
Web Programming
ASP.NET Core

Hans-Petter Halvorsen

https://www.halvorsen.blog

Web Programming
ASP.NET Core

Hans-Petter Halvorsen

2021

Web Programming - ASP.NET Core

Preface
This textbook gives an overview of Web and Web programming in general and with focus on

ASP.NET and ASP.NET Core. ASP.NET and ASP.NET Core are web development frameworks

created by Microsoft.

The only way to learn programming is to do a lot of coding by yourself, and not only small

code snippets with a few lines of code. You need to make large Applications. It takes time

and may be demanding, but that’s the only way! The reward is knowledge that goes deep,

and you will gain skills that is highly desired by the industry.

Web Page:

 ASP.NET: https://www.halvorsen.blog/documents/programming/web/aspnet/

Videos:

 ASP.NET Core Web Programming YouTube Playlist:

https://www.youtube.com/watch?v=lcQsWYgQXK4&list=PLdb-

TcK6Aqj34rTHSk6C1jZQgeALWS1qO

Here you will find videos that introduces the ASP.NET Core topics covered in this textbook.

Other useful YouTube Playlists:

 C# YouTube Playlist: https://www.youtube.com/watch?v=I6Mq79Dai7M&list=PLdb-

TcK6Aqj0fji9OdAI4L9ydhiD3KUX8

 Visual Studio YouTube Playlist:

https://www.youtube.com/watch?v=3NQAWzatqvA&list=PLdb-

TcK6Aqj3pVNwegVKUGoHN3mi6IXjk

 SQL Server YouTube Playlist:

https://www.youtube.com/watch?v=pMGW353gauo&list=PLdb-TcK6Aqj3DCOx-

CiG0ddUrUQ86r2Nz

https://www.halvorsen.blog/documents/programming/web/aspnet/
https://www.youtube.com/watch?v=lcQsWYgQXK4&list=PLdb-TcK6Aqj34rTHSk6C1jZQgeALWS1qO
https://www.youtube.com/watch?v=lcQsWYgQXK4&list=PLdb-TcK6Aqj34rTHSk6C1jZQgeALWS1qO
https://www.youtube.com/watch?v=I6Mq79Dai7M&list=PLdb-TcK6Aqj0fji9OdAI4L9ydhiD3KUX8
https://www.youtube.com/watch?v=I6Mq79Dai7M&list=PLdb-TcK6Aqj0fji9OdAI4L9ydhiD3KUX8
https://www.youtube.com/watch?v=3NQAWzatqvA&list=PLdb-TcK6Aqj3pVNwegVKUGoHN3mi6IXjk
https://www.youtube.com/watch?v=3NQAWzatqvA&list=PLdb-TcK6Aqj3pVNwegVKUGoHN3mi6IXjk
https://www.youtube.com/watch?v=pMGW353gauo&list=PLdb-TcK6Aqj3DCOx-CiG0ddUrUQ86r2Nz
https://www.youtube.com/watch?v=pMGW353gauo&list=PLdb-TcK6Aqj3DCOx-CiG0ddUrUQ86r2Nz

https://www.halvorsen.blog

 Database Systems YouTube Playlist: https://www.youtube.com/watch?v=n75iPNrzN-

o&list=PLdb-TcK6Aqj0PedGwO7CUI6WBRyia7EQh

Information about the author:

Hans-Petter Halvorsen

The author currently works at the University of South-Eastern Norway. The author has been

working with Software Engineering and Industrial IT Projects for more than 20 years.

My Web Site:

https://www.halvorsen.blog/

You may also scan the QR code below:

My YouTube Channel “Industrial IT and Automation”:

https://www.youtube.com/IndustrialITandAutomation

https://www.halvorsen.blog/
https://www.youtube.com/watch?v=n75iPNrzN-o&list=PLdb-TcK6Aqj0PedGwO7CUI6WBRyia7EQh
https://www.youtube.com/watch?v=n75iPNrzN-o&list=PLdb-TcK6Aqj0PedGwO7CUI6WBRyia7EQh
https://www.halvorsen.blog/
https://www.youtube.com/IndustrialITandAutomation

Web Programming - ASP.NET Core

Table of Contents

Preface ... 2

Part 1 : Introduction ... 12

1 Introduction... 13

1.1 Applications .. 14

1.1.1 Desktop Applications .. 14

1.1.2 Web Applications .. 14

1.1.3 Mobile Applications .. 15

1.2 .NET .. 15

1.3 Web ... 16

2 ASP.NET... 17

2.1 ASP.NET Web Forms ... 18

2.2 ASP.NET Core with Razor .. 18

Part 2 : Visual Studio and C# ... 20

3 Visual Studio.. 21

3.1 Visual Studio macOS ... 22

4 Desktop Applications ... 25

4.1 Windows Forms App ... 25

4.2 WPF Application ... 25

4.3 Universal Applications .. 25

5 C# Programming Language .. 26

5.1 Introduction ... 26

5.2 Classes .. 27

5.3 Inheritance ... 27

5.3.1 Example .. 27

5.4 Polymorphism .. 29

5.4.1 Example .. 29

5.5 Interfaces ... 29

5.5.1 Example .. 30

5

5.6 Generics ... 30

5.7 Additional C# Resources .. 31

5.7.1 Windows Forms Appa ... 31

Part 3 : Web Fundamentals... 32

6 The Web .. 33

6.1 Web Programming .. 35

6.2 Client-Server ... 36

6.3 Web Server ... 37

6.4 Web Browsers .. 39

6.5 HTML .. 40

6.6 CSS ... 41

6.7 JavaScript ... 41

6.8 Server-side Frameworks .. 42

6.8.1 PHP .. 42

6.8.2 ASP.NET... 43

6.8.3 Django ... 43

6.8.4 JavaScript Server-side Frameworks .. 44

6.9 Web Data Formats .. 44

6.9.1 XML ... 44

6.9.2 JSON .. 44

7 HTML ... 46

7.1 HTML in Visual Studio ... 47

7.2 HTML Tags .. 47

7.2.1 Title ... 48

7.2.2 Headers ... 48

7.2.3 Paragraphs .. 48

7.2.4 Hyperlinks ... 48

7.2.5 Images ... 48

7.2.6 Tables .. 49

6

7.2.7 Comments ... 49

7.3 Additional Resources .. 49

8 CSS .. 50

8.1 External Style Sheets... 51

8.2 Bootstrap ... 51

8.3 Font Awesome .. 52

8.4 Additional Resources .. 52

9 JavaScript .. 53

9.1.1 Additional Resources .. 54

9.2 jQuery .. 54

9.3 AngularJS .. 55

9.4 TypeScript (Microsoft) .. 55

10 Server-side Frameworks ... 56

10.1 PHP .. 56

10.2 Django .. 56

10.3 ASP.NET .. 56

Part 4 : ASP.NET Core.. 57

11 Introduction to ASP.NET Core ... 58

11.1 Resources ... 59

11.2 Hello World Application .. 59

11.3 ASP.NET Core with Razor .. 64

11.3.1 Basic Examples ... 65

11.4 Query String Data ... 70

11.5 Form Data ... 71

12 ASP.NET Core Fundamentals ... 74

12.1 Startup Class ... 75

12.2 Web root .. 75

12.3 appsettings.json ... 76

12.4 Shared Pages .. 77

12.4.1 Layout ... 77

12.5 Models ... 78

7

12.6 Razor Pages .. 79

12.6.1 Sending data from the Page Model to the Razor File ... 80

12.7 Additional Resources .. 82

13 Razor ... 83

13.1 Razor Syntax ... 83

13.2 Model ... 84

Part 5 Database Communication .. 86

14 Database Systems .. 87

14.1 SQL Server .. 87

14.1.1 SQL Server Management Studio ... 88

14.2 Structured Query Language (SQL) .. 91

14.2.1 Tables ... 92

14.2.2 Views .. 101

14.2.3 Stored Procedures .. 103

14.2.4 Triggers ... 104

15 ADO.NET .. 105

16 Data from Database ... 106

16.1 Demo Application ... 106

16.1.1 Database ... 107

16.1.2 Visual Studio ... 109

16.2 Where should we put the Connection String? .. 120

16.2.1 appSettings.json ... 120

17 CRUD Applications.. 123

17.1 Demo Application ... 123

17.1.1 Create the Visual Studio Project ... 125

17.1.2 Database ... 127

17.1.3 Index (Start Page) ... 131

17.1.4 Models .. 131

17.1.5 Show Books .. 137

8

17.1.6 New Book ... 139

17.1.7 Edit Book .. 141

17.1.8 Delete Book .. 144

Part 6 Additional ASP.NET Core Features .. 146

18 Session Data .. 147

18.1 Session State in ASP.NET Core ... 148

18.2 Example - Share Data between 2 Web Pages ... 150

18.2.1 Page1 .. 151

18.2.2 Page2 .. 153

18.3 Additional Resources .. 155

Part 7 Charting ... 156

19 Charting ... 157

19.1 Introduction ... 157

20 Google Charts .. 159

20.1 Google Charts Implementation ... 160

20.2 Google Charts Examples .. 161

20.2.1 Basic Chart Example ... 162

20.2.2 Database Examples... 163

20.2.3 Line Chart Example ... 166

20.2.4 Bar Chart Example .. 168

20.2.5 Column Chart Example ... 169

20.2.6 Multi-Line Chart Example ... 170

21 Chart.js .. 173

Part 8 APIs .. 174

22 Class Libraries .. 175

22.1 Demo Application ... 176

22.1.1 Class Library .. 178

22.1.2 BookAdm App ... 180

22.1.3 BookStore App .. 184

9

22.2 Final System ... 186

23 Web API ... 188

Part 9 User Login and ASP.NET Core Identity ... 189

24 User Identity and Login .. 190

24.1 Password Security ... 190

24.1.1 Encryption and Decrypting ... 190

24.1.2 Hashing ... 191

24.1.3 Salting ... 193

24.2 Microsoft.AspNetCore.Identity ... 194

24.2.1 PasswordHasher<TUser> Class ... 194

24.3 Session State in ASP.NET Core ... 195

24.4 Demo Application ... 195

24.4.1 Login ... 197

24.4.2 Create User ... 197

24.4.3 Update User Information ... 198

24.4.4 More Features .. 198

25 ASP.NET Core Identity... 199

25.1 Introduction ... 199

25.1.1 Scaffold Identity in ASP.NET Core Projects ... 199

25.2 Demo Application ... 200

25.2.1 Create Project in Visual Studio with Identity Enabled .. 200

25.2.2 Create Identity Database .. 202

25.2.3 Register New Account and Log In ... 204

25.2.4 2 Factor Authentication .. 207

25.2.5 Start Creating your Application .. 209

25.2.6 Scaffolding .. 211

25.3 Additional Resources .. 215

Part 10 Testing ... 216

26 Unit Testing ... 217

10

Part 11 Deployment .. 218

27 Web Servers ... 219

28 Deployment in Visual Studio ... 222

29 Internet Information Services (IIS) .. 223

29.1 Installation ... 223

29.1.1 Windows Features .. 224

29.1.2 .NET Core Hosting Bundle .. 224

29.2 Demo Application ... 224

29.2.1 Add Application .. 225

Part 12 Microsoft Azure .. 227

30 Introduction to Azure ... 228

30.1 Azure Web Portal .. 228

31 Databases in Azure ... 229

31.1 Create the Database ... 229

31.1.1 Azure Data Studio ... 229

31.2 Create Tables, etc. .. 230

31.2.1 SQL Server Management Studio ... 231

31.2.2 Azure Data Studio ... 231

32 Web Applications in Azure .. 232

32.1 App Service ... 232

32.2 Default Document .. 233

Part 13 Resources ... 234

33 Bootstrap ... 235

34 Font Awesome ... 236

Part 14 Applications ... 237

35 Weather System ... 238

35.1 ASP.NET Core Web Application ... 239

35.2 Database .. 240

35.3 Visual Studio Project ... 241

35.4 Connection String ... 242

11

35.4.1 appSettings.json ... 242

35.5 Index Page (Start Page) ... 243

35.6 Weather Overview Page ... 244

35.7 Charts Page ... 244

35.8 Weather Parameters Page .. 249

35.9 Weather Information Page .. 249

35.10 About Page .. 250

35.11 Deployment to Azure... 251

36 Voting System .. 253

37 Data Management System (DMS) ... 257

Web Programming - ASP.NET Core

Part 1 : Introduction
This part introduces the topics covered in this textbook and puts it into a proper context.

Web Programming - ASP.NET Core

1 Introduction
Learning Web Technology is essential today because Internet has become the number one

source to information, and many of the traditional software applications have become Web

Applications. Web Applications have become more powerful and can fully replace desktop

application in most situations.

Figure 1-1: Web Applications – The New Era of Application Development

That’s why you need to know basic Web Programming, including HTML, CSS and JavaScript.

To create more powerful Web Sites and Web Applications you also need to know about

Web Servers, Database Systems and Web Frameworks like PHP, ASP.NET, etc.

It all started with Internet (1960s) and the World Wide Web - WWW (1991). The first Web

Browser, Netscape, came in 1994. This was the beginning of a new era, where everything is

connected on internet, the so-called Internet of Things (IoT).

This textbook contains of the following:

• Part 1: Introduction

• Part 2: Visual Studio and C#

• Part 3: Web Fundamentals

• Part 4: ASP.NET Core

1. Introduction

14

• Part 5: Database Communication

• Part 6: Additional ASP.NET Core Features

• Part 7: Charting

• Part 8: APIs

• Part 9: User Login and ASP.NET Core Identity

• Part 10: Testing

• Part 11: Deployment

• Part 12: Microsoft Azure

• Part 13: Resources

• Part 14: Applications

1.1 Applications
We can separate applications in different categories:

• Desktop Applications

• Web Applications

• Mobile Applications

These will shortly be described below. In this textbook we will focus on creating web

applications using ASP.NET Core.

1.1.1 Desktop Applications

Desktop Applications comes in many flavors:

• Windows WinForms Desktop Applications (Windows Forms App)

• WPF Desktop Applications

• Universal Applications

Windows Forms Apps are the oldest but are still very popular.

1.1.2 Web Applications

Web Applications use a mix of different technologies and different programming languages.

We have:

• Static Web Pages: HTML, CSS, JavaScript

• Dynamic Web Applications: PHP, ASP.NET, Django, etc.

1. Introduction

15

1.1.3 Mobile Applications

So-called Apps has been very popular since the release of the first iPhone in 2007. Today we

have Apple products using iOS and we have Android devices.

We have:

• iOS

• Android

• iPadOS

• etc.

The great thing about Web Applications is that they also work on Mobile platforms. Native

apps for Android phones and Apple devices typically need to be developed in a strict

environment and with specific programming languages and they only work for the platform

they are developed for. For Android development you typically will use the Kotlin

programming language in combination with Android Studio. While for development for the

Apple platform you will need a Mac computer and use the Swift programming language as

part of the Xcode development environment.

1.2 .NET
The .NET is a development platform from Microsoft.

Previously we had the following:

• .NET Framework (latest version is .NET Framework 4.x)

• .NET Core (latest version is .NET Core 3.x)

.NET Framework was first introduces in 2002 and works only for the Windows operating

system, while .NET Core was introduced in 2016. .NET Core is cross-platform, meaning it will

work on Windows, Linux and macOS.

The newly released .NET 5 has merged .NET Framework and .NET Core into a more unified

package.

.NET Core and the newly released .NET 5 (that is built on .NET Core) will be the future of

.NET. Microsoft is still committed to support the previous .NET Framework for years to

come, but for new applications your choice should be .NET 5 either you want to develop

desktop applications (“Windows Forms App”) or web applications (“ASP.NET Core Web

App”).

1. Introduction

16

You can use many different programming languages with .NET, but the “default” language is

C#, which is the language we will use in this textbook.

The .NET 5 (and newer) is aiming to be cross-platform, and it is supported on Windows,

macOS, and Linux when possible.

The .NET web site: https://dotnet.microsoft.com

1.3 Web
We have 2 types of web pages:

• Static web pages

• Dynamic web pages

Static web pages are pure HTML web pages where the contents is written in manually and it

doesn’t change unless the user updates the contents.

Dynamic Web Pages typically get contents from a Database and have deeper interaction

with the user.

Dynamic Web Pages using e.g., ASP.NET or PHP Executes Code on the Server-side and

Generates HTML Code that is sent to the Client (Web Browser). This is known as Server-side

code.

You can also create Dynamic content on the Client using JavaScript.

Static Web Pages typically contains Text and Images that is not changing (unless a person

changes the page and upload a new version). Static Web Pages are Pure HTML pages

Video:

 Web Programming Overview: https://youtu.be/plRBYKbQSuE

https://dotnet.microsoft.com/
https://youtu.be/plRBYKbQSuE

Web Programming - ASP.NET Core

2 ASP.NET
ASP.NET is an open-source web framework, created by Microsoft, for building web apps and

services using the .NET Framework or the .NET Core. We have both ASP.NET and ASP.NET

Core. ASP.NET Core is the new approach built on .NET Core.

Figure 2-1 shows the concept of ASP.NET.

Figure 2-1: ASP.NET

ASP.NET comes in many flavors:

• ASP.NET Web Forms - The same programming model as WinForms. If you already

know WinForms, this is an easy access to the world of web programming.

14. Database Systems

18

• ASP.NET MVC (Model-View Controller). If you are familiar with the MVC approach,

this could be your choice.

• ASP.NET with Razor Pages - This is the latest and recommended way. This has

become the "default" approach for ASP.NET today. It mixes the best from all the

others combined with PHP like syntax (PHP is probably the most popular Web

Framework today)

This textbook will focus on ASP.NET Core with Razor Pages.

2.1 ASP.NET Web Forms
The same programming model as WinForms. If you already know WinForms, this is an easy

access to the world of web programming.

This textbook will focus on ASP.NET Core with Razor Pages.

Still, if you want to get an overview of ASP.NET Web Forms you may take a look at the

following:

 Introduction to ASP.NET Web Programming using Web Forms:

https://youtu.be/R7VuJt6TqA8

2.2 ASP.NET Core with Razor
Again, we have different options we can use:

• Razor with MVC

• Razor Single Page Model (comparable to PHP but using C# syntax instead)

• Razor with Page Model (Code and Layout are separated in different Files)

This textbook will focus on Razor with Page Model (Code and Layout are separated in

different Files).

An ASP.NET Razor page has the “.cshtml” (e.g., “Index.cshtml”) file extension. This file

contains a mix of HTML and Razor syntax. The Razor syntax is actually C# code mixed

together with the HTML code.

The Razor parts of the file are executed on the web server before the page is sent to the

client (your web browser).

https://youtu.be/R7VuJt6TqA8

14. Database Systems

19

The Razor page may also have a C# code file linked to it, this file has the extension

“.cshtml.cs” (e.g., “Index.cshtml.cs”). The “.cshtml.cs” file is called the Page Model.

In Razor with Page Model each Razor page is a pair of files:

• A “.cshtml” file that contains HTML markup with C# code using Razor syntax.

• A “.cshtml.cs” (“code behind”) file that contains C# code that handles page events.

In this textbook we will go through ASP.NET Core in detail. In Part 3: Web Fundamentals we

go through the foundations for creating web applications in general, while in Part 4:

ASP.NET Core we start creating ASP.NET Core Web Applications. If you cannot wait to start

with ASP.NET Core, you take sneak peek at the introduction videos below.

Videos:

Below you find some short introduction videos to ASP.NET Core:

 ASP.NET Core - Hello World: https://youtu.be/lcQsWYgQXK4

 ASP.NET Core – Introduction: https://youtu.be/zkOtiBcwo8s

https://youtu.be/lcQsWYgQXK4
https://youtu.be/zkOtiBcwo8s

Web Programming - ASP.NET Core

Part 2 : Visual Studio

and C#
This part gives an overview of Visual Studio and basic C# programming, which will be the

foundation for learning and development of ASP.NET Core Web Applications. If you already

are familiar with using Visual Studio and C# for development of Windows Forms Apps, you

can skip this part.

Web Programming - ASP.NET Core

3 Visual Studio
Microsoft Visual Studio is an integrated development environment (IDE) from Microsoft. It

can be used to develop console and graphical user interface applications along with

Windows Forms applications, web sites, web applications, and web services, etc.

Home page of Visual Studio: http://www.microsoft.com/visualstudio

Figure 3-1 shows Visual Studio.

Figure 3-1: Visual Studio

New projects are created from the “New Project” window (Figure 3-2).

http://www.microsoft.com/visualstudio

3. Visual Studio

22

Figure 3-2: Visual Studio – New Project

3.1 Visual Studio macOS
Visual Studio for macOS supports .NET Core and Web programming (both ASP.NET Core and

ordinary ASP.NET). It does not support ordinary Windows Desktop Programming, but you

can create macOS desktop applications, iOS applications, tvOS applications, etc.

Figure 3-3 shows the New Project window in Visual Studio for macOS.

3. Visual Studio

23

Figure 3-3: Visual Studio macOS – New Project

If you want to make Web Applications and you have a Mac, the Visual Studio for macOS has

become an excellent choice.

You can create:

.NET Framework:

• ASP.NET Web Forms

• ASP.NET MVC

.NET Core:

• ASP.NET Core Web Application (Razor) – This is the default and recommended

option.

• ASP.NET Core Web Application (MVC)

• Angular Web Applications

• React.js Web Applications

• Web API

• etc.

3. Visual Studio

24

This means you have all the necessary tools available to create great web applications using

C# on your Mac.

Web Programming - ASP.NET Core

4 Desktop Applications
In the latest version of Visual Studio 2019 we can develop WinForms Desktop Applications

and WPF Desktop Applications for both .NET Framework (4.x) and .NET Core (3.x).

.NET WinForms vs. .NET Core WinForms: Note that .NET Core is cross-platform, but .NET

Core WinForms Desktop Application will (of course) only work on Windows.

4.1 Windows Forms App
This is the default approach. This is the number one method for creating Windows desktop

applications with Visual Studio.

4.2 WPF Application
This is a newer approach for creating desktop applications in Visual Studio. It has a deeper

separation of the GUI and the code.

WPF – Windows Presentation Foundation.

4.3 Universal Applications
This is an attempt to make universal application that works on any kind of devices from

desktops to mobile phones.

They call it Universal Windows Platform applications, or UWP.

Web Programming - ASP.NET Core

5 C# Programming Language

5.1 Introduction
C# is pronounced “see sharp”. C# is an object-oriented programming language and part of

the .NET family from Microsoft. C# is very similar to C++ and Java. C# is developed by

Microsoft and originally it worked only on the Windows platform. Now .NET has become an

open-source project, and the new .NET Core is also cross platform meaning it works on

Windows, macOS and Linux.

Object-oriented programming (OOP) is a programming language model organized around

"objects" rather than "actions" and data rather than logic. Historically, a program has been

viewed as a logical procedure that takes input data, processes it, and produces output data.

The first step in OOP is to identify all the objects you want to manipulate and how they

relate to each other, an exercise often known as data modeling. Once you've identified an

object, you generalize it as a class of objects and define the kind of data it contains and any

logic sequences that can manipulate it. Each distinct logic sequence is known as a method. A

real instance of a class is called an “object” or an “instance of a class”. The object or class

instance is what you run in the computer. Its methods provide computer instructions and

the class object characteristics provide relevant data. You communicate with objects - and

they communicate with each other.

Important features with OOP are:

• Classes and Objects

• Inheritance

• Polymorphism

• Encapsulation

Simula was the first object-oriented programming language. Simula was developed in the

1960s by Kristen Nygaard from Norway.

Java, Python, C++, Visual Basic .NET and C# are popular OOP languages today.

 C# Documentation: https://docs.microsoft.com/en-us/dotnet/csharp/

https://docs.microsoft.com/en-us/dotnet/csharp/

5. C# Programming Language

27

5.2 Classes
Classes are the fundamental building blocks in C#.

5.3 Inheritance
Inheritance is a feature of object-oriented programming languages that allows you to define

a base class that provides specific functionality (data and behavior) and to define derived

classes that either inherit or override that functionality.

5.3.1 Example

Assume you have different types of sensors sharing some common features, then you can,

e.g., have a Base Class called Sensor() and then other derived Classes like

TemperatureSensor(), etc. that either inherit or override the functionality of the base class.

If you have different types of Temperature Sensor, you can make derived classes like

Thermistor() that inherit/ override functionality of TemperatureSensor(). See Figure 5-1.

5. C# Programming Language

28

Figure 5-1: Inheritance Class Diagram - Example

Figure 5-2 shows a code example.

Figure 5-2: Inheritance – Code Example

5. C# Programming Language

29

5.4 Polymorphism
Polymorphism is an object-oriented feature that is part of all object-oriented programming

languages.

5.4.1 Example

Figure 5-3: Polymorphism Example

5.5 Interfaces
Interfaces are used along with classes to define what is known as a contract. A contract is an

agreement on what the class will provide to an application.

An interface declares the properties and methods. It is up to the class to define exactly what

the method will do.

An interface is a completely "abstract class", which can only contain abstract methods and

properties (with empty bodies).

It is considered good practice to start with the letter "I" at the beginning of an interface, as

it makes it easier for yourself and others to remember that it is an interface and not a class.

By default, members of an interface are abstract and public.

Note: Interfaces can contain properties and methods, but not fields

5. C# Programming Language

30

5.5.1 Example

Assume you make this system as an open platform meaning other developers can use it to

add logging functionality from other sensors.

The system will not work if they don’t implement a Name for the Sensor and a ReadValue()

method.

To make sure that they follow this, you should implement Interfaces

Figure 5-4: Interfaces Example

To access the interface methods, the interface must be "implemented" (kinda like inherited)

by another class. To implement an interface, use the : symbol (just like with inheritance).

The body of the interface method is provided by the "implement" class. Note that you do

not have to use the override keyword when implementing an interface.

5.6 Generics
Generics allow you to define the specification of the data type of programming elements in

a class or a method, until it is actually used in the program. In other words, generics allow

you to write a class or method that can work with any data type.

You write the specifications for the class or the method, with substitute parameters for data

types. When the compiler encounters a constructor for the class or a function call for the

method, it generates code to handle the specific data type.

5. C# Programming Language

31

5.7 Additional C# Resources
This textbook s not a textbook for learning the basics within the C# programming language.

A proper introduction to the C# Programming language is given here:

 Visual studio and C#: https://www.halvorsen.blog/documents/programming/csharp

 W3Schools: https://www.w3schools.com/cs/index.php

5.7.1 Windows Forms Appa

To get an overview of Windows Forms Apps you may want to take a closer look at the

videos below.

Videos:

Below you find some videos regarding Visual Studio and C# programming creating Windows

Forms Apps:

 Simulation and Control with C# and WinForms: https://youtu.be/I6Mq79Dai7M

 SQL Server with C# Windows Forms App: https://youtu.be/rXugzELsQl0

 Datalogging using SQL Server with C#: https://youtu.be/SkVcfQvRFDI

https://www.halvorsen.blog/documents/programming/csharp
https://www.w3schools.com/cs/index.php
https://youtu.be/I6Mq79Dai7M
https://youtu.be/rXugzELsQl0
https://youtu.be/SkVcfQvRFDI

Web Programming - ASP.NET Core

Part 3 : Web

Fundamentals
This part gives an overview of the fundamentals in web and web programming. ASP.NET

Core is a framework for creating Web Applications, this means you need to have basic

knowledge about the web and web programming in general before you can start creating

ASP.NET Core Web Applications.

If you already are familiar with the fundamentals of the web, familiar with creating HTML

web pages and have used, e.g., PHP for creating Web Applications, you can skip this part.

Web Programming - ASP.NET Core

6 The Web
Learning Web Technology is essential today because Internet has become the number one

source to information, and many of the traditional software applications have become Web

Applications. Web Applications have become more powerful and can fully replace desktop

application in most situations.

It all started with Internet (1960s) and the World Wide Web - WWW (1991). The first Web

Browser, Netscape, came in 1994. This was the beginning of a new era, where everything is

connected on internet, the so-called Internet of Things (IoT).

That’s why you need to know basic Web Programming, including HTML, CSS and JavaScript.

To create more powerful Web Sites and Web Applications you also need to know about

Web Servers, Database Systems and Web Frameworks like PHP, ASP.NET, etc.

Figure 6-1: Web Programming Fundamentals

Use HTML to define the content of web pages, CSS is used to specify the layout of web

pages, while JavaScript is used to program the behavior of web pages.

For creating more dynamic web pages, we typically also use a web framework like PHP or

ASP.NET, etc. With these frameworks you can communicate with a database for storing or

retrieving data.

Web is the Present and the Future

6. The Web

34

Figure 6-2: The Future of Programming

Figure 6-3: The new Era of Programing [http://geek-and-poke.com]

http://geek-and-poke.com/

6. The Web

35

History of the Web:

• Internet (1960s)

• World Wide Web - WWW (1991)

• First Web Browser - Netscape, 1994

• Google, 1998

• Facebook, 2004

• Smartphones, 2007

• Tablets, 2010

6.1 Web Programming
We have different Web Development Environments:

Microsoft:

• Visual Studio (Windows, a scaled version is in beta for MacOS)

• Visual Studio Code (Cross-platform, open-source)

Others:

• WebStorm (JavaScript IDE, client-side development and server-side development

with Node.js, etc.)

• Eclipse

• Atom (free and open-source text and source code editor for macOS, Linux, and

Windows)

• Sublime

• Etc.

6. The Web

36

Figure 6-4: The Puzzle of Web Programming

 Web Programming Overview: https://youtu.be/plRBYKbQSuE

6.2 Client-Server
The basic principle of web is that it is a server and a client. The server hosts the web pages

and you request a web page from the client using a web browser.

https://youtu.be/plRBYKbQSuE

6. The Web

37

Figure 6-5: The Client-Server Nature of Web

6.3 Web Server
The term web server can refer to either the hardware (the computer) or the software (the

computer application) that helps to deliver web content that can be accessed through the

Internet.

6. The Web

38

Figure 6-6: Web Architecture

The most common use of web servers is to host websites, but there are other uses such as

gaming, data storage or running enterprise applications.

Here are some popular Web Servers:

• Internet Information Services (IIS) - Microsoft Windows

• Apache - Open Source, Cross-platform: UNIX, Linux, OS X, Windows, ...

• Nginx - (pronounced "engine x") - Has become very popular lately

• LiteSpeed

• GWS (Google Web Server)

6. The Web

39

Figure 6-7: The Structure of a Basic Web Page

6.4 Web Browsers
The web browser is the desktop application where we see and interact with the web pages

or the web applications.

Figure 6-8: Web Browser – Basic Principles

Figure 6-9 shows some of the popular web browsers on the market today.

6. The Web

40

Figure 6-9: Popular Web Browsers

6.5 HTML
HTML, or HyperText Markup Language is the visual appearance of a web site. You could say

it is the language spoken by web browsers that makes it possible to see web contents in

your web browser. All web browser understands HTML. HTML 5 is the latest. HTML is

maintained by W3C - World Wide Web Consortium.

HTML5 is supported in all modern Browsers

WYSIWYG HTML Editors:

• Adobe Dreamweaver (Monthly Payment)

• Kompozer (Free)

• Bluegriffon (Free)

• Sparkle ($80), etc...

WYSIWYG – What You See Is What You Get. You don’t need to know HTML syntax - It’s just

like using MS Word.

6. The Web

41

HTML Editors (not WYSIWYG)

• Visual Studio (ASP.NET)

• Visual Studio Code

• CoffeeCup ($69, Free Trial)

• Coda ($99)

• NotePad (-> any textbased editor)

Only possible to change the HTML source code and then select “Preview” in order to see

how it looks like in a Web Browser. You need to know HTML syntax.

Create a Web Site with Visual Studio:

• Visual Studio is not well suited for creating Static HTML Web Pages.

• Visual Studio has poor WYSIWYG Editing possibilities

• Visual Studio is more optimized for creating Dynamic Web Pages and creating

ASP.NET Web Pages in special

• For HTML pages Visual Studio Code may be a better choice.

Video:

 HTML: https://youtu.be/DUEHx7l5a3Y

6.6 CSS
CSS – Cascading Style Sheets

Styles define how to display HTML elements

CSS is used to control the style and layout of multiple web pages all at once

6.7 JavaScript
JavaScript is the de facto client-side programming language. Typically you want to use a

JavaScript Framework.

Here are some popular JavaScript Frameworks:

https://youtu.be/DUEHx7l5a3Y

6. The Web

42

• AngularJS, Angular2 (JavaScript Framework, Google)

• Bootstrap (JavaScript/HTML, CSS Framework), Open-source framework

• JQuery

• TypeScript (Microsoft)

6.8 Server-side Frameworks
Server-side Web Frameworks:

• ASP.NET (Programming Language: C#, IDE: Visual Studio)

• PHP

• Python Django (Programming Language: Python)

• Ruby on Rails (Programming Language: Ruby)

• Node.js (Programming Language: JavaScript)

6.8.1 PHP

PHP is a popular general-purpose scripting language that is especially suited to web

development.

 PHP Web Page: https://www.php.net

PHP is a server-side scripting language for web development. It is used to make dynamic and

interactive web pages. PHP is an old and well-known technology, but it is still very popular

and easy to learn. PHP is open source (free) and cross-platform. Especially, the combination

of PHP and MySQL is a powerful combination used to create rich, dynamic web pages.

PHP is a server-side scripting language for web development. It is used to make dynamic

and interactive Web Pages

Old and well-known Technology

Very Popular and easy to learn

Open Source/Free and Cross-platform

PHP + MySQL is a powerful combination

https://www.php.net/

6. The Web

43

PHP files can contain text, HTML, CSS, JavaScript, and PHP code

PHP code are executed on the server, and the result is returned to the browser as plain

HTML

PHP files have extension ".php"

LAMP is popular when it comes to Web Programming. LAMP consists of the following

components:

• Linux Operating System

• Apache Web Server (Apache HTTP Server)

• MySQL Database System

• PHP Programming Language d

All of these 4 components are open source, which is one of the reasons for its popularity.

PHP example:

<!DOCTYPE html>

<html>

<body>

<h1>My first PHP page</h1>

<?php

echo "Hello World!";

?>

</body>

</html>

Additional Training:

 PHP Tutorial: http://www.w3schools.com/php/

6.8.2 ASP.NET

ASP.NET is an open-source web framework, created by Microsoft, for building web apps and

services using the .NET Framework or the .NET Core. We have both ASP.NET and ASP.NET

Core. ASP.NET Core is the new approach built on .NET Core.

6.8.3 Django

Django is based on the Python programming language.

Do you want to learn more about Python?

http://www.w3schools.com/php/

6. The Web

44

 Python: https://www.halvorsen.blog/documents/programming/python/

6.8.4 JavaScript Server-side Frameworks

Typically, you use JavaScript on the client, but several server-side JavaScript frameworks do

exist.

Probably, Node.js is the most popular server-side JavaScript framework today.

6.9 Web Data Formats
Important data formats on the web are:

• XML

• JSON

Today, JSON has become the dominating standard for data exchange.

6.9.1 XML

XML stands for eXtensible Markup Language.

• XML was designed to store and transport data.

• XML was designed to be both human- and machine-readable.

• XML is often used for distributing data over the Internet.

XML was the dominating format for storing and exchanging data between a browser and a

server, but today JSON has taken over.

Additional Resources:

 XML Tutorial: https://www.w3schools.com/xml/

6.9.2 JSON

JSON: JavaScript Object Notation.

https://www.halvorsen.blog/documents/programming/python/
https://www.w3schools.com/xml/

6. The Web

45

JSON is a syntax for storing and exchanging data. When exchanging data between a browser

and a server, the data can only be text. JSON is text.

Example:

{name: "John", age: 31, city: "New York"};

Advantages with JSON:

• JSON is a lightweight data-interchange format

• JSON is "self-describing" and easy to understand

• JSON is language independent

• JSON uses JavaScript syntax, but the JSON format is text only.

• Text can be read and used as a data format by any programming language.

Additional Resources:

Introduction to JSON: https://www.w3schools.com/js/js_json_intro.asp

https://www.w3schools.com/js/js_json_intro.asp

Web Programming - ASP.NET Core

7 HTML
HTML, or HyperText Markup Language is the visual appearance of a web site. You could say

it is the language spoken by web browsers that makes it possible to see web contents in

your web browser. All web browser understands HTML. HTML 5 is the latest. HTML is

maintained by W3C - World Wide Web Consortium.

<!DOCTYPE html>

<html>

<head>

<meta charset="UTF-8">

<title>Title of the document</title>

</head>

<body>

Content of the document......

</body>

</html>

The history of HTML:

Figure 7-1: The History of HTML

Video:

7. HTML

47

 HTML: https://youtu.be/DUEHx7l5a3Y

7.1 HTML in Visual Studio
Visual Studio is not well suited for creating Static HTML Web Pages.

Visual Studio has poor WYSIWYG Editing possibilities

We can use Visual Studio because we already use it in our Project – and basic HTML syntax is

something you should know about.

Visual Studio is more optimized for creating Dynamic Web Pages and creating ASP.NET Web

Pages in special

For pure HTML pages, I recommend that you use Visual Studio Code instead

Figure 7-2: Visual studio Code

7.2 HTML Tags
HTML consists of HTML tags that is used to format and present contents on the web page.

Here, some of the most used HTML tags will be presented.

https://youtu.be/DUEHx7l5a3Y

7. HTML

48

7.2.1 Title

Title:

<title>This is my Title</title>

7.2.2 Headers

Headers 1:

<h1>This is my Header</h1>

Header 2:

<h2>This is my Header</h2>

Header 3:

<h3>This is my Header</h3>

7.2.3 Paragraphs

Paragraphs:

<p>My first paragraph.</p>

7.2.4 Hyperlinks

Hyperlinks:

<!DOCTYPE html>

<html>

<body>

<h1>This is a heading</h1>

This is a link to Google

</body>

</html>

7.2.5 Images

Images:

<!DOCTYPE html>

<html>

<body>

<h1>This is a heading</h1>

</body>

</html>

7. HTML

49

7.2.6 Tables

Tables:

<table width="200" border="1">

<tr>

<td>a</td>

<td>b</td>

<td>c</td>

<td>d</td>

</tr>

<tr>

<td>e</td>

<td>f</td>

<td>g</td>

<td>h</td>

</tr>

<tr>

<td>i</td>

<td>j</td>

<td>k</td>

<td>l</td>

</tr>

</table>

7.2.7 Comments

Comment:

<!-- Write your comments here -->

7.3 Additional Resources

HTML Tutorial: https://www.w3schools.com/html/

https://www.w3schools.com/html/

Web Programming - ASP.NET Core

8 CSS
CSS is a stylesheet language that describes the presentation of an HTML page.

Use HTML to define the content of web pages, CSS is used to specify the layout of web

pages, while JavaScript is used to program the behavior of web pages.

CSS – Cascading Style Sheets

Styles define how to display HTML elements

CSS is used to control the style and layout of multiple web pages all at once

Basic Example:

body {

 background-color: #d0e4fe;

}

h1 {

 color: orange;

 text-align: center;

}

p {

 font-family: "Times New Roman";

 font-size: 20px;

}

There are three ways of inserting a style sheet:

• External style sheet (Recommended!!)

– An external style sheet is ideal when the style is applied to many pages. With

an external style sheet, you can change the look of an entire Web site by

changing just one file.

– An external style sheet can be written in any text editor. The file should not

contain any html tags.

– The style sheet file must be saved with a .css extension

• Internal style sheet

– An internal style sheet should be used when a single document has a unique

style.

– You define internal styles in the head section of an HTML page, inside the

<style> tag

8. CSS

51

• Inline style

– An inline style loses many of the advantages of a style sheet (by mixing

content with presentation). Use this method sparingly!

8.1 External Style Sheets
stylesheet.css:

body {

 background-color: #d0e4fe;

}

h1 {

 color: orange;

 text-align: center;

}

p {

 font-family: "Times New Roman";

 font-size: 20px;

}

myfile.html:

...

<head

...

 <link rel="stylesheet" type="text/css" href="stylesheet.css" />

 ..

</head>

...

8.2 Bootstrap
JavaScript/HTML, CSS Framework

Bootstrap is the most popular HTML, CSS, and JavaScript framework for developing

responsive, mobile-first websites.

Home Page:

https://getbootstrap.com

Bootstrap is a popular HTML, CSS, and JavaScript framework for developing responsive,

mobile first projects on the web

Bootstrap is a free and open-source front-end web framework for designing websites and

web applications.

https://getbootstrap.com/

8. CSS

52

It contains HTML- and CSS-based design templates for typography, forms, buttons,

navigation and other interface components, as well as optional JavaScript extensions.

Unlike many web frameworks, it concerns itself with client-side/front-end development

only.

Additional Training:

 Bootstrap Tutorial: https://www.w3schools.com/bootstrap4/

8.3 Font Awesome
Font Awesome 5 has a PRO edition with 7020 icons, and a FREE edition with 1535 icons. The

FREE edition is a good start and has more than enough icons for most people.

To use the Free Font Awesome 5 icons, you can choose to download the Font Awesome

library, or you can sign up for an account at Font Awesome and get a code (called KIT CODE)

to use when you add Font Awesome to your web page.

 Font Awesome Home Page: https://fontawesome.com

Additional Training:

 Introduction to Font Awesome:

https://www.w3schools.com/icons/fontawesome5_intro.asp

8.4 Additional Resources

 CSS Tutorial: https://www.w3schools.com/css/

https://www.w3schools.com/bootstrap4/
https://fontawesome.com/
https://www.w3schools.com/icons/fontawesome5_intro.asp
https://www.w3schools.com/css/

Web Programming - ASP.NET Core

9 JavaScript
JavaScript is the de facto client-side programming language. Typically, you want to use a

JavaScript Framework.

Here are some popular JavaScript Frameworks:

• AngularJS, Angular2 (JavaScript Framework, Google)

• Bootstrap (JavaScript/HTML, CSS Framework), Open source framework

• JQuery

• TypeScript (Microsoft)

JavaScript is one of 3 languages all web developers must learn:

1. HTML to define the content of web pages

2. CSS to specify the layout of web pages

3. JavaScript to program the behavior of web pages

JavaScript is the programming language of the Web.

All modern HTML pages are using JavaScript.

JavaScript is the default scripting language in all modern browsers, and in HTML5.

JavaScript is probably the most popular programming language in the world.

It is the language for HTML, for the Web, for computers, servers, laptops, tablets, smart

phones, and more.

JavaScript can Change HTML Elements! – which makes it very powerful!

Note that JavaScript and Java are different languages, both in concept and design.

9. JavaScript

54

<!DOCTYPE html>

<html>

<body>

<h1>My First JavaScript</h1>

<p>JavaScript can change the content of an HTML element:</p>

<button type="button" onclick="myFunction()">Click Me!</button>

<p id="demo">This is a demonstration.</p>

<script>

function myFunction() {

 document.getElementById("demo").innerHTML = "Hello JavaScript!";

}

</script>

</body>

</html>

This gives the following results in your web browser:

9.1.1 Additional Resources

W3schools.com: https://www.w3schools.com/js/

9.2 jQuery
jQuery is a JavaScript Library.

Additional Training:

 jQuery Tutorial: https://www.w3schools.com/jquery/

https://www.w3schools.com/js/
https://www.w3schools.com/jquery/

9. JavaScript

55

9.3 AngularJS
JavaScript Framework developed by Google that has become very popular today.

 TypeScript Home Page: https://angularjs.org

9.4 TypeScript (Microsoft)
TypeScript is a free and open-source programming language developed and maintained by

Microsoft.

It is a superset of JavaScript that compiles to JavaScript

 TypeScript Home Page: http://www.typescriptlang.org

https://angularjs.org/
http://www.typescriptlang.org/

Web Programming - ASP.NET Core

10 Server-side Frameworks
We have many different so-called server-side frameworks for creating dynamic web pages:

• PHP

• Django

• ASP.NET

• Etc.

10.1 PHP
PHP is a server scripting language, and a powerful tool for making dynamic and interactive

Web pages.

10.2 Django
Django is based on the Python programming language.

Do you want to learn more about Python? Here you find lots of Python resources:

https://www.halvorsen.blog/documents/programming/python/

10.3 ASP.NET
ASP.NET is an open-source web framework, created by Microsoft, for building web apps and

services using the .NET Framework or the .NET Core. We have both ASP.NET and ASP.NET

Core. ASP.NET Core is the new approach built on .NET Core.

ASP.NET Core will be the main topic in this document. In this textbook we will go through

ASP.NET Core in detail. In Part 4: ASP.NET Core we start creating ASP.NET Core Web

Applications.

https://www.halvorsen.blog/documents/programming/python/

Web Programming - ASP.NET Core

Part 4 : ASP.NET Core
As this point you should be familiar with Visual Studio, the C# Programming Language, and

basic concepts regarding Web Programming in general. This part gives an overview of

ASP.NET Core.

Web Programming - ASP.NET Core

11 Introduction to ASP.NET
Core

ASP.NET Core is based on the .NET Core Framework (not the ordinary .NET Framework).

We have:

• ASP.NET Core MVC (Model-View Controller). If you are familiar with the MVC

approach, this could be your choice.

• ASP.NET Core with Razor Pages. This is the latest and recommended way. This has

become the "default" approach for ASP.NET today. It mixes the best from all the

others combined with PHP like syntax (PHP is probably the most popular Web

Framework today)

This textbook will focus on this latest and newest approach, namely ASP.NET Core with

Razor Pages.

Figure 11-1 shows a ASP.NET Core project in Visual Studio.

Figure 11-1: ASP.NET Core Visual Studio Project

Important Folders and Files:

11. Introduction to ASP.NET Core

59

• appSettings.json – This file contains configuration data, such as connection strings.

• Program.cs – This file contains the entry point for the program.

• Startup.cs - This file contains code that configures app behavior.

• wwwroot folder - Contains static files, such as Images, HTML files, JavaScript files,

and CSS files.

• Pages folder – Here you are supposed to put your ASP.NET (".cshtml") web pages

In addition, it is standard to have a folder called “Models”. This folder contains C# classes

that takes care of the data. The data can, e.g., be a database or a file, e.g., a JSON file.

In addition, we have what we call Supporting files. Supporting files have names that begin

with an underscore (_).

• _Layout.cshtml file configures UI elements common to all pages. You can use this file

to set up the navigation menu at the top of the page

11.1 Resources
Here are some important ASP.NET Core resources:

• ASP.NET Core fundamentals (Microsoft): https://docs.microsoft.com/en-

us/aspnet/core/fundamentals/

• Introduction to Razor Pages in ASP.NET Core (Microsoft):

https://docs.microsoft.com/en-us/aspnet/core/razor-pages

• Tutorial: Create a Razor Pages web app with ASP.NET Core (Microsoft):

https://docs.microsoft.com/en-us/aspnet/core/tutorials/razor-pages/

• Razor syntax reference for ASP.NET Core (Microsoft):

https://docs.microsoft.com/en-us/aspnet/core/mvc/views/razor

11.2 Hello World Application
Let us start by creating the “compulsory” “Hello World” application.

 ASP.NET Core Hello World: https://youtu.be/lcQsWYgQXK4

We start by creating a New Project in Visual Studio, see Figure 11-2.

https://docs.microsoft.com/en-us/aspnet/core/fundamentals/
https://docs.microsoft.com/en-us/aspnet/core/fundamentals/
https://docs.microsoft.com/en-us/aspnet/core/razor-pages
https://docs.microsoft.com/en-us/aspnet/core/tutorials/razor-pages/
https://docs.microsoft.com/en-us/aspnet/core/mvc/views/razor
https://youtu.be/lcQsWYgQXK4

11. Introduction to ASP.NET Core

60

Figure 11-2: Create a New ASP.NET Core Web Application

Configure your project (see Figure 11-3):

11. Introduction to ASP.NET Core

61

Figure 11-3: Configure the Project

Select the “Web Application” template (Figure 11-4):

11. Introduction to ASP.NET Core

62

Figure 11-4: Web Application Template

After clicking “Create”, we get the following (Figure 11-5):

Figure 11-5: Your Project in Visual Studio

11. Introduction to ASP.NET Core

63

We hit F5 in order to run our web application (Figure 11-6):

Figure 11-6: Make sure it runs in your Web Browser

Index.cshtml (Figure 11-7):

Figure 11-7: Index.cshtml

11. Introduction to ASP.NET Core

64

Code:

@page

@model IndexModel

@{

 ViewData["Title"] = "Home page";

}

<div class="text-center">

 <h1 class="display-4">Hello World</h1>

</div>

Run the application (Figure 11-8):

Figure 11-8: Final Hello World Application

11.3 ASP.NET Core with Razor
Razor is a markup syntax for embedding server-based code into webpages. The Razor syntax

consists of Razor markup, C#, and HTML. Files containing Razor generally have a .cshtml file

extension.

Video:

 ASP.NET Core – Introduction: https://youtu.be/zkOtiBcwo8s

Here are some useful resources:

https://youtu.be/zkOtiBcwo8s

11. Introduction to ASP.NET Core

65

 Introduction to Razor Pages in ASP.NET Core:

https://docs.microsoft.com/en-us/aspnet/core/razor-pages/

 Tutorial: Create a Razor Pages web app with ASP.NET Core:

https://docs.microsoft.com/en-us/aspnet/core/tutorials/razor-pages/

 Razor syntax reference for ASP.NET Core:

https://docs.microsoft.com/en-us/aspnet/core/mvc/views/razor

Razor supports C# and uses the @ symbol to transition from HTML to C#. Razor evaluates C#

expressions and renders them in the HTML output.

Assume the following Razor code in the .cshtml file:

<p>@DateTime.Now</p>

This outputs the current date and time in the browser window.

11.3.1 Basic Examples

Razor supports C# and uses the @ symbol to transition from HTML to C#. Razor evaluates C#

expressions and renders them in the HTML output.

https://docs.microsoft.com/en-us/aspnet/core/razor-pages/
https://docs.microsoft.com/en-us/aspnet/core/tutorials/razor-pages/
https://docs.microsoft.com/en-us/aspnet/core/mvc/views/razor

11. Introduction to ASP.NET Core

66

Figure 11-9: Razor Page Example

Code:

@page

@model IndexModel

@{

 ViewData["Title"] = "Home page";

}

<div class="text-center">

 <h1 class="display-4">Hello World</h1>

</div>

<div>

 The current time is: @DateTime.Now

</div>

Run the example in your web browser:

11. Introduction to ASP.NET Core

67

Figure 11-10: Razor Page running in the Web Browser

Let’s add a message in addition to the datetime.

Index.cshtml.cs:

11. Introduction to ASP.NET Core

68

Figure 11-11: Index.cshtml.cs File

Code for “Index.cshtml.cs”:

using System;

using System.Collections.Generic;

using Microsoft.AspNetCore.Mvc;

using Microsoft.AspNetCore.Mvc.RazorPages;

using Microsoft.Extensions.Logging;

namespace HelloWorld.Pages

{

 public class IndexModel : PageModel

 {

 private readonly ILogger<IndexModel> _logger;

 public string message = "How are you today?";

 public IndexModel(ILogger<IndexModel> logger)

 {

 _logger = logger;

 }

 public void OnGet()

 {

 }

 }

}

Let’s make the necessary changes in the Index.cshtml file.

Figure 11-12 shows the modified Index.cshtml file.

11. Introduction to ASP.NET Core

69

Figure 11-12: Index.cshtml

Code for “Index.cshtml”:

@page

@model IndexModel

@{

 ViewData["Title"] = "Home page";

}

<div class="text-center">

 <h1 class="display-4">Hello World</h1>

</div>

<div>

 The current time is: @DateTime.Now

 @Model.message

</div>

Figure 11-13 shows the results.

11. Introduction to ASP.NET Core

70

Figure 11-13: Hello World

11.4 Query String Data
Typically, we need to send data between different web pages or between the same web

page. In this case we typically send data or information through the query string.

In order to manage that, we can use Request.Query["name"].

Example:

public void OnGet()

 {

 bookId = Convert.ToInt16(Request.Query["bookid"]);

 Book book = new Book();

 connectionString =

 _configuration.GetConnectionString("ConnectionString");

 bookdb = book.GetBookData(connectionString, bookId);

}

In this example the URL in the web browser could look something like this

https://BookApp/EditBook?bookid=4

https://bookapp/EditBook?bookid=4

11. Introduction to ASP.NET Core

71

If we want to send more than one variable, we use &, for example:

https://BookApp/EditBook?bookid=4&booktitle=Python&author=hamsun

11.5 Form Data
Typically, the user enter data into different fields on a web page. In order to send these data

to the server for some kind of processing (e.g., store the data in a database) we use Form

Data.

In order to manage that, we can use Request.Form["name"].

Example

public void OnPost()

{

 Book book = new Book();

 book.BookId = Convert.ToInt16(Request.Form["bookId"]);

 book.Title = Request.Form["bookTitle"];

 book.Isbn = Request.Form["bookIsbn"];

 book.PublisherName = Request.Form["bookPublisher"];

 book.AuthorName = Request.Form["bookAuthor"];

 book.CategoryName = Request.Form["bookCategory"];

 connectionString =

 _configuration.GetConnectionString("ConnectionString");

 book.EditBook(connectionString, book);

 Response.Redirect("./Books");

}

Figure 11-14 shows a typical web form.

https://bookapp/EditBook?bookid=4&booktitle=Python&author=hamsun

11. Introduction to ASP.NET Core

72

Figure 11-14: Web Form Data

HTML Code:

<form name="bookForm" id="bookForm" method="post">

 Title:

 <input name="bookTitle" type="text" class="form-control

 input-lg" autofocus required />

 ISBN:

 <input name="bookIsbn" type="text" class="form-control

 input-lg" required />

 Publisher:

 <input name="bookPublisher" type="text" class="form-control

 input-lg" required />

 Author:

 <input name="bookAuthor" type="text" class="form-control

 input-lg" required />

 Category:

 <input name="bookCategory" type="text" class="form-control

 input-lg" required />

11. Introduction to ASP.NET Core

73

 <input id="saveButton" type="submit" value="Save" class="btn

 btn-info" />

</form>

Web Programming - ASP.NET Core

12 ASP.NET Core
Fundamentals

Figure 12-1 shows a typical Solution Explorer in a ASP.NET Core Web Application.

Figure 12-1: Solution Explorer ASP.NET Core Web Application

You have the following important folders:

12. ASP.NET Core Fundamentals

75

• wwroot

• Models

• Pages

In the Models folder you suppose to put your C# Classes.

In the Pages folder you should put your web pages.

In the wwwroot you should put files like CSS files (in the css folder), JavaScript files (in your

js folder), Images in your images folder. Different libraries like Bootstrap, JQuery, etc. should

be put in the lib folder.

In addition, you have the following important files:

• appsettings.json

• Program.cs

• Startup.cs

• _Layout.cshtml

They will be explained below.

12.1 Startup Class
Initial code for your application.

12.2 Web root
The web root is by default the “wwwroot” folder.

The web root is the base path to public, non-code, static resource files, such as:

• Stylesheets (.css) – Here you should put your CSS style sheets

• JavaScript (.js) – Here you should put your JavaScript code files

• Images (.png, .jpg, etc.) – This is the folder where you should put all your images

Static files are only served by default from the web root directory (and sub-directories).

In Razor (.cshtml) files, the tilde-slash (~/) points to the web root. A path beginning with ~/ is

referred to as a virtual path.

12. ASP.NET Core Fundamentals

76

12.3 appsettings.json
This file contains configuration data, such as connection strings.

The default “appsettings.json” looks like this:

{

 "Logging": {

 "LogLevel": {

 "Default": "Information",

 "Microsoft": "Warning",

 "Microsoft.Hosting.Lifetime": "Information"

 }

 },

 "AllowedHosts": "*"

}

Typically, you want to put your connection string here:

{

 "Logging": {

 "LogLevel": {

 "Default": "Information",

 "Microsoft": "Warning",

 "Microsoft.Hosting.Lifetime": "Information"

 }

 },

 "AllowedHosts": "*",

 "ConnectionStrings": {

 "ConnectionString": "DATA SOURCE=xxx;UID=xxx;PWD=xxx;DATABASE=xxx"

 }

 }

Just replace “xxx” with the information for your database.

 "ConnectionStrings": {

 "ConnectionString": "DATA SOURCE=xxx;UID=xxx;PWD=xxx;DATABASE=xxx"

 }

Inside “ConnectionStrings” you can have one or more connection strings, let say you have a

development database, a test database and a customer database. This makes it easy to

switch between different connection strings.

"ConnectionStrings": {

 "DevelopmentDB": "DATA SOURCE=xxx;UID=xxx;PWD=xxx;DATABASE=xxx"

 "TestDB": "DATA SOURCE=xxx;UID=xxx;PWD=xxx;DATABASE=xxx"

 }

12. ASP.NET Core Fundamentals

77

12.4 Shared Pages
The shared pages have an underscore in their names, e.g., _Layout.cshtml.

Folder: ./Pages/Shared

12.4.1 Layout

The default layout file in ASP.NET Core is “_Layout.cshtml”. You can modify this file so it fits

the ways you want to present your files. This layout will by default be added to al your web

pages (.cshtml files).

The default _Layout.cshtml looks like this:

<!DOCTYPE html>

<html lang="en">

<head>

 <meta charset="utf-8" />

 <meta name="viewport" content="width=device-width, initial-scale=1.0" />

 <title>@ViewData["Title"] - WebApplication</title>

 <link rel="stylesheet" href="~/lib/bootstrap/dist/css/bootstrap.min.css" />

 <link rel="stylesheet" href="~/css/site.css" />

</head>

<body>

 <header>

 <nav class="navbar navbar-expand-sm navbar-toggleable-sm navbar-light bg-white border-bottom

box-shadow mb-3">

 <div class="container">

 WebApplication

 <button class="navbar-toggler" type="button" data-toggle="collapse" data-

target=".navbar-collapse" aria-controls="navbarSupportedContent"

 aria-expanded="false" aria-label="Toggle navigation">

 </button>

 <div class="navbar-collapse collapse d-sm-inline-flex flex-sm-row-reverse">

 <ul class="navbar-nav flex-grow-1">

 <li class="nav-item">

 Home

 <li class="nav-item">

 <a class="nav-link text-dark" asp-area="" asp-

page="/Privacy">Privacy

 </div>

 </div>

 </nav>

 </header>

 <div class="container">

 <main role="main" class="pb-3">

 @RenderBody()

 </main>

 </div>

 <footer class="border-top footer text-muted">

 <div class="container">

 © 2019 - WebApplication - <a asp-area="" asp-page="/Privacy">Privacy

 </div>

 </footer>

 <script src="~/lib/jquery/dist/jquery.min.js"></script>

 <script src="~/lib/bootstrap/dist/js/bootstrap.bundle.min.js"></script>

 <script src="~/js/site.js" asp-append-version="true"></script>

 @RenderSection("Scripts", required: false)

</body>

</html>

12. ASP.NET Core Fundamentals

78

A “clean” (removing “everything”, just leave the minimum) _Layout.cshtml may look like

this

<!DOCTYPE html>

<html lang="en">

<head>

 <meta charset="utf-8" />

 <meta name="viewport" content="width=device-width, initial-scale=1.0" />

 <title>@ViewData["Title"] - WebApplication</title>

 <link rel="stylesheet" href="~/lib/bootstrap/dist/css/bootstrap.min.css" />

 <link rel="stylesheet" href="~/css/site.css" />

</head>

<body>

 <div class="container">

 <main role="main" class="pb-3">

 @RenderBody()

 </main>

 </div>

 <script src="~/lib/jquery/dist/jquery.min.js"></script>

 <script src="~/lib/bootstrap/dist/js/bootstrap.bundle.min.js"></script>

 <script src="~/js/site.js" asp-append-version="true"></script>

 @RenderSection("Scripts", required: false)

</body>

</html>

If you don’t want to use the _Layout.cshtml on a specific file, set the following on top of

your .cshtml web page:

@{

Layout = "";

}

You can also have multiple Layout files. If you want to use another Layout file than the

default for a specific web page (.cshtml file), you can do something like this:

@{

Layout = "~/Pages/Shared/_Layout2.cshtml";

}

12.5 Models
In the Models folder you suppose to put your C# Classes. You don’t need to name this folder

Models, but that is the recommended name. In that way it will be easier to understand and

modify programs made by others.

12. ASP.NET Core Fundamentals

79

12.6 Razor Pages
Razor pages should be placed in the default folder called “Pages”. Typically, your start page

should be named “Index.cshtml”.

An ASP.NET Razor page has the “.cshtml” (e.g., “Index.cshtml”) file extension. This file

contains a mix of HTML and Razor syntax. The Razor syntax is actually C# code mixed

together with the HTML code.

The Razor parts of the file are executed on the web server before the page is sent to the

client (your web browser).

The Razor page may also have a C# code file linked to it, this file has the extension

“.cshtml.cs” (e.g., “Index.cshtml.cs”). The “.cshtml.cs” file is called the Page Model.

In Razor with Page Model each Razor page is a pair of files:

• A “.cshtml” file that contains HTML markup with C# code using Razor syntax.

• A “.cshtml.cs” (“code behind” or “Page model” file) file that contains C# code that

handles page events.

The default Razor page is Index.cshtml. But this can of course be changed if you want to.

When we create a new Razor page (e.g., “Test”) it will look like something like this:

Test.cshtml

@page

@model TestModel

@{

 ViewData["Title"] = "Test Page";

}

<div class="text-center">

 <h1 class="display-4">Welcome</h1>

 <p>This is a Razor Page</p>

</div>

All Razor pages needs to start with the @page directive.

The line “@model TestModel” points to the Page Model file.

While the following are Razor syntax:

@{

 ..

}

The Page Model file (Test.cshtml.cs) or “code behind” file will look something like this:

using System.Collections.Generic;

12. ASP.NET Core Fundamentals

80

using Microsoft.AspNetCore.Mvc;

using Microsoft.AspNetCore.Mvc.RazorPages;

using Microsoft.Extensions.Logging;

namespace DemoApp.Pages

{

 public class TestModel : PageModel

 {

 private readonly ILogger<IndexModel> _logger;

 public IndexModel(ILogger<IndexModel> logger)

 {

 _logger = logger;

 }

 public void OnGet()

 {

 }

 }

}

12.6.1 Sending data from the Page Model to the
Razor File

Typically we need to send data between the Page Model (.cshtml.cs) and the Razor File

(.cshtml). Below you see a basic example.

Page Model File (.cshtml.cs):

using System;

using System.Collections.Generic;

using Microsoft.AspNetCore.Mvc;

using Microsoft.AspNetCore.Mvc.RazorPages;

using Microsoft.Extensions.Logging;

namespace DemoApp.Pages

{

 public class TestModel : PageModel

 {

 public string name;

 private readonly ILogger<IndexModel> _logger;

 public IndexModel(ILogger<IndexModel> logger)

 {

 _logger = logger;

 }

 public void OnGet()

 {

 name = "Hans-Petter Halvorsen";

 }

 }

}

In this example we have declared a public variable. Then later we want to display the value

in our web page (Razor Page (.cshtml)).

12. ASP.NET Core Fundamentals

81

You typically put code that needs to run before the web page is sent to the client in the

OnGet() method.

Razor Page (.cshtml):

@page

@model TestModel

@{

 ViewData["Title"] = "Home page";

}

<div class="text-center">

 <h1 class="display-4">Welcome</h1>

 <p>This is a Razor Page</p>

 <p>My Name is @Model.name</p>

</div>

As you see we need to use @Model.xxx where xxx is the name of a public variable in the

Page Model file.

The results become as shown in Figure 12-2.

Figure 12-2: Razor Web Page

12. ASP.NET Core Fundamentals

82

12.7 Additional Resources

 ASP.NET Core fundamentals: https://docs.microsoft.com/en-

us/aspnet/core/fundamentals/

https://docs.microsoft.com/en-us/aspnet/core/fundamentals/
https://docs.microsoft.com/en-us/aspnet/core/fundamentals/

Web Programming - ASP.NET Core

13 Razor
Razor is a markup syntax for embedding server-based code into webpages. The Razor syntax

consists of Razor markup, C#, and HTML. Files containing Razor generally have a .cshtml file

extension.

The default Razor language is HTML. Rendering HTML from Razor markup is no different

than rendering HTML from an HTML file. HTML markup in .cshtml Razor files is rendered by

the server unchanged.

 ASP.NET Documentation from Microsoft: https://docs.microsoft.com/aspnet/

 Introduction to Razor Pages in ASP.NET Core:

https://docs.microsoft.com/aspnet/core/razor-pages/

13.1 Razor Syntax
Razor supports C# and uses the @ symbol to transition from HTML to C#. Razor evaluates C#

expressions and renders them in the HTML output.

All code blocks must appear within @{ ... } brackets.

Example:

@{

 var number = 1;

}

The value of variables is rendered into HTML by prefixing them with the @ sign.

Example:

The number is @number

We can use standard C# features and built-in Classes and Methods.

Example:

https://docs.microsoft.com/aspnet/
https://docs.microsoft.com/aspnet/core/razor-pages/

13. Razor

84

The time is @DateTime.Now

A foreach loop is very handy for looping through data.

Example:

@{

 var numbers = Enumerable.Range(1, 10); //Get numbers from 1 - 10

 foreach(var number in numbers)

 {

 @number

 }

}

Or this alternative way:

@{

 var numbers = Enumerable.Range(1, 10);

}

@foreach(var number in numbers){

 @number

}

Comments can be used in different ways, either // for a single line or /* */ for multiple lines.

Example:

// This is a comment

…

/* … */

/*

Multiple Lines

…

…

*/

13.2 Model
Using Model inside a foreach:

Example:

@foreach (var measurement in Model.measurementParameterList)

{

 <tr>

 <td> @measurement.MeasurementId</td>

 <td> @measurement.MeasurementName</td>

 <td> @measurement.MeasurementUnit</td>

 </tr>

13. Razor

85

}

Web Programming - ASP.NET Core

Part 5 Database

Communication
All modern applications typically communicate with a Database System. Here we will

introduce Database Systems in general and especially Microsoft SQL Server. Then we will

cover Database Communication with C# and ASP.NET Core in combination with SQL Server

from Microsoft.

Web Programming - ASP.NET Core

14 Database Systems
A Database is a structured way to store lots of information. The information is stored in

different tables.

Some of the most popular Database Systems today are:

• SQL Server

• MySQL

• MariaDB

• Etc.

ER Diagram (Entity-Relationship Diagram) is used for design and modeling of databases. It

specifies tables and relationship between them (Primary Keys and Foreign Keys), see Figure

14-1.

Figure 14-1: ER diagram with Primary Keys and Foreign Keys relationships

 Introduction to Database Systems: https://youtu.be/n75iPNrzN-o

14.1 SQL Server
SQL Server is a Database System from Microsoft. SQL Server comes in different editions, for

basic, personal use SLQ Server Express is recommended because it is simple to use and it is

free.

https://youtu.be/n75iPNrzN-o

14. Database Systems

88

SQL Server consists of a Database Engine and a Management Studio (and lots of other stuff

which we will not mention here). The Database engine has no graphical interface - it is just a

service running in the background of your computer (preferable on the server). The

Management Studio is graphical tool for configuring and viewing the information in the

database. It can be installed on the server or on the client (or both).

Figure 14-2: SQL Server

Videos:

 SQL Server Express Installation: https://youtu.be/hhhggAlUYo8

 Introduction to SQL Server: https://youtu.be/SlR4KOhAG1U

14.1.1 SQL Server Management Studio

SQL Server Management Studio (SSMS) is used to manage your databases, including

creating, updating, deleting, etc. You can insert tables, create views, stored procedures, etc.

https://youtu.be/hhhggAlUYo8
https://youtu.be/SlR4KOhAG1U

14. Database Systems

89

Figure 14-3: SQL Server Management Studio (SSMS)

It is quite simple to create a new database in Microsoft SQL Server. Just right-click on the

“Databases” node and select “New Database…”

Figure 14-4: Create New Database

14. Database Systems

90

There are lots of settings you may set regarding your database, but the only information you

must fill in is the name of your database:

Figure 14-5: New Database Configuration

You may also use the SQL language to create a new database, but sometimes it is easier to

just use the built-in features in the Management Studio.

In order to make a new SQL query, select the “New Query” button from the Toolbar.

14. Database Systems

91

Figure 14-6: Queries

Here we can write any kind of queries that is supported by the SQL language.

14.2 Structured Query Language (SQL)
SQL (Structured Query Language) is a database computer language designed for managing

data in relational database management systems (RDBMS).

In SQL, we have 4 different types of queries:

• INSERT

• SELECT

• UPDATE

• DELETE

What can SQL do?

• SQL can execute queries against a database

• SQL can retrieve data from a database

• SQL can insert records in a database

• SQL can update records in a database

• SQL can delete records from a database

14. Database Systems

92

• SQL can create new databases

• SQL can create new tables in a database

• SQL can create stored procedures in a database

• SQL can create views in a database

• SQL can set permissions on tables, procedures, and views

The Data Manipulation Language (DML) is the subset of SQL used to add, update and delete

data.

The acronym CRUD refers to all of the major functions that need to be implemented in a

relational database application to consider it complete. Each letter in the acronym can be

mapped to a standard SQL statement:

Operation SQL Description

Create INSERT INTO inserts new data into a database

Read (Retrieve) SELECT extracts data from a database

Update UPDATE updates data in a database

Delete (Destroy) DELETE deletes data from a database

Additional Resources:

Do you want to learn more about SQL?

 Database Systems: https://www.halvorsen.blog/documents/technology/database/

14.2.1 Tables

In Figure 14-7 we see an example of some tables for a university or a school. These tables

store information regarding the students, the teacher, the courses, the grades, etc.

https://www.halvorsen.blog/documents/technology/database/

14. Database Systems

93

Figure 14-7: Example of Tables with relations

Best practice rules:

Here are some “Best practice” recommendations for creating tables in a database system:

• Tables: Use upper case and singular form in table names – not plural, e.g.,

“STUDENT” (not students)

• Columns: Use Pascal notation, e.g., “StudentId”

• Primary Keys:

– If the table name is “COURSE”, name the Primary Key column “CourseId”, etc.

– “Always” use Integer and Identity(1,1) for Primary Keys

• Specify Required Columns (NOT NULL) – i.e., which columns that need to have data

or not

• Data Types: Standardize on these Data Types: int, float, varchar(x), datetime, bit

• Use English for table and column names

• Avoid abbreviations! (Use RoomNumber – not RoomNo, RoomNr, ...)

The CREATE TABLE statement is used to create a table in a database.

We want to create a table called “CUSTOMER” which has the following columns and data

types:

14. Database Systems

94

Figure 14-8: Table Editor in SQL Server Management Studio

CREATE TABLE CUSTOMER

(

 CustomerId int IDENTITY(1,1) PRIMARY KEY,

 CustomerNumber int NOT NULL UNIQUE,

 LastName varchar(50) NOT NULL,

 FirstName varchar(50) NOT NULL,

 AreaCode int NULL,

 Address varchar(50) NULL,

 Phone varchar(50) NULL,

)

GO

Typically, you also want to sue a tool for modelling the database, e.g., Erwin.

Primary keys:

As you see we use the “Primary Key” keyword to specify that a column should be the

Primary Key.

Setting Primary Keys in the Designer Tools:

If you use the Designer tools in SQL Server, you can easily set the primary Key in a table just

by right-click and select “Set primary Key”.

14. Database Systems

95

The primary Key column will then have a small key in front to illustrate that this column is

a Primary Key.

Foreign Keys:

A FOREIGN KEY in one table points to a PRIMARY KEY in another table.

Example:

We will create a CREATE TABLE script for these tables:

SCHOOL:

CREATE TABLE SCHOOL

(

 SchoolId int IDENTITY(1,1) PRIMARY KEY,

 SchoolName varchar(50) NOT NULL UNIQUE,

14. Database Systems

96

 Description varchar(1000) NULL,

 Address varchar(50) NULL,

 Phone varchar(50) NULL,

 PostCode varchar(50) NULL,

 PostAddress varchar(50) NULL,

)

GO

CLASS:

CREATE TABLE CLASS

(

 ClassId int IDENTITY(1,1) PRIMARY KEY,

 SchoolId int NOT NULL FOREIGN KEY REFERENCES SCHOOL (SchoolId),

 ClassName varchar(50) NOT NULL UNIQUE,

 Description varchar(1000) NULL,

)

GO

The FOREIGN KEY constraint is used to prevent actions that would destroy links between

tables.

The FOREIGN KEY constraint also prevents that invalid data from being inserted into the

foreign key column, because it has to be one of the values contained in the table it points

to.

Setting Foreign Keys in the Designer Tools:

If you want to use the designer, right-click on the column that you want to be the Foreign

Key and select “Relationships…”:

The following window pops up (Foreign Key Relationships):

14. Database Systems

97

Click on the “Add” button and then click on the small “…” button. Then the following

window pops up (Tables and Columns):

Here you specify the primary Key Column in the Primary Key table and the Foreign Key

Column in the Foreign Key table.

NOT NULL / Required Columns:

14. Database Systems

98

The NOT NULL constraint enforces a column to NOT accept NULL values.

The NOT NULL constraint enforces a field to always contain a value. This means that you

cannot insert a new record or update a record without adding a value to this field.

If we take a closer look at the CUSTOMER table created earlier:

CREATE TABLE [CUSTOMER]

(

 CustomerId int IDENTITY(1,1) PRIMARY KEY,

 CustomerNumber int NOT NULL UNIQUE,

 LastName varchar(50) NOT NULL,

 FirstName varchar(50) NOT NULL,

 AreaCode int NULL,

 Address varchar(50) NULL,

 Phone varchar(50) NULL,

)

GO

We see that “CustomerNumber”, “LastName” and “FirstName” is set to “NOT NULL”, this

means these columns needs to contain data. While “AreaCode”, “Address” and “Phone”

may be left empty, i.e, they don’t need to be filled out.

Note! A primary key column cannot contain NULL values.

Setting NULL/NOT NULL in the Designer Tools:

In the Table Designer you can easily set which columns that should allow NULL or not:

UNIQUE:

14. Database Systems

99

The UNIQUE constraint uniquely identifies each record in a database table. The UNIQUE and

PRIMARY KEY constraints both provide a guarantee for uniqueness for a column or set of

columns.

A PRIMARY KEY constraint automatically has a UNIQUE constraint defined on it.

Note! You can have many UNIQUE constraints per table, but only one PRIMARY KEY

constraint per table.

If we take a closer look at the CUSTOMER table created earlier:

CREATE TABLE [CUSTOMER]

(

 CustomerId int IDENTITY(1,1) PRIMARY KEY,

 CustomerNumber int NOT NULL UNIQUE,

 LastName varchar(50) NOT NULL,

 FirstName varchar(50) NOT NULL,

 AreaCode int NULL,

 Address varchar(50) NULL,

 Phone varchar(50) NULL,

)

GO

We see that the “CustomerNumber” is set to UNIQUE, meaning each customer must have a

unique Customer Number. Example:

Setting UNIQUE in the Designer Tools:

If you want to use the designer, right-click on the column that you want to be UNIQUE and

select “Indexes/Keys…”:

14. Database Systems

100

Then click “Add” and then set the “Is Unique” property to “Yes”:

AUTO INCREMENT or IDENTITY:

Very often we would like the value of the primary key field to be created automatically

every time a new record is inserted.

Example:

CREATE TABLE CUSTOMER

(

 CustomerId int IDENTITY(1,1) PRIMARY KEY,

 CustomerNumber int NOT NULL UNIQUE,

 LastName varchar(50) NOT NULL,

 FirstName varchar(50) NOT NULL,

 AreaCode int NULL,

 Address varchar(50) NULL,

14. Database Systems

101

 Phone varchar(50) NULL,

)

GO

As shown below, we use the IDENTITY() for this. IDENTITY(1,1) means the first value will be 1

and then it will increment by 1.

Setting identity(1,1) in the Designer Tools:

We can use the designer tools to specify that a Primary Key should be an identity column

that is automatically generated by the system when we insert data in to the table.

Click on the column in the designer and go into the Column Properties window:

14.2.2 Views

Views are virtual table for easier access to data stored in multiple tables.

14. Database Systems

102

Figure 14-9: Views

Example:

We use the SCHOOL and CLASS tables as an example for our View. We want to create a View

that lists all the existing schools and the belonging classes.

Figure 14-10: Database Example

14. Database Systems

103

We create the VIEW using the CREATE VIEW command:

CREATE VIEW SchoolView

AS

SELECT

SCHOOL.SchoolName,

CLASS.ClassName

FROM

SCHOOL

INNER JOIN CLASS ON SCHOOL.SchoolId = CLASS.SchoolId

Note! In order to get information from more than one table, we need to link the tables

together using a JOIN.

 Database Views and Stored Procedures: https://youtu.be/SHELF_iQUeU

14.2.3 Stored Procedures

A Stored Procedure is a precompiled collection of SQL statements. In a stored procedure

you can use if sentence, declare variables, etc.

Figure 14-11: Stored Procedure – Example

https://youtu.be/SHELF_iQUeU

14. Database Systems

104

 Database Views and Stored Procedures: https://youtu.be/SHELF_iQUeU

14.2.4 Triggers

A database trigger is code that is automatically executed in response to certain events on a

particular table in a database.

Figure 14-12: Trigger - Example

https://youtu.be/SHELF_iQUeU

Web Programming - ASP.NET Core

15 ADO.NET
ADO.NET is the core data access technology for .NET languages.

The great thing about this is that you can use the same C# code either you are creating a

desktop application or a web application.

Typically, you put your C# database code in one or more classes, and those will then be the

same either you are creating a desktop application (which has direct access to the database)

or a web application. If your database does not have direct access to the database (the

database is e.g., located on the internet), you can create and use a so-called Web API (also

called Web Service or REST API). The Web API will then be the middleware between the

desktop application and the database server.

System.Data.SqlClient (or the newer Microsoft.Data.SqlClient) is the provider or

namespace you typically use to connect to an SQL Server.

You install these packages using the NuGet Package Manager, see Figure 15-1.

Figure 15-1: Installing using the NuGet Package Manager

Web Programming - ASP.NET Core

16 Data from Database
To get data from a database is something you need to know about. Typically, all real

applications get some data from a database.

There are many ways and methods we can use to retrieve data from a database. Here we

will focus on something called ADO.NET. ADO.NET can use different so-called Data

Providers. We will use “System.Data.SqlClient”. This will be demonstrated in the Demo

Application below.

If you have used “ADO.NET” and “System.Data.SqlClient” in a desktop application (e.g.,

WinForm) before then there is nothing new since all this happens in basic C# code.

16.1 Demo Application
In this Demo Application we will create a basic application that gets data from an SQL Server

database. Figure 16-1 shows the application we are going to create.

Figure 16-1: Database Application

16. Data from Database

107

 ASP.NET Core Database Communication: https://youtu.be/0Ta3dQ3rxzs

The entire example can be downloaded from the home page of this textbook.

16.1.1 Database

In order to create this ASP.NET Core example we need to create a simple database that

consists of a single table called “MEASUREMENT”.

We can use the following database script:

CREATE TABLE [MEASUREMENT]

(

 [MeasurementId] int NOT NULL IDENTITY (1,1) Primary Key,

 [MeasurementName] varchar(100) NOT NULL UNIQUE,

 [Unit] varchar(50) NULL

)

go

We start by creating the Database in SQL Server Management Studio (Figure 16-2).

Figure 16-2: Creating the Database in SQL Server Management Studio

Then we create necessary table. We can either create the tables directly using the Table

designer in the SQL Server Management Studio (not shown here) or we can open/create a

SQL script that inserts the table (Figure 16-3).

https://youtu.be/0Ta3dQ3rxzs

16. Data from Database

108

Figure 16-3: Creating Database Table

Next, we need to create some initial data into the table. We can either create the data

directly using the editor (right-click on the table in the Object Explorer and select “Edit Top

200 Rows”) in the SQL Server Management Studio (See Figure 16-4) or we can open/create a

SQL script that inserts the necessary data (not shown here).

Figure 16-4: Inserting Data manually from SQL Server Management Studio

16. Data from Database

109

16.1.2 Visual Studio

When our database is ready, we can start the coding using Visual Studio and C#. We start by

creating a New Project (Figure 16-5).

Select the “ASP.NET Core Web Application” project template.

Figure 16-5: New Project – ASP.NET Core Web Application

Next you need to configure your Project (Figure 16-6) by writing the name. for the project,

where it should be located on your hard drive, etc.

16. Data from Database

110

Figure 16-6: Configure your New Project

In the next window (see Figure 16-7) you need to select the proper template. We select the

“Web Application” template.

16. Data from Database

111

Figure 16-7: Create Web Application

Select “Create” in Figure 16-7 and the Visual studio Project will be created based on your

choices. See Figure 16-8.

As you see from Figure 16-8, the following Folders and Files have been created:

• appSettings.json – This file contains configuration data, such as connection strings.

• Program.cs – This file contains the entry point for the program.

• Startup.cs - This file contains code that configures app behavior.

• wwwroot folder - Contains static files, such as HTML files, JavaScript files, and CSS

files.

• Pages folder – Here you are supposed to put your ASP.NET (".cshtml") web pages

In addition, it is standard to have a folder called “Models”. This folder contains C# classes

that takes care of the data. The data can, e.g., be a database or a file, e.g., a JSON file.

In addition, we have what we call Supporting files. Supporting files have names that begin

with an underscore (_).

16. Data from Database

112

• _Layout.cshtml file configures UI elements common to all pages. You can use this file

to set up the navigation menu at the top of the page

Figure 16-8: Visual Studio Project

In the Pages folder some default Razor pages have been created, like “Index.cshtml”, etc.

The “Index.cshtml” file is typically the startup file for your web application, but if you want

you can configure this in the Startup.cs file.

Let’s run the application and see if the application can be run inside your web browser. See

Figure 16-9.

16. Data from Database

113

Figure 16-9: Running your Application in the Web Browser

Now we need to start creating the necessary code for our application.

Let’s start to create a Models folder where we are making our Class that do the retrieving of

data from the database. See Figure 16-10. (In the example I have written Model instead of

Models, bit that’s the same)

16. Data from Database

114

Figure 16-10: Solution Explorer

Then we create a Class called, e.g., “Measurements.cs” in the Models (Model) folder. See

Figure 16-11.

Figure 16-11: Create a new Class

Write in the following code:

16. Data from Database

115

Figure 16-12: Write Code for the Class

Complete Code Listing:

using System;

using System.Collections.Generic;

using System.Data.SqlClient;

namespace MeasurementApp.Model

{

 public class Measurement

 {

 public int MeasurementId { get; set; }

 public string MeasurementName { get; set; }

 public string MeasurementUnit { get; set; }

 public List<Measurement> GetMeasurmentParameters()

 {

 List<Measurement> measurementParameterList = new List<Measurement>();

 string connectionString = "DATA

SOURCE=xxx;UID=sa;PWD=xxx;DATABASE=MEASUREMENTDB";

 SqlConnection con = new SqlConnection(connectionString);

 string sqlQuery = "select MeasurementId, MeasurementName, Unit from

MEASUREMENT";

 con.Open();

 SqlCommand cmd = new SqlCommand(sqlQuery, con);

 SqlDataReader dr = cmd.ExecuteReader();

16. Data from Database

116

 if (dr != null)

 {

 while (dr.Read())

 {

 Measurement measurmentParameter = new Measurement();

 measurmentParameter.MeasurementId =

Convert.ToInt32(dr["MeasurementId"]);

 measurmentParameter.MeasurementName =

dr["MeasurementName"].ToString();

 measurmentParameter.MeasurementUnit = dr["Unit"].ToString();

 measurementParameterList.Add(measurmentParameter);

 }

 }

 return measurementParameterList;

 }

 }

}

As you see the connection string to the database is hardcoded inside the

“Measurement”class:

string connectionString = "DATA SOURCE=xxx;UID=sa;PWD=xxx;DATABASE=MEASUREMENTDB";

Just replace the “xxx” with the settings for your database.

Make sure to install the necessary NuGet package(s). See Figure 16-13. We need the

System.Data.SqlClient.

Figure 16-13: Make sure the necessary NuGet packages are installed

Then we create our Razor File in the “Pages” folder. Let’s name the file

“Measurement.cshtml”. Make sure to select Razor Page (a Razor Page with a Page Model).

See Figure 16-14.

16. Data from Database

117

Figure 16-14: Create a Razor Page

A code behind file, also called the Page Model will also be created automatically. See Figure

16-15.

Figure 16-15: The Razor Page Model (Code behind File)

Below you see the whole contents of the “Measurement.cshtml.cs” file:

using System;

using System.Collections.Generic;

16. Data from Database

118

using Microsoft.AspNetCore.Mvc;

using Microsoft.AspNetCore.Mvc.RazorPages;

using MeasurementApp.Model;

namespace MeasurementApp.Pages

{

 public class MeasurementModel : PageModel

 {

 public List<Measurement> measurementParameterList = new

List<Measurement>();

 public void OnGet()

 {

 Measurement measurement = new Measurement();

 measurementParameterList = measurement.GetMeasurmentParameters();

 }

 }

}

Then we can make the contents of the “Measurement.cshtml” file. See Figure 16-16.

Figure 16-16: Creating the Contents in the Razor Page

Below you see the “Measurement.cshtml” file:

@page

@model MeasurementApp.Pages.MeasurementModel

@{

 ViewData["Title"] = "Measurement Parameters";

}

 <div>

16. Data from Database

119

 <h1>Measurement Parameters</h1>

 Below you see all the Measurement Names registered in the Database:

 <table class="table">

 <thead>

 <tr>

 <th>MeasurementId</th>

 <th>Measurement Name</th>

 <th>Unit</th>

 </tr>

 </thead>

 <tbody>

 @foreach (var measurement in Model.measurementParameterList)

 {

 <tr>

 <td> @measurement.MeasurementId</td>

 <td> @measurement.MeasurementName</td>

 <td> @measurement.MeasurementUnit</td>

 </tr>

 }

 </tbody>

 </table>

 </div>

@xxx is the Razor code. The Razor code is executed on the server before the web page is

sent to the client (web browser).

We use a “foreach” to create the contents inside a HTML table.

The “Model.” variable is used to retrieve data from the Page Model file

(“Measurement.cshtml.cs”). All public variables that are created in the Measurement.cshtml

.cs file are available in the Measurement.cshtml file by using @Model.<variablename>.

Now, our application should be finished. Let’s run the application in our web browser. See

Figure 16-17.

16. Data from Database

120

Figure 16-17: Running the Final Application in the Web Browser

16.2 Where should we put the
Connection String?

As you see the in the example above the connection string to the database is hardcoded

inside the “Measurement” class:

string connectionString = "DATA SOURCE=xxx;UID=sa;PWD=xxx;DATABASE=MEASUREMENTDB";

where you replaced the “xxx” with the settings for your database.

The user “sa” (System Administrator) is the default user. You can use that one for testing,

but for your final application you should setup and use another user.

16.2.1 appSettings.json

A better solution is to put the connection string inside the “appSettings.json” which is

meant for storing configuration data, such as connection strings, etc.

Let us start by putting the connection string into the “appSettings.json” file:

16. Data from Database

121

{

 "Logging": {

 "LogLevel": {

 "Default": "Information",

 "Microsoft": "Warning",

 "Microsoft.Hosting.Lifetime": "Information"

 }

 },

 "AllowedHosts": "*",

 "ConnectionStrings": {

 "ConnectionString": "DATA SOURCE=xxx;UID=sa;PWD=xxx;DATABASE=MEASUREMENTDB "

 }

}

where you replace the “xxx” with the settings for your database.

Next, we update the “Measurements.cs” class:

using System;

using System.Collections.Generic;

using System.Data.SqlClient;

namespace MeasurementApp.Model

{

 public class Measurement

 {

 public int MeasurementId { get; set; }

 public string MeasurementName { get; set; }

 public string MeasurementUnit { get; set; }

 public List<Measurement> GetMeasurmentParameters(string connectionString)

 {

 List<Measurement> measurementParameterList = new List<Measurement>();

 SqlConnection con = new SqlConnection(connectionString);

 string sqlQuery = "select MeasurementId, MeasurementName, Unit from

MEASUREMENT";

 con.Open();

 SqlCommand cmd = new SqlCommand(sqlQuery, con);

 SqlDataReader dr = cmd.ExecuteReader();

 if (dr != null)

 {

 while (dr.Read())

 {

 Measurement measurmentParameter = new Measurement();

 measurmentParameter.MeasurementId =

Convert.ToInt32(dr["MeasurementId"]);

 measurmentParameter.MeasurementName =

dr["MeasurementName"].ToString();

 measurmentParameter.MeasurementUnit = dr["Unit"].ToString();

 measurementParameterList.Add(measurmentParameter);

 }

 }

 return measurementParameterList;

 }

 }

16. Data from Database

122

}

Then we need to add something to the “Startup.cs” file:

public void ConfigureServices(IServiceCollection services)

{

 services.AddRazorPages();

 services.AddSingleton<IConfiguration>(Configuration);

}

We have added:

services.AddSingleton<IConfiguration>(Configuration);

Finally, we need to update the “Measurement.cshtml.cs” file:

using System;

using System.Collections.Generic;

using Microsoft.AspNetCore.Mvc;

using Microsoft.AspNetCore.Mvc.RazorPages;

using Microsoft.Extensions.Configuration;

using MeasurementApp.Model;

namespace MeasurementApp.Pages

{

 public class MeasurementModel : PageModel

 {

 readonly IConfiguration _configuration;

 public List<Measurement> measurementParameterList = new

List<Measurement>();

 public string connectionString;

 public MeasurementModel(IConfiguration configuration)

 {

 _configuration = configuration;

 }

 public void OnGet()

 {

 Measurement measurement = new Measurement();

 connectionString =

_configuration.GetConnectionString("ConnectionString");

 measurementParameterList =

measurement.GetMeasurmentParameters(connectionString);

 }

 }

}

Now we can run the application. The result should be the same as before, see Figure 16-17.

Web Programming - ASP.NET Core

17 CRUD Applications
CRUS is short for:

Create

Read

Update

Delete

The acronym CRUD refers to all the major functions that are implemented for

communication with a database.

Operation SQL HTTP/REST API

Create INSERT POST

Read SELECT GET

Update UPDATE PUT

Delete DEKETE DELETE

We will show how we can use ASP.NET Core to get (read, retrieve, select) data from the

database, insert data into the database, update the data inside the database and deleting

data inside the database.

17.1 Demo Application
Let us create a Book Application with all the CRUD features included. Figure 17-1 and Figure

17-2 show the result.

 ASP.NET Core - Database CRUD Application: https://youtu.be/k5TCZDwTYcE

The entire example can be downloaded from the home page of this textbook.

This example can be the foundation for all types of applications. All web applications

typically show some data from the database in a list or table, then you will typically have

features for add new data, edit/update existing data or delete data.

https://youtu.be/k5TCZDwTYcE

17 CRUD Applications

124

When I start on a new development project, I just use this application as a template or as a

foundation for my new web application.

Figure 17-1: Final Book Application – Start Page

Figure 17-2: Final Book Application – Books

17 CRUD Applications

125

17.1.1 Create the Visual Studio Project

We start by creating a new ASP.NET Core Web application in Visual Studio. See Figure 17-3

and Figure 17-4

Figure 17-3: Create New Visual Studio Project

Figure 17-4: Create Web Application

17 CRUD Applications

126

The web application project becomes as shown in Figure 17-5-

Figure 17-5: Created Project in Visual studio

We can run it without any modifications, see Figure 17-6.

17 CRUD Applications

127

Figure 17-6: Initial Project Running in your Web Browser

17.1.2 Database

We will use the following tables:

AUTHOR:

if not exists (select * from dbo.sysobjects where id =

object_id(N'[AUTHOR]') and OBJECTPROPERTY(id, N'IsUserTable') = 1)

CREATE TABLE [AUTHOR]

(

 [AuthorId] [int] IDENTITY(1, 1) NOT NULL PRIMARY KEY,

 [AuthorName] [varchar](50) NOT NULL UNIQUE,

 [Address] [varchar](50) NULL,

 [Phone] [varchar](50) NULL,

 [PostCode] [varchar](50) NULL,

 [PostAddress] [varchar](50) NULL,

)

GO

PUBLISHER:

if not exists (select * from dbo.sysobjects where id =

object_id(N'[PUBLISHER]') and OBJECTPROPERTY(id, N'IsUserTable') = 1)

CREATE TABLE [PUBLISHER]

(

 [PublisherId] [int] IDENTITY(1, 1) NOT NULL PRIMARY KEY,

17 CRUD Applications

128

 [PublisherName] [varchar](50) NOT NULL UNIQUE,

 [Description] [varchar](1000) NULL,

 [Address] [varchar](50) NULL,

 [Phone] [varchar](50) NULL,

 [PostCode] [varchar](50) NULL,

 [PostAddress] [varchar](50) NULL,

 [EMail] [varchar](50) NULL,

)

GO

CATEGORY:

if not exists (select * from dbo.sysobjects where id =

object_id(N'[CATEGORY]') and OBJECTPROPERTY(id, N'IsUserTable') = 1)

CREATE TABLE [CATEGORY]

(

 [CategoryId] [int] IDENTITY(1, 1) NOT NULL PRIMARY KEY,

 [CategoryName] [varchar](50) NOT NULL UNIQUE,

 [Description] [varchar](1000) NULL,

)

GO

BOOK:

if not exists (select * from dbo.sysobjects where id = object_id(N'[BOOK]') and

OBJECTPROPERTY(id, N'IsUserTable') = 1)

CREATE TABLE [BOOK]

(

 [BookId] [int] IDENTITY(1, 1) NOT NULL PRIMARY KEY,

 [Title] [varchar](50) NOT NULL UNIQUE,

 [ISBN] [varchar](20) NOT NULL,

 [PublisherId] [int] NOT NULL FOREIGN KEY REFERENCES [PUBLISHER] ([PublisherId]),

 [AuthorId] [int] NOT NULL FOREIGN KEY REFERENCES [AUTHOR] ([AuthorId]),

 [CategoryId] [int] NOT NULL FOREIGN KEY REFERENCES [CATEGORY] ([CategoryId]),

 [Description] [varchar](1000) NULL,

 [Year] [date] NULL,

 [Edition] [int] NULL,

 [AverageRating] [float] NULL,

)

GO

We insert the tables using SQL Server Management Studio:

17 CRUD Applications

129

Figure 17-7: Inserting Tables using SQL Server Management Studio

We also need some Views and Stored Procedures.

“GetBookData” View:

CREATE VIEW GetBookData

AS

SELECT

BOOK.BookId,

BOOK.Title,

BOOK.ISBN,

PUBLISHER.PublisherName,

AUTHOR.AuthorName,

CATEGORY.CategoryName

FROM BOOK

INNER JOIN AUTHOR ON BOOK.AuthorId = AUTHOR.AuthorId

INNER JOIN PUBLISHER ON BOOK.PublisherId = PUBLISHER.PublisherId

INNER JOIN CATEGORY ON BOOK.CategoryId = CATEGORY.CategoryId

GO

“CreateBook” Stored Procedure:

CREATE PROCEDURE CreateBook

@Title varchar(50),

@Isbn varchar(20),

@PublisherName varchar(50),

@AuthorName varchar(50),

@CategoryName varchar(50)

AS

17 CRUD Applications

130

if not exists (select * from CATEGORY where CategoryName = @CategoryName)

INSERT INTO CATEGORY (CategoryName) VALUES (@CategoryName)

if not exists (select * from AUTHOR where AuthorName = @AuthorName)

INSERT INTO AUTHOR (AuthorName) VALUES (@AuthorName)

if not exists (select * from PUBLISHER where PublisherName = @PublisherName)

INSERT INTO PUBLISHER (PublisherName) VALUES (@PublisherName)

if not exists (select * from BOOK where Title = @Title)

INSERT INTO BOOK (Title, ISBN, PublisherId, AuthorId, CategoryId)

VALUES

(

@Title,

@ISBN,

(select PublisherId from PUBLISHER where PublisherName=@PublisherName),

(select AuthorId from AUTHOR where AuthorName=@AuthorName),

(select CategoryId from CATEGORY where CategoryName=@CategoryName)

)

GO

“UpdateBook” Stored Procedure:

CREATE PROCEDURE UpdateBook

@BookId int,

@Title varchar(50),

@ISBN varchar(20),

@PublisherName varchar(50),

@AuthorName varchar(50),

@CategoryName varchar(50)

AS

if not exists (select * from CATEGORY where CategoryName = @CategoryName)

INSERT INTO CATEGORY (CategoryName) VALUES (@CategoryName)

if not exists (select * from AUTHOR where AuthorName = @AuthorName)

INSERT INTO AUTHOR (AuthorName) VALUES (@AuthorName)

if not exists (select * from PUBLISHER where PublisherName = @PublisherName)

INSERT INTO PUBLISHER (PublisherName) VALUES (@PublisherName)

UPDATE BOOK SET

Title = @Title,

ISBN = @ISBN,

PublisherId = (select PublisherId from PUBLISHER where

PublisherName=@PublisherName),

AuthorId = (select AuthorId from AUTHOR where AuthorName=@AuthorName),

CategoryId = (select CategoryId from CATEGORY where CategoryName=@CategoryName)

WHERE BookId = @BookId

GO

“DeleteBook” Stored Procedure:

CREATE PROCEDURE DeleteBook

@BookId int

AS

17 CRUD Applications

131

delete from BOOK where BookId=@BookId

GO

We insert the Stored Procedures using SQL Server Management Studio in the same way as

for the tables.

17.1.3 Index (Start Page)

We start by creating the start page of our application (Index.cshtml). See Figure 17-8

Figure 17-8: Start Page - Index

17.1.4 Models

Then we create our models or classes.

17 CRUD Applications

132

Figure 17-9: Creating the Models

Code:

17 CRUD Applications

133

Figure 17-10: Book Class

Book Class:

using System;

using System.Collections.Generic;

using System.Data;

using System.Data.SqlClient;

namespace BookApp.Models

{

 public class Book

 {

 public int BookId { get; set; }

 public string Title { get; set; }

 public string Isbn { get; set; }

 public string PublisherName { get; set; }

 public string AuthorName { get; set; }

 public string CategoryName { get; set; }

 …

 public List<Book> GetBooks(string connectionString){}

17 CRUD Applications

134

 public Book GetBookData(string connectionString, int bookId){}

 public void CreateBook(string connectionString, Book book){}

 public void EditBook(string connectionString, Book book){}

 public void DeleteBook(string connectionString, int bookId){}

 }

}

GetBooks Method:

public List<Book> GetBooks(string connectionString)

{

 List<Book> bookList = new List<Book>();

 SqlConnection con = new SqlConnection(connectionString);

 string selectSQL = "select BookId, Title, Isbn, PublisherName,

 AuthorName, CategoryName from GetBookData";

 con.Open();

 SqlCommand cmd = new SqlCommand(selectSQL, con);

 SqlDataReader dr = cmd.ExecuteReader();

 if (dr != null)

 {

 while (dr.Read())

 {

 Book book = new Book();

 book.BookId = Convert.ToInt32(dr["BookId"]);

 book.Title = dr["Title"].ToString();

 book.Isbn = dr["ISBN"].ToString();

 book.PublisherName = dr["PublisherName"].ToString();

 book.AuthorName = dr["AuthorName"].ToString();

 book.CategoryName = dr["CategoryName"].ToString();

 bookList.Add(book);

 }

 }

 return bookList;

}

GetBookData Method:

public Book GetBookData(string connectionString, int bookId)

{

 SqlConnection con = new SqlConnection(connectionString);

 string selectSQL = "select BookId, Title, Isbn, PublisherName,

 AuthorName, CategoryName

 from GetBookData where BookId = " + bookId;

 con.Open();

 SqlCommand cmd = new SqlCommand(selectSQL, con);

 SqlDataReader dr = cmd.ExecuteReader();

 Book book = new Book();

17 CRUD Applications

135

 if (dr != null)

 {

 while (dr.Read())

 {

 book.BookId = Convert.ToInt32(dr["BookId"]);

 book.Title = dr["Title"].ToString();

 book.Isbn = dr["ISBN"].ToString();

 book.PublisherName = dr["PublisherName"].ToString();

 book.AuthorName = dr["AuthorName"].ToString();

 book.CategoryName = dr["CategoryName"].ToString();

 }

 }

 return book;

}

CreateBook Method:

public void CreateBook(string connectionString, Book book)

{

 try

 {

 using (SqlConnection con = new

 SqlConnection(connectionString))

 {

 SqlCommand cmd = new SqlCommand("CreateBook", con);

 cmd.CommandType = CommandType.StoredProcedure;

 cmd.Parameters.Add(new SqlParameter("@Title", book.Title));

 cmd.Parameters.Add(new SqlParameter("@Isbn", book.Isbn));

 cmd.Parameters.Add(new SqlParameter("@PublisherName",

 book.PublisherName));

 cmd.Parameters.Add(new SqlParameter("@AuthorName",

 book.AuthorName));

 cmd.Parameters.Add(new SqlParameter("@CategoryName",

 book.CategoryName));

 con.Open();

 cmd.ExecuteNonQuery();

 con.Close();

 }

}

 catch (Exception ex)

 {

 throw ex;

 }

}

EditBook Method:

public void EditBook(string connectionString, Book book)

{

 try

 {

 using (SqlConnection con = new

 SqlConnection(connectionString))

 {

 SqlCommand cmd = new SqlCommand("UpdateBook", con);

 cmd.CommandType = CommandType.StoredProcedure;

 cmd.Parameters.Add(new SqlParameter("@BookId", book.BookId));

17 CRUD Applications

136

 cmd.Parameters.Add(new SqlParameter("@Title", book.Title));

 cmd.Parameters.Add(new SqlParameter("@Isbn", book.Isbn));

 cmd.Parameters.Add(new SqlParameter("@PublisherName",

 book.PublisherName));

 cmd.Parameters.Add(new SqlParameter("@AuthorName",

 book.AuthorName));

 cmd.Parameters.Add(new SqlParameter("@CategoryName",

 book.CategoryName));

 con.Open();

 cmd.ExecuteNonQuery();

 con.Close();

 }

}

 catch (Exception ex)

 {

 throw ex;

 }

}

DeleteBook Method:

public void DeleteBook(string connectionString, int bookId)

{

 try

 {

 using (SqlConnection con = new

 SqlConnection(connectionString))

 {

 SqlCommand cmd = new SqlCommand("DeleteBook", con);

 cmd.CommandType = CommandType.StoredProcedure;

 cmd.Parameters.Add(new SqlParameter("@BookId", bookId));

 con.Open();

 cmd.ExecuteNonQuery();

 con.Close();

 }

}

 catch (Exception ex)

 {

 throw ex;

 }

}

NuGet Packages:

We need to install the System.Data.SqlClient.

17 CRUD Applications

137

Figure 17-11: Install NuGet Packages

17.1.5 Show Books

We start creating our web pages.

17 CRUD Applications

138

Figure 17-12: Show Lists of Books stored in the Database

Books.cshtml:

@page

@model BookApp.Pages.BooksModel

@{

 ViewData["Title"] = "Books";

}

 <div>

 <h1>Books</h1>

 Below you see all the Books in the Book Store:

 <table class="table">

 <thead>

 <tr>

 <th>BookId</th>

 <th>Title</th>

 <th>ISBN</th>

 <th>Publisher</th>

 <th>Author</th>

 <th>Category</th>

 <th>Action</th>

 </tr>

 </thead>

 <tbody>

 @foreach (var book in Model.books)

 {

 <tr>

 <td> @book.BookId </td>

 <td>

 @book.Title

 </td>

 <td> @book.Isbn </td>

17 CRUD Applications

139

 <td> @book.PublisherName </td>

 <td> @book.AuthorName </td>

 <td> @book.CategoryName </td>

 <td><a href="./DeleteBook?bookid=@book.BookId"

 class="btn btn-danger" role="button">Delete

 Book </td>

 </tr>

 }

 </tbody>

 </table>

 New Book

 </div>

Books.cshtml.cs:

…

using BookApp.Models;

namespace BookApp.Pages

{

 public class BooksModel : PageModel

 {

 readonly IConfiguration _configuration;

 public List<Book> books = new List<Book>();

 string connectionString;

 public BooksModel(IConfiguration configuration)

 {

 _configuration = configuration;

 }

 public void OnGet()

 {

 books = GetBookList();

 }

 private List<Book> GetBookList()

 {

 connectionString =

 _configuration.GetConnectionString("ConnectionString");

 List<Book> bookList = new List<Book>();

 Book book = new Book();

 bookList = book.GetBooks(connectionString);

 return bookList;

 }

 }

}

17.1.6 New Book

We create the «New Book» page.

17 CRUD Applications

140

Figure 17-13: New Book

NewBook.cshtml:

@page

@model BookApp.Pages.NewBookModel

@{

 ViewData["Title"] = "New Book";

}

<div>

 <h1>New Book</h1>

 <form name="bookForm" id="bookForm" method="post">

 Title:

 <input name="bookTitle" type="text" class="form-control

 input-lg" autofocus required />

 ISBN:

 <input name="bookIsbn" type="text" class="form-control

 input-lg" required />

 Publisher:

 <input name="bookPublisher" type="text" class="form-control

 input-lg" required />

 Author:

17 CRUD Applications

141

 <input name="bookAuthor" type="text" class="form-control

 input-lg" required />

 Category:

 <input name="bookCategory" type="text" class="form-control

 input-lg" required />

 <input id="saveButton" type="submit" value="Save" class="btn

 btn-info" />

 </form>

</div>

NewBook.cshtml.cs:

…

using BookApp.Models;

namespace BookApp.Pages

{

 public class NewBookModel : PageModel

 {

 readonly IConfiguration _configuration;

 public string connectionString;

 public NewBookModel(IConfiguration configuration)

 {

 _configuration = configuration;

 }

 public void OnGet()

 {

 }

 public void OnPost()

 {

 Book book = new Book();

 book.Title = Request.Form["bookTitle"];

 book.Isbn = Request.Form["bookIsbn"];

 book.PublisherName = Request.Form["bookPublisher"];

 book.AuthorName = Request.Form["bookAuthor"];

 book.CategoryName = Request.Form["bookCategory"];

 connectionString =

 _configuration.GetConnectionString("ConnectionString");

 book.CreateBook(connectionString, book);

 Response.Redirect("./Books");

 }

 }

}

17.1.7 Edit Book

We create the «Edit Book» page.

17 CRUD Applications

142

Figure 17-14: Edit Book

EditBook.cshtml:

@page

@model BookApp.Pages.EditBookModel

@{

 ViewData["Title"] = "Edit Book";

}

 <div>

 <h1>Edit Book</h1>

 <form name="bookForm" id="bookForm" method="post">

 <input name="bookId" type="text"

 value="@Model.bookdb.BookId" hidden/>

 Title:

 <input name="bookTitle" type="text"

 value="@Model.bookdb.Title" class="form-control input-lg"

 autofocus required />

 ISBN:

 <input name="bookIsbn" type="text"

 value="@Model.bookdb.Isbn" class="form-control input-lg"

 required />

 Publisher:

 <input name="bookPublisher" type="text"

 value="@Model.bookdb.PublisherName" class="form-control

17 CRUD Applications

143

 input-lg" required />

 Author:

 <input name="bookAuthor" type="text"

 value="@Model.bookdb.AuthorName" class="form-control input-

 lg" required />

 Category:

 <input name="bookCategory" type="text"

 value="@Model.bookdb.CategoryName" class="form-control

 input-lg" required />

 <input id="saveButton" type="submit" value="Save" class="btn

 btn-info" />

 </form>

 </div>

EditBook.cshtml.cs:

…

using BookApp.Models;

namespace BookApp.Pages

{

 public class EditBookModel : PageModel

 {

 readonly IConfiguration _configuration;

 public Book bookdb = new Book();

 public string connectionString;

 public int bookId;

 public EditBookModel(IConfiguration configuration)

 {

 _configuration = configuration;

 }

 public void OnGet()

 {

 bookId = Convert.ToInt16(Request.Query["bookid"]);

 Book book = new Book();

 connectionString =

 _configuration.GetConnectionString("ConnectionString");

 bookdb = book.GetBookData(connectionString, bookId);

 }

 public void OnPost()

 {

 Book book = new Book();

 book.BookId = Convert.ToInt16(Request.Form["bookId"]);

 book.Title = Request.Form["bookTitle"];

17 CRUD Applications

144

 book.Isbn = Request.Form["bookIsbn"];

 book.PublisherName = Request.Form["bookPublisher"];

 book.AuthorName = Request.Form["bookAuthor"];

 book.CategoryName = Request.Form["bookCategory"];

 connectionString =

 _configuration.GetConnectionString("ConnectionString");

 book.EditBook(connectionString, book);

 Response.Redirect("./Books");

 }

 }

}

17.1.8 Delete Book

We add functionality for deleting existing books.

Figure 17-15: Delete Book

DeleteBook.cshtml.cs:

…

using BookApp.Models;

using Microsoft.Extensions.Configuration;

namespace BookApp.Pages

{

 public class DeleteBookModel : PageModel

 {

 readonly IConfiguration _configuration;

17 CRUD Applications

145

 public string connectionString;

 public int bookId;

 public DeleteBookModel(IConfiguration configuration)

 {

 _configuration = configuration;

 }

 public void OnGet()

 {

 bookId = Convert.ToInt16(Request.Query["bookid"]);

 connectionString =

 _configuration.GetConnectionString("ConnectionString");

 Book book = new Book();

 book.DeleteBook(connectionString, bookId);

 Response.Redirect("./Books");

 }

 }

}

Web Programming - ASP.NET Core

Part 6 Additional

ASP.NET Core

Features
Here will some additional ASP.NET Core features be presented. like the use of Session

variables.

Web Programming - ASP.NET Core

18 Session Data
HTTP is a stateless protocol. Without taking additional steps, HTTP requests are

independent messages that do not retain user values or app state. We will see how we can

use something called Session variables for sharing information between different web

pages.

Typically, we need to share information between 2 different web pages as shown in Figure

18-1.

Figure 18-1: Share information between 2 different web pages

Very often we also need to share data between multiple web pages, this could be login

information, etc. See Figure 18-2.

18 Session Data

148

Figure 18-2: Share Data between multiple Web Pages

In a web page, the state can be stored using several approaches:

• Cookies

• Session State

• TempData

• Query String

• Hidden fields

• Etc.

Here we will focus on Session state and Session variables.

Session state is a mechanism that enables you to store and retrieve user specific values

temporarily. The default time is 20 minutes (but can be configured if necessary).

These values can be stored for the duration of the visitor's session on your site. It can be

used to share data between different web pages. It can, e.g., be used to store information if

the user is logged on to the application or not and the Username.

18.1 Session State in ASP.NET Core
Session management in ASP.NET Core is not enabled by default.

18 Session Data

149

You need to do the following in order to enable Session management in ASP.NET Core:

• You need to install the Microsoft.AspNetCore.Session NuGet Package in order to use

Session state.

• You need to enable Session State in the Startup.cs file

• You need to include the Namespace Microsoft.AspNetCore.Http

Download Microsoft.AspNetCore.Session NuGet package (Figure 18-3):

Figure 18-3: Download Microsoft.AspNetCore.Session NuGet Package

The following needs to be added to the “Startup.cs” file:

public void ConfigureServices(IServiceCollection services)

{

 ...

 services.AddSession();

 services.AddMemoryCache();

 ...

}

public void Configure(IApplicationBuilder app, IWebHostEnvironment env)
{

 ...

 app.UseSession();

 ...

}

In the page model files (.cshtml.cs) where you shall use Session variables you need to add

the “Microsoft.AspNetCore.Http” Namespace:

18 Session Data

150

...

using Microsoft.AspNetCore.Http;

...

//Your C# Code goes here

...

Write to Session Variables in C#

In order to write to Session Variables in C# we use the SetString() and SetInt32() methods.

Below you see an example:

...

string name;

int age;

HttpContext.Session.SetString("Name", name);

HttpContext.Session.SetInt32("Age", age);

Read from Session Variables in C#

In order to read from Session Variables in C# we use the GEtString() and GetInt32()

methods. Below you see an example:

string name;

int age;

name = HttpContext.Session.GetString("Name");

age = (Int32)HttpContext.Session.GetInt32("Age");

18.2 Example - Share Data between 2
Web Pages

Below we will go through a basic example that use Session in order to share data.

This application consists of 2 web pages. In Page 1 (Page1.cshtml) the user enters some data

into 2 textboxes; Name and Age. When the user clicks the “Save” button, the data is stored

in 2 Session variables. The Name is a String, and the Age is an Integer. Page 2 (Page2.cshtml)

reads the Session variables and present them to the user. See Figure 18-4.

18 Session Data

151

Figure 18-4: Session Data Example Application

Below we go through the example step by step.

18.2.1 Page1

Let us start creating Page1. Sometimes we start development of the Razor file (.cshtml) and

other times it is smart to start with the Code Behind file (cshtml.cs).

Page 1 is shown in Figure 18-5.

18 Session Data

152

Figure 18-5: Page1 in Example

For Page1 we start with Razor file (Page1.cshtml):

@page

@model SessionDataApp.Pages.Page1Model

@{

 ViewData["Title"] = "Page1";

}

<div>

<h1>Page1</h1>

<form method="post">

 Enter your Name:

 <input name="Name" type="text" class="form-control input-lg" required />

 Enter your Age:

 <input name="Age" type="number" min="1" max="100" class="form-control input-

 lg" required />

 <input id="SaveButton" type="submit" value="Save" class="btn btn-info">

</form>

</div>

Then we create the code for the “Page1.cshtml.cs” file:

..

using Microsoft.AspNetCore.Http;

namespace SessionDataApp.Pages

{

 public class Page1Model : PageModel

 {

 string name;

 int age;

18 Session Data

153

 public void OnGet()

 {

 }

 public void OnPost()

 {

 name = Request.Form["Name"];

 HttpContext.Session.SetString("Name", name);

 age = Convert.ToInt32(Request.Form["Age"]);

 HttpContext.Session.SetInt32("Age", age);

 }

 }

}

Explanation of the code:

From the webpage (Page1.cshtml) we retrieve the value the user enters in the “Name”

textbox and put the value into the variable “name”:

string name;

name = Request.Form["Name"];

Then the value is stored into a Session variable called “Name”:

HttpContext.Session.SetString("Name", name);

From the webpage (Page1.cshtml) we retrieve the value the user enters in the “Age” input

field and put the value into the variable “age”:

int age;

age = Convert.ToInt32(Request.Form["Age"]);

Since age is an Integer, we need to convert the value to Int32.

Then the value is stored into a Session variable called “Age”:

HttpContext.Session.SetInt32("Age", age);

18.2.2 Page2

Let us start creating Page2.

Page 2 is Figure 18-6.

18 Session Data

154

Figure 18-6: Page2 in Example

For Page2 we start with Code Behind file (Page2.cshtml.cs):

..

using Microsoft.AspNetCore.Http;

namespace SessionDataApp.Pages

{

 public class Page2Model : PageModel

 {

 public string name;

 public int age;

 public void OnGet()

 {

 if (HttpContext.Session.GetString("Name") != null)

 name = HttpContext.Session.GetString("Name");

 if (HttpContext.Session.GetInt32("Age") != null)

 age = (Int32)HttpContext.Session.GetInt32("Age");

 }

 }

}

Then we put contents into the “Page2.cshtml” file:

@page

@model SessionDataApp.Pages.Page2Model

@{

 ViewData["Title"] = "Page2";

}

<div>

 <h1>Page2</h1>

18 Session Data

155

 <p>

 Your Name is: @Model.name

 </p>

 <p>

 Your Age is: @Model.age

 </p>

</div>

18.3 Additional Resources
Additional Resources for Session state and Session variables:

• https://docs.microsoft.com/en-us/aspnet/core/fundamentals/app-state

• https://www.learnrazorpages.com/razor-pages/session-state

https://docs.microsoft.com/en-us/aspnet/core/fundamentals/app-state
https://www.learnrazorpages.com/razor-pages/session-state

Web Programming - ASP.NET Core

Part 7 Charting
Presenting data in charts is important. Here we will see how we can create charts in an

ASP.NET Core application.

Web Programming - ASP.NET Core

19 Charting
Typically, you want to use charts in your web application. Here we have many options. As

far as I know ASP.NET Core has still not any built-in features for creating charts, so you need

to use a 3.part tool for the job.

Some chart tools are:

• Google Charts

• Charts.js

19.1 Introduction
In Figure 19-1 you see an example where a chart is displayed on web page or a web

application.

19 Charting

158

Figure 19-1: Charting Example

Web Programming - ASP.NET Core

20 Google Charts
Google Charts is a JavaScript based charting library for presenting different types of charts

on a web page.

Google Charts is an API (or framework) for creating Charts in your web pages. It is free to

use. It is easy to use (when you first know how to use it).

Web Site:

https://developers.google.com/chart

Google Charts offers many different types of charts:

• Line Chart

• Bar Chart

• Column Chart

• Pie Chart

• etc.

Figure 20-1 shows an example.

https://developers.google.com/chart

20 Google Charts

160

Figure 20-1: Google Charts

20.1 Google Charts Implementation
The most common way to use Google Charts is with simple JavaScript that you embed in

your web page.

In your web page you need to implement the following steps:

1. You load some Google Chart libraries,

2. List the data to be charted,

3. Select options to customize your chart,

4. Finally create a chart object with an id that you choose.

20 Google Charts

161

5. Then, later in the web page, you create a <div> with that id to display the Google

Chart.

First, you need to load the Google Chart libraries:

<script src="https://www.gstatic.com/charts/loader.js"></script>

<script>

 google.charts.load('current', {packages: ['corechart']});

 google.charts.setOnLoadCallback(drawChart);

 ...

</script>

20.2 Google Charts Examples
Some basic Charts examples using ASP.NET Core will be demonstrated. The examples use

the Google Charts framework. An ASP.NET Core Chart Application has been created in order

to demonstrate how to implement and use Google Charts. See Figure 20-2.

Figure 20-2: Google Chart Examples

 ASP.NET Core - Charts: https://youtu.be/mksUls9fx-Q

The entire example can be downloaded from the home page of this textbook.

https://youtu.be/mksUls9fx-Q

20 Google Charts

162

The application shown in Figure 20-2 will demonstrate different chart types like “Line

Chart”, “Multi-Line Chart”, “Bar Chart” and “Column Chart”.

20.2.1 Basic Chart Example

We start with a basic Google Chart examples, see Figure 20-3.

Figure 20-3: Basic Google Chart Example

Web Page:

<html>

<head>

 <script type="text/javascript"

 src="https://www.gstatic.com/charts/loader.js"></script>

 <script type="text/javascript">

 google.charts.load('current', {'packages':['corechart']});

 google.charts.setOnLoadCallback(drawChart);

 function drawChart() {

 var data = google.visualization.arrayToDataTable([

 ['Year', 'Sales'],

 ['2004', 1000],

 ['2005', 1170],

 ['2006', 660],

 ['2007', 1030]

]);

 var options = {

 title: 'Company Performance',

 curveType: 'function',

20 Google Charts

163

 legend: { position: 'bottom' }

 };

 var chart = new

 google.visualization.LineChart(

 document.getElementById('mychart'));

 chart.draw(data, options);

 }

 </script>

</head>

<body>

 <div id="mychart" style="width: 900px; height: 500px"></div>

</body>

</html>

20.2.2 Database Examples

Most of the time you will need to use data that are stored in a SQL Server. Typically, you

want to plot some of the data inside your database

You should have SQL Server locally installed on your computer (for these examples). SQL

Server Express is recommended for these simple examples, but if you have another version

already, you can of course use that.

For the examples provided here, a simple database will be created, see below:

CREATE TABLE [CHARTDATA]

(

 [ChartDataId] int NOT NULL IDENTITY (1,1) Primary Key,

 [ChartTimeStamp] datetime NOT NULL DEFAULT GETDATE(),

 [ChartValue] float NOT NULL

)

go

This is a simple database with just one table. The table contains 2 important columns, one

with timestamps, which is typically the x-axis in your chart. The other column is the data

itself, which is typically the y-axis.

Next, we need to add some data in the database. You can just enter some data manually in

order to have some data for the examples. See Figure 20-4.

20 Google Charts

164

Figure 20-4: SQL Server

We will create some basic Examples:

• Line Chart

• Bar Chart

• Column Chart

• Multi Line Chart

We create a new ASP.NET Core application to demonstrate the different charts. Figure 20-5

shows the Solution Explorer in Visual Studio for our project (“ChartApp”).

20 Google Charts

165

Figure 20-5: Solution Explorer

As in previously ASP.NET Core examples we have created 2 folders, namely “Models” and

“Pages”.

In the “Models” folder we create our C# code that communicates and retrieve data from the

database. We create a class called “ChartData.cs” for this.

C# Code for “ChartData.cs”

using System.Data.SqlClient;

namespace ChartApp.Models

{

 public class ChartData

 {

 public int ChartDataId { get; set; }

 public string ChartTimeStamp { get; set; }

 public double ChartValue { get; set; }

 public List<ChartData> GetChartData(string connectionString)

 {

 List<ChartData> chartDataList = new List<ChartData>();

20 Google Charts

166

 SqlConnection con = new SqlConnection(connectionString);

 string selectSQL = "SELECT ChartDataId,

 FORMAT(ChartTimeStamp, 'MM.dd HH:mm') AS ChartTimeStamp,

 ChartValue FROM CHARTDATA";

 con.Open();

 SqlCommand cmd = new SqlCommand(selectSQL, con);

 SqlDataReader dr = cmd.ExecuteReader();

 if (dr != null)

 {

 while (dr.Read())

 {

 ChartData chartData = new ChartData();

 chartData.ChartDataId =

 Convert.ToInt32(dr["ChartDataId"]);

 chartData.ChartTimeStamp =

 dr["ChartTimeStamp"].ToString();

 chartData.ChartValue =

 Convert.ToDouble(dr["ChartValue"]);

 chartDataList.Add(chartData);

 }

 }

 return chartDataList;

 }

 }

}

Next, we start creating the web pages for displaying the charts. We start with a “Line Chart”.

20.2.3 Line Chart Example

Based on the data we created inside our database we will plot them in a “Line Chart”. Figure

20-6 shows the result.

Figure 20-6: Line Chart Example

20 Google Charts

167

Lets starts creating the web page. As you now, a ASP.NET Core web page consists of 2

different files, a Page model file (“.cshtml.cs”), or a “code-behind file and the web page itself

with Razor syntax (“.cshtml”).

C# Code (LineChart.cshtml.cs):

using ChartApp.Models;

namespace ChartApp.Pages

{

 public class LineChartModel : PageModel

 {

 public List<ChartData> chartDataList = new

 List<ChartData>();

 string connectionString;

 readonly IConfiguration _configuration;

 public LineChartModel(IConfiguration configuration)

 {

 _configuration = configuration;

 }

 public void OnGet()

 {

 chartDataList = ChartData();

 }

 private List<ChartData> ChartData()

 {

 connectionString =

 _configuration.GetConnectionString("ConnectionString");

 List<ChartData> chartDataList = new List<ChartData>();

 ChartData chartData = new ChartData();

 chartDataList =

 chartData.GetChartData(connectionString);

 return chartDataList;

 }

 }

}

Web Page (LineChart.cshtml):

@page

@model ChartApp.Pages.LineChartModel

@{

 ViewData["Title"] = "Line Chart";

 string chartTitle = "Temperature Data";

 string chartUnit= "Celsius";

}

<div class="text-center">

 <h1 class="display-4">Line Chart</h1>

</div>

<script type="text/javascript"

src="https://www.gstatic.com/charts/loader.js"></script>

<script type="text/javascript">

 google.charts.load('current', { 'packages': ['corechart'] });

 google.charts.setOnLoadCallback(drawChart);

 function drawChart() {

 var data = google.visualization.arrayToDataTable([

 ['Time', 'Data'],

 @foreach (var data in Model.chartDataList) {

 <text>['@data.ChartTimeStamp', @data.ChartValue],</text>

 }

20 Google Charts

168

]);

 var options = {

 title: '@chartTitle',

 curveType: 'function',

 pointsVisible: true,

 lineWidth: 3,

 legend: 'none',

 hAxis: {title: 'Time'},

 vAxis: {title: '@chartUnit'},

 width: '100%',

 height: '100%',

 chartArea: {width: '85%', height: '75%'}

 };

 var chart = new

 google.visualization.LineChart(document

 .getElementById('line_chart'));

 chart.draw(data, options);

 }

</script>

<div class="container-fluid lead">

 <div id="line_chart" style="width: 800px; height: 600px"></div>

</div>

The new part in this example compared to the previous example are the part where we get

the build an array with the data from the database:

var data = google.visualization.arrayToDataTable([

 ['Time', 'Data'],

 @foreach (var data in Model.chartDataList) {

 <text>['@data.ChartTimeStamp', @data.ChartValue],</text>

 }

]);

When running your application, the plot in Figure 20-6 should be the result.

20.2.4 Bar Chart Example

Figure 20-7 shows a “Bar Chart”.

20 Google Charts

169

Figure 20-7: Bar Chart Example

The code is almost identical, except for one line.

Change the following from “LineChart” to “BarChart”:

var chart = new

google.visualization.LineChart(document.getElementById('line_chart'));

For a “Bar Chart” we set:

var chart = new

google.visualization.BarChart(document.getElementById('line_chart'));

20.2.5 Column Chart Example

Figure 20-8 shows a “Column Chart”.

20 Google Charts

170

Figure 20-8: Column Chart Example

The code is almost identical, except for one line.

Change the following from “LineChart” to “BarChart”:

var chart = new

google.visualization.LineChart(document.getElementById('line_chart'));

For a “Bar Chart” we set:

var chart = new

google.visualization.ColumnChart(document.getElementById('line_chart'));

20.2.6 Multi-Line Chart Example

Figure 20-9 shows a “Multi-Line Chart”.

20 Google Charts

171

Figure 20-9: Multi-Line Example

In this example we plot 2 lines in the same chart. In this example, the blue line is the same

as in Figure 20-6 , while the red line is just the calculated Fahrenheit value.

Web Page (MultiLineChart.cshtml):

@page

@model ChartApp.Pages.MultiLineChartModel

@{

 ViewData["Title"] = "MultiLine Chart";

 string chartTitle = "Temperature Data";

 string chartUnit = "Degrees";

}

<div class="text-center">

 <h1 class="display-4">MultiLine Chart</h1>

</div>

<script type="text/javascript"

src="https://www.gstatic.com/charts/loader.js"></script>

<script type="text/javascript">

 google.charts.load('current', { 'packages': ['corechart'] });

 google.charts.setOnLoadCallback(drawChart);

 function drawChart() {

 var data = google.visualization.arrayToDataTable([

 ['Time', 'Celsius', 'Fahrenheit'],

 @foreach (var data in Model.chartDataList) {

Multi Line Chart

26

20 Google Charts

172

 double fahrenheitValue = data.ChartValue * (9/5) + 32;

 <text>['@data.ChartTimeStamp', @data.ChartValue,

 @fahrenheitValue],</text>

 }

]);

 var options = {

 title: '@chartTitle',

 curveType: 'function',

 pointsVisible: true,

 lineWidth: 3,

 legend: 'right',

 hAxis: {title: 'Time'},

 vAxis: {title: '@chartUnit'},

 width: '100%',

 height: '100%',

 chartArea: {width: '70%', height: '75%'}

 };

 var chart = new

 google.visualization.LineChart(document

 .getElementById('line_chart'));

 chart.draw(data, options);

 }

</script>

<div class="container-fluid lead">

 <div id="line_chart" style="width: 1000px; height: 600px"></div>

</div>

The only difference from the other examples, is that we need to make 3 columns instead of

2. One column for the “TimeStamp” values, one column for the “Celsius” values, and one

column for the “Fahrenheit” value.

In addition, there is a simple formula for converting from Celsius to Fahrenheit.

double fahrenheitValue = data.ChartValue * (9/5) + 32;

Web Programming - ASP.NET Core

21 Chart.js
Chart.js is similar to Google Charts.

Web Site:

https://www.chartjs.org

https://www.chartjs.org/

Web Programming - ASP.NET Core

Part 8 APIs
Overview of APIs

Web Programming - ASP.NET Core

22 Class Libraries
A class library defines types and methods that are called by an application. When you finish

your class library, you can decide whether you want to distribute it as a third-party

component or whether you want to include it as a bundled component with one or more

applications. You can also create a NuGet package of it.

Benefits:

• Make a better code structure

• Sharing code between multiple Visual Studio Projects.

• Share an assembly (.dll) that is doing a specific task to others, e.g., you can make a

Class Library that have Classes and Methods for communication with a database or

an OPC server, or a math library with Classes and Methods for dealing with matrices,

statistics, etc. There are endless possibilities.

 Introduction to Class Libraries in ASP.NET Core: https://youtu.be/emUiMd1zRrY

Figure 22-1 show the .NET Core Class Library template for creating a new Class Library in

Visual Studio.

https://youtu.be/emUiMd1zRrY

22. Class Libraries

176

Figure 22-1: Class Library – New Project

22.1 Demo Application
Here will creating and using a Class Library be demonstrated. A video is also provided that

goes through the example in detail.

 Introduction to Class Libraries in ASP.NET Core: https://youtu.be/emUiMd1zRrY

Here the following steps will be shown:

1. Make the Class Library

2. Use the Class Library in another Project/Application.

….

https://youtu.be/emUiMd1zRrY

22. Class Libraries

177

Figure 22-2: Applications NOT using a common Class Library

Figure 22-3: Applications using a common Class Library

In this example we will first create a Class Library, then we will create Applications that are

using the Class Library.

22. Class Libraries

178

We will create the following:

• The Class Library, which contains common C# code for the 2 applications

• The BookAdm App. This app is used to configure the books that should be sold in the

BookStore App. The application uses the C# code in the Class Library.

• The BookStore App. This app is used by the customers that want to buy books in the

Book Store. The application uses the C# code in the Class Library.

22.1.1 Class Library

Figure 22-4: New Project – Class Library (.NET Core) in Visual Studio

22. Class Libraries

179

Figure 22-5: Class Library Project

22. Class Libraries

180

Figure 22-6: Visual Studio Solution with Web Application Project and Class

Library Project

22.1.2 BookAdm App

Figure 22-7: Book Administration Web Application

22. Class Libraries

181

…

Figure 22-8: Books Page

Add Existing Project:

Figure 22-9

…

22. Class Libraries

182

Add Reference:

Figure 22-10

Figure 22-11

22. Class Libraries

183

Figure 22-12

22. Class Libraries

184

22.1.3 BookStore App

Figure 22-13

…

22. Class Libraries

185

Figure 22-14

…

22. Class Libraries

186

Figure 22-15

22.2 Final System

Figure 22-16

22. Class Libraries

187

Figure 22-17

Web Programming - ASP.NET Core

23 Web API
Or REST API, Web Service – many names for the same.

Web Programming - ASP.NET Core

Part 9 User Login and

ASP.NET Core Identity
Introduction to User Login and ASP.NET Core Identity.

Web Programming - ASP.NET Core

24 User Identity and Login
In this chapter we will see how we can create and use login functionality in your ASP.NET

Core Web Applications.

Typically, you need to create functionality for User Registration, Login, etc. Here you will see

how this can be done from scratch. If you do it from scratch, you will have full control of

your code.

If you use something called "ASP.NET Core Identity" (which will be explained and

demonstrated in the next chapter) lots of "magic" happens behind the curtains. If something

not working, it may be more complicated to figure out why.

24.1 Password Security
Keeping your passwords safe is important and all software systems should take this

seriously.

Password security mechanism:

• Encryption and Decrypting

• Hashing

• Salting

• 2 Factor Authentication

• Etc.

These password security mechanisms will be described in more detail below.

24.1.1 Encryption and Decrypting

Encryption is the practice of scrambling information in a way that only someone with a

corresponding key can unscramble and read it.

Encryption is a two-way function. When you encrypt something, you are doing so with the

intention of decrypting it later.

To encrypt data, you use an algorithm. Many different encryption algorithms do exist

22. Class Libraries

191

Figure 24-1 gives an overview of the concepts of Encryption and Decryption.

Figure 24-1: Encryption and Decryption

When should encryption be used? Here are some examples:

• Encryption is a two-way function.

• You encrypt information with the intention of decrypting it later.

• Examples when to use encryption:

• Protecting Files and Information on your Computer

• Protecting your Cloud data

• Transmitting Data between 2 Computers

• Etc.

The key is that Encryption is reversible. Hashing is not.

24.1.2 Hashing

Hashing is the practice of using an algorithm to map data of any size to a fixed length.

Encryption is a two-way function. Hashing is a one-way function.

While it is technically possible to reverse-hash something, the computing power required

makes it unfeasible. Hashing is one-way. See Figure 24-2.

Encryption is meant to protect data in transit, hashing is meant to verify that a file or piece

of data has not been altered—that it is authentic. In other words, it serves as a checksum.

Every hash value is unique.

22. Class Libraries

192

Figure 24-2: Hashing

Is it possible to for a hacking to get access to Hashed Passwords?

By using something called “Rainbow Table” the hacker can get access to your hashed

password, see Figure 24-3.

Figure 24-3: Using Rainbow Table for Hacking your Hashed Password

If a Hacker gets access to this Database, he can see that Mike and Peter have the same

password, but he does not know the actual password. If the Hacker has access to a so-called

“Rainbow table” (which is essentially a pre-computed database of hashes), he may also be

able to find the Password, as seen in Figure 24-3. If you have a complicated password, it is

less likely that your password is in such a Rainbow table.

22. Class Libraries

193

24.1.3 Salting

Salting is a technique typically used for Password Hashing. It is a unique value that can be

added to the end of the password to create a different hash value. The additional value is

referred to as a “salt”. This is done to make it even more secure. Typically, the Hashing

Algorithm uses a Random salt. This prevents an attacker from seeing whether users have

the same password. See Figure 24-4.

Figure 24-4: Salting

Is it possible to hack “Hashing with Salt”?

Assume Mike and Peter use the same Password, see Table 24-1. If a hacker gets access to

this database, he cannot see that Mike and Peter have the same password. This is because a

random Salt has made these 2 Hashed Passwords different!

Table 24-1: Examples of Hashed Passwords with Salt

User Name Hashed Password with Salt

Mike 4420d1918bbcf7

Bob 73fb51a0c9be7d

22. Class Libraries

194

Peter 4520d1818cbcf7

Figure 24-5 shows a typical Flow when Creating User and Login.

Figure 24-5: Typical Flow when Creating User and Login

24.2 Microsoft.AspNetCore.Identity
This Namespace contains different Classes and Methods for Identity handling. We will use

the PasswordHasher<TUser> Class.

24.2.1 PasswordHasher<TUser> Class

Namespace: Microsoft.AspNetCore.Identity

2 important Methods:

• HashPassword(TUser, String)

Returns a hashed representation of the supplied password for the specified user.

• VerifyHashedPassword(TUser, String, String)

Returns a PasswordVerificationResult indicating the result of a password hash comparison.

22. Class Libraries

195

Example:

using Microsoft.AspNetCore.Identity;

…

string username; //UserName given by user when creating a User

string passwordHashed;

PasswordHasher<string> pw = new PasswordHasher<string>();

passwordHashed = pw.HashPassword(userName, password);

24.3 Session State in ASP.NET Core
We need to store information whether the User is logged in or not. We can use Session

variables in order to share that information between multiple web pages.

Session management in ASP.NET Core is not enabled by default.

• You need to install the Microsoft.AspNetCore.Session NuGet Package in order to use

Session state.

• You need to enable Session State in the Startup.cs file

• You need to include the Namespace

using Microsoft.AspNetCore.Http;

24.4 Demo Application
Here we will demonstrate how we can create a web application (see Figure 24-6) with

“Login”, including “Create New User”, “Update User Information”.

Figure 24-6 shows the main page of the “Login” application.

22. Class Libraries

196

Figure 24-6: LoginApp - Welcome Web Page

Figure 24-7: User needs to Login before he can see Information

22. Class Libraries

197

24.4.1 Login

Figure 24-8: Login Web Page

24.4.2 Create User

Figure 24-9: Create User Web Page

…

22. Class Libraries

198

24.4.3 Update User Information

Figure 24-10: Update User Information Web Page

24.4.4 More Features

The web application presented is very basic and only to illustrate the basic principles.

All modern systems offer what we call “2 Factor Authentication”. This means in addition to

enter the password, the user needs to enter a one-time password received on E-Mail or

SMS.

An alternative is to use an Authenticator App like “Google Authenticator” or “Microsoft

Authenticator” available on iPhone and Android.

Another basic feature is “Forgot Password?”. Today we have lots of accounts on different

systems. It is recommended that we use different Passwords for these accounts, and it is

easy to forget the password for one or more of these accounts. Because of that we need to

have “Forgot Password” functionality. This means that the user needs to enter his e-mail

address and then the system should send an email (or SMS or similar) with a new temporary

Password that the user needs to change once he is able to logon to the system again.

To increase security it is also normal to have some kind of keyword (What is your

Nickname?, What is your favorite Pet?, etc.) that the user needs to remember before he can

receive a new password.

Web Programming - ASP.NET Core

25 ASP.NET Core Identity

25.1 Introduction
We will use ASP.NET Core Identity for creating an Application with built-in Authentication

that has the following features:

• User Registration

• User Login

• Check if User is Authenticated/Logged into your Application

• 2FA

ASP.NET Core Identity is an API that supports user interface (UI) login functionality out of

the box. You can manage users, passwords, roles, email confirmation, 2FA, and more.

Users can create an account with the login information stored in Identity or they can use an

external login provider.

Supported external login providers include Facebook, Google, Microsoft Account, and

Twitter.

ASP.NET Core Identity offers GUI for creating Users and User Login, 2FA, etc. If you need to

change the layout and behaviors of those “out of the box” provided GUIs, you need to use

“Scaffolding”. Scaffolding is explained below in more detail.

25.1.1 Scaffold Identity in ASP.NET Core Projects

What is Scaffolding?

In general, Scaffolding, also called scaffold or staging is a temporary structure used to

support a work crew and materials to aid in the construction, maintenance, and repair of

buildings, etc.

https://en.wikipedia.org/wiki/Scaffolding

Scaffolding, as used in computing, refers to one of two techniques: The first is a code

generation technique related to database access in some model–view–controller

frameworks; the second is a project generation technique supported by various tools.

https://en.wikipedia.org/wiki/Scaffolding

22. Class Libraries

200

https://en.wikipedia.org/wiki/Scaffold_(programming)

Scaffold Identity in ASP.NET Core Projects

Applications that include Identity can apply the scaffolder to selectively add the source code

contained in the Identity Razor Class Library (RCL).

You might want to generate source code so you can modify the code and change the

behavior. For example, you could instruct the scaffolder to generate the code used in login

or registration.

Generated code takes precedence over the same code in the Identity RCL.

25.2 Demo Application
Below an ASP.NET Core Web Application implementing and using ASP.NET Core Identity will

be presented.

25.2.1 Create Project in Visual Studio with Identity
Enabled

We start by creating an ordinary ASP.NET Core Web Application, see Figure 25-1.

Figure 25-1: ASP.NET Core Web Application Template

https://en.wikipedia.org/wiki/Scaffold_(programming)

22. Class Libraries

201

Select Authentication:

Then, in the next window (see Figure 25-2) you need to select “Authentication”.

Figure 25-2: Select Authentication

Change Authentication:

When you click “Authentication” in Figure 25-2, the “Change Authentication” window

appears (see Figure 25-3). Here you then should typically select “Individual User Accounts”.

Figure 25-3: Change Authentication

22. Class Libraries

202

Solution Explorer:

When you have selected proper authentication, your project and files will be created for

you, see Figure 25-4. Lots of new stuff has been created for us that are used by the Identity

features we have enabled.

Figure 25-4: Solution Explorer

25.2.2 Create Identity Database

You need to create the Identity Database. This can be done in different ways, see Figure

25-5.

22. Class Libraries

203

Figure 25-5: Create Identity Database

Figure 25-6: Identity Database

22. Class Libraries

204

25.2.3 Register New Account and Log In

Create New Account:

Figure 25-7: Create New Account

Confirm Registration:

22. Class Libraries

205

Figure 25-8: Confirm Registration

Login:

Figure 25-9: Login

22. Class Libraries

206

Figure 25-10: You are Logged In

Manage your Account:

Figure 25-11: Manage your Account

22. Class Libraries

207

25.2.4 2 Factor Authentication

All modern systems offer what we call “2 Factor Authentication”, or 2FA.

This means in addition to enter the password, the user needs to enter a one-time password

received on E-Mail or SMS.

An alternative is to use an Authenticator App like “Google Authenticator” or “Microsoft

Authenticator” available on iPhone and Android.

Start using 2FA

Figure 25-12: Configure 2FA

22. Class Libraries

208

Figure 25-13: Microsoft Authenticator App for 2FA

Microsoft Authenticator App

https://www.microsoft.com/en-us/account/authenticator

Log In using 2FA:

Enter Code from Authentication App

Figure 25-14: Log In using 2FA

https://www.microsoft.com/en-us/account/authenticator

22. Class Libraries

209

25.2.5 Start Creating your Application

When the Identity features are installed, configured, and set up, you can start creating the

rest of your application

Typically, you need to check in your different web pages if the user is logged in

(authenticated) or not

@User.Identity

Typically, you want to use the following:

• @User.Identity.IsAuthenticated

• @User.Identity.Name

Check if you are Logged In or not in your Code:

Figure 25-15: Check if you are Logged In or not in your Code

22. Class Libraries

210

Figure 25-16: User are Logged In

Razor Code:

@page

@model IndexModel

@{

 ViewData["Title"] = "Home page";

}

<div>

 <h1>Welcome</h1>

 <p>ASP.NET Core Identity Example Application</p>

 <p>Is Authenticated: @User.Identity.IsAuthenticated</p>

 <p>UserName: @User.Identity.Name</p>

</div>

Typically, we want to use “@User.Identity.IsAuthenticated” for checking if Logged In or not

and then show, e.g., data from the database, if the user are logged in.

22. Class Libraries

211

Figure 25-17

Razor Code:

<div>

 <h2>Data</h2>

 @if (User.Identity.IsAuthenticated)

 {

 <p>Show Data here (e.g., from your Database)...</p>

 }

 else

 {

 <p>You are not Logged In</p>

 }

</div>

25.2.6 Scaffolding

If you are not happy with the default Layout of the different Identity web pages (Register,

Login, etc.) You can override the default Scaffolding and modify these web pages, so they fit

your needs.

Scaffold Identity in ASP.NET Core Projects:

22. Class Libraries

212

Figure 25-18

Figure 25-19

22. Class Libraries

213

Select the Identity page(s) you want to override

Figure 25-20

Figure 25-21

Existing Login.cshtml

22. Class Libraries

214

Figure 25-22

Updated Login.cshtml

Figure 25-23

Want to remove this

22. Class Libraries

215

25.3 Additional Resources
Here are some additional resources if you want to dig deeper into ASP.NET Core Identity:

• Introduction to Identity on ASP.NET Core: https://docs.microsoft.com/en-

us/aspnet/core/security/authentication/identity

• Scaffold Identity in ASP.NET Core projects: https://docs.microsoft.com/en-

us/aspnet/core/security/authentication/scaffold-identity

• Account confirmation and password recovery in ASP.NET Core:

https://docs.microsoft.com/en-us/aspnet/core/security/authentication/accconfirm

https://docs.microsoft.com/en-us/aspnet/core/security/authentication/identity
https://docs.microsoft.com/en-us/aspnet/core/security/authentication/identity
https://docs.microsoft.com/en-us/aspnet/core/security/authentication/scaffold-identity
https://docs.microsoft.com/en-us/aspnet/core/security/authentication/scaffold-identity
https://docs.microsoft.com/en-us/aspnet/core/security/authentication/accconfirm

Web Programming - ASP.NET Core

Part 10 Testing
Introduction to Software Testing.

Web Programming - ASP.NET Core

26 Unit Testing

 Introduction to Unit Testing in ASP.NET Core: https://youtu.be/EzeDCEQ2qMs

https://youtu.be/EzeDCEQ2qMs

Web Programming - ASP.NET Core

Part 11 Deployment
Introduction to Deployment.

Web Programming - ASP.NET Core

27 Web Servers
When running our web application inside Visual Studio, the IIS Express Web Server is

running in the background (without our notice).

Figure 27-1

Web Servers are used to host web sites and web pages. The term web server can refer to

either the hardware (the computer) or the software (the computer application) that helps to

deliver web content that can be accessed through the Internet.

27. Web Servers

220

The following web servers (software) are very popular today:

• Internet Information Services (IIS) (included with Windows)

• Apache

• Nginx (pronounced "engine x")

Reference: https://en.wikipedia.org/wiki/Web_server

Product Vendor Platform Percent

Apache Apache Open Source

Cross Platform

45.9%

Nginx Nginx, inc Free + Paid versions 39.0%

https://en.wikipedia.org/wiki/Web_server

27. Web Servers

221

Cross Platform

IIS (Internet Information

Services)

Microsoft Windows, Included with Windows

(Windows Server, Windows 10

Pro)

9.5%

LiteSpeed LiteSpeed Proprietary, Linux 3.4%

GWS (Google Web Server) Google Custom Linux-based Web server

that Google uses for its online

services

1.0%

Web Programming - ASP.NET Core

28 Deployment in Visual
Studio

Publish your application from Visual Studio.

Web Programming - ASP.NET Core

29 Internet Information
Services (IIS)

Internet Information Services (IIS) is a Web Server from Microsoft. IS is integrated with

Windows.

Figure 29-1: Internet Information Services (IIS) Manager

29.1 Installation
IIS – Internet Information Services

Web Server that host the Web Pages/Web Site

Make sure to have the IIS Role installed with ASP.NET subcomponents

Default IIS Directory:

C:\inetpub\wwwroot

In order to install IIS and make sure it work with ASP.NET Core Web Applications, you need

to do the following.

29. Internet Information Services (IIS)

224

• Turn on Internet Information Services in Windows Features

• Install the .NET Core Hosting Bundle on the IIS server. If the Hosting Bundle is

installed before IIS, the bundle installation must be repaired. Run the Hosting Bundle

installer again after installing IIS.

29.1.1 Windows Features

Figure 29-2: Installation of Internet Information Services (IIS)

29.1.2 .NET Core Hosting Bundle

29.2 Demo Application

 ASP.NET Core – Web Server IIS deployment: https://youtu.be/MoI9SSLV4B4

In the video the ASP.NET Core Database CRUD Application is used as an example. See

Chapter 17.

The entire example can be downloaded from the home page of this textbook.

https://youtu.be/MoI9SSLV4B4

29. Internet Information Services (IIS)

225

29.2.1 Add Application

Figure 29-3: IIS – Add Application

Copy your Files to default IIS Directory: C:\inetpub\wwwroot

Figure 29-4: Copy Files

29. Internet Information Services (IIS)

226

Figure 29-5: IIS Deployment

Figure 29-6: Run your Application

Web Programming - ASP.NET Core

Part 12 Microsoft

Azure
Introduction to Microsoft Azure.

Web Programming - ASP.NET Core

30 Introduction to Azure
You could say Microsoft Azure is "Windows running in the Cloud".

A cloud platform from Microsoft, a competitor to AWS, Google Cloud Platform, etc.

Web:

https://azure.microsoft.com/

30.1 Azure Web Portal
Using the Microsoft Azure Portal, you can configure and setup the different services

provided by Microsoft Azure, such as Virtual Machines (VM), databases, web servers, etc.

Web:

https://portal.azure.com

Figure 30-1: Microsoft Azure Portal

https://azure.microsoft.com/
https://portal.azure.com/

Web Programming - ASP.NET Core

31 Databases in Azure

31.1 Create the Database
You use the Microsoft Azure Portal to create and configure your Azure SQL Databases, see

Figure 31-1 and Figure 31-2.

Figure 31-1: Create and Configure your Azure SQL Databases in Azure Portal

Figure 31-2: Azure SQL Database Configuration

31.1.1 Azure Data Studio

Then we can use Azure Data Studio (or SQL Server Management Studio) to insert the

necessary Tables, Stored Procedures, etc. See Figure 31-3.

31. Databases in Azure

230

Figure 31-3: Azure Data Studio

Download:

https://docs.microsoft.com/en-us/sql/azure-data-studio/

31.2 Create Tables, etc.
Connect to the Windows Azure SQL Server from your local SQL Management Studio.

Configure Firewall Setting in Azure Web Portal

Your local Management Studio: You connect to the Windows Azure SQL Server Database in

the same way as you connect to a local Database

Create Tables, Views, Stored Procedures, etc. -> using a SQL Script is recommended!

https://docs.microsoft.com/en-us/sql/azure-data-studio/

31. Databases in Azure

231

Figure 31-4: Azure Firewall Settings

31.2.1 SQL Server Management Studio

Connect to your Azure database from your local SQL Server Management Studio (SSMS).

31.2.2 Azure Data Studio

You can also use Azure Data Studio.

Azure Data Studio is a cross-platform (Windows, macOS, Linux) down-scaled version of SQL

Server Management Studio (Windows only).

Web Site:

https://docs.microsoft.com/sql/azure-data-studio

https://docs.microsoft.com/sql/azure-data-studio

Web Programming - ASP.NET Core

32 Web Applications in
Azure

App Services is a container (Web Server) for web pages and other web services like REST

API, etc.

You could say it is the Azure version of Internet Information Services (IIS). IIS is a web server

software from Microsoft.

32.1 App Service
An “App Service” can be create from Azure Portal (or directly in Visual Studio) as seen in

Figure 32-1

Figure 32-1: Azure App Service

Deploy the Web Project to the Azure Web App from Visual Studio.

32. Web Applications in Azure

233

Figure 32-2: Deployment from Visual Studio

32.2 Default Document
Configure Default Document

Figure 32-3: Configure Default Document

Web Programming - ASP.NET Core

Part 13 Resources
Additional resources.

Web Programming - ASP.NET Core

33 Bootstrap
Bootstrap is a JavaScript/HTML, CSS Framework.

Bootstrap is the most popular HTML, CSS, and JavaScript framework for developing

responsive, mobile-first websites.

Bootstrap is included in the standard ASP.NET Core Web Application.

Web Site:

https://getbootstrap.com

Bootstrap is a popular HTML, CSS, and JavaScript framework for developing responsive,

mobile first projects on the web

Bootstrap is a free and open-source front-end web framework for designing websites and

web applications.

It contains HTML- and CSS-based design templates for typography, forms, buttons,

navigation and other interface components, as well as optional JavaScript extensions.

Unlike many web frameworks, it concerns itself with client-side/front-end development

only.

Additional Training:

Bootstrap Tutorial: https://www.w3schools.com/bootstrap4/

https://getbootstrap.com/
https://www.w3schools.com/bootstrap4/

Web Programming - ASP.NET Core

34 Font Awesome
Font Awesome 5 has a PRO edition with 7020 icons, and a FREE edition with 1535 icons. The

FREE edition is a good start and has more than enough icons for most people.

To use the Free Font Awesome 5 icons, you can choose to download the Font Awesome

library, or you can sign up for an account at Font Awesome and get a code (called KIT CODE)

to use when you add Font Awesome to your web page.

Web Site:

https://fontawesome.com

Additional Training:

https://www.w3schools.com/icons/fontawesome5_intro.asp

https://fontawesome.com/
https://www.w3schools.com/icons/fontawesome5_intro.asp

Web Programming - ASP.NET Core

Part 14 Applications
This part gives an overview of real applications created in ASP.NET Core. A Weather System

will be presented and a Data Management System (DMS).

Web Programming - ASP.NET Core

35 Weather System
The Weather Station is located in Porsgrunn (Latitude 59.1386° N, Longitude 9.6555° E),

Norway at University of South-Eastern Norway (USN).

Web Site:

https://www.halvorsen.blog/documents/software/weather/

The Weather System is based on a Capricorn 2000ex Weather Station with Weather

MicroServer from Columbia Weather Systems.

Figure 35-1 shows an overview of the system.

Figure 35-1: Weather System Overview

The system consists of several modules, applications and services.

Main applications:

• Data Logging Applications

• Data Management Applications

• Data Monitoring Applications

Multiple programming languages and frameworks has been used in the development if this

system, some examples are LabVIEW, C#, ASP.NET, PHP, JavaScript, CSS, Bootstrap, etc.

https://www.halvorsen.blog/documents/software/weather/

35. Weather System

239

Different database systems are also in use, e.g., SQL Server (both local and in Microsoft

Azure), MySQL/MariaDB.

Web Servers that are used are Apache running on a Linux server, Internet Information

Services (App Service) running on Microsoft Azure.

35.1 ASP.NET Core Web Application
Here, we will focus on the applications that has been made with Visual Studio, C# and

ASP.NET Core.

The source code for the application presented below is available from the home page of this

textbook.

Figure 35-2 shows the start page for the application.

Figure 35-2: Weather System ASP.NET Core Web Application

In the menu we have different files for the different features like:

• Today

• Weather

• Charts

• Parameters

• Weather Information

35. Weather System

240

• About

The development of each of those will be described below.

35.2 Database
The database structure is very basic.

MEASUREMENT table:

CREATE TABLE [MEASUREMENT]

(

 [MeasurementId] int NOT NULL IDENTITY (1,1) Primary Key,

 [MeasurementName] varchar(100) NOT NULL UNIQUE,

 [MeasurementAlias] varchar(100) NULL,

 [Unit] varchar(50) NULL

)

MEASUREMENTDATA table:

CREATE TABLE [MEASUREMENTDATA]

(

 [MeasurementDataId] int NOT NULL IDENTITY (1,1) Primary Key,

 [MeasurementId] int NOT NULL Foreign Key REFERENCES MEASUREMENT(MeasurementId),

 [MeasurementTimeStamp] datetime NOT NULL ,

 [MeasurementValue] float NOT NULL

)

Database View (“GetMeasurementData”):

IF EXISTS (SELECT name

 FROM sysobjects

 WHERE name = 'GetMeasurementData'

 AND type = 'V')

 DROP VIEW GetMeasurementData

GO

CREATE VIEW GetMeasurementData

AS

SELECT

MEASUREMENTDATA.MeasurementDataId,

MEASUREMENT.MeasurementId,

MEASUREMENT.MeasurementName,

MEASUREMENT.MeasurementAlias,

MEASUREMENTDATA.MeasurementTimeStamp,

MEASUREMENTDATA.MeasurementValue,

MEASUREMENT.Unit

FROM MEASUREMENTDATA

INNER JOIN MEASUREMENT ON MEASUREMENTDATA.MeasurementId = MEASUREMENT.MeasurementId

GO

Stored Procedure (“SaveMeasurementData”):

IF EXISTS (SELECT name

 FROM sysobjects

 WHERE name = 'SaveMeasurementData'

35. Weather System

241

 AND type = 'P')

DROP PROCEDURE SaveMeasurementData

GO

CREATE PROCEDURE SaveMeasurementData

@MeasurementName varchar(100),

@Unit varchar(50),

@MeasurementValue float

AS

DECLARE

@MeasurementId int

if not exists (select * from MEASUREMENT where MeasurementName = @MeasurementName)

 insert into MEASUREMENT (MeasurementName, Unit) values (@MeasurementName,

@Unit)

select @MeasurementId = MeasurementId from MEASUREMENT where MeasurementName =

@MeasurementName

insert into MEASUREMENTDATA (MeasurementId, MeasurementValue, MeasurementTimeStamp)

values (@MeasurementId, @MeasurementValue, getdate())

GO

35.3 Visual Studio Project
We create a new ASP.NET Core Web Application in Visual Studio.

Figure 35-3ASP.NET Core Web Application Project in Visual Studio

35. Weather System

242

In the “Pages” folder we create our web pages (.cdhtml files).

In this application we have the following Pages:

• Index.cshtml

• Weather.cshtml

• Chart.cshtml

• WeatherParameters.cshtml

• WeatherInformation.cshtml

• About.cshtml

We create a “Models” folder where we put our Classes.

In this application we have the following Classes:

• WeatherParameters.cs

• WeatherData.cs

• ChartData.cs

35.4 Connection String
You can hardcode the connection string to the database in your C# code like this:

string connectionString = "DATA SOURCE=xxx;UID=sa;PWD=xxx;DATABASE=xxx";

where you replaced the “xxx” with the settings for your database.

The user “sa” (System Administrator) is the default user. You can use that one for testing,

but for your final application you should setup and use another user.

35.4.1 appSettings.json

A better solution is to put the connection string inside the “appSettings.json” which is

meant for storing configuration data, such as connection strings, etc.

Below you see a typical “appSettings.json” file:

{

 "Logging": {

 "LogLevel": {

 "Default": "Information",

 "Microsoft": "Warning",

 "Microsoft.Hosting.Lifetime": "Information"

 }

 },

 "AllowedHosts": "*",

 "ConnectionStrings": {

35. Weather System

243

 "ConnectionString": "DATA SOURCE=xxx;UID=sa;PWD=xxx;DATABASE=xxx"

 }

}

where you replace the “xxx” with the settings for your database.

35.5 Index Page (Start Page)
The start page of an ASP.NET Core web application is by default “Index.cshtml”

In this web application, the index file shows the current weather in a formatted way.

Code for “Index.cshtml”:

@page

@model IndexModel

@{

 ViewData["Title"] = "Home page";

}

<div class="text-center">

 <h1 class="display-4">Weather Today</h1>

</div>

<div class="text-lg-right">

 <h3>@DateTime.Now.ToString("yyyy-MM-dd HH:mm")</h3>

</div>

<div class="container-fluid lead">

 Below you find an overview of the weather at USN Porsgrunn:

 <p> </p>

 <h3>@Html.Raw(Model.weatherTemperatureText)</h3>

 <h3>@Html.Raw(Model.weatherWindSpeedText)</h3>

 <p> </p>

 For more details, select Weather in the menu.

</div>

Here more weather information can be added.

35. Weather System

244

35.6 Weather Overview Page
Weather.cshtml

Figure 35-4: Weather Overview Page

35.7 Charts Page
Each of the weather parameters can be plotted. In order to open the different charts, you

just click on the “chart” button in the list as shown in Figure 35-4.

Error! Reference source not found.) we see an example where Google Charts are used in an

ASP.NET Core Web Weather System Application.

35. Weather System

245

Figure 35-5: Weather Charts

Source Code for Chart.cshtml

@page

@model WeatherSystem.Pages.ChartModel

@{

 ViewData["Title"] = "Chart";

}

<div class="text-center">

 <h1 class="display-4">Chart</h1>

</div>

35. Weather System

246

<script type="text/javascript"

src="https://www.gstatic.com/charts/loader.js"></script>

<script type="text/javascript">

 google.charts.load('current', { 'packages': ['corechart'] });

 google.charts.setOnLoadCallback(drawChart);

 function drawChart() {

 var data = google.visualization.arrayToDataTable([

 ['Time', 'Data'],

 @foreach (var data in Model.chartDataList) {

 <text>['@data.MeasurementTimeStamp',

 @data.MeasurementValue],</text>

 }

]);

 var options = {

 title: 'MeasurementName',

 curveType: 'function',

 pointsVisible: true,

 lineWidth: 3,

 legend: 'none',

 hAxis: {title: 'Time'},

 vAxis: {title: 'Unit'},

 width: '100%',

 height: '100%',

 chartArea: {width: '85%', height: '75%'}

 };

 var chart = new

google.visualization.LineChart(document.getElementById('curve_chart'));

 chart.draw(data, options);

 }

</script>

<div class="container-fluid lead">

 <h1>@Model.measurementName</h1>

 <div id="curve_chart" style="width: 1000px; height: 900px"></div>

</div>

Page Model (Chart.cshtml.cs):

…

namespace WeatherSystem.Pages

{

 public class ChartModel : PageModel

 {

 public string measurementName;

 public List<ChartData> chartDataList = new List<ChartData>();

 string connectionString;

35. Weather System

247

 readonly IConfiguration _configuration;

 public ChartModel(IConfiguration configuration)

 {

 _configuration = configuration;

 }

 public void OnGet()

 {

 measurementName = Request.Query["measurementname"];

 chartDataList = ChartData();

 }

 public void OnPut()

 {

 }

 private List<ChartData> ChartData()

 {

 connectionString =

 _configuration.GetConnectionString("ConnectionString");

 List<ChartData> chartDataList = new List<ChartData>();

 ChartData chartData = new ChartData();

 chartDataList = chartData.GetChartData(connectionString,

 measurementName);

 return chartDataList;

 }

 }

}

Model (“ChartData.cs”):

…

using System.Data.SqlClient;

namespace WeatherSystem.Models

{

 public class ChartData

 {

 public int MeasurementDataId { get; set; }

 public string MeasurementTimeStamp { get; set; }

 public string MeasurementValue { get; set; }

 public List<ChartData> GetChartData(string connectionString, string

 measurementName)

 {

 List<ChartData> chartDataList = new List<ChartData>();

 SqlConnection con = new SqlConnection(connectionString);

35. Weather System

248

 string selectSQL = "SELECT MeasurementDataId,

FORMAT(MeasurementTimeStamp, 'MM.dd HH:mm') AS MeasurementTimeStamp,

MeasurementValue FROM GetMeasurementData WHERE MeasurementTimeStamp between

CONVERT(DATE, GETDATE()) AND GETDATE() AND MeasurementName='" +

measurementName + "' ORDER BY MeasurementDataId";

 con.Open();

 SqlCommand cmd = new SqlCommand(selectSQL, con);

 SqlDataReader dr = cmd.ExecuteReader();

 if (dr != null)

 {

 while (dr.Read())

 {

 ChartData chartData = new ChartData();

 chartData.MeasurementDataId =

 Convert.ToInt32(dr["MeasurementDataId"]);

 chartData.MeasurementTimeStamp =

 dr["MeasurementTimeStamp"].ToString();

 chartData.MeasurementValue =

 dr["MeasurementValue"].ToString();

 chartDataList.Add(chartData);

 }

 }

 return chartDataList;

 }

 }

}

35. Weather System

249

35.8 Weather Parameters Page

Figure 35-6: Weather Parameters

35.9 Weather Information Page

35. Weather System

250

Figure 35-7: Weather Information

35.10 About Page

35. Weather System

251

Figure 35-8: About – Information about the Weather System

35.11 Deployment to Azure
In this example I have deployed the application to Microsoft Azure, but the application can

be “anywhere”.

Below, the necessary steps for deploying the application to Microsoft Azure is presented.

Both the database and the web application will be deployed to Microsoft Azure.

When you have setup the web application, you need to make sure it has access to the

database. See Figure 35-9.

35. Weather System

252

Figure 35-9: Make sure the Web Application has Access to the Database

Web Programming - ASP.NET Core

36 Voting System
Here will the “Voting System” application be presented. It can be used as an online Voting

System, e.g., vote for best athlete, best book, best song, best web page, etc. Only the

imagination limits what this application can be used for.

This application contains features typically needed in a professional ASP.NET Core

applications. Some examples are:

• CRUD functionality

• Query String Data

• Form Data

• Session Data

• Charts

• Login Features

• Etc.

The entire example can be downloaded from the home page of this textbook.

Figure 36-1 shows the Start Page (Index) page of the application.

35. Weather System

254

Figure 36-1: Voting System

Figure 36-2 show the “New Vote” feature.

35. Weather System

255

Figure 36-2: New Vote

Figure 36-3 show the web page for presenting the results from the votes.

35. Weather System

256

Figure 36-3: Vote Results

Web Programming - ASP.NET Core

37 Data Management
System (DMS)

The intention is to create an Open Source Cloud Platform for Data Management,

Datalogging and Data Analysis based on open standards.

Main Features:

• Database storage, both locally and cloud

• Support for different Cloud platforms, both general cloud platforms like Azure, etc.
specific IoT platforms like ThingSpeak, Azure Sphere, etc. and Industrial Cloud
platforms like MindSphere from Siemens, etc.

• Management features

• Logging features

• Monitoring features

• IoT devices and applications

• Support different protocols like Modbus TCP, OPC UA, MQTT, REST, etc.

• Support for different languages like LabVIEW, C#, Python, MATLAB

Figure 37-1 shows an overview of the Data Management System (DMS).

Figure 37-1: Data Management System (DMS)

37. Data Management System (DMS)

258

Figure 37-2 shows the Data Management and Monitoring web application.

Figure 37-2: Data Management and Monitoring [Hans-Petter Halvorsen]

Web Site:

https://www.halvorsen.blog/documents/software/dmm/

Figure 37-3 shows the web interface for the Data Management System (DMS) after Login.

https://www.halvorsen.blog/documents/software/dmm/

37. Data Management System (DMS)

259

Figure 37-3: DMS Platform – Web Interface

Figure 37-4 and Figure 37-6 shows Web-based Data Management for setting up Devices and

respective Tags for the different Devices. Here we have configured the Device Weather

Station to have the Tag Temperature.

37. Data Management System (DMS)

260

Figure 37-4: Web-based Data Management – Devices

Figure 37-5: Device Dashboard

37. Data Management System (DMS)

261

Figure 37-6: Web-based Data Management – Tags

Figure 37-7 shows Web-based Data Monitoring.

37. Data Management System (DMS)

262

Figure 37-7: Web-based Data Monitoring – Charting

Web Programming
ASP.NET Core

	Preface
	Part 1 : Introduction
	1 Introduction
	1.1 Applications
	1.1.1 Desktop Applications
	1.1.2 Web Applications
	1.1.3 Mobile Applications

	1.2 .NET
	1.3 Web

	2 ASP.NET
	2.1 ASP.NET Web Forms
	2.2 ASP.NET Core with Razor

	Part 2 : Visual Studio and C#
	3 Visual Studio
	3.1 Visual Studio macOS

	4 Desktop Applications
	4.1 Windows Forms App
	4.2 WPF Application
	4.3 Universal Applications

	5 C# Programming Language
	5.1 Introduction
	5.2 Classes
	5.3 Inheritance
	5.3.1 Example

	5.4 Polymorphism
	5.4.1 Example

	5.5 Interfaces
	5.5.1 Example

	5.6 Generics
	5.7 Additional C# Resources
	5.7.1 Windows Forms Appa

	Part 3 : Web Fundamentals
	6 The Web
	6.1 Web Programming
	6.2 Client-Server
	6.3 Web Server
	6.4 Web Browsers
	6.5 HTML
	6.6 CSS
	6.7 JavaScript
	6.8 Server-side Frameworks
	6.8.1 PHP
	6.8.2 ASP.NET
	6.8.3 Django
	6.8.4 JavaScript Server-side Frameworks

	6.9 Web Data Formats
	6.9.1 XML
	6.9.2 JSON

	7 HTML
	7.1 HTML in Visual Studio
	7.2 HTML Tags
	7.2.1 Title
	7.2.2 Headers
	7.2.3 Paragraphs
	7.2.4 Hyperlinks
	7.2.5 Images
	7.2.6 Tables
	7.2.7 Comments

	7.3 Additional Resources

	8 CSS
	8.1 External Style Sheets
	8.2 Bootstrap
	8.3 Font Awesome
	8.4 Additional Resources

	9 JavaScript
	9.1.1 Additional Resources
	9.2 jQuery
	9.3 AngularJS
	9.4 TypeScript (Microsoft)

	10 Server-side Frameworks
	10.1 PHP
	10.2 Django
	10.3 ASP.NET

	Part 4 : ASP.NET Core
	11 Introduction to ASP.NET Core
	11.1 Resources
	11.2 Hello World Application
	11.3 ASP.NET Core with Razor
	11.3.1 Basic Examples

	11.4 Query String Data
	11.5 Form Data

	12 ASP.NET Core Fundamentals
	12.1 Startup Class
	12.2 Web root
	12.3 appsettings.json
	12.4 Shared Pages
	12.4.1 Layout

	12.5 Models
	12.6 Razor Pages
	12.6.1 Sending data from the Page Model to the Razor File

	12.7 Additional Resources

	13 Razor
	13.1 Razor Syntax
	13.2 Model

	Part 5 Database Communication
	14 Database Systems
	14.1 SQL Server
	14.1.1 SQL Server Management Studio

	14.2 Structured Query Language (SQL)
	14.2.1 Tables
	14.2.2 Views
	14.2.3 Stored Procedures
	14.2.4 Triggers

	15 ADO.NET
	16 Data from Database
	16.1 Demo Application
	16.1.1 Database
	16.1.2 Visual Studio

	16.2 Where should we put the Connection String?
	16.2.1 appSettings.json

	17 CRUD Applications
	17.1 Demo Application
	17.1.1 Create the Visual Studio Project
	17.1.2 Database
	17.1.3 Index (Start Page)
	17.1.4 Models
	17.1.5 Show Books
	17.1.6 New Book
	17.1.7 Edit Book
	17.1.8 Delete Book

	Part 6 Additional ASP.NET Core Features
	18 Session Data
	18.1 Session State in ASP.NET Core
	18.2 Example - Share Data between 2 Web Pages
	18.2.1 Page1
	18.2.2 Page2

	18.3 Additional Resources

	Part 7 Charting
	19 Charting
	19.1 Introduction

	20 Google Charts
	20.1 Google Charts Implementation
	20.2 Google Charts Examples
	20.2.1 Basic Chart Example
	20.2.2 Database Examples
	20.2.3 Line Chart Example
	20.2.4 Bar Chart Example
	20.2.5 Column Chart Example
	20.2.6 Multi-Line Chart Example

	21 Chart.js
	Part 8 APIs
	22 Class Libraries
	22.1 Demo Application
	22.1.1 Class Library
	22.1.2 BookAdm App
	22.1.3 BookStore App

	22.2 Final System

	23 Web API
	Part 9 User Login and ASP.NET Core Identity
	24 User Identity and Login
	24.1 Password Security
	24.1.1 Encryption and Decrypting
	24.1.2 Hashing
	24.1.3 Salting

	24.2 Microsoft.AspNetCore.Identity
	24.2.1 PasswordHasher<TUser> Class

	24.3 Session State in ASP.NET Core
	24.4 Demo Application
	24.4.1 Login
	24.4.2 Create User
	24.4.3 Update User Information
	24.4.4 More Features

	25 ASP.NET Core Identity
	25.1 Introduction
	25.1.1 Scaffold Identity in ASP.NET Core Projects

	25.2 Demo Application
	25.2.1 Create Project in Visual Studio with Identity Enabled
	25.2.2 Create Identity Database
	25.2.3 Register New Account and Log In
	25.2.4 2 Factor Authentication
	25.2.5 Start Creating your Application
	25.2.6 Scaffolding

	25.3 Additional Resources

	Part 10 Testing
	26 Unit Testing
	Part 11 Deployment
	27 Web Servers
	28 Deployment in Visual Studio
	29 Internet Information Services (IIS)
	29.1 Installation
	29.1.1 Windows Features
	29.1.2 .NET Core Hosting Bundle

	29.2 Demo Application
	29.2.1 Add Application

	Part 12 Microsoft Azure
	30 Introduction to Azure
	30.1 Azure Web Portal

	31 Databases in Azure
	31.1 Create the Database
	31.1.1 Azure Data Studio

	31.2 Create Tables, etc.
	31.2.1 SQL Server Management Studio
	31.2.2 Azure Data Studio

	32 Web Applications in Azure
	32.1 App Service
	32.2 Default Document

	Part 13 Resources
	33 Bootstrap
	34 Font Awesome
	Part 14 Applications
	35 Weather System
	35.1 ASP.NET Core Web Application
	35.2 Database
	35.3 Visual Studio Project
	35.4 Connection String
	35.4.1 appSettings.json

	35.5 Index Page (Start Page)
	35.6 Weather Overview Page
	35.7 Charts Page
	35.8 Weather Parameters Page
	35.9 Weather Information Page
	35.10 About Page
	35.11 Deployment to Azure

	36 Voting System
	37 Data Management System (DMS)

