	modules	=	new	ArrayList<>();

				modules.add(new	HelloWorld(reactContext));

				return	modules;

		}

		public	List<Class<?	extends	JavaScriptModule>>	createJSModules()	{

				return	Collections.emptyList();

		}

		public	List<ViewManager>	createViewManagers(ReactApplicationContext	reactContext)	{

				return	Collections.emptyList();

		}

}

This	file	is	mostly	boilerplate.	We	don’t	need	to	import	HelloWorld	because	it’s	part	of	the

http://bit.ly/1MxTUiq

same	package	(com.androiddepends)	as	this	file.	There	are	three	methods	here	worth
noting:	createNativeModules,	createJSModules,	and	createViewManagers.	React
Native	uses	these	methods	to	determine	what	modules	it	should	export.

In	this	case,	we	only	wrote	a	so-called	native	module,	so	the	latter	two	methods	return	an
empty	list,	while	createNativeModules	returns	a	list	containing	an	instance	of
HelloWorld.	By	contrast,	if	you	look	at	LinearGradientPackage.java	(source),	you’ll	see
that	it	returns	an	instance	of	LinearGradientManager	in	the	call	to	createViewManagers
and	empty	lists	for	the	other	two	methods.

Finally,	we	need	to	add	the	package	in	MainActivity.java,	just	like	we	did	with
LinearGradient.	Import	the	package	file:

import	com.androiddepends.HelloWorldPackage;

Then	add	HelloWorldPackage	to	your	ReactInstanceManager:

mReactInstanceManager	=	ReactInstanceManager.builder()

								.setApplication(getApplication())

								.setBundleAssetName("index.android.bundle")

								.setJSMainModuleName("index.android")

								.addPackage(new	MainReactPackage())

								.addPackage(new	LinearGradientPackage())

								.addPackage(new	HelloWorldPackage())	//	<--	Add	this	line

								.setUseDeveloperSupport(BuildConfig.DEBUG)

								.setInitialLifecycleState(LifecycleState.RESUMED)

								.build();

Just	like	with	Objective-C	modules,	our	Java	module	will	be	available	via	the
React.NativeModules	object.	We	can	now	invoke	our	greeting()	method	from
anywhere	within	our	app	like	so:

React.NativeModules.HelloWorld.greeting("Bonnie");

Let’s	filter	the	logs	and	look	for	our	message.	Run	the	following	from	your	project’s	root:

adb	logcat	|	grep	HelloWorld

We’re	searching	for	instances	of	“HelloWorld”	because	that’s	the	tag	we	used	in	our	call	to
Log.i.	Figure	7-8	shows	the	output	you	should	see	in	your	shell.

Figure	7-8.	Output	from	logcat

Now	that	we’ve	written	our	“Hello,	World”	example	from	Java,	let’s	look	at	the
implementation	of	a	more	complex	example:	react-native-linear-gradient.

http://bit.ly/215jRxn

Android	Implementation	of	LinearGradient
The	Android	implementation	of	<LinearGradient>	is	located	in	the	android/	directory.	It
consists	primarily	of	three	files:

LinearGradientPackage.java

LinearGradientView.java

LinearGradientManager.java

LinearGradientPackage.java,	shown	in	Example	7-10,	looks	extremely	similar	to	our
HelloWorldPackage.java	file.

Example	7-10.	LinearGradientPackage.java
package	com.BV.LinearGradient;

import	com.facebook.react.ReactPackage;

import	com.facebook.react.bridge.JavaScriptModule;

import	com.facebook.react.bridge.NativeModule;

import	com.facebook.react.bridge.ReactApplicationContext;

import	com.facebook.react.uimanager.ViewManager;

import	java.util.ArrayList;

import	java.util.Collections;

import	java.util.List;

public	class	LinearGradientPackage	implements	ReactPackage	{

		@Override

		public	List<NativeModule>

		createNativeModules(ReactApplicationContext	reactContext)	{

				return	Collections.emptyList();

		}

		public	List<Class<?	extends	JavaScriptModule>>	createJSModules()	{

				return	Collections.emptyList();

		}

		public	List<ViewManager>	createViewManagers(ReactApplicationContext	reactContext)	{

				List<ViewManager>	modules	=	new	ArrayList<>();

				modules.add(new	LinearGradientManager());

				return	modules;

		}

}

The	main	difference	is	that	LinearGradientPackage	returns	LinearGradientManager
from	createViewManagers,	while	our	HelloWorldPackage	returned	HelloWorld	from
createNativeModules.	What’s	the	difference?

For	Android,	any	natively	rendering	views	are	created	and	controlled	by	a	ViewManager
(or,	more	specifically,	a	class	that	extends	ViewManager).	Because	LinearGradient	is	a	UI
component,	we	need	to	return	a	ViewManager.	The	React	Native	documentation	on	native
Android	UI	components	has	some	more	information	on	the	difference	between	exposing	a
native	module	(i.e.,	nonrendering	Java	code)	and	a	UI	component.

Let’s	look	at	LinearGradientManager	next.	It’s	a	relatively	long	file;	you	can	view	the
full	source	in	the	react-native-linear-gradient	GitHub	repo.	We’ll	look	at	an	abbreviated
version	here:

https://github.com/brentvatne/react-native-linear-gradient/tree/master/android
https://facebook.github.io/react-native/docs/native-components-android.html
https://github.com/brentvatne/react-native-linear-gradient

public	class	LinearGradientManager	extends	SimpleViewManager<FrameLayout>	{

		...

		public	static	final	String	REACT_CLASS	=	"BVLinearGradient";

		public	static	final	String	PROP_COLORS	=	"colors";

		public	LinearGradientView	mGradientView;

		...

		@Override

		public	String	getName()	{

						return	REACT_CLASS;

		}

		...

		@ReactProp(name=PROP_COLORS)

		public	void	updateColors(FrameLayout	frame,	ReadableArray	colors){

						if(mGradientView	!=	null)	{

										mGradientView.updateColors(colors);

						}

		}

		...

		@Override

		public	void	updateView(FrameLayout	frame,	CatalystStylesDiffMap	props)	{

						BaseViewPropertyApplicator.applyCommonViewProperties(frame,	props);

						frame.removeAllViews();

						mGradientView	=	new	LinearGradientView(frame.getContext(),	props);

						mGradientView.setId(View.generateViewId());

						frame.addView(mGradientView);

		}

}

There	are	a	few	things	we	should	pay	attention	to	here.

The	first	is	the	implementation	of	getName.	Note	that,	just	as	in	our	HelloWorld	example,
we	need	to	implement	getName	in	order	to	be	able	to	refer	to	this	component	from	our
JavaScript	code!

The	next	is	the	updateColors	method,	and	the	use	of	the	@ReactProp	decorator.	Here	we
declare	that	the	<LinearGradient>	component	will	take	a	prop	named	colors	(as	that’s
the	value	of	PROP_COLORS),	and	updateColors	will	be	invoked	when	that	prop	changes.	In
updateColors,	we	check	to	see	that	the	underlying	view	exists;	if	it	does,	we	pass	the
colors	along	so	that	it	can	update.

Finally,	in	updateView,	LinearGradientManager	handles	actually	updating	the	view,	by
removing	any	existing	views	from	the	frame	and	then	adding	a	new	instance	of
LinearGradientView	to	the	frame.

In	order	to	effectively	write	native	Android	components,	you’ll	want	an	understanding	of
how	Android	handles	Views	in	general,	but	looking	at	other	React	Native	components	is	a
good	place	to	start.

Cross-Platform	Native	Modules
Is	it	possible	to	write	a	cross-platform	native	module?

The	answer	is	“yes”;	you	just	have	to	implement	your	module	separately	for	each
platform,	and	provide	a	unified	JavaScript	interface.	This	can	be	a	good	way	to	handle
platform-specific	optimizations	while	still	maximizing	code	reuse.

The	<LinearGradient>	component	is	a	good	example	of	this.	Our	AndroidDepends
project	is	actually	cross-platform,	because	<LinearGradient>	renders	cross-platform
(albeit	with	a	few	style	differences);	see	Figure	7-9.

Figure	7-9.	The	<Gradient>	component,	on	Android	(left)	and	iOS	(right)

Creating	a	cross-platform	native	module	is	pretty	simple	and	doesn’t	require	much	extra
configuration.	Once	you	have	implemented	iOS	and	Android	versions	separately,	just
create	a	folder	containing	index.ios.js	and	index.android.js	files.	Each	version	should
require	the	appropriate	native	module.	Then	you	can	require	that	folder,	and	React	Native
will	pick	up	the	platform-appropriate	version.

For	instance,	the	react-native-linear-gradient/	folder	(in	our	node_modules/	directory,	as
we	installed	it	via	npm)	contains	an	index.ios.js	and	an	index.android.js	file.	React	Native
will	pick	up	the	appropriate	file	for	us	—	we	just	need	to	require	the	react-native-linear-
gradient/	folder	like	so:

var	LinearGradient	=	require('react-native-linear-gradient');

As	it	currently	stands,	React	Native	won’t	enforce	a	consistent	API	between	the	iOS	and
Android	versions,	so	that	responsibility	falls	on	you.	If	you	want	the	iOS	and	Android

versions	to	have	slightly	different	APIs,	that’s	fine,	too!

Summary
So,	when	is	it	appropriate	to	use	native	Objective-C	or	Java	code?	When	is	it	a	good	idea
to	include	third-party	modules	and	libraries?	In	general,	there	are	three	main	use	cases	for
native	modules:	taking	advantage	of	existing	Objective-C	or	Java	code;	writing	high-
performance,	multithreaded	code	for	tasks	such	as	graphics	processing;	and	exposing	APIs
not	yet	included	in	React	Native.

For	any	existing	mobile	projects	built	in	Objective-C	or	Java,	writing	a	native	module	can
be	a	great	way	to	reuse	existing	code	in	React	Native	applications.	While	hybrid
applications	are	a	bit	beyond	the	scope	of	this	book,	they’re	definitely	a	feasible	approach,
and	you	can	use	native	modules	to	share	functionality	between	JavaScript,	Objective-C,
and	Java.

Similarly,	for	use	cases	where	performance	is	critical,	or	for	specialized	tasks,	it	often
makes	sense	to	work	in	the	native	langague	of	the	platform	you’re	developing	for.	In	these
cases,	it	often	makes	more	sense	to	do	the	heavy	lifting	in	Objective-C	or	Java,	and	then
pass	the	result	back	to	your	JavaScript	application.

Finally,	there	will	inevitably	be	platform	APIs	you’ll	want	to	use	that	aren’t	yet	supported
by	React	Native.	React	Native	is	under	active	development,	and	support	for	any	given
platform	will	almost	certainly	always	be	incomplete.	In	these	cases,	you	have	two	options.
One	is	to	turn	to	the	community,	and	hope	that	someone	else	has	already	solved	your
problem.	The	alternative	is	to	solve	the	issue	yourself,	and	hopefully	contribute	your
solution	back	to	the	community!	Being	able	to	write	your	own	native	modules	means	that
you	don’t	need	to	rely	on	React	Native	core	in	order	to	take	advantage	of	your	host
platform.

Even	if	you’ve	never	developed	for	iOS	or	Android	before,	if	you’re	planning	on
developing	with	React	Native,	it’s	a	good	idea	to	try	and	gain	a	reading	knowledge	of
Objective-C	and/or	Java.	Just	in	case	you	hit	a	wall	when	working	with	React	Native,
being	able	to	try	and	dig	your	way	around	it	is	a	really	invaluable	asset,	and	native
modules	are	actually	fairly	approachable.	Don’t	be	afraid	to	try!

The	React	Native	community,	as	well	as	the	broader	JavaScript	ecosystem,	will	be
valuable	assets	as	you	develop	your	own	React	Native	applications.	Build	on	the	work	of
others,	and	reach	out	if	you	need	help!

Chapter	8.	Debugging	and	Developer
Tools

As	you	develop	your	own	applications,	chances	are	that	something	will	go	wrong	along
the	way.	When	it’s	time	to	debug	your	applications,	we	happily	have	some	React	Native-
specific	tools	that	will	make	the	job	easier.	There	are	also	some	nasty	bugs	that	can	crop
up	at	the	intersection	of	React	Native	and	its	host	platform,	which	we’ll	take	a	look	at,	too.
In	this	chapter,	we’ll	dig	into	common	pitfalls	of	React	Native	development,	and	the	tools
you	can	use	to	tackle	them.	And	because	any	discussion	of	debugging	would	be
incomplete	without	reference	to	testing,	we’ll	also	cover	the	basics	of	getting	automated
testing	set	up	for	your	React	Native	code.

JavaScript	Debugging	Practices,	Translated
When	working	with	React	for	the	Web,	we	have	a	number	of	common	JavaScript-based
tools	and	techniques	to	help	us	debug	our	applications.	Most	of	these	are	also	available	for
React	Native,	though	occasionally	with	some	minor	adjustments.	React	Native	gives	us
access	to	the	console,	debugger,	and	React	developer	tools	that	we’re	accustomed	to	using,
so	debugging	JavaScript-based	issues	in	React	Native	should	feel	familiar.

Activating	the	Developer	Options
In	order	to	avail	yourself	of	these	tools,	you’ll	need	to	enable	Chrome	Developer	Tools	in
the	in-app	developer	menu	(Figure	8-1).	This	menu	can	be	accessed	by	pressing
Command+Control+Z	in	the	iOS	simulator,	pressing	the	hardware	button	on	Android,	or
by	shaking	your	device.	From	there,	you	can	select	Debug	in	Chrome	to	enable	the
Chrome	Developer	Tools.

Figure	8-1.	The	in-app	developer	menu,	as	viewed	from	Android	(left)	and	iOS	(right)

Debugging	with	console.log
One	of	the	most	basic,	and	common,	forms	of	debugging	is	the	“print	it	out	and	see	what’s
happening”	tactic.	For	many	web-based	developers,	being	able	to	add	console.log	to	our
code	is	an	almost	unconscious	part	of	our	workflow.

The	JavaScript	console	works	straight	out	of	the	box	with	React	Native;	you	don’t	need	to
do	any	special	configuration	in	order	to	use	your	print	statements.

When	using	Xcode,	you	will	see	your	console	statements	as	output	in	the	Xcode	console
(Figure	8-2).	Note	that	you	can	expand	how	much	room	is	allotted	to	the	console	by
tweaking	the	visible	Xcode	panes.

Figure	8-2.	Console	output,	as	viewed	in	Xcode

Similarly,	for	Android,	you	can	view	the	logs	for	your	device	by	running	logcat	from	your
project’s	root	(Figure	8-3	shows	the	output):

adb	logcat

Figure	8-3.	Console	output	appears	with	the	tag	of	“ReactNativeJS”	in	logcat

However,	these	views	are	rather	cluttered,	and	also	include	logging	related	to	platform-
specific	things.	We	can	hop	over	into	the	browser-based	developer	tools	instead.	Activate

the	developer	menu	and	select	Debug	in	Chrome,	and	then	open	your	console.	As	shown
in	Figure	8-4,	you	will	be	able	to	see	the	console	output	from	the	Chrome	developer	tools.

Figure	8-4.	Console	output,	as	viewed	in	Chrome

Note	that	you	need	to	open	the	console	before	you’ll	see	things	appear	here.

How	does	this	work?	When	you	load	your	React	Native	application	with	Chrome
debugging	enabled,	Google	Chrome	loads	your	React	Native	JavaScript	code	from	the
React	Native	Packager	using	a	standard	<script>	tag,	so	that	you	have	full	browser-based
debugging	control.	The	Packager	then	uses	WebSockets	to	communicate	commands
between	the	device	and	the	browser.

We	don’t	need	to	be	too	concerned	with	the	specifics;	we	just	need	to	know	how	to	take
advantage	of	these	tools!

Using	the	JavaScript	Debugger
You	can	also	use	the	JavaScript	debugger,	just	as	you	normally	would	for	web-based
React	development.	Open	up	the	developer	tools	in	Chrome,	switch	to	the	“source”	tab,
and	then	your	breakpoints	will	be	activated.	You	can	see	this	in	action	in	Figure	8-5.

Note	that,	similar	to	the	JavaScript	console,	if	you	don’t	already	have	the	developer	tools
pane	open,	the	debugger	may	not	be	activated	on	your	breakpoints.	Likewise,	if	you	don’t
have	Debug	in	Chrome	enabled,	the	debugger	will	not	be	activated.

Figure	8-5.	Using	the	debugger

When	using	the	debugger,	you	have	access	to	the	usual	view	of	your	source	code	from
within	Chrome,	and	you	can	interact	with	the	current	JavaScript	context	via	the	in-browser
console	as	well.

Working	with	the	React	Developer	Tools
When	developing	with	React	for	the	Web,	the	React	Developer	Tools	are	quite	useful.
They	allow	you	to	inspect	the	component	hierarchy,	examine	the	props	and	state	of
components,	and	modify	the	state	from	your	browser.	The	React	Developer	Tools	are
available	as	a	Chrome	extension.

The	React	Developer	Tools	work	with	React	Native	as	well,	though	the	experience	is
somewhat	different.	After	opening	the	developer	tools,	you’ll	need	to	interact	briefly	with
your	application	in	order	for	the	bridge	to	attach	(a	simple	tap	or	click	on	the	screen
should	suffice);	see	Figures	8-6	and	8-7.

Figure	8-6.	The	view	before	the	developer	tools	are	attached	(you	need	to	tap	on	the	screen)

Figure	8-7.	Viewing	components	and	properties	using	the	React	Developer	Tools

There	are	some	limitations	to	these	tools	with	React	Native.	The	developer	tools	for
Native	are	a	work	in	progress,	so	not	all	features	are	fully	fleshed	out.	The	ability	to	edit
styles	from	the	inspector,	for	instance,	is	still	somewhat	fragile.

http://bit.ly/1O5DTlX

Another	thing	to	watch	out	for	is	the	lack	of	a	displayName	on	many	components.	With
React	for	the	Web,	you	can	usually	set	a	component’s	displayName	implicitly,	like	so:

import	React	from	'react';

var	ComponentName	=	React.createClass({

		...

});

export	default	ComponentName;

If	you	define	your	components	like	this,	then	you’ll	find	that	they’re	named	properly	when
you	inspect	them	with	the	React	Developer	Tools.	Because	this	doesn’t	work	with	React
Native,	you	should	set	the	displayName	explicitly	instead:

import	React	from	'react-native';

var	ComponentName	=	React.createClass({

		displayName:	'ComponentName'

		...

});

export	default	ComponentName;

Once	you’ve	done	so,	the	React	Developer	Tools	will	be	able	to	parse	your	component
hierarchy	with	well-labeled	components	as	usual.

React	Native	Debugging	Tools
In	addition	to	the	usual	JavaScript-based	web	debugging	tools,	there	are	also	some
features	specific	to	React	Native	that	are	relevant	to	debugging.

Using	Inspect	Element
While	you	can	use	the	React	developer	tools	via	the	browser,	you	may	find	that	the
“inspect	element”	functionality	leaves	something	to	be	desired.	There’s	also	an	in-app
“inspect	element”	that	you	may	find	helpful.	It	has	support	for	viewing	things	like	style,
and	gives	you	a	quick	way	to	dig	through	the	component	hierarchy.	In	Figure	8-8,	you	can
see	the	result	of	inspecting	a	button	component.

Figure	8-8.	Using	Inspect	Element	will	let	you	click	on	a	component	to	view	more	information

This	view	also	displays	some	basic	performance	metrics.

The	Red	Screen	of	Death
One	of	the	most	common	sights	you’ll	see	during	application	development	is	the	Red
Screen	of	Death.	Alarming	appearance	aside,	the	Red	Screen	of	Death	is	actually	a	boon:
it	takes	errors	and	parses	them	into	meaningful	messages.	As	such,	learning	to	parse	the
information	it	displays	is	critical	to	an	effective	developer	workflow.

For	example,	a	syntax	error	might	produce	the	output	shown	in	Figure	8-9,	indicating	the
file	and	line	number	where	the	error	occurred.

Figure	8-9.	Red	Screen	of	Death,	for	a	syntax	error

Other	common	errors	include	attempting	to	use	a	variable	without	importing	or	defining	it.
For	instance,	a	common	issue	is	failing	to	explicitly	import	the	<Text>	component,	like	so:

import	React	from	'react-native';

export	default	React.createClass({

		render()	{

				return	(

						<View>

								<Text>

										I	haven't	required	things	properly!

								</Text>

						</View>

);

		}

})

This	results	in	the	error	message	shown	in	Figure	8-10:

Figure	8-10.	Error	message	from	forgetting	to	import	Text

Attempting	to	use	an	undeclared	variable	results	in	another	error	message	(see	Figure	8-
11).

Figure	8-11.	Error	message	from	attempting	to	use	an	undeclared	variable

Of	particular	use	are	the	style-related	error	messages.	For	instance,	if	you	pass	in	a	bad
value	to	a	StyleSheet.create	call,	React	Native	will	helpfully	inform	you	which	values

would	have	been	appropriate	(see	Figure	8-12).

Figure	8-12.	Error	message	from	missetting	a	style	property

While	the	Red	Screen	of	Death	may	look	alarming,	it’s	really	there	to	help	you,	and	the
error	messages	it	presents	are	useful	information.	If	for	some	reason	you	need	to	dismiss
the	screen,	pressing	the	Escape	key	in	the	device	simulator	will	take	you	back	to	your
application.

Debugging	Beyond	JavaScript
As	you	write	mobile	applications	with	React	Native,	you	will	encounter	errors	not	only	in
your	React	code,	but	also	in	your	application	in	general.	If	you	are	new	to	mobile
development,	these	issues	can	be	frustrating.	Additionally,	sometimes	you’ll	see	cryptic
error	messages	and	issues	where	your	JavaScript	codebase	meets	the	host	platform;	the
combination	of	host	platform	code	and	React	Native	can	lead	to	confusing	symptoms.

Learning	to	debug	issues	outside	of	pure	JavaScript-based	problems	is	critical	to	a
productive	development	process	with	React	Native.	Happily,	many	of	these	issues	are
simpler	than	they	might	seem	at	first	glance,	and	we	have	plenty	of	tools	to	help	us	along
the	way.

Common	Development	Environment	Issues
React	Native	is	evolving	quickly,	which	means	that	managing	your	developer	environment
can	be	a	bit	annoying.

If	you	encounter	issues	with	the	Packager	starting,	or	with	building	or	running	your
application	using	npm	start	or	react-native	run-android,	it’s	possible	that	you	have	a
dependency	problem.

As	always,	if	you’re	using	brew	to	manage	your	dependencies,	it’s	a	good	idea	to	keep
brew	up	to	date:

brew	update

brew	upgrade

When	upgrading	React	Native,	it’s	a	good	idea	to	run	those	brew	commands,	and	then
upgrade	your	node	install	as	well:

brew	upgrade	node

Additionally,	you	can	run	brew	doctor	to	check	for	issues	with	your	installed	packages.

If	you’re	having	dependency	issues,	another	common	solution	is	just	to	clean	out	your
installed	npm	packages	and	reinstall	them:

rm	-rf	node_modules

npm	install

Common	Xcode	Problems
When	you	build	your	iOS	application,	if	your	application	has	any	errors,	they	will	appear
in	the	Issues	pane	in	Xcode	(Figure	8-13).	You	can	view	them	by	selecting	the	warning
icon.

Figure	8-13.	Viewing	the	issues	pane

Xcode	will	then	point	you	to	the	relevant	file	and	line	number,	and	highlight	the	issue	in
the	IDE.	Figure	8-14	shows	an	example	of	a	common	error.

Figure	8-14.	Interface	error

This	“No	visible	interface	for	RCTRootView”	issue	indicates	that	React	Native’s
Objective-C	classes	are	for	some	reason	not	visible	to	Xcode.	In	general,	if	you	encounter
“X	is	undefined”	error	messages	in	Xcode,	where	X	is	an	RCT-prefixed	class	or	otherwise
part	of	React	Native,	it’s	a	good	idea	to	check	on	the	packager,	and	to	make	sure	that	your
JavaScript	dependencies	are	in	order:

1.	 Quit	the	packager

2.	 Quit	Xcode

3.	 Run	npm	install	from	the	project	directory

4.	 Reopen	Xcode

Another	common	problem	deals	with	asset	sizes	(see	Figure	8-15).

Figure	8-15.	Warning	regarding	a	missized	image

Because	assets	should	be	sized	appropriately	for	the	device	they’re	intended	for
(especially	your	application’s	icon),	Xcode	will	throw	a	warning	if	you	include	an	asset	of
an	inappropriate	size.

Deciphering	Xcode’s	warnings	may	take	some	time	at	first,	especially	if	you	are
unfamiliar	with	Objective-C.	Some	of	the	most	confusing	issues	deal	with	the	integration
of	React	Native	and	your	Xcode	project,	but	doing	a	clean	install	of	React	Native	usually
clears	up	any	problems.

Common	Android	Problems
When	you	run	react-native	run-android,	some	error	messages	may	appear,	preventing
you	from	loading	your	application.

The	two	most	common	issues	are	typically	missing	Android	dependencies,	or	a	failure	to
boot	an	Android	Virtual	Device	(or	plug	in	an	eligible	device	via	USB).

If	you	receive	a	warning	about	a	missing	package,	run	android	and	check	to	see	if	that
package	is	listed	as	“installed.”	If	not,	install	it.	If	it	is	installed,	but	React	Native	can’t
find	it,	follow	the	steps	above	to	try	and	fix	any	issues	with	your	development
environment.	You	should	also	check	to	make	sure	that	your	ANDROID_HOME	environment
variable	is	properly	set	and	points	to	your	installation	of	the	Android	SDK.	For	example,
on	my	system:

$	echo	$ANDROID_HOME

/usr/local/opt/android-sdk

If	you	receive	a	warning	about	no	eligible	device	being	available	as	a	build	target,	check
your	device.	Did	you	attempt	to	launch	the	emulator?	If	not,	run	android	avd,	and	start	an
appropriate	emulator.	If	the	emulator	is	still	booting,	the	react-native	run-android
command	will	fail;	give	it	a	few	seconds	and	try	again.	If	you’re	using	a	physical	device,
make	sure	that	USB	debugging	is	enabled.

You	may	also	see	issues	after	you	create	a	signed	version	of	your	Android	app,	which
we’ll	cover	in	Chapter	11:

$./gradlew	installRelease…

INSTALL_PARSE_FAILED_INCONSISTENT_CERTIFICATES:

New	package	has	a	different	signature

This	can	be	solved	by	uninstalling	the	old	application	from	your	device	or	emulator,	and
reattempting	the	installation.	The	error	is	caused	by	attempting	to	install	an	application
with	a	different	signing	key	—	which	of	course	happens	after	you	generate	your	first
signed	APK.

The	React	Native	Packager
Because	React	Native	depends	on	the	packager	in	order	to	rebuild	your	code,	issues	with
the	packager	will	manifest	in	problems	fairly	quickly.

The	React	Native	packager	will	launch	automatically	when	you	run	your	project,	either
from	Xcode	or	using	react-native	run-android.	However,	it	will	not	quit	automatically
when	you	close	your	project.	This	means	that	if	you	switch	projects,	the	packager	will	still
be	running	—	just	from	the	wrong	directory,	so	it	will	fail	to	compile	your	code.	Always
make	sure	that	the	packager	is	running	from	your	project’s	root	directory.	You	can	launch
it	yourself	with	npm	start.

If	the	React	Native	packager	throws	strange	errors	upon	starting,	chances	are	good	that
your	development	environment	is	in	a	bad	state.	Following	the	steps	just	described,	make
sure	that	your	local	installations	of	npm,	node,	and	react-native	are	all	in	a	good	state.

Issues	Deploying	to	an	iOS	Device
When	attempting	to	test	your	application	on	a	real	iOS	device,	you	may	encounter	some
peculiar	issues.

If	you	are	having	trouble	uploading	to	your	iOS	device,	the	first	thing	you	should	do	is
check	that	your	Apple	Developer	account	is	in	order.	Head	to	iTunes	Connect	to	check,
and	to	accept	any	pending	agreements.	Without	an	Apple	Developer	account,	you	will	not
be	able	to	deploy	to	a	device.

Then,	make	sure	that	your	device	is	selected	correctly	as	the	build	target.	Is	your	device	of
a	supported	type,	based	on	your	project	settings?	If	your	app	explicitly	disallows	iPads,	for
instance,	you	won’t	be	able	to	deploy	to	an	iPad.

If	you	are	using	the	React	Packager	to	rebuild	your	files	as	you	make	edits,	you	may	see
the	screen	shown	in	Figure	8-16.

http://itunesconnect.apple.com

Figure	8-16.	Could	not	connect	to	the	development	server

This	indicates	that	your	application	has	attempted	to	load	its	bundled	JavaScript	file	from
the	React	Native	packager,	but	is	unable	to	do	so.	In	this	case,	run	through	the	following
checks:

Are	you	using	the	packager	option	in	AppDelegate.m?

Is	your	IP	address	correct	in	AppDelegate.m?

Are	your	computer	and	iOS	device	on	the	same	WiFi	network?

Is	the	React	Native	packager	running	from	the	project	directory?

Can	you	access	http://your.ip.address:8081/index.ios.bundle	from	your	computer’s
browser?

Can	you	access	the	same	page	from	your	iOS	device’s	browser?

If	you	are	using	a	prebuilt	bundle	of	files,	you	may	encounter	a	separate	issue,	where	the
default	react-native	bundle	--minify	command	places	your	bundle	in	the	wrong
location.	This	is	easily	fixed	by	moving	the	main.jsbundle	file	to	its	appropriate	path,
based	on	the	error	message.

http://your.ip.address:8081/index.ios.bundle

Simulator	Behavior
You	may	also	see	strange	behavior	in	the	device	simulator	from	time	to	time.	If	your
application	continues	to	crash	repeatedly,	or	it	seems	like	changes	to	your	code	are	not
being	reflected	on	the	simulator,	the	easiest	first	step	is	to	delete	your	application	from	the
device.

Note	that	simply	deleting	your	application	may	not	have	the	desired	effect;	on	many
systems,	your	app	may	leave	behind	files	that	can	cause	side	effects	later	on.	As	shown	in
Figure	8-17,	the	most	straightforward	way	to	start	over	with	a	clean	slate	is	to	reset	the
device	simulator	entirely,	which	removes	all	files	and	applications	from	the	simulated
device.

Figure	8-17.	The	Reset	Content	and	Settings…	option	will	delete	everything	from	your	device

Testing	Your	Code
Debugging	is	all	well	and	good,	but	you’ll	also	want	to	prevent	errors	before	they	arise
(and	catch	them	when	they	inevitably	do!).	Automated	tests	and	static	type-checking	are
useful	tools	that	you’ll	probably	want	to	make	use	of	in	your	applications.

TESTING	JAVASCRIPT	CODE
Much	of	the	React	Native	code	you	write	may	not	even	be	aware	that	it’s	running	in	a	mobile	environment.
For	example,	any	business	logic	can	probably	be	isolated	from	rendering	logic.	That	means	that	you	can
test	your	JavaScript	code	using	whatever	tools	you	prefer	for	ordinary	JavaScript	development.	Woot!

In	this	section,	we’re	going	to	look	specifically	at	type-checking	with	Flow	and	unit-
testing	with	Jest.

Type-Checking	with	Flow
Flow	is	a	JavaScript	library	for	static	type-checking.	It	relies	on	type	inference	to	detect
type	errors	even	in	unannotated	code,	and	allows	you	to	slowly	add	type	annotations	to
existing	projects.	Type	checking	can	help	you	detect	possible	issues	early,	and	helps	you
enforce	sane	APIs	between	various	components	and	modules.

Running	Flow	is	simple:

$	flow	check

The	default	application	comes	with	a	.flowconfig	file,	which	configures	Flow’s	behavior.	If
you	see	many	errors	related	to	files	in	node_modules,	you	may	need	to	add	this	line	to
your	.flowconfig	under	[ignore]:

.*/node_modules/.*

You	should	then	be	able	to	run	flow	check	without	seeing	any	errors:

$	flow	check

$	Found	0	errors.

Feel	free	to	use	Flow	to	assist	you	as	you	develop	your	React	Native	applications.

http://flowtype.org/

Testing	with	Jest
React	Native	supports	testing	of	React	components	using	Jest.	Jest	is	a	unit	testing
framework	built	on	top	of	Jasmine.	It	provides	aggressive	automocking	of	dependencies,
and	it	meshes	nicely	with	React’s	testing	utilities.

To	use	Jest,	you	will	first	need	to	install	it:

npm	install	jest-cli	--save-dev

Update	your	package.json	file	to	include	a	test	script:

{

		...

		"scripts":	{

				"test":	"jest"

			}

			...

}

This	will	run	jest	when	you	type	npm	test.

Next,	create	the	tests/	directory.	Jest	will	recursively	search	for	files	in	a	tests/	directory,
and	run	them:

mkdir	__tests__

Now	let’s	create	a	new	file,	tests/dummy-test.js,	and	write	our	first	test:

'use	strict';

describe('a	silly	test',	function()	{

	it('expects	true	to	be	true',	function()	{

			expect(true).toBe(true);

	});

});

Now	if	you	run	npm	test,	you	should	see	that	the	test	has	passed.

Of	course,	there	is	much	more	to	testing	than	this	trivial	example.	Better	references	can	be
found	in	the	sample	Movies	app	in	the	React	Native	repository.

For	instance,	here	is	a	shortened	version	of	the	test	file	for	getImageSource	in	the	Movies
example	application	(the	code	is	available	in	its	entirety	at	GitHub):

jest.dontMock('../getImageSource');

var	getImageSource	=	require('../getImageSource');

describe('getImageSource',	()	=>	{

		it('returns	null	for	invalid	input',	()	=>	{

				expect(getImageSource().uri).toBe(null);

		});

		...

});

Note	that	you	need	to	explicitly	prevent	Jest	from	mocking	files,	and	then	require	your

http://bit.ly/movietestfile

dependencies	afterwards.	If	you	want	to	read	more	about	Jest,	I	recommend	starting	with
the	documentation.

https://facebook.github.io/jest/

When	You’re	Stuck
If	you	end	up	with	a	particularly	nasty	problem	that	you	can’t	solve	on	your	own,	you	can
try	consulting	the	community.	There	are	plenty	of	places	to	go	to	ask	for	advice:

The	#reactnative	IRC	chat	(irc://chat.freenode.net/reactnative)

The	React	discussion	forum

StackOverflow

If	you	suspect	your	issue	may	be	a	bug	in	React	Native	itself,	check	the	existing	list	of
issues	on	GitHub.	When	reporting	issues,	it’s	useful	to	create	a	small	proof-of-concept
application	demonstrating	the	problem.

https://discuss.reactjs.org/
http://stackoverflow.com/questions/tagged/react-native
https://github.com/facebook/react-native/issues

Summary
In	general,	debugging	with	React	Native	should	feel	quite	similar	to	debugging	your	React
code	on	the	Web.	Most	of	the	tools	you’ll	be	familiar	with	are	available	here,	too,	which
makes	the	transition	to	React	Native	much	easier.	That	being	said,	React	Native
applications	bring	their	own	variety	of	complexity,	and	sometimes	that	complexity	can
manifest	in	frustrating	bugs.	Knowing	how	to	debug	your	applications,	and	the	error
messages	produced	by	your	environment,	will	go	a	long	way	in	helping	you	to	cultivate	a
productive	workflow.

Chapter	9.	Putting	It	All	Together

Now	that	we’ve	covered	many	of	the	pieces	you’ll	need	to	build	your	own	React	Native
applications,	let’s	put	everything	together.	Up	until	now,	we’ve	mostly	dealt	with	small
examples.	In	this	chapter,	we’ll	look	at	the	structure	of	a	larger	application.	We’ll	cover
the	use	of	Reflux,	a	library	for	unidirectional	dataflow	based	on	the	Flux	model.	We’ll	also
see	how	we	can	use	the	Dimensions	API	to	scale	text	to	accommodate	different	screen
sizes.	Finally,	we’ll	end	with	some	homework:	tasks	that	you	can	undertake	to	see	what
it’s	like	to	build	out	more	features	in	an	existing	React	Native	codebase.

The	Flashcard	Application
Zebreto	is	a	flashcard	application	based	on	the	Spaced	Repetition	System	(SRS),	a
learning	strategy	for	effective	memorization.	With	SRS,	the	goal	is	to	review	information
just	before	you	would	otherwise	forget	it.	If	you	do	any	foreign	language	study,	you	may
be	familiar	with	SRS	systems;	they	allow	you	to	memorize	large	amounts	of	data	more
quickly,	focusing	on	long-term	retention.	A	common	approach	is	to	start	with	a	small
interval	between	reviews,	such	as	an	hour,	and	to	slowly	scale	up	as	you	get	cards	correct:
first	an	hour,	then	a	day,	then	three	days,	then	a	week.	Intervals	can	gradually	increase	to
as	much	as	a	year,	or	five	years.	Tracking	these	intervals	is	impractical	with	pencil-and-
paper	flashcards,	so	we’ll	build	an	app	instead.

Zebreto	is	a	bit	more	complex	than	the	sample	applications	we’ve	been	building	so	far.	It’s
meant	to	model	what	a	more	fleshed-out	application	might	look	like.	All	the	code	is
available	on	GitHub.	It’s	also	entirely	cross-platform;	the	app	should	work	on	Android	just
as	it	works	on	iOS.

As	illustrated	in	Figure	9-1,	the	Zebreto	app	has	three	main	views:

The	home	page,	which	lists	available	decks	and	allows	you	to	create	new	decks

The	card	creation	screen

The	review	screen

Figure	9-1.	Viewing	decks,	card	creation,	and	card	review

Users	of	the	app	go	through	two	main	interaction	flows.	The	first	deals	with	content

https://github.com/bonniee/learning-react-native/tree/master/Zebreto

creation	(i.e.,	the	creation	of	decks	as	well	as	cards).	The	content	creation	process	works
as	follows	(illustrated	in	Figure	9-2):

1.	 The	user	taps	Create	Deck.

2.	 The	user	enters	a	deck	name,	then	either	taps	the	Return	button	or	Create	Deck
again.

3.	 The	user	enters	values	for	Front	and	Back,	and	then	taps	Create	Card.

4.	 After	entering	zero	or	more	cards,	the	user	may	tap	“Done,”	bringing	them	back	to
the	original	screen.	Alternatively,	the	user	may	tap	Review	Deck	and	begin
reviewing.

Figure	9-2.	Creating	a	deck

Card	creation	may	also	be	initiated	at	a	later	date	by	tapping	the	+	buttons	on	the	home
screen.

The	second	main	interaction	flow	deals	with	card	review	(illustrated	in	Figure	9-3):

1.	 The	user	taps	the	deck’s	name	that	they	wish	to	review.

2.	 The	user	is	presented	with	the	question	screen.

3.	 The	user	taps	one	of	the	provided	options.

4.	 The	user	receives	feedback	based	on	whether	their	guess	was	correct.

5.	 To	view	the	next	review,	the	user	taps	Continue.

6.	 Once	all	reviews	are	completed,	the	user	reaches	the	“Reviews	cleared!”	screen.

Figure	9-3.	Reviewing	cards

If	the	user	gets	a	card	correct,	we	should	increase	the	card’s	strength,	and	therefore	the
interval	until	it	will	be	seen	next.	Likewise,	for	each	incorrect	card,	we’ll	need	to	decrease
the	card’s	strength,	and	schedule	it	for	another	review	soon.

We’ll	be	using	the	Zebreto	app,	and	in	particular	the	features	described	above,	to	talk
through	some	of	the	patterns	and	problems	that	emerge	when	building	a	more	complete
application.

Project	Structure
Here’s	the	abbreviated	structure	of	the	project:

Zebreto

	|-	.babelrc

	|-	iOS

	|-	index.ios.js

	|-	node_modules

	|-	package.json

	|-	src

				|-	actions.js

				|-	components

				|-	data

				|-	stores

				|-	styles

Within	the	Zebreto	folder,	our	project	is	loosely	split	between	iOS	and	Android-specific
project	folders,	and	the	src/	directory.	The	src/	directory	contains	all	of	our	React	code	for
the	project.	Also	note	that	there’s	a	.babelrc	file,	which	modifies	the	default	Babel
configuration.	If	you	add	a	.babelrc	file	to	the	root	of	a	React	Native	project,	the	React
Native	packager	will	automatically	pick	it	up.	In	this	case,	the	most	significant	change	is
that	I’ve	enabled	ES6	module	syntax:

//	.babelrc

{

		"stage":	1,

		"optional":	["runtime"],

		"loose":	"all",

		"whitelist":	[

				"es6.modules"

]

}

For	the	most	part,	we’ll	be	working	within	the	src/	directory.

Within	the	src/	directory,	our	code	is	organized	further	based	on	functionality:

components/

All	of	our	React	components	live	here

data/

This	is	where	you’ll	find	our	data	models

stores/

Our	Reflux	data	stores,	which	we’ll	discuss	soon,	live	here

actions.js

Reflux	actions,	which	we’ll	discuss	along	with	the	data	stores,	live	here

styles/

Here	you’ll	find	stylesheet	objects,	which	are	reused	elsewhere

Component	Hierarchy
There	are	three	main	scenes	that	may	be	displayed	at	any	given	time.	To	give	you	a	sense
of	the	general	structure	of	the	structure	of	the	application,	let’s	diagram	out	the	component
trees	for	each	of	the	three	scenarios.

First,	we	have	deck	creation,	from	the	main	deck	screen.	This	screen	will	display	as	many
decks	as	currently	exist	in	the	app,	as	shown	in	Figure	9-4.	The	component	hierarchy	is
diagrammed	in	Figure	9-5.

Figure	9-4.	Creating	a	deck	from	the	main	deck	screen

Figure	9-5.	Component	tree	for	deck	creation

Next,	we	have	the	card	creation	screen	(see	Figure	9-6).

Figure	9-6.	The	card	creation	screen

The	component	hierarchy	for	this	screen	is	shown	in	the	diagram	in	Figure	9-7.

Figure	9-7.	Component	tree	for	deck	creation

And	finally,	we	have	the	review	screen,	which	is	shown	in	Figure	9-8.	Note	that	the	child
component	of	<Review>	will	change	based	on	where	you	are	in	the	review	flow.	After	the
user	has	completed	all	available	reviews,	<ViewCard>	will	be	replaced	with	information	on
the	user’s	performance.

Figure	9-8.	The	card	review	screen

The	component	hierarchy	for	the	card	review	screen	is	provided	in	Figure	9-9.

Figure	9-9.	Component	tree	for	deck	creation

As	mentioned	earlier,	when	you’re	building	larger	applications	it’s	useful	to	have	some
styled	components	that	you	can	reuse	over	and	over	again.	As	a	result,	most	components
don’t	actually	use	<Text>	in	order	to	render	text:	instead,	they	use	<HeadingText>	and
<NormalText>.	Similarly,	the	<Button>	component	is	reused	frequently.	This	helps	with
code	readability,	and	makes	creating	new	components	easier.

This	should	give	you	a	feel	for	the	general	structure	of	the	Zebreto	application.	Note	that
we	still	haven’t	discussed	how	user	interactions	are	handled,	or	how	we	handle	the
modification	and	persistence	of	data.	Let’s	take	a	look	at	our	data	models	now.

Modeling	and	Storing	Data
Now	that	we’ve	seen	a	bit	about	how	Zebreto	handles	rendering,	how	does	it	handle	data?
What	data	do	we	need	to	keep	track	of,	and	how	do	we	do	so?

Zebreto	is	concerned	with	two	basic	models:	Cards	and	Decks.

A	Deck	consists	of	a	human-readable	name	and	a	unique	ID.	We	also	sometimes	store
some	metadata	about	the	Cards	it	contains:

Deck:	{

		name,

		id,

		totalCards,	//	computed,	may	be	out	of	date

		dueCards	//	computed,	may	be	out	of	date

}

Cards	have	a	front	and	a	back	(such	as	“der	Hund”	and	“the	dog”),	and	belong	to	a	Deck.
They	also	have	a	strength,	represented	as	an	integer,	and	a	due	date.	Zebreto	uses
moment.js	for	date	objects:

Card:	{

		front,

		back,

		deckID,

		strength,

		dueDate,

		id

}

Decks	and	Cards	could	be	represented	as	simple	JavaScript	objects,	but	for	convenience’s
sake,	Zebreto	makes	use	of	some	wrapper	classes.	If	you	look	in	the	src/data/	directory,
you’ll	find	our	model	classes.	Here’s	the	class	for	a	Deck:

//	src/data/Deck.js

import	md5	from	'md5';

class	Deck	{

		constructor(name)	{

				this.name	=	name;

				this.totalCards	=	0;

				this.dueCards	=	0;

				this.id	=	md5(name);

		}

		setFromObject(ob)	{

				this.name	=	ob.name;

				this.totalCards	=	ob.totalCards;

				this.dueCards	=	ob.dueCards;

				this.id	=	ob.id;

		}

		resetCounts()	{

				this.totalCards	=	0;

				this.dueCards	=	0;

		}

		static	fromObject(ob)	{

				let	d	=	new	Deck(ob.name);

				d.setFromObject(ob);

				return	d;

		}

}

module.exports	=	Deck;

As	you	can	see,	the	Deck	class	is	quite	simple.	Its	constructor	takes	in	the	necessary
parameters	that	distinguish	a	Deck,	and	then	sets	reasonable	default	values	for	the	other
fields.	It	also	provides	us	with	convenience	methods	for	creating	a	Deck	from	a	JavaScript
object,	and	an	easy	way	to	reset	the	metadata	stored	on	the	Deck.

For	now,	the	so-called	unique	IDs	are	constructed	by	taking	the	MD5	hash	of	relevant
info.

The	Card	class	looks	fairly	similar,	and	provides	us	with	helper	methods	to	create	a	Card
from	an	ordinary	object:

//	src/data/Card.js

import	md5	from	'md5';

import	moment	from	'moment';

class	Card	{

		constructor(front,	back,	deckID)	{

				this.front	=	front;

				this.back	=	back;

				this.deckID	=	deckID;

				this.strength	=	0;

				this.dueDate	=	moment();

				this.id	=	md5(front	+	back	+	deckID);

		}

		setFromObject(ob)	{

				this.front	=	ob.front;

				this.back	=	ob.back;

				this.deckID	=	ob.deckID;

				this.strength	=	ob.strength;

				this.dueDate	=	moment(ob.dueDate);

				this.id	=	ob.id;

		}

		static	fromObject(ob)	{

				let	c	=	new	Card(ob.front,	ob.back,	ob.deckID);

				c.setFromObject(ob);

				return	c;

		}

}

module.exports	=	Card;

To	understand	how	these	models	are	used	in	the	application,	let’s	look	at	our	data	flow
architecture.

Data	Flow	Architecture:	Reflux	and	Flux
Zebreto	uses	Reflux	for	its	data	flow	architecture,	which	is	based	on	the	Flux	pattern.
Previous	examples	we’ve	looked	at	in	this	book	haven’t	required	much	in	the	way	of	data
flow	management.	With	smaller	applications,	communicating	between	components	is
usually	a	trivial	issue.	Consider	the	case	where	a	button	tap	has	an	impact	on	the	parent’s
state:

//	Child.js

import	React	from	'react-native';

var	{Text,	TouchableOpacity}	=	React;

export	default	React.createClass({

		render()	{

				<TouchableOpacity	onPress={this.props.onPress}>

						<Text>Child	Component</Text>

				</TouchableOpacity>

		}

});

By	passing	a	callback	from	the	parent	to	the	child,	the	parent	can	be	alerted	about
interactions	with	the	child:

//	Parent.js

import	React	from	'react-native';

import	Child	from	'./Child';

export	default	React.createClass({

		getInitialState()	{

				return	{

						numTaps:	0

				}

		},

		_handlePress()	{

				this.setState({numTaps:	this.state.numTaps	+	1});

		},

		render()	{

				<Child	onPress={this._handlePress}/>

		}

});

For	simple	use	cases,	this	pattern	works	just	fine.

Our	need	for	a	more	robust	data	flow	architecture	becomes	apparent	when	we	consider	a
more	complex	interaction.	What	happens	when	a	component	much	farther	down	the
component	tree	needs	to	impact	an	application	state	located	on	a	higher	level?	Let’s	look
at	the	review	screen	again	(Figure	9-10).

Figure	9-10.	Reviewing	cards

When	you	select	one	of	the	answers,	the	following	things	need	to	happen:

1.	 The	app	provides	visual	feedback	indicating	if	you	were	correct	or	not

2.	 The	next	review	is	made	available

3.	 The	card’s	strength	value	is	updated,	if	appropriate

4.	 The	number	of	available	reviews	for	the	deck	is	updated,	if	appropriate

If	you	were	to	quit	the	Zebreto	application	midway	through	a	review,	you’d	want	your
information	to	be	saved,	so	all	of	these	changes	to	state	should	happen	each	time	you
select	a	review.	Let’s	take	a	look	at	the	component	tree	again	(Figure	9-11):

Figure	9-11.	Components	that	need	to	know	about	a	review

The	top-level	Zebreto	component	needs	to	receive	this	update,	as	do	the	<Review>	and
<ViewCard>	components.	Passing	callbacks	around	doesn’t	scale	very	well	to	this	use
case,	so	we’ll	use	a	Flux-like	data	architecture	instead.

Flux	is	more	of	a	pattern	than	a	formal	framework.	The	key	concept	is	unidirectional	data
flow.	In	React,	props	and	state	are	passed	from	parent	to	child;	this	unidirectional	flow
means	that	rendering	is	performant,	and	our	application	state	is	easier	to	think	about.

Passing	lots	of	callbacks	around	breaks	that	flow,	and	can	essentially	result	in	two-way
data	binding,	where	cascading	updates	can	be	triggered	in	unpredictable	ways.	By	using	a
Flux-like	application	architecture	(illustrated	in	Figure	9-12),	we	can	separate	out	changes
in	application	state	from	the	pieces	of	UI	that	can	trigger	them,	and	maintain	the

unidirectional	pattern.

Figure	9-12.	Data	propagation	in	the	Flux	architecture

With	the	Flux	pattern,	views	render	based	on	information	that	they	get	from	their	stores.
Actions	can	be	triggered	by	user	interactions	with	a	view,	or	by	other	events,	such	as	app
initializiation.	The	dispatcher	handles	incoming	actions	and	passes	them	along	to	stores.

Flux	is	the	official	Facebook	archiecture	for	this	problem,	but	others	in	the	React
community	have	built	Flux-inspired	libraries	that	seek	to	solve	many	of	the	same
problems.	Reflux,	illustrated	in	Figure	9-13,	is	a	particularly	popular	one,	and	we’ll	use	it
for	Zebreto.

Figure	9-13.	Data	propagation	in	the	Reflux	architecture

With	Reflux,	you	don’t	have	a	concept	of	a	dispatcher.	There	are	simply	views,	stores,	and
actions,	and	stores	can	listen	to	actions	directly.

Adding	Reflux	to	a	React	Native	project	is	as	easy	as	npm	install:

npm	install	--save	reflux

Using	Reflux	in	Zebreto
Let’s	look	at	how	Reflux	is	used	in	our	application.

In	Zebreto,	we	have	multiple	stores	(illustrated	in	Figure	9-14):
DeckMetaStore

Contains	Deck	metadata,	such	as	the	number	of	pending	reviews
CardsStore

Contains	all	Cards
ReviewStore

Contains	the	reviews	for	the	current	Deck

Stores	can	listen	to	each	other.	In	Zebreto,	reviews	are	constructed	based	on	information
obtained	from	both	CardsStore	and	DeckMetaStore,	so	the	ReviewStore	listens	to	both	of
them.	This	relationship	is	shown	in	Figure	9-14.

Figure	9-14.	The	stores	used	in	Zebreto

We	also	have	multiple	actions,	defined	in	our	actions.js	file:

//	src/actions.js

import	Reflux	from	'reflux';

export	var	DeckActions	=	Reflux.createActions([

		'createDeck',

		'deleteDeck',

		'reviewDeck',

		'deleteAllDecks'

]);

export	var	CardActions	=	Reflux.createActions([

		'createCard',

		'deleteCard',

		'review',

		'editCard',

		'deleteAllCards'

]);

Any	component	can	trigger	an	action	that	stores	can	listen	to,	which	may	then	cause
cascading	effects.

To	return	to	our	example	of	reviewing	a	card,	the	Reflux	data	flow	pattern	works	as
follows:

The	user	selects	an	answer,	which	triggers	the	CardActions.review	action.

The	ReviewStore	listens	for	CardActions.review	actions,	and	processes	the	new
information.

If	appropriate,	the	ReviewStore	triggers	a	CardActions.editCard	action.

The	CardsStore	listens	to	CardActions.editCard	actions.	It	will	persist	the	relevant
change	to	AsyncStorage	and	then	trigger	an	update.

The	top-level	<Zebreto>	component	listens	for	updates	to	the	CardsStore,	and	updates
its	state	accordingly.

Figure	9-15.	Handling	updates	after	a	card	review

As	another	example,	deck	creation	works	as	follows:

The	create	deck	button	fires	a	DeckActions.createDeck	action.

The	create	deck	button	also	invokes	a	callback	prop	to	cause	the	Navigator	to	transition
scenes	to	the	card	creation	screen.

The	DeckMetaStore	is	listening	to	DeckActions.createDeck;	it	creates	a	new	Deck
and	persists	it	to	AsyncStorage.

Persistence,	AsyncStorage,	and	the	Reflux	Stores
Zebreto	persists	user	data	to	AsyncStorage	through	simple	JSON	serialization.	This	is
handled	via	the	stores,	as	the	stores	are	the	central	source	of	truth	regarding	application
state.	For	example,	let’s	look	at	the	CardsStore:

//	src/stores/CardsStore.js

import	Card	from	'./../data/Card';

import	Reflux	from	'reflux';

import	_	from	'lodash';

import	{CardActions}	from	'./../actions';

import	React	from	'react-native';

var	{	AsyncStorage	}	=	React;

const	CARD_KEY	=	'zebreto-cards';

var	cardsStore	=	Reflux.createStore({

		init()	{

				this._loadCards().done();

				this.listenTo(CardActions.createCard,	this.createCard);

				this.listenTo(CardActions.deleteAllCards,	this.deleteAllCards);

				this.listenTo(CardActions.editCard,	this.editCard);

				this._cards	=	[];

				this.emit();

		},

		async	_loadCards()	{

				try	{

						var	val	=	await	AsyncStorage.getItem(CARD_KEY);

						if	(val	!==	null)	{

								this._cards	=	JSON.parse(val).map((cardObj)	=>	{

										return	Card.fromObject(cardObj);

								});

								this.emit();

						}

						else	{

								console.info(`${CARD_KEY}	not	found	on	disk.`);

						}

				}

				catch	(error)	{

						console.error('AsyncStorage	error:	',	error.message);

				}

		},

		async	_writeCards()	{

				try	{

						await	AsyncStorage.setItem(CARD_KEY,	JSON.stringify(this._cards));

				}

				catch	(error)	{

						console.error('AsyncStorage	error:	',	error.message);

				}

		},

		deleteAllCards()	{

				this._cards	=	[];

				this.emit();

		},

		editCard(newCard)	{

				//	Assume	newCard.id	corresponds	to	an	existing	card.

				let	match	=	_.find(this._cards,	(card)	=>	{

						return	card.id	===	newCard.id;

				});

				match.setFromObject(newCard);

				this.emit();

		},

		createCard(front,	back,	deckID)	{

				this._cards.push(new	Card(front,	back,	deckID));

				this.emit();

		},

		emit()	{

				this._writeCards().done();

				this.trigger(this._cards);

		}

});

export	default	cardsStore;

The	CardsStore	is	the	only	point	in	the	Zebreto	app	that	handles	reading	and	writing	data
relating	to	cards.	For	now,	this	is	done	via	calls	to	AsyncStorage	in	the	_loadCards()	and
_writeCards()	functions.	If	we	wanted	to	update	how	we	store	cards	—	for	instance,	to
use	a	SQLite	database	instead,	or	to	fetch	data	via	a	network	call	—	we	could	easily	do	so
by	updating	these	two	methods.

Also	worth	noting	is	that	the	CardsStore	loads	stored	data	when	it	is	initialized,	in	its
init()	method;	and	persists	cards	to	AsyncStorage	whenever	they	are	updated,	in	the
emit()	method.	Thus,	even	when	the	user	quits	the	application,	their	data	will	be	saved.

Using	the	Navigator
Another	point	of	possible	interest	is	the	use	of	the	<Navigator>	component	in	Zebreto.
Let’s	look	at	the	source	code	for	the	root	component:

//	src/components/Zebreto.js

import	React	from	'react-native';

var	{

		StyleSheet,

		View,

		Navigator

}	=	React;

import	Reflux	from	'reflux';

import	{DeckActions}	from	'./../actions';

import	Decks	from	'./Decks';

import	Review	from	'./Review';

import	NewCard	from	'./NewCard';

import	Heading	from	'./Header';

import	CardsStore	from	'./../stores/CardsStore';

import	DeckMetaStore	from	'./../stores/DeckMetaStore';

var	Zebreto	=	React.createClass({

		displayName:	'Zebreto',

		mixins:	[Reflux.connect(DeckMetaStore,	'deckMetas')],

		componentWillMount()	{

				CardsStore.emit();

		},

		review(deckID)	{

				DeckActions.reviewDeck(deckID);

				this.refs.navigator.push({

						name:	'review',

						data:	{

								deckID:	deckID

						}

				});

		},

		createdDeck(deck)	{

				this.refs.navigator.push({

						name:	'createCards',

						data:	{

								deck:	deck

						}

				});

		},

		goHome()	{

				this.refs.navigator.popToTop();

		},

		_renderScene(route)	{	

				switch	(route.name)	{

				case	'decks':

						return	<Decks	review={this.review}

								createdDeck={this.createdDeck}/>;

				case	'createCards':

						return	<NewCard

								review={this.review}

								quit={this.goHome}

								nextCard={this.createdDeck}

								{...route.data}/>;

				case	'review':	

						return	<Review	quit={this.goHome}	{...route.data}	/>;

				default:

						console.error('Encountered	unexpected	route:	'	+	route.name);

				}

				return	<Decks/>;

		},

		render()	{	

				return	(

						<View	style={styles.container}>

								<Heading/>

								<Navigator

										ref='navigator'

										initialRoute=

										renderScene={this._renderScene}/>

						</View>

);

		}

});

var	styles	=	StyleSheet.create({

		container:	{

				flex:	1,

				marginTop:	30

		}

});

export	default	Zebreto;

There’s	a	fair	bit	going	on	in	this	file,	so	we’ll	take	it	in	chunks:

The	render	method	is	actually	quite	small.	We	wrap	everything	in	a	<View>,	then
render	the	header,	which	contains	the	logo;	and	the	<Navigator>,	which	renders	the
appropriate	scene.	As	we	can	see	from	the	_renderScene()	method,	and	as	discussed
earlier,	there	are	three	possible	scenes:	decks,	createCards,	and	review.	Thus,	at	the
top	level,	the	app	consists	of	one	wrapper	component,	with	two	children.

_renderScene()	also	takes	care	of	attaching	the	appropriate	data	and	callbacks	to
each	scene,	as	props.	It	uses	spread	syntax	to	do	so	more	effectively.	If	you	haven’t
seen	spread	syntax	often	before,	it’s	a	nice	feature,	taken	from	ES6.	As	an	example,	if
we	invoked	_renderScene()	as	follows,	it	will	return	the	code	listed	in	the	next
callout.

_renderScene({

		data:	{

				someProp:	'whatever',

				anotherProp:	2

		}

});

By	using	spread	syntax,	_renderScene()	would	return	the	equivalent	to	the
following:

return	(

		<Review

				quit={this.goHome}

				someProp="whatever"

				anotherProp={2}	/>);

So,	there’s	our	root	<Zebreto>	component.	It	holds	a	ref	to	the	<Navigator>	component,
and	manages	the	various	scenes.	For	the	most	part,	however,	the	more	complex

functionality	is	left	to	the	individual	scenes.

By	placing	the	<Navigator>	and	the	_renderScene()	logic	in	the	top-level	component,
and	passing	in	callbacks	such	as	goHome()	as	props	to	the	individual	scenes,	the	scenes
themselves	do	not	need	to	be	aware	of	the	navigational	structure.	Instead,	we	keep	all	of
the	navigation-related	rendering	logic	in	the	<Zebreto>	component.

If	we	wanted	to	replace	the	<Navigator>	with	something	platform	specific	(e.g.,	a
<NavigatorIOS>	component),	it	would	be	easy	to	do	so,	because	its	usage	is	limited	to	just
this	file.	(We	would	just	need	to	create	a	Zebreto.ios.js	and	Zebreto.android.js	file,
respectively.)	Even	though	we	don’t	need	to	right	now,	it’s	nice	to	have	the	navigation
visible	and	isolated	within	the	top-level	component.

A	Look	at	Third-Party	Dependencies
We	should	also	examine	the	outside	libraries	used	in	the	application.	Zebreto	doesn’t	have
too	many	third-party	dependencies,	but	it	does	have	some.	Take	a	look	at	package.json:

//	package.json

{

		"name":	"Zebreto",

		"version":	"0.0.1",

		"private":	true,

		"scripts":	{

				"start":	"node_modules/react-native/packager/packager.sh"

		},

		"dependencies":	{

				"lodash":	"^3.10.1",

				"md5":	"^2.0.0",

				"moment":	"^2.10.6",

				"react":	"^0.13.3",

				"react-native":	"^0.11.2",

				"reflux":	"^0.2.12"

		}

}

react-native	and	react	are	obvious	dependencies.	We’ve	covered	reflux,	too.	moment	is
used	for	date	objects,	and	md5	is	used	for	calculating	card	and	deck	IDs.	Finally,	lodash
gives	us	some	nice	utility	functions,	and	we	use	it	for	shuffling	card	reviews.

It’s	worth	noting	that	none	of	these	libraries	were	built	with	React	Native	or	mobile	in
mind,	and	they	work	as	is	without	any	tinkering	necessary.	Huzzah!

Responsive	Design	and	Font	Sizes
In	order	for	your	application	to	support	multiple	devices	properly,	your	UI	will	need	to
accommodate	some	variation	in	screen	size.	To	some	degree,	flexbox-based	styles	handle
this	for	you	without	any	special	attention.

Font	styles,	however,	often	require	explicit	adjustments	based	on	screen	size.	The	reusable
text	components	in	Zebreto	scale	the	font	size	based	on	screen	width	in	order	to
accommodate	different	device	sizes	(Figure	9-16).

Figure	9-16.	The	font	size	on	an	iPhone	4S	and	an	iPhone	6	is	just	slightly	different

Handling	different	font	sizes	is	pretty	easy.	Let’s	look	at	how	font	scaling	is	handled	in
Zebreto.

In	the	styles/	directory,	we	export	the	font-related	stylesheets	from	fonts.js,	as	well	as
scaling	factors	to	use	later:

//	src/styles/fonts.js

import	{	StyleSheet	}	from	'react-native';

var	fonts	=	StyleSheet.create({

		normal:	{

				fontSize:	24,

				fontFamily:	'Avenir	Medium'

		},

		alternate:	{

				fontSize:	50,

				fontFamily:	'Avenir	Heavy',

				color:	'#FFFFFF'

		},

		big:	{

				fontSize:	32,

				alignSelf:	'center',

				fontFamily:	'Avenir	Medium'

		}

});

var	scalingFactors	=	{

		normal:	15,

		big:	7

};

module.exports	=	{fonts,	scalingFactors};

Then,	in	our	text	components,	such	as	<NormalText>,	we	get	the	screen	dimensions.	The
Dimensions	API	is	available	as	a	polyfill	once	we	require	it:

import	Dimensions	from	'Dimensions';

let	{width,	height}	=	Dimensions.get('window');

Now	we	have	the	screen	dimensions	to	work	with,	available	as	the	variables	width	and
height.

For	<NormalText>,	we	use	just	the	width	value,	in	conjunction	with	our	scaling	factor,	to
determine	the	font	size:

var	scaled	=	StyleSheet.create({

		normal:	{

				fontSize:	width	/	scalingFactors.normal

		}

});

We	then	use	this	stylesheet	in	our	component:

//	src/components/NormalText.js

import	React	from	'react-native';

var	{

		StyleSheet,

		Text,

		View

}	=	React;

import	{fonts,	scalingFactors}	from	'./../styles/fonts';

import	Dimensions	from	'Dimensions';

let	{width}	=	Dimensions.get('window');

var	NormalText	=	React.createClass({

		displayName:	'NormalText',

		propTypes:	{

				style:	View.propTypes.style

		},

		render()	{

				return	(

						<Text	style={[this.props.style,	fonts.normal,	scaled.normal]}>

								{this.props.children}

						</Text>

);

		}

});

var	scaled	=	StyleSheet.create({

		normal:	{

				fontSize:	width	/	scalingFactors.normal

		}

});

export	default	NormalText;

And	that’s	it!	The	<HeadingText>	component	takes	the	same	approach,	so	whenever	we
use	<HeadingText>	or	<NormalText>	elsewhere	in	the	application,	the	font	size	should	be
scaled	appropriately.

Summary	and	Homework
The	Zebreto	application	is	meant	to	serve	as	a	reference.	In	many	ways,	it’s	a	“minimum
viable	project,”	and	there	are	plenty	of	ways	it	could	be	improved.	That	being	said,	there’s
still	plenty	to	explore	in	the	codebase,	and	I	encourage	you	to	dig	into	it.

If	you	want	to	get	some	more	practice	working	within	the	context	of	React	Native,	I
encourage	you	to	check	out	the	GitHub	repository	and	try	extending	Zebreto.	Here	are
some	ideas	to	get	you	started:

Add	the	ability	to	delete	decks

Add	a	screen	where	you	can	view	all	cards	in	a	deck

Display	statistics	about	the	card	strengths	in	a	deck

Experiment	with	different	styles

Change	the	Decks	component	to	use	a	ListView

In	the	next	chapter,	we’ll	walk	through	the	process	of	actually	shipping	Zebreto	—	or	your
own	application!	—	to	the	App	Store.

Chapter	10.	Deploying	to	the	iOS	App
Store

Now	that	you	have	a	totally	awesome	application,	you’ll	want	to	get	it	into	the	hands	of
your	users.	This	process	will	vary	by	platform.	In	this	chapter,	we	will	focus	on	the
detailed	steps	for	uploading	an	application	to	the	iOS	App	Store.

As	web	developers,	we’re	used	to	having	more	control	over	our	deploy	processes.	You
may	be	accustomed	to	shipping	code	to	production	many	times	in	a	single	day,	and
versions	are	usually	a	nonissue.	With	the	iOS	App	Store,	deployment	is	significantly	more
complicated,	and	new	version	releases	usually	require	1–2	weeks	of	review.	Thus,	it’s
important	to	take	the	App	Store	submission	and	review	process	into	account	during	your
planning	phase.

Preparing	Your	Xcode	Project
Your	Xcode	project	contains	a	lot	of	metadata	about	your	application.	React	Native	sets	up
some	values	for	you	by	default,	but	before	we	submit	our	application	for	review,	we’ll
need	to	ensure	that	certain	attributes	are	set	properly.	In	the	case	of	Zebreto,	our	project
file	is	located	in	iOS/Zebreto.xcodeproj.

If,	for	some	reason,	you	haven’t	done	so	already,	make	sure	that	your	Xcode	project	file	is
checked	into	version	control.	It’s	not	unheard	of	for	Xcode	to	crash	while	attempting	to
edit	a	project,	leaving	your	project	file	in	a	bad	state.

Open	your	project	in	Xcode	(Figure	10-1).	You’ll	want	to	open	the	left	pane,	and	close	the
right	and	bottom	panes	(the	controls	for	this	are	in	the	top-right	corner).

Figure	10-1.	Open	your	project	in	Xcode

Selecting	Supported	Devices	and	Target	iOS	Version
You’ll	need	to	decide	which	version	of	iOS	your	project	should	target.	Confusingly,	there
are	two	separate,	but	related,	settings	for	this:	the	Base	SDK	version,	and	the	iOS
deployment	target.	By	default,	React	Native	sets	the	deployment	target	to	7.0,	and	uses	the
latest	iOS	SDK	(9.0).	The	deployment	target	is	the	minimum	iOS	version	required	to	run
your	application,	while	the	SDK	version	determines	which	SDK	version	your	application
will	be	built	against.	The	difference	in	these	values	is	documented	by	Apple.

For	our	purposes,	just	remember	that	the	Base	SDK	version	needs	to	be	greater	than	or
equal	to	the	iOS	deployment	target.

If	you	are	using	any	iOS	APIs	that	require	a	higher	version	than	specified	by	default,	you
will	need	to	change	the	deployment	target	value	appropriately.	You	can	change	this	under
the	Info	menu	for	your	project	(Figure	10-2).

Figure	10-2.	Selecting	your	target	iOS	version

If	you	want	to	update	the	Base	SDK	version,	it’s	specified	under	the	Build	Settings	menu
(Figure	10-3).

Figure	10-3.	Changing	the	Base	SDK	version

If	you	select	your	application	(under	TARGETS)	instead	of	your	project,	you	can	also
choose	which	devices	and	screen	orientations	your	application	supports.	Namely,	for	iOS
projects,	you	can	designate	your	application	as	iPhone-only,	iPad-only,	or	Universal,
meaning	that	it	supports	both	iPad	and	iPhone	(Figure	10-4).

http://apple.co/1MVKVc3

Figure	10-4.	Setting	the	device	targets

Once	you’ve	checked	which	devices	you	want	to	support,	we	can	move	on	to	setting	the
launch	image	and	application	icons.

Launch	Screen	Images
The	launch	screen	image	is	the	placeholder	image	that	appears	when	the	user	launches
your	application,	while	the	app	is	loading.	There	are	multiple	appropriate	approaches	here.
Some	applications	choose	to	use	a	“splash	screen,”	with	their	application’s	logo	and	name.
Other	applications	opt	for	a	screen	that	mimics	the	app’s	user	interface,	but	without	any
data	filled	in,	so	that	the	transition	appears	more	seamless.

Regardless	of	which	approach	you	take,	you’ll	need	to	provide	your	launch	screen	image
in	sizes	appropriate	for	all	devices	you	support.

Begin	by	selecting	your	project’s	Image.xcassets/	directory,	and	creating	a	new	launch
image	set	(Figure	10-5).

Figure	10-5.	Add	launch	images

From	here,	you’ll	be	given	the	opportunity	to	add	appropriately	sized	launch	images	for
every	relevant	device	size	(Figure	10-6).	Phew!	That’s	a	lot.

Figure	10-6.	Adding	launch	images	for	each	device	size	and	orientation

The	required	dimensions	vary	by	device.	For	instance,	the	iPhone	6	requires	a	750	x
1334px	file	for	portrait	mode,	and	a	1334	x	750px	file	for	landscape	mode.

For	specific	required	dimensions,	consult	Apple’s	documentation.	Xcode	will	generate
warnings	if	you	provide	an	incorrectly	sized	file,	so	you	can	also	use	that	to	guide	you.

http://apple.co/1HaVNmb

Adding	Your	Application	Icon
You	application	icon	is	what	appears	on	the	user’s	home	screen,	as	well	as	within	the	App
Store.	Like	the	launch	screen,	you	should	provide	application	icon	assets	in	sizes
appropriate	to	your	application’s	supported	devices,	and	check	your	sizes	against	Apple’s
documentation.

Apple’s	Human	Interface	Guidelines	set	out	some	basic	guidelines.	Application	icons
should	not	contain	any	transparent	areas,	and	should	be	square.	(Apple	applies	the
rounded-corners	effect	to	your	icons;	you	need	not	do	this	yourself.)

Click	the	plus	button	while	your	Image.xcassets/	folder	is	selected,	just	as	you	did	earlier
for	the	Launch	Image.	This	time,	however,	create	a	new	App	Icon	instead	(Figure	10-7).

Figure	10-7.	Add	icons	to	your	project

You	can	drag	and	drop	files	here	in	order	to	add	them	as	icons.

If	you	delete	your	application	from	the	simulator	or	your	device	and	then	reinstall	it,	you
should	now	see	your	icon,	just	like	in	Figure	10-8.

http://apple.co/1HaVNmb

Figure	10-8.	After	setting	a	custom	icon,	you’ll	see	it	on	the	home	screen	after	installing	your	app,	even	during
development

If,	for	some	reason,	your	Launch	Image	or	your	App	Icon	isn’t	rendering	properly,	be	sure
to	check	the	values	under	App	Icons	and	Launch	Images,	which	you’ll	find	in	the	General
settings	menu.

Figure	10-9.	Double-check	the	App	Icons	Source	and	Launch	Images	Source	files

Setting	Your	Bundle	Name
The	bundle	name	of	your	project	in	Xcode	determines	what	your	application	will	be
named	on	the	user’s	device,	so	it’s	very	important.

Note	that	Xcode	sometimes	chokes	when	it	attempts	to	rename	files,	and	can	actually
corrupt	your	project	file.	Ensure	that	your	project	file	is	checked	into	a	version	control
system	before	attempting	to	use	Xcode’s	renaming	functionality.

We	can	view	and	edit	this	value	under	the	Identity	and	Type	section	in	the	right-hand
menu	pane	(Figure	10-10).	This	value	is	set	for	you	when	you	run	react-native	init,
but	if	you	want	to	change	the	name,	now’s	the	time	to	do	so.

Figure	10-10.	The	Name	under	the	Identity	and	Type	menu	is	user-facing

Updating	AppDelegate.m
Recall	how	in	AppDelegate.m,	there	are	two	ways	to	specify	the	JavaScript	code	location:
from	a	bundled	file,	or	from	localhost.	Running	the	React	Native	packager	in	development
is	fine,	but	for	deployment	we’ll	want	to	generate	a	bundled	JavaScript	file.

Comment	out	the	first	option,	which	uses	localhost,	and	enable	the	second	option,	which
loads	from	the	bundled	file:

//	jsCodeLocation	=

//	[NSURL	URLWithString:@"http://localhost:8081/index.ios.bundle"];

...

jsCodeLocation	=	[[NSBundle	mainBundle]

URLForResource:@"main"	withExtension:@"jsbundle"];

Having	done	this,	we’ll	need	to	generate	the	bundle.

From	your	project	directory,	run:

react-native	bundle	--minify

It’s	a	good	idea	to	confirm	that	your	application	still	works	in	the	simulator	after	this.
Restart	the	simulator	and	try	launching	your	application.	It	ought	to	work	as	usual.

Set	Schema	for	Release
Next,	we	need	to	set	the	build	scheme	for	Release,	instead	of	Debug.	As	shown	in
Figure	10-11,	navigate	to	Product	→	Scheme	→	Edit	Scheme….

Figure	10-11.	Select	the	Edit	Scheme…	option

Then	change	your	project	scheme	to	Release	(Figure	10-12).

Figure	10-12.	Set	the	Build	Configuration	to	Release	and	uncheck	“Debug	executable”

This	means	that	things	like	the	Debug	menu	won’t	appear	when	you	run	your	application.

Uploading	Your	Application
OK,	now	that	our	project	is	properly	configured	for	release,	it’s	time	to	actually	submit	it
to	Apple!

Getting	Your	Paperwork	in	Order
You	won’t	be	able	to	submit	your	application	to	the	App	Store	without	an	Apple
Developer	Account,	so	if	you	haven’t	signed	up	yet,	now’s	the	time!	It	will	set	you	back
$99	for	the	year.

Additionally,	if	you	signed	up	previously,	you	may	find	that	you	need	to	sign	some
updated	agreements.	The	error	messages	that	indicate	this	are	not	always	easy	to	parse,	as
you	can	see	in	Figure	10-13.

Figure	10-13.	If	you	see	this	kind	of	error,	first	attempt	to	follow	the	instructions	provided

Unfortunately,	visiting	the	specified	URL	sometimes	produces	a	similar	error,	as	shown	in
Figure	10-14.

Figure	10-14.	If	you	see	this	kind	of	error,	visit	iTunes	Connect	and	check	for	any	outstanding	paperwork

If	you	run	into	these	kinds	of	issues,	head	first	to	iTunes	Connect,	not	the	Member	Center.

https://developer.apple.com/membercenter
https://itunesconnect.apple.com

From	there,	select	Agreements,	Tax,	and	Banking,	and	fill	out	any	remaining	forms.

Creating	an	Archive
The	next	step	is	to	create	an	Archive	of	your	application	to	submit	to	the	App	Store.	This
action	is	located	in	the	menu	under	Product	→	Archive.

If	Archive	is	grayed	out	(as	in	Figure	10-15),	it’s	probably	because	you	have	the	iOS
Simulator	selected	as	your	build	target.

Figure	10-15.	If	the	Archive	option	is	disabled,	try	changing	your	build	target

Change	your	build	target	to	be	an	iOS	device,	and	you	should	be	able	to	select	Archive
from	the	menu.

Figure	10-16.	Select	Product	→	Archive	to	begin	the	archive	creation	process

If	successful,	the	Archives	screen	will	appear	(Figure	10-17).

Figure	10-17.	Choose	an	archive	to	upload	to	the	App	Store

Ready	to	hit	that	Upload	to	the	App	Store	button?	Go	for	it!	Xcode	will	run	a	few	last
checks,	and	then	you’ll	be	able	to	send	your	application	to	Apple	(Figure	10-18).

Figure	10-18.	Press	Submit	to	send	your	archive	to	the	App	Store

Creating	an	App	in	iTunes	Connect
If	you	thought	you	were	done	at	this	point,	I’m	sorry,	there’s	still	more	to	come!	Your
application	archive	has	been	uploaded,	but	now	you	need	to	prepare	your	actual
submission	via	iTunes	Connect.	This	includes	important	metadata	about	your	application,
such	as	the	description	and	screenshots,	which	will	be	user-facing.

For	more	in-depth	information	about	this	process,	you	can	consult	Apple’s	documentation
about	creating	an	iTunes	Connect	record.

First,	you’ll	need	to	register	an	App	ID	in	the	Developer	Center.	The	form	will	require	you
to	enter	a	Bundle	Identifier	for	your	application	(Figure	10-19).

Figure	10-19.	Setting	the	Bundle	Identifier	in	Xcode

This	should	match	the	Bundle	Identifier	listed	in	your	Xcode	project	(located	under	the
Identity	menu);	see	Figure	10-20.

Figure	10-20.	The	Bundle	ID	in	the	Developer	Center	should	match	the	Bundle	Identifier	from	Xcode

http://apple.co/1S6zsXq
http://apple.co/1NLquel

BUNDLE	IDENTIFIERS
If	your	Bundle	Identifiers	don’t	match,	you	won’t	be	able	to	associate	your	application	archive	with	its
iTunes	Connect	record.	Be	sure	to	double-check!

Next,	we	can	create	a	new	application	in	iTunes	Connect	(Figure	10-21).

Figure	10-21.	Select	New	iOS	App	to	create	a	new	app	from	iTunes	Connect

Once	again,	the	Bundle	Identifier	appears.	Select	the	appropriate	one	and	go	on	to	create
your	application.

If	your	application	archive	upload	was	successful,	you’ll	see	your	build	appear	in	iTunes
Connect	(Figure	10-22).

https://itunesconnect.apple.com

Figure	10-22.	After	uploading	your	application	archive,	it	will	appear	here	under	the	list	of	builds

If	you	don’t	see	any	builds	here,	try	checking	the	following:

Do	the	Bundle	IDs	in	your	iTunes	Connect	record	and	Xcode	project	match?

Did	Xcode	produce	any	errors	when	you	attempted	to	upload	the	archive?

What	happens	when	you	reupload	your	application	archive?

From	iTunes	Connect,	you’ll	now	be	able	to	enter	information	related	to	your	application’s
App	Store	listing	(e.g.,	the	correct	categorization,	description,	etc.).	There’s	plenty	of
information	to	fill	out,	so	take	your	time.

One	important	field	of	note:	this	page	also	lets	you	upload	screenshots	and	video
walkthroughs	of	your	application.	Providing	good-quality	screenshots	is	critical	to	your
application’s	success	in	the	App	Store.	As	usual,	you’ll	need	to	provide	appropriately
sized	screenshots	for	each	type	of	supported	device	(Figure	10-23).

Figure	10-23.	Uploading	screenshots

SCREENSHOTS	AND	THE	IOS	SIMULATOR
You	can	use	the	iOS	simulator	to	easily	obtain	appropriately	sized	screenshots.	Load	each	device	type	and
hit	Command+S	to	save	a	screenshot.

Beta	Testing	with	TestFlight
Before	you	submit	your	application	for	review	in	the	App	Store,	you	should	use	TestFlight
for	beta	testing.	Even	if	you’re	the	only	“beta	tester,”	working	with	TestFlight	rather	than	a
development-mode	application	gives	you	a	more	accurate	experience	of	what	your
application	will	be	like	once	downloaded	freshly	onto	a	user’s	device.

TestFlight	allows	you	to	easily	send	email	invitations	for	testing	to	users.	Under	your
application’s	record	in	iTunes	Connect,	select	TestFlight,	and	add	your	beta	testers
(Figure	10-24).	You’ll	need	their	email	addresses	in	order	to	do	so.

Figure	10-24.	The	TestFlight	screen	in	iTunes	Connect

Your	beta	testers	will	first	need	to	install	the	TestFlight	app.	Then,	once	they	receive	the
email	invitation	to	test	your	application,	TestFlight	will	give	them	the	option	of	installing
your	application	(Figure	10-25).	Once	installed,	the	application	will	behave	like	any	other.

Figure	10-25.	Beta	testers	will	receive	an	email	invitation	via	TestFlight,	which	will	allow	them	to	install	the	app

Submitting	the	Application	for	Review
After	you’re	satisfied	with	your	beta	testers’	feedback,	and	you’ve	filled	out	all	of	the
relevant	information	in	iTunes	Connect,	you	can	(finally!)	submit	your	application	for
review.	After	submission,	iTunes	Connect	will	note	that	your	application’s	status	is
“Waiting	for	Review”	(Figure	10-26).

Figure	10-26.	Your	application	status	is	viewable	in	iTunes	Connect

You	will	receive	email	updates	once	your	application	makes	it	to	the	front	of	the	review
queue,	and	once	it	is	rejected	or	accepted.	On	average,	the	App	Store	review	process
seems	to	take	1–2	weeks,	and	there’s	no	easy	way	to	tell	how	far	along	your	application	is.
Review	times	will	lengthen	during	the	busiest	times	of	year,	such	as	the	holiday	season.

To	give	you	a	point	of	reference,	Zebreto	was	accepted	after	an	eight-day	wait.	After	your
application	is	accepted,	congrats;	it	should	now	be	available	for	download	in	the	App
Store.

Summary
After	putting	in	the	hard	work	to	create	your	application,	releasing	it	to	your	users	can	feel
exhilarating!	However,	releasing	your	application	is	just	the	beginning,	as	you’ll	have	to
support	your	application	postrelease.	Unlike	the	Web,	where	you	can	deploy	often	and
easily,	new	iOS	versions	take	time,	and	have	a	longer	lifespan.	Many	iOS	users	don’t	have
auto-updating	enabled,	so	every	version	counts.	And	at	minimum	you’ll	need	to	wait	for
Apple	to	review	your	application	each	time	you	wish	to	submit	an	update	or	a	bugfix.	(For
truly	critical	bugfixes,	you	can	request	an	expedited	review,	but	use	these	carefully!)

Furthermore,	iOS	releases	are	somewhat	risky	in	terms	of	your	application’s	rating.	Your
average	review,	displayed	on	the	app’s	page	in	the	App	Store,	is	based	on	the	current
version,	not	its	overall	rating,	so	a	buggy	release	can	really	hurt	you.	Remember,	testing	is
your	friend!

When	you	have	a	new	version	of	your	application	to	submit,	the	process	is	very	similar	to
the	initial	upload	process.	Bump	your	application	version	in	Xcode,	then	submit	a	new
archive.	You’ll	find	options	to	submit	a	new	build	for	review	in	iTunes	Connect.

Now	that	we’ve	covered	how	to	submit	your	application	to	the	iOS	App	Store,	in	the	next
chapter	we’ll	turn	our	attention	to	how	the	analogous	process	works	for	Android.

Chapter	11.	Deploying	Android
Applications

All	right!	You’ve	made	it	this	far;	ready	to	deploy	your	Android	app	and	get	it	into	your
users’	hands?	If	you’ve	already	gone	through	the	iOS	app	submission	process,	plenty	here
will	feel	familiar,	though	happily	the	Play	Store	approval	process	is	simpler.	Review	is
faster,	too:	you	can	expect	it	to	take	1–2	business	days	for	your	application	to	be	approved.

In	this	chapter,	we’ll	cover	what	you’ll	need	to	do	to	generate	a	deploy-ready	APK	of	your
React	Native	application,	how	to	distribute	it	to	your	beta	testers,	and	how	to	submit	it	to
the	Google	Play	Store	for	review.

CHECK	THE	DOCS!
We’ll	be	doing	a	detailed	walkthrough	of	how	to	deploy	your	Android	application	here,	but	you’ll	always
want	to	consult	the	official	documentation	for	the	most	up-to-date	procedures.

https://facebook.github.io/react-native/docs/signed-apk-android.html

Setting	Application	Icon
While	the	default	Android	icon	is	kinda	cute,	you’ll	want	to	replace	it	with	a	custom
application	icon	before	you	deploy	your	application.

The	application	icon	is	specified	in	android/app/src/main/AndroidManifest.xml:

android:icon="@mipmap/ic_launcher"

That	filepath	refers	to	a	path	within	android/app/src/main/res/.	You	may	recall	from
Chapter	3	that	Android	image	resources	are	located	in	different	folders	based	on	their
resolution.	The	icon	file	is	no	different.	You’ll	notice	that	the	default	icon	is	already
present	in	your	application	(Figure	11-1).

Figure	11-1.	File	structure	for	the	application	icon	files

You	can	just	replace	these	files	directly,	or	change	the	icon	path	in	your
AndroidManifest.xml	to	point	to	a	different	location.	When	you	reinstall	your	application
onto	the	device,	you’ll	see	that	it’s	using	your	new	icon	(Figure	11-2).

Figure	11-2.	Viewing	our	installed	apps,	now	with	a	custom	icon	for	Zebreto

If	creating	app	icons	in	the	various	resolutions	sounds	tedious,	try	using	a	tool	that
generates	the	appropriate	sizes	for	you.	I	am	personally	a	fan	of	romannurik’s	project.

https://romannurik.github.io/AndroidAssetStudio/icons-launcher.html

Building	the	APK	for	Release
To	deploy	an	Android	application,	we	need	to	generate	a	release	APK	(an	APK	is	an
Android	application	package	file,	the	format	used	to	distribute	Android	applications).
There	are	five	basic	steps	here:

1.	 Generate	a	signing	key.

2.	 Set	up	gradle	variables.

3.	 Add	signing	config	to	application’s	gradle	config.

4.	 Generate	the	release	APK.

5.	 Install	release	APK	on	a	device.

We’ll	walk	through	them	one	by	one.	You	may	also	want	to	read	Android’s	official
Publishing	Overview	for	more	context.

First,	you’ll	need	to	generate	a	signing	key	for	your	application.

You	can	use	keytool	to	generate	a	keystore	and	key:

$	keytool	-genkey	-v	-keystore	my-release-key.keystore	\

				-alias	my-key-alias	-keyalg	RSA	-keysize	2048	-validity	10000

The	Android	docs	have	more	information	about	application	signing.	Android	uses
certificate	signing	to	identify	the	author	of	an	application.	Don’t	forget	your	passphrase,
and	don’t	lose	your	key.	You’ll	need	these	to	release	updates	to	your	application!

The	preceding	command	will	generate	a	my-release-key.keystore	file.	Move	it	into	the
android/app/	directory	in	your	project.

Then,	create	or	edit	the	file	~/.gradle/gradle.properties	and	add	the	code	provided	in
Example	11-1.

Example	11-1.	Add	these	variables	to	~/.gradle/gradle.properties
MYAPP_RELEASE_STORE_FILE=my-release-key.keystore

MYAPP_RELEASE_KEY_ALIAS=my-key-alias

MYAPP_RELEASE_STORE_PASSWORD=*****

MYAPP_RELEASE_KEY_PASSWORD=*****

Replace	the	asterisks	with	the	password	you	used	when	invoking	keytool	earlier.

By	placing	these	in	our	~/.gradle/gradle.properties	file,	we’re	including	them	in	our
general	gradle	configuration.	(Remember,	gradle	is	the	build	system	used	for	our	React
Native	projects.)

http://bit.ly/21cvRNw
http://developer.android.com/tools/publishing/app-signing.html

BE	CAREFUL	WITH	YOUR	KEYS!
Don’t	check	your	key	passwords	into	version	control!	And	don’t	lose	your	keys.	After	publishing	your
application,	if	you	want	to	use	a	new	key,	you’ll	need	to	create	a	fresh	Play	Store	entry,	and	you’ll	lose	all
of	your	download	stats	and	reviews.

Now	that	we’ve	set	up	our	gradle	variables,	we	need	to	add	our	signing	config	to	our
application’s	gradle	config.	Open	up	the	android/app/build.gradle	file	and	add	the	signing
config	(Example	11-2).

Example	11-2.	Modifications	to	android/app/build.gradle
...

android	{

		...

		defaultConfig	{	...	}

		signingConfigs	{

				release	{

						storeFile	file(MYAPP_RELEASE_STORE_FILE)

						storePassword	MYAPP_RELEASE_STORE_PASSWORD

						keyAlias	MYAPP_RELEASE_KEY_ALIAS

						keyPassword	MYAPP_RELEASE_KEY_PASSWORD

				}

		}

		buildTypes	{

				release	{

						...

						signingConfig	signingConfigs.release

				}

		}

}

...

Note	that	here	we’re	using	the	variables	we	defined	earlier	in	~/.gradle/gradle.properties.

OK!	Now	we’re	ready	to	generate	our	signed	APK.

Start	the	React	Native	Packager	in	your	terminal,	from	the	project	root:

$	npm	start

Again,	from	the	project	root,	run	the	following	commands:

$	mkdir	-p	android/app/src/main/assets

$	curl	\

"localhost:8081/index.android.bundle?platform=android&dev=false&minify=true"	\

				-o	"android/app/src/main/assets/index.android.bundle"

$	cd	android		&&	./gradlew	assembleRelease

Whoa,	what’s	going	on	here?	First,	we’re	creating	an	assets/	directory	to	store	our	bundled
JavaScript.	Then	we’re	fetching	the	bundled	JavaScript	from	the	React	Native	Packager
via	a	curl	command.	Finally,	we’re	using	gradlew	to	build	our	release	APK.

THIS	PROCEDURE	MIGHT	CHANGE!
The	React	Native	team	has	indicated	that	this	procedure	might	change	in	future	versions	of	React	Native,	as
curling	a	special	URL	isn’t	the	most	intuitive	process.	As	always,	consult	the	official	docs.

After	this,	you	can	kill	the	React	Native	Packager;	your	bundled	JavaScript	has	been	saved
to	disk.

From	the	android/	directory	of	your	project,	run	the	following	command	to	install	your
signed	APK:

./gradlew	installRelease

This	will	install	the	signed	APK	onto	your	device.

As	always	before	deploying,	you’ll	want	to	test	your	application.	For	starters,	you	can
upload	this	APK	to	an	emulator	or	a	plugged-in	physical	device	using	the	gradlew
installRelease	command.

http://bit.ly/1NLqElP

Distributing	via	Email	or	Other	Links
Did	you	know	that	you	don’t	actually	need	to	deploy	your	application	the	Play	Store	in
order	to	distribute	it	to	Android	users?	In	a	pinch	—	or	for	testing	—	you	can	just
distribute	the	APK	file	to	users	via	email.	Opening	the	email	from	an	Android	device	will
give	users	the	ability	to	install	it.

Your	APK	file	is	located	at	android/app/build/outputs/apk/app-release.apk.	You	can
confirm	that	your	release	APK	was	successfully	built	by	checking	that	the	file	exists:

$	ls	android/app/build/outputs/apk/

app-debug-unaligned.apk		app-debug.apk

app-release-unaligned.apk		app-release.apk

Emailing	that	file	to	your	users	will	allow	them	to	download	and	install	it.	In	fact,	linking
to	this	APK	from	anywhere,	and	opening	that	link	from	Android,	will	allow	users	to	install
your	application.

One	caveat:	you’ll	first	need	to	enable	application	installs	from	unknown	sources.	Check
the	Android	docs	on	unknown	sources	for	more	information.

http://bit.ly/1N4fxUC

Submitting	Your	Application	to	the	Play	Store
After	you’ve	had	some	time	to	test	your	release	APK	on	a	real	device	(or,	hopefully,
multiple	devices),	you’re	ready	to	deploy	to	the	Google	Play	Store.	All	right!

This	process	is	relatively	painless,	and	review	is	pretty	quick,	too;	you	can	expect	to	have
your	application	deployed	within	24	hours	after	submitting.

Begin	by	navigating	to	http://developer.android.com	and	clicking	on	Developer	Console	in
the	top-right	corner	of	the	page	(Figure	11-3).

Figure	11-3.	Navigate	to	the	Developer	Console	from	http://developer.android.com

If	you	don’t	already	have	a	developer	account,	you’ll	need	to	make	one,	and	accept
Google’s	terms	and	conditions.	Then,	click	the	Android	icon	on	the	lefthand	menu	to	view
the	Applications	menu.

Click	the	“+	Add	new	application”	button	to	create	your	application	(Figure	11-4).

http://developer.android.com
http://developer.android.com

Figure	11-4.	Adding	a	new	application

Here,	you’ll	be	given	the	option	of	either	uploading	an	APK	first,	or	editing	your	Play
Store	listing.	Either	is	fine.

To	upload	your	APK,	find	the	release	APK	on	your	file	system	—	it	should	be	in
android/app/build/outputs/apk/app-release.apk	(Figure	11-5).

Figure	11-5.	Select	your	app-release.apk	file

Once	your	APK	file	is	uploaded,	you	can	fill	out	the	rest	of	your	Play	Store	listing,	or	set
up	Beta	Testing.

Beta	Testing	via	the	Play	Store
The	Google	Play	Store	provides	easy	beta	testing	functionality.	Once	you’ve	uploaded
your	APK,	select	the	Beta	Testing	tab	to	start	adding	beta	testers	(Figure	11-6).

Figure	11-6.	Beta	Testing	options	in	the	Play	Store

You	have	a	few	options	here:

Open	Beta	Testing

With	this	option,	users	can	join	the	program	via	a	special	link

Closed	Beta	Testing

This	allows	you	to	add	individual	users	via	their	email	address

Beta	Testing	Using	Google	Groups	or	Google+	Communities

This	option	allows	members	of	your	special	Google	Group	to	join	the	beta	test

Google	then	makes	it	easy	to	distribute	your	APK	to	these	users.

Even	more	so	than	with	iOS,	for	Android	you’ll	want	to	get	your	app	into	the	hands	of	as
many	users	as	possible,	because	there’s	so	much	variation	in	devices.	For	example,
Zebreto,	a	React	Native	application	built	with	the	default	settings,	is	listed	as	compatible
with	7,867	different	devices	according	to	the	Play	Store	(Figure	11-7).	Yikes!

Figure	11-7.	The	Play	Store	will	helpfully	indicate	which	devices	your	application	supports

Different	devices	mean	different	screen	sizes	and	resolutions,	different	features,	and	even
differences	in	styling	—	some	manufacturers	apply	their	own	skins	on	top	of	Android’s
default	UI.	Take	advantage	of	the	Beta	Testing	option!

Play	Store	Listing
Your	Play	Store	listing	includes	important	information	about	your	application	(e.g.,	its
title,	description,	category,	content	rating,	etc.).	You’ll	need	to	fill	out	most	of	these	fields
in	order	to	release	your	application.

The	developer	console	will	helpfully	provide	you	with	a	list	of	remaining	tasks	if	you
click	on	the	“Why	can’t	I	publish?”	link	(Figure	11-8).

Figure	11-8.	Pending	tasks	that	must	be	completed	before	publishing

As	you	work	through	the	various	required	tasks,	the	checkmarks	in	the	menu	on	the
lefthand	side	will	turn	green.	Finally,	once	you’ve	completed	all	the	necessary	steps,	the
“Publish	app”	button	will	be	enabled.

Required	Assets	for	the	Store	Listing
As	part	of	your	Play	Store	listing,	you’ll	need	to	upload	some	image	assets	(Figure	11-9).
These	include:

At	least	two	screenshots	from	your	application

A	512x512	pixel	PNG	version	of	your	application’s	icon

A	1024x500	pixel	JPG	or	PNG	“feature	image”	for	the	Play	Store

Figure	11-9.	Uploading	graphics	to	the	Play	Store	listing

There	are	also	some	other,	optional	images,	too,	such	as	the	Promo	Graphic	and	Promo
Video.

Remember	that	these	assets	are	critical	to	your	application’s	success	on	the	Play	Store!

If	you	don’t	already	have	screenshots,	it’s	time	to	take	some.	You	have	two	options	here:
taking	screenshots	from	a	physical	device,	or	using	an	emulator.	You	can	take	screenshots
on	a	physical	device	by	holding	down	the	power	and	volume-down	buttons	at	the	same
time.

Taking	screenshots	from	the	emulator	is	a	bit	more	complicated.	First,	make	sure	that	your
emulator	has	storage	allocated	for	an	SD	card	file.	(You	can	do	this	by	running	android
avd	and	then	selecting	“Edit”	to	view	the	emulator’s	specifications.)

Then,	you	can	take	screenshots	using	the	adb	shell:

adb	shell	screencap	-p	/sdcard/screen.png

adb	pull	/sdcard/screen.png

adb	shell	rm	/sdcard/screen.png

These	commands	will	take	a	screenshot,	then	pull	them	onto	your	local	filesystem.

If	you’d	prefer	a	one-liner,	try	the	following	command:1

adb	shell	screencap	-p	|	perl	-pe	's/\x0D\x0A/\x0A/g'	>	screen.png

This	will	copy	your	screenshot	into	screen.png	on	your	local	filesystem.

Publishing	Your	Application
Ready	to	submit	your	application?	As	shown	in	Figure	11-10,	go	ahead	and	hit	the
“Publish	app”	button!

Figure	11-10.	Publishing	your	application	to	the	Play	Store

After	submitting	your	application	for	review,	your	application	status	will	switch	to
pending,	as	you	can	see	in	Figure	11-11.

Figure	11-11.	Application	pending	review

You	should	typically	hear	back	within	24	hours.	Afterward,	your	application	will	be
available	to	the	public	via	the	Play	Store	—	congratulations!	See	Figure	11-12.	Go	ahead
and	bask	in	the	glory	of	your	publicly	available,	complete	Android	application.

Figure	11-12.	The	Zebreto	application,	live	on	the	Play	Store

Summary
By	this	point,	you	should	be	equipped	to	release	your	React	Native	applications	through
both	the	Google	Play	Store	and	the	iOS	App	Store!

Generally	speaking,	the	process	for	releasing	Android	apps	is	faster	and	simpler,
compared	with	the	App	Store	release	process.	However,	just	as	with	iOS,	deploying	your
application	is	just	the	beginning.	You	should	plan	on	how	you’ll	support	your	Android
application	postrelease,	and	just	as	with	iOS,	you	should	not	assume	that	users	will	have
auto-updating	turned	on	for	your	application.	Additionally,	Android	users	have	a	huge
range	of	devices	with	diverse	specifications,	so	user	testing	each	version	is	even	more
important	on	Android.
1	The	one-line	version	comes	to	us	courtesy	of	shvestov’s	blog.	Head	there	if	you’re
curious	about	why	we	need	to	use	Perl.

http://bit.ly/1MxOK61

Conclusion

If	you’ve	made	it	this	far,	congratulations!

We’ve	gone	from	creating	your	very	first	React	Native	application	all	the	way	up	through
deploying	a	cross-platform	application	to	both	the	iOS	App	Store	and	the	Google	Play
Store.	In	order	to	do	so,	we	started	by	looking	at	the	basic	components	for	React	Native,
and	how	to	style	them.	We	learned	how	to	work	with	touch	and	platform	native	APIs,	like
the	Camera	Roll	and	Geolocation	APIs.	We	covered	how	to	debug	React	Native
applications	with	the	developer	tools,	and	how	to	deploy	your	applications	to	real	devices.
For	functionality	beyond	the	standard	React	Native	library,	we	also	saw	how	to	use	native
Objective-C	and	Java	modules	as	well	as	third-party	JavaScript	libraries	using	npm.

Your	knowledge	of	JavaScript	and	React,	coupled	with	the	topics	we’ve	covered	in	this
book,	should	enable	you	to	quickly	and	efficiently	write	cross-platform	mobile
applications	for	Android	and	iOS.	Of	course,	there’s	still	plenty	to	learn,	and	this	single
book	can’t	cover	all	the	things	you’ll	need	to	know	in	order	to	develop	mobile
applications	with	React	Native.	If	you	get	stuck	or	have	questions,	reach	out	to	the
community,	whether	that’s	on	Stack	Overflow	or	on	IRC
(irc://chat.freenode.net/reactnative).

Keep	in	touch!	Join	the	Learning	React	Native	mailing	list	at	LearningReactNative.com
for	more	resources	and	updates	related	to	the	book.	You	can	also	find	me	on	Twitter	as
@brindelle.

Finally,	and	most	importantly,	have	fun!	I’m	looking	forward	to	seeing	what	you	build.

http://stackoverflow.com/questions/tagged/react-native
http://learningreactnative.com
http://twitter.com/brindelle

Appendix	A.	ES6	Syntax

Some	of	the	code	samples	in	this	book	use	what’s	known	as	ES6	syntax.	If	you’re	not
familiar	with	ES6	syntax,	don’t	worry	—	it’s	a	pretty	straightforward	translation	from	the
JavaScript	you	might	be	accustomed	to.

ES6	refers	to	ECMAScript	6,	also	known	as	“Harmony,”	the	forthcoming	version	of
ECMAScript.	JavaScript	is	an	implementation	of	ECMAScript.	There’s	plenty	of
interesting	history	behind	these	naming	conventions,	but	what	you	need	to	know	is:	ES6	is
the	“new”	version	of	JavaScript,	and	extends	the	existing	specification	with	some	helpful
new	features.

React	Native	uses	Babel,	the	JavaScript	compiler,	to	transform	our	JavaScript	and	JSX
code.	One	of	Babel’s	features	is	its	ability	to	compile	ES6	syntax	into	ES5-compliant
JavaScript,	so	we	can	use	ES6	syntax	throughout	our	React	codebase.

https://babeljs.io/

Destructuring
Destructuring	assignments	provide	us	with	a	convenient	shorthand	for	extracting	data
from	objects.

Take	this	ES5-compliant	snippet:

var	myObj	=	{a:	1,	b:	2};

var	a	=	myObj.a;

var	b	=	myObj.b;

We	can	use	destructuring	to	do	this	more	succinctly:

var	{a,	b}	=	{a:	1,	b:	2};

You’ll	often	see	this	used	with	require	statements.	When	we	require	React,	we’re
actually	getting	out	an	object.	We	could	name	components	using	the	syntax,	as	shown	in
Example	A-1.

Example	A-1.	Importing	the	<View>	component	without	destructuring
var	React	=	require('react-native');

var	View	=	React.View

But	it’s	much	nicer	to	use	destructuring,	as	shown	in	Example	A-2.

Example	A-2.	Using	destructuring	to	import	the	<View>	component
var	{	View	}	=	require('react-native');

http://mzl.la/1I6ppBl

Importing	Modules
Normally,	we	might	use	CommonJS	module	syntax	to	export	our	components	and	other
JavaScript	modules	(Example	A-3).	In	this	system,	we	use	require	to	import	other
modules,	and	assign	a	value	to	module.exports	in	order	to	make	a	file’s	contents
available	to	other	modules.

Example	A-3.	Requiring	and	exporting	modules	using	CommonJS	syntax
var	OtherComponent	=	require('./other_component');

var	MyComponent	=	React.createClass({

		...

});

module.exports	=	MyComponent;

With	ES6	module	syntax,	we	can	use	the	export	and	import	commands	instead.
Example	A-4	shows	the	equivalent	code,	using	ES6	module	syntax.

Example	A-4.	Importing	and	exporting	modules	using	ES6	module	syntax
import	OtherComponent	from	'./other_component';

var	MyComponent	=	React.createClass({

		...

});

export	default	MyComponent;

http://mzl.la/21cv5QF

Function	Shorthand
ES6’s	function	shorthand	is	also	convenient.	In	ES5-compliant	JavaScript,	we	define
functions	as	shown	in	Example	A-5.

Example	A-5.	Longhand	function	declaration
render:	function()	{

		return	<Text>Hi</Text>;

}

Writing	out	function	over	and	over	again	can	get	annoying.	Example	A-6	shows	the	same
function,	this	time	applying	ES6’s	function	shorthand.

Example	A-6.	Shorthand	function	declaration
render()	{

		return	<Text>Hi</Text>;

}

http://mzl.la/1SW4AJ4

Fat	Arrow	Functions
In	ES5-compliant	JavaScript,	we	often	need	to	bind	our	functions	to	make	sure	that	their
context	(i.e.,	the	value	of	this)	is	as	expected	(Example	A-7).	This	is	especially	common
when	dealing	with	callbacks.

Example	A-7.	Binding	functions	manually	with	ES5-compliant	JavaScript
var	callbackFunc	=	function(val)	{

		console.log('Do	something');

}.bind(this);

Fat	arrow	functions	are	automatically	bound,	so	we	don’t	need	to	do	that	ourselves
(Example	A-8).

Example	A-8.	Using	a	fat-arrow	function	for	binding
var	callbackFunc	=	(val)	=>	{

		console.log('Do	something');

};

http://mzl.la/1MN2cRj

String	Interpolation
In	ES5-compliant	JavaScript,	we	might	build	a	string	by	using	code	such	as	that	in
Example	A-9.

Example	A-9.	String	concatenation	in	ES5-compliant	JavaScript
var	API_KEY	=	'abcdefg';

var	url	=	'http://someapi.com/request&key='	+	API_KEY;

ES6	provides	us	with	tempate	strings,	which	support	multiline	strings	and	string
interpolation.	By	enclosing	a	string	in	backticks,	we	can	insert	other	variable	values	using
the	${}	syntax	(Example	A-10).

Example	A-10.	String	interpolation	in	ES6
var	API_KEY	=	'abcdefg';

var	url	=	`http://someapi.com/request&key=${API_KEY}`;

http://mzl.la/21cvceS

Appendix	B.	Commands	and	Quickstart
Guide

This	appendix	serves	as	a	reference	for	some	handy	commands	when	working	with	React
Native	projects.

Creating	a	New	Project
react-native	init	MyProject

Running	on	iOS
Open	ios/MyProject.xcodeproj	in	Xcode.	Click	the	Play	button	in	the	top-left.	The	React
Native	Packager	should	launch,	as	well	as	the	iOS	simulator.

Taking	Screenshots	on	iOS
From	the	iOS	simulator,	pressing	Command+S	will	save	a	screenshot	to	your	desktop.

On	a	physical	device,	press	the	power	and	home	buttons	at	the	same	time.

Running	on	Android
First,	make	sure	you	have	an	eligible	device	available.

To	start	an	emulator,	run:

android	avd

Either	create	a	new	Android	Virtual	Device,	or	select	an	existing	one	and	hit	the	Start…
button.

Alternatively,	you	can	attach	a	device	via	USB	with	USB	debugging	enabled.	To	enable
USB	debugging,	go	to	Settings	→	About	Phone	→	Build	Number.	Tap	the	Build	Number
seven	times,	until	the	device	asks	if	you	would	like	to	enable	development	mode,	and
select	“yes.”

Once	you	have	completed	either	of	those	steps,	run:

react-native	run-android

This	will	install	your	application	on	the	device	and	start	the	React	Native	Packager.

Taking	Screenshots	on	Android
You	can	take	screenshots	on	a	physical	device	by	holding	down	the	power	and	volume-
down	buttons	at	the	same	time.

To	take	screenshots	from	the	emulator:	ensure	that	your	emulator	has	SD	card	storage
enabled.	Then	use	the	adb	shell:

adb	shell	screencap	-p	/sdcard/screen.png

adb	pull	/sdcard/screen.png

adb	shell	rm	/sdcard/screen.png

Alternatively,	use	the	following	abbreviated	command:

adb	shell	screencap	-p	|	perl	-pe	's/\x0D\x0A/\x0A/g'	>	screen.png

Running	the	React	Native	Packager
If,	for	some	reason,	you	need	to	start	the	React	Native	Packager	manually,	navigate	to
your	project’s	root	directory	and	run:

npm	start

Index

Symbols

@2x	and	@3x	resolution	files,	The	Image	Component

@ReactProp	decorator,	Android	Implementation	of	LinearGradient

A

absolute	positioning,	Using	Absolute	Positioning

actions	in	Zebreto	app,	Using	Reflux	in	Zebreto

alignItems	property,	Layouts	with	Flexbox

Android

adding	images	to	projects,	Adding	a	Background	Image

attaching	React	component	to	the	view,	Attaching	a	Component	to	the	View

common	probems	with,	Common	Android	Problems

deploying	applications,	Deploying	Android	Applications-Summary

building	APK	for	release,	Building	the	APK	for	Release

distributing	via	email	or	other	links,	Distributing	via	Email	or	Other	Links

official	documentation,	Deploying	Android	Applications

setting	application	icon,	Setting	Application	Icon

submitting	apps	to	Google	Play	Store,	Submitting	Your	Application	to	the	Play
Store-Summary

development	environment	setup,	Android	Dependencies

Java	API	invoked	by	React	Native	bridge,	What	Is	React	Native?

native	modules	for,	Native	Modules	for	Android-Android	Implementation	of
LinearGradient

platform-specific	components,	iOS-	or	Android-Only	Components

running	React	Native	application	for,	Running	a	React	Native	Application	for
Android

android	avd	command,	Running	on	Android

Android	Design	Guide,	Other	Organizational	Components

Android	SDK	Manager,	opening,	Android	Dependencies

Android	SDK,	installing,	Android	Dependencies

Android	Virtual	Devices	(AVDs),	Android	Dependencies

android.graphics	package,	Installing	a	Third-Party	Component

android.util.log	file,	Anatomy	of	a	Java	Native	Module

AndroidManifest.xml	file,	Setting	Application	Icon

ANDROID_HOME	variable,	Common	Android	Problems

exporting,	Android	Dependencies

APK	file	for	release	of	Android	apps,	Building	the	APK	for	Release

emailing	to	users,	Distributing	via	Email	or	Other	Links

uploading	to	Google	Play	Store,	Submitting	Your	Application	to	the	Play	Store

AppDelegate.m	file,	Attaching	a	Component	to	the	View

attaching	component	to	the	view,	Attaching	a	Component	to	the	View

declaring	root	view	in,	Attaching	a	Component	to	the	View

jsCodeLocation,	Uploading	to	Your	iOS	Device,	Updating	AppDelegate.m

Apple	Developer	account,	Getting	Your	Paperwork	in	Order

checking	if	it’s	in	order,	Issues	Deploying	to	an	iOS	Device

Apple	Developer,	registering	your	device	with,	Uploading	to	Your	iOS	Device

application	icon

for	Android	apps,	Setting	Application	Icon

for	iOS	apps,	Adding	Your	Application	Icon

AppRegistry,	Attaching	a	Component	to	the	View

importing	in	React	Native	code,	Imports	in	React	Native

AppRegistry.registerComponent(),	Attaching	a	Component	to	the	View

archive	of	your	application,	for	iOS	App	Store,	Creating	an	Archive

array	of	objects,	style	attribute	accepting,	Style	Concatenation

assets

adding	to	projects,	Adding	a	Background	Image

problems	with	size	in	Xcode,	Common	Xcode	Problems

required	for	Play	Store	listing,	Required	Assets	for	the	Store	Listing

AsyncStorage	module,	Storing	Persistent	Data	with	AsyncStore

storage	key,	Storing	Persistent	Data	with	AsyncStore

AVD	(Android	Virtual	Devices)	Manager,	Android	Dependencies

starting,	Running	a	React	Native	Application	for	Android

AVDs	(Android	Virtual	Devices),	Android	Dependencies

AVPlayer	API	(iOS),	Implementation	of	RCTVideo

B

Babel,	ES6	Syntax

.babelrc	file,	Project	Structure

background	image

adding	to	weather	app,	Adding	a	Background	Image

applying	in	React	Native,	The	Image	Component

background-image	property,	The	Image	Component

Best	Sellers	app,	Using	ListView-Using	ListView

BookListV2.js	and	BookItem.js	files,	Using	ListView

header	and	footer	component,	Using	ListView

ListView,	using,	Using	ListView

updating	render	function	for	coverURL,	author,	and	title	props,	Using	ListView

beta	testing	apps

for	iOS,	using	TestFlight,	Beta	Testing	with	TestFlight

on	Google	Play	Store,	Beta	Testing	via	the	Play	Store

bitmap	drawable	resources	(Android),	Adding	a	Background	Image

bottom	property,	Using	Absolute	Positioning

brew	doctor,	Common	Development	Environment	Issues

brew,	keeping	up	to	date,	Common	Development	Environment	Issues

bridge,	How	Does	React	Native	Work?

invoking	native	rendering	APIs,	What	Is	React	Native?

build.gradle	file	(Android),	Installing	a	Third-Party	Component

signing	config,	Building	the	APK	for	Release

Bundle	Identifier	(for	iOS	apps),	Creating	an	App	in	iTunes	Connect

bundle	name	for	Xcode	projects,	Setting	Your	Bundle	Name

buttons

Button	component,	SmarterWeather	app,	The	Button	Component

Button	component,	Zebreto	app,	Component	Hierarchy

combining	button	and	accentText	styles	for	AccentButton	component,	Style
Concatenation

conditional	styles,	applying	to	Button	component,	Style	Concatenation

LocationButton	component,	SmarterWeather	app,	Updating	the	Weather
Application,	The	LocationButton	Component

C

CAGradientLayer	API	(Android),	Installing	a	Third-Party	Component

camera,	accessing,	Accessing	the	User’s	Images	and	Camera

CameraRoll	module,	The	CameraRoll	Module

CameraRoll.getPhotos	function,	The	CameraRoll	Module

displaying	list	of	user’s	photos,	Displaying	a	List	of	Photos

rendering	photos	received	from	camera	roll,	Rendering	an	Image	from	the
Camera	Roll

requesting	images	with	getPhotoParams,	Requesting	Images	with
GetPhotoParams

card	creation,	Zebreto	app,	The	Flashcard	Application

component	tree	for,	Component	Hierarchy

card	review,	Zebreto	app,	The	Flashcard	Application

component	tree	for,	Component	Hierarchy

components	needing	to	know	about	a	review,	Data	Flow	Architecture:	Reflux	and
Flux

handling	updates	after	a	review,	Using	Reflux	in	Zebreto

certificates

for	Android	apps,	Building	the	APK	for	Release

for	Apple	developer	account,	Uploading	to	Your	iOS	Device

problems	with	signed	version	of	Android	app,	Common	Android	Problems

Chrome	Developer	Tools,	Activating	the	Developer	Options

Debug,	Debugging	with	console.log

using	JavaScript	debugger,	Using	the	JavaScript	Debugger

Chrome	extension,	React	Developer	Tools,	Working	with	the	React	Developer	Tools

classes

Java,	Anatomy	of	a	Java	Native	Module

Objective-C,	Anatomy	of	an	Objective-C	Native	Module

React	Native,	RCT	prefix	for,	Attaching	a	Component	to	the	View

cloneWithRows	method	(DataSource),	Using	ListView

code	reuse	with	React	Native,	Code	Reuse	and	Knowledge	Sharing

reusing	styles,	Reusing	and	Sharing	Styles

commands,	Commands	and	Quickstart	Guide

components	for	mobile,	Components	for	Mobile-Summary

analogies	between	HTML	elements	and,	Analogies	Between	HTML	Elements	and
Native	Components

communicating	between	components,	Data	Flow	Architecture:	Reflux	and	Flux

component	hierarchy	in	Zebreto	app,	Component	Hierarchy

for	touch	and	gestures,	Working	with	Touch	and	Gestures

deciding	how	to	handle	touch,	Choosing	how	to	handle	touch

GestureResponder	system,	The	GestureResponder	System-The
GestureResponder	System

PanResponder	class,	PanResponder-Choosing	how	to	handle	touch

TouchableHighlight	component,	Using	TouchableHighlight

Image	component,	The	Image	Component

organizational	components,	Working	with	Organizational	Components-Other
Organizational	Components

using	Navigators,	Using	Navigators

platform-specific,	Platform-Specific	Components-When	to	Use	Platform-Specific
Components

when	to	use,	When	to	Use	Platform-Specific	Components

receiving	style	objects	via	props,	Passing	Styles	as	Props

Text	component,	The	Text	Component

web	apps	and,	Analogies	Between	HTML	Elements	and	Native	Components

concatenation,	styles,	Style	Concatenation

conditional	styles,	Style	Concatenation

console.log,	debugging	with,	Debugging	with	console.log

contain	(resizeMode),	The	Image	Component

content	creation,	Zebreto	app,	The	Flashcard	Application

cover	(resizeMode),	The	Image	Component

cross-platform	applications

components	with	platform-specific	versions,	Components	with	Platform-Specific
Versions

native	modules,	Cross-Platform	Native	Modules

CSS

nesting	and	overriding	style	classes	vs.	style	concatenation,	Style	Concatenation

positioning	techniques,	Positioning	and	Designing	Layouts

problems	with	traditional	stylesheets,	Declaring	and	Manipulating	Styles

styling	React	Native	components,	Styling	Native	Components

D

data	flow	architecture,	Reflux	and	Flux,	Data	Flow	Architecture:	Reflux	and	Flux

using	Reflux	in	Zebreto	app,	Using	Reflux	in	Zebreto

data	modeling,	Zebreto	app,	Modeling	and	Storing	Data

Deck	and	Card	classes,	Modeling	and	Storing	Data

dataSource	prop	(ListView),	Using	ListView

date	objects,	Modeling	and	Storing	Data

DatePickerIOS	component,	Working	with	Views

debugging,	Debugging	and	Developer	Tools-Summary

activating	developer	options,	Activating	the	Developer	Options

beyond	JavaScript,	Debugging	Beyond	JavaScript

Android	problems,	Common	Android	Problems

development	environment	issues,	Common	Development	Environment	Issues

iOS	simulator,	strange	behavior	in,	Simulator	Behavior

React	Native	packager,	The	React	Native	Packager

Xcode	problems,	Common	Xcode	Problems

JavaScript	debugging,	JavaScript	Debugging	Practices,	Translated

reaching	out	to	React	Native	community,	When	You’re	Stuck

React	Native	debugging	tools,	React	Native	Debugging	Tools

inspect	element,	Using	Inspect	Element

Red	Screen	of	Death,	The	Red	Screen	of	Death

testing	your	code,	Testing	Your	Code

using	console.log,	Debugging	with	console.log

using	JavaScript	debugger,	Using	the	JavaScript	Debugger

working	with	React	Developer	Tools,	Working	with	the	React	Developer	Tools

deck	creation,	Zebreto	app

component	hierarchy,	Component	Hierarchy

Reflux	data	flow,	Using	Reflux	in	Zebreto

dependencies

external,	installing,	Installing	JavaScript	Libraries	with	npm

in	Andoid	build.gradle	file,	Installing	a	Third-Party	Component

missing	Android	dependencies,	Common	Android	Problems

outside	libraries	used	in	Zebreto	app,	A	Look	at	Third-Party	Dependencies

problems	with,	Common	Development	Environment	Issues

deploying	applications

Android	apps,	Deploying	Android	Applications-Summary

building	APK	for	release,	Building	the	APK	for	Release

distributing	via	email	or	other	links,	Distributing	via	Email	or	Other	Links

publishing	to	Google	Play	Store,	Publishing	Your	Application

setting	application	icon,	Setting	Application	Icon

submitting	to	Google	Play	Store,	Submitting	Your	Application	to	the	Play	Store-
Summary

to	iOS	App	Store,	Deploying	to	the	iOS	App	Store-Summary

uploading	your	application,	Uploading	Your	Application

design	guidelines,	platform-specific	components,	Other	Organizational	Components

destructuring	in	ES6,	Imports	in	React	Native

developer	experience,	improvements	in,	Developer	Experience

developer’s	account	(iOS),	iOS	Dependencies

getting	certificate	for,	Uploading	to	Your	iOS	Device

development	environment

issues	with,	Common	Development	Environment	Issues

setting	up,	Setting	Up	Your	Environment-Android	Dependencies

Android	dependencies,	Android	Dependencies

installing	React	Native,	Installing	React	Native

iOS	dependencies,	iOS	Dependencies

Dimensions	API,	Responsive	Design	and	Font	Sizes

displayName	for	components,	Working	with	the	React	Developer	Tools

div	element,	Imports	in	React	Native

analogy	to	View	component,	Analogies	Between	HTML	Elements	and	Native
Components

DOM	(Document	Object	Model),	How	Does	React	Native	Work?

DrawerLayoutAndroid	component,	Other	Organizational	Components

E

emulators	(Android),	Android	Dependencies

failure	to	launch,	problem	with,	Common	Android	Problems

starting	and	running	React	Native	application,	Running	a	React	Native
Application	for	Android

taking	screenshots	via,	Required	Assets	for	the	Store	Listing,	Taking	Screenshots
on	Android

error	messages,	meaningful,	in	Red	Screen	of	Death,	The	Red	Screen	of	Death

ES6	syntax,	ES6	Syntax-String	Interpolation

destructuring	assignments,	Destructuring

fat	arrow	functions,	Fat	Arrow	Functions

function	shorthand,	Function	Shorthand

importing	and	exporting	modules,	Importing	Modules

string	interpolation,	String	Interpolation

F

Facebook,	What	Is	React	Native?

Fetch	API,	Fetching	Data	from	the	Web

file	structure	in	projects,	Creating	a	New	Application

separate	directories	for	components	and	styles,	Reusing	and	Sharing	Styles

Zebreto	flashcard	application,	Project	Structure

FirstProject	component,	The	FirstProject	Component

flex	property,	Layouts	with	Flexbox

flex-start	and	flex-end	values,	Layouts	with	Flexbox

flexbox,	Layouts	with	Flexbox

layout	in	FirstProject	component,	The	FirstProject	Component

properties	available	to,	Layouts	with	Flexbox

related	values	impacting	layout,	Layouts	with	Flexbox

flexDirection	property,	Layouts	with	Flexbox

column,	Putting	It	Together

styling	background	image	with,	Adding	a	Background	Image

flow,	Setting	Up	Your	Environment

Flow	library,	type	checking	with,	Type-Checking	with	Flow

Flux	(data	flow	architecture),	Data	Flow	Architecture:	Reflux	and	Flux

data	propagation	in,	Data	Flow	Architecture:	Reflux	and	Flux

font	sizes,	adjusting	in	Zebreto	app,	Responsive	Design	and	Font	Sizes-Responsive
Design	and	Font	Sizes

fontStyle	attribute,	The	Text	Component

fontWeight	attribute,	The	Text	Component

Forecast	component	(weather	app),	Displaying	Data

requiring	and	adding	to	app’s	render	function,	Displaying	Data

G

Geofencing	API	(iOS),	Limitations

geolocation,	Using	Geolocation

getting	the	user’s	location,	Getting	the	User’s	Location

limitations	of,	Limitations

permissions	for	location	data,	Handling	Permissions

testing	in	iOS	simulator,	Testing	Geolocation	In	the	iOS	Simulator

using	in	SmarterWeather	app,	Updating	the	Weather	Application-Updating	the
Weather	Application

watching	the	user’s	location,	Watching	the	User’s	Location

Geolocation	API	web	specification,	Using	Geolocation

geoOptions	object,	Getting	the	User’s	Location

GestureResponder	system,	The	GestureResponder	System-The	GestureResponder
System,	Choosing	how	to	handle	touch

documentation,	The	GestureResponder	System

gestureState	object,	PanResponder

getCurrentPosition	function,	Getting	the	User’s	Location

permissions,	handling,	Handling	Permissions

getInitialState	function,	Handling	User	Input

adding	mock	data	in	weather	app,	Displaying	Data

ListView.DataSource,	Using	ListView

updating	to	remove	mock	forecast	data,	Fetching	Data	from	the	Web

getPhotoParams	object,	requesting	images	with,	Requesting	Images	with
GetPhotoParams

getting	started,	building	an	application,	Building	Your	First	Application-Summary

creating	a	new	application,	Creating	a	New	Application

running	React	Native	application	for	Android,	Running	a	React	Native
Application	for	Android

running	React	Native	application	for	iOS,	Running	a	React	Native	Application
for	iOS

uploading	to	your	iOS	device,	Uploading	to	Your	iOS	Device

exploring	the	sample	code,	Exploring	the	Sample	Code

attaching	React	component	to	a	view,	Attaching	a	Component	to	the	View

FirstProject	component,	The	FirstProject	Component

imports	in	React	Native,	Imports	in	React	Native

setting	up	development	environment,	Setting	Up	Your	Environment-Android
Dependencies

weather	app,	Building	a	Weather	App-Summary

adding	a	background	image,	Adding	a	Background	Image

displaying	data,	Displaying	Data

getting	data	from	the	Web,	Fetching	Data	from	the	Web

handling	user	input,	Handling	User	Input

putting	it	all	together,	Putting	It	Together

Google	Play	Store

application	listing	on,	Play	Store	Listing

required	assets	for,	Required	Assets	for	the	Store	Listing

beta	testing	your	app	via,	Beta	Testing	via	the	Play	Store

publishing	applications	to,	Publishing	Your	Application

submitting	Android	apps	to,	Submitting	Your	Application	to	the	Play	Store

Gradient	component,	Installing	a	Third-Party	Component

on	Android	and	iOS,	Cross-Platform	Native	Modules

Gradle	(build	system	for	Android),	Installing	a	Third-Party	Component

gradle.properties	file,	Building	the	APK	for	Release

H

.h	(header)	file	(Objective-C),	Anatomy	of	an	Objective-C	Native	Module

handleTextChange	callback,	TextInput	component,	Handling	User	Input

changing	to	query	OpenWeatherMap	API,	Fetching	Data	from	the	Web

header	elements	(h1,	h2,	etc.),	The	Text	Component

headers	and	footers

rendering	for	ListView,	Using	ListView

Homebrew	package	manager,	Setting	Up	Your	Environment

keeping	brew	up	to	date,	Common	Development	Environment	Issues

host	platform	APIs,	Host	Platform	APIs

HTML	elements

analogies	between	React	Native	components	and,	Analogies	Between	HTML
Elements	and	Native	Components

CSS	and,	Declaring	and	Manipulating	Styles

replacement	with	platform-specific	React	components,	Working	with	Views

human	interface	guidelines	for	iOS	and	Android,	When	to	Use	Platform-Specific
Components

I

icons

Android	application	icon,	Setting	Application	Icon

iOS	application	icon,	Adding	Your	Application	Icon

Image	component,	Adding	a	Background	Image,	The	Image	Component

source	property,	Rendering	an	Image	from	the	Camera	Roll

ImagePickerIOS	module,	Displaying	a	List	of	Photos

ImagePickerIOS.openSelectDialog,	Displaying	a	List	of	Photos

images

accessing	the	user’s	images,	Accessing	the	User’s	Images	and	Camera

rendering	images	received	from	camera	roll,	Rendering	an	Image	from	the
Camera	Roll

uploading	images	to	a	server,	Uploading	an	Image	to	a	Server

using	getPhotoParams,	Requesting	Images	with	GetPhotoParams

adding	to	projects,	Adding	a	Background	Image

application	icons,	iOS	apps,	Adding	Your	Application	Icon

including	web-based	image	sources,	The	Image	Component

launch	screen	images	for	iOS	apps,	Launch	Screen	Images

mis-sized,	Xcode	warning	about,	Common	Xcode	Problems

replacing	Image	component	in	SmarterWeather	with	PhotoBackdrop,	The
CameraRoll	Module

img	element,	analogy	to	Image	component,	Analogies	Between	HTML	Elements	and
Native	Components

immutability,	problems	with	stylesheets,	Styling	with	Objects

imports	in	React	Native,	Imports	in	React	Native

index.android.js	file

changing	to	render	Gradient	component,	Installing	a	Third-Party	Component

examining	contents,	The	FirstProject	Component

for	weather	app,	Building	a	Weather	App

index.ios.js	file

examining	contents,	Imports	in	React	Native

for	weather	app,	Building	a	Weather	App

initial	state	values	for	React	components,	Handling	User	Input

inline	styles,	Styling	Native	Components,	Inline	Styles

advantages	and	limitations	of,	Inline	Styles

input	style,	Handling	User	Input

inspect	element,	using	in	debugging,	Using	Inspect	Element

interface	error	(Xcode),	Common	Xcode	Problems

iOS

adding	image	assets	to	projects,	Adding	a	Background	Image

AsyncStorage	API,	Storing	Persistent	Data	with	AsyncStore

attaching	React	component	to	a	view,	Attaching	a	Component	to	the	View

CameraRoll	module	support,	The	CameraRoll	Module

development	environment	setup,	iOS	Dependencies

Geofencing	API,	Limitations

Geolocation	support,	Using	Geolocation

native	modules	for,	Native	Modules	for	iOS-Implementation	of	RCTVideo

Objective-C	API	invoked	by	React	Native	bridge,	What	Is	React	Native?

photo	picker,	Displaying	a	List	of	Photos

platform-specific	components,	iOS-	or	Android-Only	Components

problems	deploying	to	iOS	device,	Issues	Deploying	to	an	iOS	Device

running	React	Native	application	for,	Running	a	React	Native	Application	for	iOS

Settings	app,	Using	Navigators

target	iOS	version	for	Xcode	project,	Selecting	Supported	Devices	and	Target	iOS
Version

UIImagePickerController,	Displaying	a	List	of	Photos

uploading	React	Native	application	to	a	device,	Uploading	to	Your	iOS	Device

iOS	App	Store,	deploying	applications	to,	Deploying	to	the	iOS	App	Store-Summary

beta	testing	with	TestFlight,	Beta	Testing	with	TestFlight

preparing	your	Xcode	project,	Preparing	Your	Xcode	Project

application	icon,	Adding	Your	Application	Icon

bundle	name,	Setting	Your	Bundle	Name

launch	screen	images,	Launch	Screen	Images

selecting	supported	devices,	Selecting	Supported	Devices	and	Target	iOS	Version

selecting	target	iOS	version,	Selecting	Supported	Devices	and	Target	iOS
Version

setting	build	scheme	to	Release,	Set	Schema	for	Release

submitting	your	application	for	review,	Submitting	the	Application	for	Review

uploading	your	application,	Uploading	Your	Application

creating	an	app	in	iTunes	Connect,	Creating	an	App	in	iTunes	Connect

creating	an	Archive,	Creating	an	Archive

getting	paperwork	in	order,	Getting	Your	Paperwork	in	Order

iOS	Human	Interface	Guidelines,	Other	Organizational	Components

iOS	SDK,	iOS	Dependencies

APIs	provided	by,	Anatomy	of	an	Objective-C	Native	Module

Base	SDK	version,	Selecting	Supported	Devices	and	Target	iOS	Version

iOS	simulators,	iOS	Dependencies

strange	behavior	in,	Simulator	Behavior

testing	geolocation	in,	Testing	Geolocation	In	the	iOS	Simulator

IP	address,	obtaining	for	your	computer,	Uploading	to	Your	iOS	Device

iTunes	Connect,	Issues	Deploying	to	an	iOS	Device

application	status	in,	Submitting	the	Application	for	Review

creating	an	application	in,	Creating	an	App	in	iTunes	Connect

paperwork	for	submitting	app	to	iOS	App	Store,	Getting	Your	Paperwork	in
Order

TestFlight,	Beta	Testing	with	TestFlight

J

Java

native	module,	anatomy	of,	Anatomy	of	a	Java	Native	Module

Java	APIs

rendering	to	Android	components,	How	Does	React	Native	Work?

JavaScript,	What	Is	React	Native?

adding	JavaScript	interfaces	to	existing	Objective-C	APIs,	Modules

debugging	tools	and	techniques,	JavaScript	Debugging	Practices,	Translated

importing	LinearGradient	package,	Installing	a	Third-Party	Component

installing	libraries	with	npm,	Installing	JavaScript	Libraries	with	npm

JSX	versus,	Using	JSX

testing	code,	Testing	Your	Code

JDK	(Java	Development	Kit),	installing,	Android	Dependencies

Jest,	testing	code	with,	Testing	with	Jest

jsCodeLocation,	Uploading	to	Your	iOS	Device,	Attaching	a	Component	to	the	View

updating	for	deployment	of	app,	Updating	AppDelegate.m

JSON

from	OpenWeatherMap	API	query,	Fetching	Data	from	the	Web

pesistence	in	Zebreto	app,	Persistence,	AsyncStorage,	and	the	Reflux	Stores

JSX,	What	Is	React	Native?

using,	Using	JSX

K

keytool,	Building	the	APK	for	Release

knowledge	sharing	among	developers,	Code	Reuse	and	Knowledge	Sharing

L

launch	screen	images	(iOS	apps),	Launch	Screen	Images

layout	modes,	Layouts	with	Flexbox

layouts

positioning	and	designing,	Positioning	and	Designing	Layouts

putting	it	all	together,	Putting	It	Together

with	flexbox,	Layouts	with	Flexbox

left	property,	Using	Absolute	Positioning

LESS,	Declaring	and	Manipulating	Styles

li	element,	analogy	to	ListView	component,	Analogies	Between	HTML	Elements	and
Native	Components

LinearGradient	component,	Installing	a	Third-Party	Component,	Installing	a	Third-
Party	Component,	Cross-Platform	Native	Modules

Android	implementation,	Android	Implementation	of	LinearGradient

LinearGradientManager	class	(Java),	Android	Implementation	of	LinearGradient

LinearGradientPackage.java,	Android	Implementation	of	LinearGradient

ListView	component,	Using	ListView-Using	ListView

analogy	to	ul,	ol,	and	li	elements,	Analogies	Between	HTML	Elements	and	Native
Components

dataSource	and	renderRow	props,	Using	ListView

DataSource,	initializing	and	updating,	Using	ListView

header	and	footer,	rendering,	Using	ListView

using	in	CameraRoll	to	display	list	of	user’s	photos,	Displaying	a	List	of	Photos

using	Navigators,	Using	Navigators

location	(see	geolocation)

location	picker,	Testing	Geolocation	In	the	iOS	Simulator

LocationButton	component,	Updating	the	Weather	Application,	The	LocationButton
Component

lodash	library,	Installing	JavaScript	Libraries	with	npm

Log	object	(Android),	Anatomy	of	a	Java	Native	Module

logcat	command,	Anatomy	of	a	Java	Native	Module,	Debugging	with	console.log

M

.m	file	(Objective-C),	Anatomy	of	an	Objective-C	Native	Module

main.jsbundle	file,	Issues	Deploying	to	an	iOS	Device

MainActivity.java	file,	Attaching	a	Component	to	the	View

importing	third-party	component	into,	Installing	a	Third-Party	Component

margin	property,	Positioning	and	Designing	Layouts

MDN	Geolocation	API	web	specification,	Using	Geolocation

MDN	XMLHttpRequest	specification,	Uploading	an	Image	to	a	Server

methods

@ReactMethod	decorator,	Anatomy	of	a	Java	Native	Module

Java,	Anatomy	of	a	Java	Native	Module

Objective-C,	exporting	to	JavaScript,	Anatomy	of	an	Objective-C	Native	Module

mobile	APIs,	Host	Platform	APIs

mobile	platforms,	support	by	React	Native,	What	Is	React	Native?

modeling	data	in	Zebreto	app,	Modeling	and	Storing	Data

moduleName,	Attaching	a	Component	to	the	View

modules,	Modules-Summary

cross-platform	native	modules,	Cross-Platform	Native	Modules

installing	JavaScript	libraries	with	npm,	Installing	JavaScript	Libraries	with	npm

native	modules	fo	iOS

anatomy	of	Objective-C	native	module,	Anatomy	of	an	Objective-C	Native
Module

native	modules	for	Android,	Native	Modules	for	Android-Android	Implementation
of	LinearGradient

anatomy	of	Java	native	module,	Anatomy	of	a	Java	Native	Module

installing	third-party	component,	Installing	a	Third-Party	Component

native	modules	for	iOS,	Native	Modules	for	iOS-Implementation	of	RCTVideo

including	a	third-party	component,	Including	a	Third-Party	Component

RCTVideo,	implementation	of,	Implementation	of	RCTVideo

Mondrian	painting,	mimicking	in	layout,	Putting	It	Together

mp4	video	files,	importing	into	Xcode	project,	Including	a	Third-Party	Component

N

native	Android	UI	components,	documentation,	Android	Implementation	of
LinearGradient

native	modules

cross-platform,	Cross-Platform	Native	Modules

definition	of	Ojective-C	native	module,	Anatomy	of	an	Objective-C	Native	Module

for	Android,	Native	Modules	for	Android-Android	Implementation	of
LinearGradient

anatomy	of	Java	native	module,	Anatomy	of	a	Java	Native	Module

installing	third-party	component,	Installing	a	Third-Party	Component

for	iOS,	Native	Modules	for	iOS-Implementation	of	RCTVideo

anatomy	of	Objective-C	native	module,	Anatomy	of	an	Objective-C	Native
Module

including	a	third-party	component,	Including	a	Third-Party	Component

RCTVideo,	implementation	of,	Implementation	of	RCTVideo

Navigator	component,	Using	Navigators

using	in	Zebreto	app,	Using	the	Navigator-Using	the	Navigator

navigator.geolocation	function,	Getting	the	User’s	Location

NavigatorIOS	component,	Using	Navigators

networking	APIs	in	React	Native,	Fetching	Data	from	the	Web

New	York	Times	Best	Seller	List	(see	Best	Seller	app)

node,	Setting	Up	Your	Environment

Node.js,	npm	package	manager,	Installing	JavaScript	Libraries	with	npm

npm	package	manager

adding	a	third-party	component	to	a	project,	Including	a	Third-Party	Component

installing	JavaScript	libraries	with,	Installing	JavaScript	Libraries	with	npm

issues	with,	The	React	Native	Packager

registry,	Using	the	Video	Component

npm	start	command,	Running	the	React	Native	Packager

NS	prefix,	Ojctive-C	types,	Anatomy	of	an	Objective-C	Native	Module

O

Objective-C

anatomy	of	Objective-C	native	module,	Anatomy	of	an	Objective-C	Native	Module

conditions	for	Objective-C	modules	to	be	available	in	React	Native,	Anatomy	of	an
Objective-C	Native	Module

Objective-C	APIs

adding	JavaScript	interfaces	to,	Modules

rendering	to	iOS	components,	How	Does	React	Native	Work?

ol	element,	analogy	to	ListView	component,	Analogies	Between	HTML	Elements	and
Native	Components

onLongPress,	Using	TouchableHighlight

onMoveShouldSetResponder,	The	GestureResponder	System

onMoveShouldSetResponderCapture,	The	GestureResponder	System

onPressIn,	Using	TouchableHighlight

onPressOut,	Using	TouchableHighlight

onResponderGrant,	The	GestureResponder	System

onResponderMove,	The	GestureResponder	System

onResponderRevoke,	The	GestureResponder	System

onResponderTerminationRequest,	The	GestureResponder	System

onStartShouldSetResponder,	The	GestureResponder	System

onStartShouldSetResponderCapture,	The	GestureResponder	System

OpenWeatherMap	API,	Fetching	Data	from	the	Web

querying	by	latitude	and	longitude,	Updating	the	Weather	Application

organizational	components,	Working	with	Organizational	Components-Other
Organizational	Components

ListView,	Using	ListView-Using	ListView

using	Navigator	components,	Using	Navigators

other,	Other	Organizational	Components

P

p	element

analogy	to	View	component,	Analogies	Between	HTML	Elements	and	Native
Components

package	statement	(Java),	Anatomy	of	a	Java	Native	Module

package.json	file,	Installing	JavaScript	Libraries	with	npm

packager

checking	for	problems	with,	Common	Xcode	Problems

failure	to	upload	files	to	iOS	device,	Issues	Deploying	to	an	iOS	Device

issues	with,	The	React	Native	Packager

packaging	Android	apps,	Building	the	APK	for	Release

packager	(React),	Running	a	React	Native	Application	for	iOS

packages

missing	Android	packages,	Common	Android	Problems

problems	with	dependencies,	Common	Development	Environment	Issues

padding	property,	Positioning	and	Designing	Layouts

PanResponder	class,	The	GestureResponder	System,	PanResponder,	Choosing	how
to	handle	touch

permissions	for	location	data,	handling,	Handling	Permissions

persistence,	in	Zebreto	app,	Persistence,	AsyncStorage,	and	the	Reflux	Stores

photo	pickers,	Displaying	a	List	of	Photos

PhotoBackdrop	component,	The	CameraRoll	Module,	The	PhotoBackdrop
Component

platform-specific	APIs,	iOS-	or	Android-Only	Components,	Platform	APIs-
Summary

accessing	user’s	images	and	camera,	Accessing	the	User’s	Images	and	Camera

CameraRoll	module,	The	CameraRoll	Module

displaying	a	list	of	photos,	Displaying	a	List	of	Photos

uploading	images	to	a	server,	Uploading	an	Image	to	a	Server

geolocation,	using,	Using	Geolocation

getting	user’s	location,	Getting	the	User’s	Location

handling	permissions,	Handling	Permissions

limitations	of	geolocation,	Limitations

SmarterWeather	app,	Updating	the	Weather	Application-Updating	the	Weather
Application

testing	geolocation	in	iOS	simulator,	Testing	Geolocation	In	the	iOS	Simulator

watching	the	user’s	location,	Watching	the	User’s	Location

storing	persistent	data

other	storage	options,	Other	Storage	Options

with	AsyncStorage,	Storing	Persistent	Data	with	AsyncStore

platform-specific	components,	Platform-Specific	Components-When	to	Use
Platform-Specific	Components

components	with	platform-specific	versions,	Components	with	Platform-Specific
Versions

design	guidelines	for,	Other	Organizational	Components

iOS-	or	Android-specific,	iOS-	or	Android-Only	Components

when	to	use,	When	to	Use	Platform-Specific	Components

platform-specific	components	and	APIs,	Working	with	Views

position	objects,	Getting	the	User’s	Location

position	property,	setting	to	absolute,	Using	Absolute	Positioning

positioning

absolute	positioning,	using,	Using	Absolute	Positioning

putting	positioning	and	layout	techniques	together,	Putting	It	Together

React	Native	and	CSS	approaches	to,	Positioning	and	Designing	Layouts

project	structure,	Zebreto	app,	Project	Structure

props

controlling	image	rendering	in	React	Native,	The	Image	Component

passing	styles	as,	Passing	Styles	as	Props

platform-specific,	in	components,	iOS-	or	Android-Only	Components

validation	via	propTypes,	Using	Stylesheet.Create

R

RCT	prefix	for	classes,	Attaching	a	Component	to	the	View

RCTBridgeModule,	Modules

declaring	that	module	implements	the	interface,	Anatomy	of	an	Objective-C
Native	Module

importing	the	header	file,	Anatomy	of	an	Objective-C	Native	Module

RCTVideo	native	module

implementation,	Implementation	of	RCTVideo

RCTVideo	native	UI	component,	Implementation	of	RCTVideo

RCTVideo.h	file,	importing	from	Objective-C,	Implementation	of	RCTVideo

RCTVideoManager,	Implementation	of	RCTVideo

properties	and	constants	exported,	Implementation	of	RCTVideo

RCTViedo.m	file,	importing	from	Objective-C,	Implementation	of	RCTVideo

RCTViewManager,	Implementation	of	RCTVideo

RCT_EXPORT_METHOD	macro,	Anatomy	of	an	Objective-C	Native	Module

RCT_EXPORT_MODULE(),	Anatomy	of	an	Objective-C	Native	Module

RCT_REMAP_METHOD	macro,	Anatomy	of	an	Objective-C	Native	Module

React	Developer	Tools,	Working	with	the	React	Developer	Tools

viewing	components	and	properties,	Working	with	the	React	Developer	Tools

React	Native

about,	What	Is	React	Native?

advantages	of,	Advantages	of	React	Native

creating	components,	Creating	Components	in	React	Native

working	with	views,	Working	with	Views

host	platform	APIs,	Host	Platform	APIs

installing,	Installing	React	Native

official	documentation	site,	Setting	Up	Your	Environment

reaching	out	to	the	community,	When	You’re	Stuck

risks	and	drawbacks,	Risks	and	Drawbacks

upgrading,	keeping	brew	and	node	up	to	date,	Common	Development
Environment	Issues

working	with,	Working	with	React	Native

how	it	works,	How	Does	React	Native	Work?

rendering	lifecycle,	Rendering	Lifecycle

react-native	bundle	—minify	command,	Issues	Deploying	to	an	iOS	Device

react-native	init	MyProject	command,	Running	on	iOS

react-native	run-android	command,	Running	on	Android

react-native-linear-gradient	package,	installing	for	Android,	Installing	a	Third-Party
Component

react-native-video	component,	Native	Modules	for	iOS

installing	with	npm,	Including	a	Third-Party	Component

React.NativeModules	object,	Anatomy	of	a	Java	Native	Module

ReactContextBaseJavaModule,	Anatomy	of	a	Java	Native	Module

ReactInstanceManager,	Installing	a	Third-Party	Component

adding	HelloWorldPackage	to,	Anatomy	of	a	Java	Native	Module

Red	Screen	of	Death,	The	Red	Screen	of	Death

Reflux	(data	flow	architecture),	Data	Flow	Architecture:	Reflux	and	Flux

data	propagation	in,	Data	Flow	Architecture:	Reflux	and	Flux

using	in	Zebreto	app,	Using	Reflux	in	Zebreto

data	flow,	Using	Reflux	in	Zebreto

registerComponent(),	Attaching	a	Component	to	the	View

render	function,	How	Does	React	Native	Work?

attaching	PanResponder	to	view	in,	PanResponder

weather	app

final	version,	Putting	It	Together

replacing	rendered	Forecast	component	with	content,	Fetching	Data	from	the
Web

WeatherProject	component,	Adding	a	Background	Image

rendering	lifecycle,	Rendering	Lifecycle

renderRow	prop	(ListView),	Using	ListView

require	statements	in	React	Native,	Imports	in	React	Native

Reset	Content	and	Settings	(iOS	simulator),	Simulator	Behavior

resize	(resizeMode),	The	Image	Component

resizeMode	prop,	The	Image	Component

responsive	design	in	Zebreto	app,	Responsive	Design	and	Font	Sizes-Responsive
Design	and	Font	Sizes

reusing	styled	components,	Reusing	and	Sharing	Styles

right	property,	Using	Absolute	Positioning

risks	and	drawbacks	of	React	Native,	Risks	and	Drawbacks

root	view,	declaring	in	ios/AppDelegate.m,	Attaching	a	Component	to	the	View

rowHasChanged	method	(DataSource),	Using	ListView

S

SASS,	Declaring	and	Manipulating	Styles

screenshots

for	Google	Play	Store	listing,	Required	Assets	for	the	Store	Listing

providing	for	iOS	App	Store	apps,	Creating	an	App	in	iTunes	Connect

taking	on	Android,	Taking	Screenshots	on	Android

SegmentedControlIOS	component,	Other	Organizational	Components

Settings	app	(iOS),	Using	Navigators

settings.gradle	file	(Android),	Installing	a	Third-Party	Component

sharing	styles,	Reusing	and	Sharing	Styles

signing	Android	applications,	Building	the	APK	for	Release

SmarterWeather	app,	Updating	the	Weather	Application-Updating	the	Weather
Application,	The	SmarterWeather	Application-The	PhotoBackdrop	Component

Button	component,	The	Button	Component

getting	forecast	by	coordinates	and	by	zip,	Updating	the	Weather	Application

loading	zip	code	information	with	AsyncStore,	Storing	Persistent	Data	with
AsyncStore

LocationButton	component,	Updating	the	Weather	Application,	The
LocationButton	Component

PhotoBackdrop	component,	The	PhotoBackdrop	Component

replacing	top-level	Image	with	PhotoBackdrop,	The	CameraRoll	Module

WeatherProject	component,	The	WeatherProject	Component

source	property	(Image	component),	Adding	a	Background	Image,	The	Image
Component

this.state.photoSource,	Rendering	an	Image	from	the	Camera	Roll

Spaced	Repetition	System	(SRS),	The	Flashcard	Application

span	element,	The	FirstProject	Component

comparison	to	Text	component,	Analogies	Between	HTML	Elements	and	Native
Components

state	values	for	React	components,	initial	state,	Handling	User	Input

storage	key,	AsyncStorage,	Storing	Persistent	Data	with	AsyncStore

storing	persistent	data

in	Zebreto	app

AsyncStorage	and	Reflux	stores,	Persistence,	AsyncStorage,	and	the	Reflux
Stores

multiple	stores	listening	to	each	other,	Using	Reflux	in	Zebreto

other	storage	options,	Other	Storage	Options

with	AsyncStorage,	Storing	Persistent	Data	with	AsyncStore

structure	of	a	larger	application,	examining,	Putting	It	All	Together-Summary	and
Homework

modeling	and	storing	data,	Modeling	and	Storing	Data-Persistence,	AsyncStorage,
and	the	Reflux	Stores

data	flow	architecture,	Reflux	and	Flux,	Data	Flow	Architecture:	Reflux	and
Flux

responsive	design	and	font	sizes,	Responsive	Design	and	Font	Sizes-Responsive
Design	and	Font	Sizes

third-party	dependencies,	A	Look	at	Third-Party	Dependencies

using	Navigator	in	Zebreto	app,	Using	the	Navigator-Using	the	Navigator

Zebreto	flashcard	application,	The	Flashcard	Application

component	hierarchy,	Component	Hierarchy

project	structure,	Project	Structure

style	attribute

accepting	an	array	of	style	objects,	Style	Concatenation

accepting	an	object,	Styling	with	Objects

style	objects,	Styling	Native	Components,	Declaring	and	Manipulating	Styles

conflict	resolution,	Style	Concatenation

in	FirstProject	component,	The	FirstProject	Component

mixing	with	inline	styles,	Style	Concatenation

styles,	Styles-Summary

declaring	and	manipulating,	Declaring	and	Manipulating	Styles

concatenating	styles,	Style	Concatenation

inline	styles,	Inline	Styles

problems	with	CSS	stylesheets,	Declaring	and	Manipulating	Styles

styling	with	objects,	Styling	with	Objects

using	Stylesheet.create	function,	Using	Stylesheet.Create

organization	and	inheritance,	Organization	and	Inheritance

exporting	style	objects,	Exporting	Style	Objects

passing	styles	as	props,	Passing	Styles	as	Props

reusing	and	sharing	styles,	Reusing	and	Sharing	Styles

positioning	and	designing	layouts,	Positioning	and	Designing	Layouts

absolute	positioning,	Using	Absolute	Positioning

layouts	with	flexbox,	Layouts	with	Flexbox

putting	it	all	together,	Putting	It	Together

style-related	error	messages,	The	Red	Screen	of	Death

StyleSheet,	importing	in	React	Native	code,	Imports	in	React	Native

StyleSheet.create	function,	Handling	User	Input,	Organization	and	Inheritance

advantages	of	using,	Using	Stylesheet.Create

problems	with	immutability,	Styling	with	Objects

styling	in	React	Native

adding	input	style	to	TextInput	component,	Handling	User	Input

images,	The	Image	Component

in	FirstProject	component,	The	FirstProject	Component

text,	The	Text	Component

Switch	component,	Components	with	Platform-Specific	Versions

SwitchAndroid	component,	creating	cross-platform	version	of,	Components	with
Platform-Specific	Versions

SwitchIOS	component,	creating	cross-platform	version	of,	Components	with
Platform-Specific	Versions

syntax	errors,	The	Red	Screen	of	Death

T

TabBarIOS	component,	Other	Organizational	Components

TestFlight,	beta	testing	iOS	apps,	Beta	Testing	with	TestFlight

testing	JavaScript	code,	Testing	Your	Code

type	checking	with	Flow,	Type-Checking	with	Flow

with	Jest,	Testing	with	Jest

Text	component,	The	FirstProject	Component

analogy	to	span	and	p	elements,	Analogies	Between	HTML	Elements	and	Native
Components

creating	styled	components,	The	Text	Component

forgetting	to	import,	error	message	from,	The	Red	Screen	of	Death

in	weather	app,	displaying	zip	code	info,	Handling	User	Input

styling	text	with	inline	styles,	The	Text	Component

text	components	in	Zebreto	app,	Responsive	Design	and	Font	Sizes

Text.propTypes.Style	type,	Using	Stylesheet.Create

TextInput	component,	Handling	User	Input

changing	callback	to	query	OpenWeatherMap	API,	Fetching	Data	from	the	Web

onSubmitEditing	property,	callback	passed	as,	Handling	User	Input

platform-specific	props,	iOS-	or	Android-Only	Components

third-party	components

including	for	iOS,	Including	a	Third-Party	Component

installing	for	Android,	Installing	a	Third-Party	Component

this.props.style,	Passing	Styles	as	Props

timeout	(geoOptions),	Getting	the	User’s	Location

ToolbarAndroid	component,	Other	Organizational	Components

top	property,	Using	Absolute	Positioning

touch	and	gestures,	Working	with	Touch	and	Gestures

deciding	how	to	handle,	Choosing	how	to	handle	touch

GestureResponder	system,	The	GestureResponder	System-The	GestureResponder
System

PanResponder	class,	PanResponder-Choosing	how	to	handle	touch

TouchableHighlight	component,	Using	TouchableHighlight

touch	event	objects,	The	GestureResponder	System

touch	events

lifecycle	stages,	The	GestureResponder	System

touch	responders,	The	GestureResponder	System

event	handlers,	The	GestureResponder	System

TouchableHighlight	component,	Using	TouchableHighlight,	Choosing	how	to	handle
touch

Tumblr

photo	picker,	Displaying	a	List	of	Photos

Twitter

photo	picker,	Displaying	a	List	of	Photos

type	checking	JavaScript	code	with	Flow,	Type-Checking	with	Flow

U

UDID,	obtaining	for	iOS	devices,	Uploading	to	Your	iOS	Device

UI	components,	native,	creating,	Implementation	of	RCTVideo,	Android
Implementation	of	LinearGradient

UIExplorer	app,	Working	with	Views

including	a	web-based	image	souce,	The	Image	Component

resizeMode,	resize,	cover,	and	contain,	The	Image	Component

using	CameraRoll	to	produce	custom	view	of	photo	library,	Displaying	a	List	of
Photos

XHR	example	uploading	images	to	a	server,	Uploading	an	Image	to	a	Server

UIImagePickerController	(iOS),	Displaying	a	List	of	Photos

UIView	class

RCTVideo	subclassing,	Implementation	of	RCTVideo

view	method,	Implementation	of	RCTVideo

UIViewController,	Attaching	a	Component	to	the	View

ul	element,	analogy	to	ListView	component,	Analogies	Between	HTML	Elements	and
Native	Components

universal	applications	(iOS),	Adding	a	Background	Image

update	cycle,	Advantages	of	React	Native

user	input,	handling	in	weather	app,	Handling	User	Input

V

validation,	styles	created	with	Stylesheet.create,	Using	Stylesheet.Create

variables

attempting	to	use	without	importing	or	defining,	The	Red	Screen	of	Death

Video	component,	Native	Modules	for	iOS,	Using	the	Video	Component

View	component

importing	in	React	Native	code,	Imports	in	React	Native

in	FirstProject	component,	The	FirstProject	Component

View	element,	Working	with	Views

view	manager,	Implementation	of	RCTVideo

View.propTypes.Style	type,	Using	Stylesheet.Create,	Passing	Styles	as	Props

ViewManager,	Android	Implementation	of	LinearGradient

views,	Working	with	Views

attaching	a	component	to,	Attaching	a	Component	to	the	View

positioning	and	designing	layouts,	Layouts	with	Flexbox

touch	responders,	The	GestureResponder	System

Virtual	DOM,	How	Does	React	Native	Work?

W

watchman,	Setting	Up	Your	Environment

weather	app,	building,	Building	a	Weather	App-Putting	It	Together,	Updating	the
Weather	Application

(see	also	SmarterWeather	app)

adding	a	background	image,	Adding	a	Background	Image

displaying	data,	Displaying	Data

fetching	data	from	the	Web,	Fetching	Data	from	the	Web

final	version,	Putting	It	Together

handling	user	input,	Handling	User	Input

WeatherProject	component,	SmarterWeather	app,	The	WeatherProject	Component

web	apps

Render	Native	components	and,	Analogies	Between	HTML	Elements	and	Native
Components

webviews,	Advantages	of	React	Native

X

Xcode,	iOS	Dependencies

adding	an	image	asset	to	a	project,	Adding	a	Background	Image

adding	your	account	in	preferences	pane,	Uploading	to	Your	iOS	Device

common	problems	with,	Common	Xcode	Problems

console,	Debugging	with	console.log

getting	developer	certificate	from	Apple,	Uploading	to	Your	iOS	Device

including	third-party	libraries	into	a	project,	Including	a	Third-Party	Component

preparing	project	for	deployment,	Preparing	Your	Xcode	Project

application	icon,	Adding	Your	Application	Icon

bundle	name,	Setting	Your	Bundle	Name

launch	screen	images,	Launch	Screen	Images

selecting	supported	iOS	devices,	Selecting	Supported	Devices	and	Target	iOS
Version

selecting	target	iOS	version,	Selecting	Supported	Devices	and	Target	iOS
Version

setting	build	scheme	to	Release,	Set	Schema	for	Release

updating	AppDelegate.m	file,	Updating	AppDelegate.m

selecting	deploy	target,	Uploading	to	Your	iOS	Device

setting	Bundle	Identifier,	Creating	an	App	in	iTunes	Connect

XHR	module

image	uploading	functionality,	Uploading	an	Image	to	a	Server

XMLHttpRequest	object,	Uploading	an	Image	to	a	Server

(see	also	XHR	module)

Z

Zebreto	flashcard	application,	The	Flashcard	Application

component	hierarchy,	Component	Hierarchy

interaction	flows,	The	Flashcard	Application

main	views,	The	Flashcard	Application

modeling	and	storing	data,	Modeling	and	Storing	Data-Persistence,	AsyncStorage,
and	the	Reflux	Stores

data	flow	architecture,	Reflux	and	Flux,	Data	Flow	Architecture:	Reflux	and
Flux

project	structure,	Project	Structure

responsive	design	and	font	sizes,	Responsive	Design	and	Font	Sizes-Responsive
Design	and	Font	Sizes

third-party	dependencies,	A	Look	at	Third-Party	Dependencies

using	Navigator,	Using	the	Navigator-Using	the	Navigator

About	the	Author

Bonnie	Eisenman	is	a	software	engineer	at	Twitter	with	previous	experience	at
Codecademy,	Google,	and	Fog	Creek	Software.	She	has	spoken	at	several	conferences	on
topics	ranging	from	React	to	musical	programming	and	Arduinos.	In	her	spare	time,	she
enjoys	building	electronic	musical	instruments,	laser-cutting	chocolate,	and	learning
languages.

Colophon

The	animal	on	the	cover	of	Learning	React	Native	is	a	ringtail	possum	(Pseudocheirus
peregrinus),	a	marsupial	that	is	native	to	Australia.	Ringtail	possums	are	herbivorous	and
live	primarily	in	forested	regions.	It	is	named	for	its	prehensile	tail,	which	is	often	coiled
at	the	tip.

Ringtail	possums	are	grey-brown	in	color,	and	can	grow	up	to	35	centimeters	in	length.
The	diet	of	the	ringtail	possum	consists	of	a	variety	of	leaves,	flowers,	and	fruits.	They	are
nocturnal,	and	live	in	communal	nests	known	as	dreys.	As	marsupials,	ringtail	possums
carry	their	young	in	pouches	until	they	are	developed	enough	to	survive	on	their	own.

The	ringtail	possum	population	declined	steeply	in	the	1950s,	but	has	recovered	in	recent
years.	However,	they	are	still	at	risk	of	habitat	loss	due	to	deforestation.

Many	of	the	animals	on	O’Reilly	covers	are	endangered;	all	of	them	are	important	to	the
world.	To	learn	more	about	how	you	can	help,	go	to	animals.oreilly.com.

The	cover	image	is	from	Shaw’s	Zoology.	The	cover	fonts	are	URW	Typewriter	and
Guardian	Sans.	The	text	font	is	Adobe	Minion	Pro;	the	heading	font	is	Adobe	Myriad
Condensed;	and	the	code	font	is	Dalton	Maag’s	Ubuntu	Mono.

http://animals.oreilly.com

Preface
Prerequisites

Conventions	Used	in	This	Book

Using	Code	Examples

Safari®	Books	Online

How	to	Contact	Us

Resources

Acknowledgments

1.	What	Is	React	Native?
Advantages	of	React	Native

Developer	Experience

Code	Reuse	and	Knowledge	Sharing

Risks	and	Drawbacks

Summary

2.	Working	with	React	Native
How	Does	React	Native	Work?

Rendering	Lifecycle

Creating	Components	in	React	Native
Working	with	Views

Using	JSX

Styling	Native	Components

Host	Platform	APIs

Summary

3.	Building	Your	First	Application
Setting	Up	Your	Environment

Installing	React	Native

iOS	Dependencies

Android	Dependencies

Creating	a	New	Application
Running	a	React	Native	Application	for	iOS

Uploading	to	Your	iOS	Device

Running	a	React	Native	Application	for	Android

Recap:	Creating	and	Running	Projects

Exploring	the	Sample	Code
Attaching	a	Component	to	the	View

Imports	in	React	Native

The	FirstProject	Component

Building	a	Weather	App
Handling	User	Input

Displaying	Data

Adding	a	Background	Image

Fetching	Data	from	the	Web

Putting	It	Together

Summary

4.	Components	for	Mobile
Analogies	Between	HTML	Elements	and	Native	Components

The	Text	Component

The	Image	Component

Working	with	Touch	and	Gestures
Using	TouchableHighlight

The	GestureResponder	System

PanResponder

Working	with	Organizational	Components
Using	ListView

Using	Navigators

Other	Organizational	Components

Platform-Specific	Components
iOS-	or	Android-Only	Components

Components	with	Platform-Specific	Versions

When	to	Use	Platform-Specific	Components

Summary

5.	Styles
Declaring	and	Manipulating	Styles

Inline	Styles

Styling	with	Objects

Using	Stylesheet.Create

Style	Concatenation

Organization	and	Inheritance
Exporting	Style	Objects

Passing	Styles	as	Props

Reusing	and	Sharing	Styles

Positioning	and	Designing	Layouts
Layouts	with	Flexbox

Using	Absolute	Positioning

Putting	It	Together

Summary

6.	Platform	APIs
Using	Geolocation

Getting	the	User’s	Location

Handling	Permissions

Testing	Geolocation	In	the	iOS	Simulator

Watching	the	User’s	Location

Limitations

Updating	the	Weather	Application

Accessing	the	User’s	Images	and	Camera
The	CameraRoll	Module

Requesting	Images	with	GetPhotoParams

Rendering	an	Image	from	the	Camera	Roll

Displaying	a	List	of	Photos

Uploading	an	Image	to	a	Server

Storing	Persistent	Data	with	AsyncStore
Other	Storage	Options

The	SmarterWeather	Application
The	WeatherProject	Component

The	Forecast	Component

The	Button	Component

The	LocationButton	Component

The	PhotoBackdrop	Component

Summary

7.	Modules
Installing	JavaScript	Libraries	with	npm

Native	Modules	for	iOS
Including	a	Third-Party	Component

Using	the	Video	Component

Anatomy	of	an	Objective-C	Native	Module

Implementation	of	RCTVideo

Native	Modules	for	Android
Installing	a	Third-Party	Component

Anatomy	of	a	Java	Native	Module

Android	Implementation	of	LinearGradient

Cross-Platform	Native	Modules

Summary

8.	Debugging	and	Developer	Tools
JavaScript	Debugging	Practices,	Translated

Activating	the	Developer	Options

Debugging	with	console.log

Using	the	JavaScript	Debugger

Working	with	the	React	Developer	Tools

React	Native	Debugging	Tools
Using	Inspect	Element

The	Red	Screen	of	Death

Debugging	Beyond	JavaScript
Common	Development	Environment	Issues

Common	Xcode	Problems

Common	Android	Problems

The	React	Native	Packager

Issues	Deploying	to	an	iOS	Device

Simulator	Behavior

Testing	Your	Code
Type-Checking	with	Flow

Testing	with	Jest

When	You’re	Stuck

Summary

9.	Putting	It	All	Together
The	Flashcard	Application

Project	Structure

Component	Hierarchy

Modeling	and	Storing	Data
Data	Flow	Architecture:	Reflux	and	Flux

Using	Reflux	in	Zebreto

Persistence,	AsyncStorage,	and	the	Reflux	Stores

Using	the	Navigator

A	Look	at	Third-Party	Dependencies

Responsive	Design	and	Font	Sizes

Summary	and	Homework

10.	Deploying	to	the	iOS	App	Store
Preparing	Your	Xcode	Project

Selecting	Supported	Devices	and	Target	iOS	Version

Launch	Screen	Images

Adding	Your	Application	Icon

Setting	Your	Bundle	Name

Updating	AppDelegate.m

Set	Schema	for	Release

Uploading	Your	Application
Getting	Your	Paperwork	in	Order

Creating	an	Archive

Creating	an	App	in	iTunes	Connect

Beta	Testing	with	TestFlight

Submitting	the	Application	for	Review

Summary

11.	Deploying	Android	Applications

Setting	Application	Icon

Building	the	APK	for	Release

Distributing	via	Email	or	Other	Links

Submitting	Your	Application	to	the	Play	Store
Beta	Testing	via	the	Play	Store

Play	Store	Listing

Required	Assets	for	the	Store	Listing

Publishing	Your	Application

Summary

Conclusion

A.	ES6	Syntax
Destructuring

Importing	Modules

Function	Shorthand

Fat	Arrow	Functions

String	Interpolation

B.	Commands	and	Quickstart	Guide
Creating	a	New	Project

Running	on	iOS
Taking	Screenshots	on	iOS

Running	on	Android
Taking	Screenshots	on	Android

Running	the	React	Native	Packager

Index

	Preface
	Prerequisites
	Conventions Used in This Book
	Using Code Examples
	Safari® Books Online
	How to Contact Us
	Resources
	Acknowledgments

	1. What Is React Native?
	Advantages of React Native
	Developer Experience
	Code Reuse and Knowledge Sharing

	Risks and Drawbacks
	Summary

	2. Working with React Native
	How Does React Native Work?
	Rendering Lifecycle
	Creating Components in React Native
	Working with Views
	Using JSX
	Styling Native Components

	Host Platform APIs
	Summary

	3. Building Your First Application
	Setting Up Your Environment
	Installing React Native
	iOS Dependencies
	Android Dependencies

	Creating a New Application
	Running a React Native Application for iOS
	Uploading to Your iOS Device
	Running a React Native Application for Android
	Recap: Creating and Running Projects

	Exploring the Sample Code
	Attaching a Component to the View
	Imports in React Native
	The FirstProject Component

	Building a Weather App
	Handling User Input
	Displaying Data
	Adding a Background Image
	Fetching Data from the Web
	Putting It Together

	Summary

	4. Components for Mobile
	Analogies Between HTML Elements and Native Components
	The Text Component
	The Image Component

	Working with Touch and Gestures
	Using TouchableHighlight
	The GestureResponder System
	PanResponder
	Choosing how to handle touch

	Working with Organizational Components
	Using ListView
	Using Navigators
	Other Organizational Components

	Platform-Specific Components
	iOS- or Android-Only Components
	Components with Platform-Specific Versions
	When to Use Platform-Specific Components

	Summary

	5. Styles
	Declaring and Manipulating Styles
	Inline Styles
	Styling with Objects
	Using Stylesheet.Create
	Style Concatenation

	Organization and Inheritance
	Exporting Style Objects
	Passing Styles as Props
	Reusing and Sharing Styles

	Positioning and Designing Layouts
	Layouts with Flexbox
	Using Absolute Positioning
	Putting It Together

	Summary

	6. Platform APIs
	Using Geolocation
	Getting the User’s Location
	Handling Permissions
	Testing Geolocation In the iOS Simulator
	Watching the User’s Location
	Limitations
	Updating the Weather Application

	Accessing the User’s Images and Camera
	The CameraRoll Module
	Requesting Images with GetPhotoParams
	Rendering an Image from the Camera Roll
	Displaying a List of Photos
	Uploading an Image to a Server

	Storing Persistent Data with AsyncStore
	Other Storage Options

	The SmarterWeather Application
	The WeatherProject Component
	The Forecast Component
	The Button Component
	The LocationButton Component
	The PhotoBackdrop Component

	Summary

	7. Modules
	Installing JavaScript Libraries with npm
	Native Modules for iOS
	Including a Third-Party Component
	Using the Video Component
	Anatomy of an Objective-C Native Module
	Implementation of RCTVideo

	Native Modules for Android
	Installing a Third-Party Component
	Anatomy of a Java Native Module
	Android Implementation of LinearGradient

	Cross-Platform Native Modules
	Summary

	8. Debugging and Developer Tools
	JavaScript Debugging Practices, Translated
	Activating the Developer Options
	Debugging with console.log
	Using the JavaScript Debugger
	Working with the React Developer Tools

	React Native Debugging Tools
	Using Inspect Element
	The Red Screen of Death

	Debugging Beyond JavaScript
	Common Development Environment Issues
	Common Xcode Problems
	Common Android Problems
	The React Native Packager
	Issues Deploying to an iOS Device
	Simulator Behavior

	Testing Your Code
	Type-Checking with Flow
	Testing with Jest

	When You’re Stuck
	Summary

	9. Putting It All Together
	The Flashcard Application
	Project Structure
	Component Hierarchy

	Modeling and Storing Data
	Data Flow Architecture: Reflux and Flux
	Using Reflux in Zebreto
	Persistence, AsyncStorage, and the Reflux Stores

	Using the Navigator
	A Look at Third-Party Dependencies
	Responsive Design and Font Sizes
	Summary and Homework

	10. Deploying to the iOS App Store
	Preparing Your Xcode Project
	Selecting Supported Devices and Target iOS Version
	Launch Screen Images
	Adding Your Application Icon
	Setting Your Bundle Name
	Updating AppDelegate.m
	Set Schema for Release

	Uploading Your Application
	Getting Your Paperwork in Order
	Creating an Archive
	Creating an App in iTunes Connect

	Beta Testing with TestFlight
	Submitting the Application for Review
	Summary

	11. Deploying Android Applications
	Setting Application Icon
	Building the APK for Release
	Distributing via Email or Other Links
	Submitting Your Application to the Play Store
	Beta Testing via the Play Store
	Play Store Listing
	Required Assets for the Store Listing
	Publishing Your Application

	Summary

	Conclusion
	A. ES6 Syntax
	Destructuring
	Importing Modules
	Function Shorthand
	Fat Arrow Functions
	String Interpolation

	B. Commands and Quickstart Guide
	Creating a New Project
	Running on iOS
	Taking Screenshots on iOS

	Running on Android
	Taking Screenshots on Android

	Running the React Native Packager

	Index

