
M A N N I N G

Keith J. Grant
FOREWORD BY Chris Coyier

www.EBooksWorld.ir

 Box model and border-box sizing

The box model refers to the composition of elements on a page. When you specify the
height or width of an element, you’re setting the content size—any padding, border, and
margin will be added to that.

Applying box-sizing: border-box to an element changes the box model to a more pre-
dictable behavior. Setting height or width will control the size of the entire element,
including its padding and border.

See chapter 3 for information on applying border-box sizing to the entire page, as well as
other important concepts including:

 Centering content
 Creating columns of equal height
 Controlling spacing between elements

Width

Height

Content

Padding

Border

Margin

Width

Height

Content

Padding

Border

Margin

www.EBooksWorld.ir

CSS in Depth

www.EBooksWorld.ir

www.EBooksWorld.ir

CSS in Depth

KEITH J. GRANT

M A N N I N G
SHELTER ISLAND

www.EBooksWorld.ir

For online information and ordering of this and other Manning books, please visit
www.manning.com. The publisher offers discounts on this book when ordered in quantity.
For more information, please contact

Special Sales Department
Manning Publications Co.
20 Baldwin Road
PO Box 761
Shelter Island, NY 11964
Email: orders@manning.com

©2018 by Manning Publications Co. All rights reserved.

No part of this publication may be reproduced, stored in a retrieval system, or transmitted, in
any form or by means electronic, mechanical, photocopying, or otherwise, without prior written
permission of the publisher.

Many of the designations used by manufacturers and sellers to distinguish their products are
claimed as trademarks. Where those designations appear in the book, and Manning
Publications was aware of a trademark claim, the designations have been printed in initial caps
or all caps.

Recognizing the importance of preserving what has been written, it is Manning’s policy to have
the books we publish printed on acid-free paper, and we exert our best efforts to that end.
Recognizing also our responsibility to conserve the resources of our planet, Manning books
are printed on paper that is at least 15 percent recycled and processed without the use of
elemental chlorine.

Manning Publications Co. Development editor: Kristen Watterson
20 Baldwin Road Review editor: Aleksandar Dragosavljević
PO Box 761 Technical development editor: Robin Dewson
Shelter Island, NY 11964 Project editor: Kevin Sullivan

Copy editor: Frances Buran
Proofreader: Elizabeth Martin

Technical proofreader: Birnou Sébarte
Typesetter: Dennis Dalinnik

Cover designer: Marija Tudor

ISBN: 9781617293450
Printed in the United States of America
1 2 3 4 5 6 7 8 9 10 – EBM – 23 22 21 20 19 18

www.EBooksWorld.ir

www.manning.com

brief contents
PART 1 REVIEWING THE FUNDAMENTALS....................................1

1 ■ Cascade, specificity, and inheritance 3

2 ■ Working with relative units 28

3 ■ Mastering the box model 55

PART 2 MASTERING LAYOUT..85

4 ■ Making sense of floats 87

5 ■ Flexbox 116

6 ■ Grid layout 144

7 ■ Positioning and stacking contexts 177

8 ■ Responsive design 201

PART 3 CSS AT SCALE ...231

9 ■ Modular CSS 233

10 ■ Pattern libraries 253
v

www.EBooksWorld.ir

BRIEF CONTENTSvi
PART 4 ADVANCED TOPICS...277

11 ■ Backgrounds, shadows, and blend modes 279

12 ■ Contrast, color, and spacing 300

13 ■ Typography 329

14 ■ Transitions 353

15 ■ Transforms 370

16 ■ Animations 396

www.EBooksWorld.ir

contents
foreword xv
preface xvii
acknowledgments xix
about this book xxi

PART 1 REVIEWING THE FUNDAMENTALS..........................1

1 Cascade, specificity, and inheritance 3
1.1 The cascade 4

Understanding stylesheet origin 8 ■ Understanding
specificity 10 ■ Understanding source order 15
Two rules of thumb 17

1.2 Inheritance 18
1.3 Special values 20

Using the inherit keyword 21 ■ Using the initial keyword 22

1.4 Shorthand properties 23
Beware shorthands silently overriding other styles 23
Understanding the order of shorthand values 24
vii

www.EBooksWorld.ir

CONTENTSviii
2 Working with relative units 28
2.1 The power of relative values 29

The struggle for pixel-perfect design 29 ■ The end of the pixel-
perfect web 29

2.2 Ems and rems 31
Using ems to define font-size 32 ■ Using rems for font-size 36

2.3 Stop thinking in pixels 37
Setting a sane default font size 39 ■ Making the panel
responsive 40 ■ Resizing a single component 41

2.4 Viewport-relative units 43
Using vw for font size 45 ■ Using calc() for font size 45

2.5 Unitless numbers and line-height 46
2.6 Custom properties (aka CSS variables) 48

Changing custom properties dynamically 50 ■ Changing
custom properties with JavaScript 53 ■ Experimenting with
custom properties 54

3 Mastering the box model 55
3.1 Difficulties with element width 56

Avoiding magic numbers 59 ■ Adjusting the box model 59
Using universal border-box sizing 61 ■ Adding a gutter
between columns 62

3.2 Difficulties with element height 64
Controlling overflow behavior 64 ■ Applying alternatives
to percentage-based heights 65 ■ Using min-height and
max-height 70 ■ Vertically centering content 71

3.3 Negative margins 73
3.4 Collapsed margins 74

Collapsing between text 74 ■ Collapsing multiple margins 75
Collapsing outside a container 76

3.5 Spacing elements within a container 77
Considering changing content 79 ■ Creating a more general
solution: the lobotomized owl selector 80

www.EBooksWorld.ir

CONTENTS ix
PART 2 MASTERING LAYOUT..85

4 Making sense of floats 87
4.1 The purpose of floats 88
4.2 Container collapsing and the clearfix 93

Understanding container collapsing 94 ■ Understanding
the clearfix 96

4.3 Unexpected “float catching” 99
4.4 Media objects and block formatting contexts 102

Establishing a block formatting context 103 ■ Using a block
formatting context for media object layouts 104

4.5 Grid systems 105
Understanding a grid system 106 ■ Building a grid system 107
Adding gutters 111

5 Flexbox 116
5.1 Flexbox principles 117

Building a basic flexbox menu 120 ■ Adding padding and
spacing 123

5.2 Flex item sizes 124
Using the flex-basis property 126 ■ Using flex-grow 127
Using flex-shrink 128 ■ Some practical uses 129

5.3 Flex direction 130
Changing the flex direction 132 ■ Styling the login form 133

5.4 Alignment, spacing, and other details 135
Understanding flex container properties 135 ■ Understanding flex
item properties 139 ■ Using alignment properties 140

5.5 A couple of things to be aware of 142
Flexbugs 142 ■ Full-page layout 142

6 Grid layout 144
6.1 Web layout is here 145

Building a basic grid 146

6.2 Anatomy of a grid 148
Numbering grid lines 153 ■ Working together with flexbox 155

6.3 Alternate syntaxes 158
Naming grid lines 158 ■ Naming grid areas 160

www.EBooksWorld.ir

CONTENTSx
6.4 Explicit and implicit grid 162
Adding variety 166 ■ Adjusting grid items to fill the
grid track 169

6.5 Feature queries 172
6.6 Alignment 175

7 Positioning and stacking contexts 177

7.1 Fixed positioning 178
Creating a modal dialog with fixed positioning 178
Controlling the size of positioned elements 182

7.2 Absolute positioning 182
Absolutely positioning the Close button 182 ■ Positioning a
pseudo-element 183

7.3 Relative positioning 185
Creating a dropdown menu 186 ■ Creating a CSS triangle 188

7.4 Stacking contexts and z-index 190
Understanding the rendering process and stacking order 191
Manipulating stacking order with z-index 193 ■ Understanding
stacking contexts 194

7.5 Sticky positioning 197

8 Responsive design 201

8.1 Mobile first 202
Creating a mobile menu 209 ■ Adding the viewport
meta tag 213

8.2 Media queries 214
Understanding types of media query 215 ■ Adding breakpoints
to the page 217 ■ Adding responsive columns 221

8.3 Fluid layouts 223
Adding styles for a large viewport 224 ■ Dealing with tables 226

8.4 Responsive images 227
Using multiple images for different viewport sizes 227
Using srcset to serve the correct image 228

www.EBooksWorld.ir

CONTENTS xi
PART 3 CSS AT SCALE..231

9 Modular CSS 233
9.1 Base styles: laying the groundwork 234
9.2 A simple module 235

Variations of a module 237 ■ Modules with multiple
elements 241

9.3 Modules composed into larger structures 243
Dividing multiple responsibilities among modules 244
Naming modules 248

9.4 Utility classes 250
9.5 CSS methodologies 251

10 Pattern libraries 253

10.1 Introduction to KSS 254
Setting up KSS 255 ■ Writing KSS documentation 257
Documenting module variants 261 ■ Creating an overview
page 264 ■ Documenting modules that require JavaScript 264
Organizing the pattern library into sections 266

10.2 Shifting the way you build CSS 269
Using a CSS First workflow 269 ■ Using a pattern library
as an API 270

PART 4 ADVANCED TOPICS...277

11 Backgrounds, shadows,and blend modes 279

11.1 Gradients 280
Using multiple color stops 283 ■ Using radial gradients 285

11.2 Shadows 287
Defining depth with gradients and shadows 288 ■ Creating
elements with a flat design 289 ■ Creating buttons with a
more modern look 290

11.3 Blend modes 291
Tinting an image 294 ■ Understanding types of
blend mode 295 ■ Adding texture to an image 296
Using mix blend modes 298

www.EBooksWorld.ir

CONTENTSxii
12 Contrast, color, and spacing 300

12.1 Contrast is king 302
Establishing patterns 303 ■ Implementing the design 304

12.2 Color 306
Understanding color notations 312 ■ Adding new colors to
a palette 316 ■ Considering contrast for font colors 318

12.3 Spacing 320
Using ems vs. px 320 ■ Factoring in line height 323
Spacing inline elements 326

13 Typography 329

13.1 Web fonts 331
13.2 Google fonts 332
13.3 How @font-face works 336

Font formats and fallbacks 337 ■ Multiple variants of the
same typeface 338

13.4 Adjusting space for readability 339
Body copy spacing 340 ■ Headings, small elements,
and spacing 342

13.5 The dreaded FOUT and FOIT 346
Using Font Face Observer 348 ■ Falling back to system fonts 349
Getting ready for font-display 351

14 Transitions 353

14.1 From here to there 354
14.2 Timing functions 356

Understanding Bézier curves 357 ■ Steps 360

14.3 Non-animatable properties 361
Properties that cannot be animated 364 ■ Fading in
and out 365

14.4 Transitioning to auto height 367

15 Transforms 370
15.1 Rotate, translate, scale, and skew 371

Changing the transform origin 374 ■ Applying multiple
transforms 375

www.EBooksWorld.ir

CONTENTS xiii
15.2 Transforms in motion 375
Scaling up the icon 381 ■ Creating “fly in” labels 383
Staggering the transitions 386

15.3 Animation performance 387
Looking at the rendering pipeline 387

15.4 Three-dimensional (3D) transforms 389
Controlling perspective 390 ■ Implementing advanced
3D transforms 393

16 Animations 396
16.1 Keyframes 397
16.2 Animating 3D transforms 400

Building the layout without animations 400 ■ Adding animation
to the layout 405

16.3 Animation delay and fill mode 407
16.4 Conveying meaning through animation 409

Responding to user interaction 409 ■ Drawing the user’s
attention 413

16.5 One final piece of advice 416

appendix A Selectors reference 417
appendix B Preprocessors 422

index 435

www.EBooksWorld.ir

www.EBooksWorld.ir

foreword
“A minute to learn . . . A lifetime to master.” That phrase might feel a little trite these
days, but I still like it. It was popularized in modern times by being the tagline for the
board game Othello. In Othello, players take turns placing white or black pieces onto a
grid. If, for example, a white piece is played trapping a row of black pieces between
two white, all the black pieces are flipped and the row becomes entirely white.

 Like Othello, it isn’t particularly hard to learn the rules of CSS. You write a selec-
tor that attempts to match elements, then you write key/value pairs that style those
elements. Even folks just starting out don’t have much trouble figuring out that
basic syntax. The trick to getting good at CSS, as in Othello, is knowing exactly when to
do what.

 CSS is one of the languages of the web, but it isn’t quite in the same wheelhouse as
programming. CSS has little in the way of logic and loops. Math is limited to a single
function. Only recently have variables become a possibility. Rarely do you need to con-
sider security. CSS is closer to painting than Python. You’re free to do what you like
with CSS. It won’t spit out any errors at you or fail to compile.

 The journey to getting good at CSS involves learning everything CSS is capable of.
The more you know, the more natural it starts to feel. The more you practice, the
more easily your brain will reach for that perfect layout and spacing method. The
more you read, the more confident you’ll feel in tackling any design.

 Really good CSS developers aren’t deterred by any design. Every job becomes an
opportunity to get clever, a puzzle to be solved. Really good CSS developers have that
full and wide spectrum of knowledge of what CSS is capable of. This book is part of
xv

www.EBooksWorld.ir

FOREWORDxvi
your journey to being that really good CSS developer. You’ll gain the spectrum of
knowledge necessary to getting there.

 If you’ll permit one more metaphor, despite CSS going on a couple of decades
old, it’s a bit like the Wild Wild West. You can do just about whatever you want to do,
as long as it’s doing what you want. There aren’t any hard and fast rules. But because
you’re all on your own, with no great metrics to tell you if you’re doing a good job—
or not—you’ll need to be extra careful. Tiny changes can have huge effects. A
stylesheet can grow and grow and become unwieldy. You can start to get scared of
your own styles!

 Keith covers a lot of ground in the book, and every bit of it will help you become a
better CSS developer and tame this Wild Wild West. You’ll deep dive into the language
itself, learning what CSS is capable of. Then, just as importantly, you’ll learn about
ideas around the language that level you up in other ways. You’ll be better at writing
code that lasts and is understandable and performant.

 Even seasoned developers will benefit. If you find yourself reading about some-
thing that you already know, you’ll firm up your skills, affirm your knowledge, and
find little “oooo” bits that surprise you and extend that base.

CHRIS COYIER

Co-founder, CodePen

www.EBooksWorld.ir

preface
CSS was proposed in 1994 and first implemented (partially) by Internet Explorer 3 in
1996. It was somewhere around that time I discovered the wonderful View Source but-
ton and realized all the secrets of a web page were there for me to decipher in plain
text. I taught myself HTML and CSS by playing in a text editor and seeing what
worked. It was a fun excuse to spend as much time as possible on the internet.

 In the meantime, I needed to find a real career. I went on to earn a degree in Com-
puter Science. Little did I know that the two would come crashing together in the
2000s as the concept of “web developer” emerged.

 I’ve been in tune with CSS since the very beginning. Even when I’m working, it’s
play. I’ve worked on the back end and the front end, yet I’ve always found myself to be
the resident CSS expert on every team I’ve been on. It’s often the most neglected part
of the web stack. But once you’ve been on a project with clean CSS, you never want to
do without it again. After seeing it in action, even seasoned web developers ask, “How
do I learn CSS?”

 There isn’t one concise, straightforward answer to this question. It’s not a matter of
learning one or two quick tips. Rather, you need to understand all the disparate parts of
the language and how they can fit together. Some books make a good beginner-level
introduction to CSS, but many developers already have a basic understanding. Some
books teach a lot of useful tricks but assume the reader has mastery over the language.

 At the same time, the rate of change in CSS in accelerating. Responsive design is
now the de facto standard. Web fonts are commonplace. In 2016, we saw the rise of
flexbox, and 2017 began the rise of something called grid layout. Blend modes, box
xvii

www.EBooksWorld.ir

PREFACExviii
shadows, transformations, transitions, and animations are all new to the scene. As
more and more browsers become evergreen, automatically updating to the newest ver-
sion, new features will continue to roll out. There is a lot to keep up with.

 Whether you are relatively new to the industry or have been at it a while but need
to advance or update your CSS skills, I have written this book to bring you up to speed.
Everything in this book is here for one of three reasons:

1 It’s essential. There are many fundamentals of the language that, sadly, many
developers don’t fully understand. This includes the cascade, the behavior of
floats, and positioning. I’ll take a deep look at them, explaining how they work.

2 It’s new. A lot of new features have emerged in the last few years, or are just
emerging now. I will cover the latest improvements to CSS and a few things that
are just around the corner. This is a forward-thinking book. I will point out
backward compatibility issues where relevant, but I am unabashedly optimistic
about the present and future of cross-browser development.

3 It’s not covered in most CSS books. The world of CSS is huge. There are important
best practices and common approaches in the modern world of web application
development. These are not strictly part of the CSS language, but rather part of
its culture. And they are vital for modern web development.

So, how do you learn CSS? This book is an attempt to answer that question, for the
people who know they need it most.

www.EBooksWorld.ir

acknowledgments
It takes an incredible amount of work to produce a book. I believe this is a great
book—and hope you’ll agree—but it wouldn’t be nearly as strong as it is without the
help of a number of people along the way.

 First and foremost, I’d like to thank my wife, Courtney. You have been supportive
and encouraging through the entire process. You have carried the burden of this
book with me. You even provided editorial support in a number of key places. I could
not have done this without you.

 I’d like to acknowledge my boss, Mark Eagle, and the rest of my team at Interconti-
nental Exchange. Thank you for encouraging me on the way and allowing me to slip
away to write on countless lunch breaks.

 Thanks to my acquisitions editor, Greg Wild, who found my pathetic first drafts
online and reached out to me. And thanks to Manning’s publisher, Marjan Bace, who
saw the potential in this idea. There’s always a risk associated in green-lighting a book,
particularly with a new author. Thank you for taking that chance.

 A good book can’t exist without an editor. Thanks to Kristen Watterson for your
commitment to quality. This is a much better book because of your input. And thanks
to my technical editor, Robin Dewson, for your patience and insight throughout this
long process.

 Thanks to Birnou Sebarté and Louis Lazaris for giving the book a final, thorough
technical proofread. Thanks to Chris Coyier for your willingness to write my foreword.

 I’d also like to thank the technical reviewers and friends who took the time to read
through my drafts at various stages and offer feedback: Adam Rackis, Al Pezewski,
xix

www.EBooksWorld.ir

ACKNOWLEDGMENTSxx
Amit Lamba, Anto Aravinth, Brian Gaines, Dico Goldoni, Giancarlo Massari, Goetz
Heller, Harsh Raval, James Anaipakos, Jeffrey Lim, Jim Arthur, Matthew Halverson,
Mitchell Robles, Jr., Nitin Varma, Patrick Goetz, Phily Austria, Pierfrancesco D’Orsogna,
Rafael Cassemiro Freire, Rafael Freire, Sachin Singhi, Tanya Wilke, Trent Whiteley,
and William E. Wheeler. Your feedback offered valuable early insight into how the
book would be received by developers of all skill levels.

 Finally, I’d like to offer enormous gratitude to the good people on the W3C CSS
Working Group for your work on the CSS specifications. You work through a lot of
really tough problems so that we developers don’t have to. Thanks for your continued
efforts to make CSS, and the web as a whole, better.

www.EBooksWorld.ir

about this book
The world of CSS is maturing. More and more web developers in the industry are real-
izing that while they “know” CSS, they don’t know it as deeply as they probably should.
In recent years, the language has evolved, so even those developers who were once
adept at CSS may find a whole new set of skills to catch up on. This book aims to meet
both these needs: providing a deep mastery of the language, and bringing you up to
speed on recent developments and new features of CSS.

 This book is titled CSS in Depth, but it is also a book of breadth. Where concepts are
difficult or commonly misunderstood, I will explain in detail how they work and why
they behave the way they do. In other chapters, I may not exhaust the topic, but I will
give you enough knowledge to work effectively with it and point you in the right direc-
tion if you wish to further your knowledge. In all, this book will fill in your blind spots.

 Some of the topics could warrant entire books on their own: animation, typogra-
phy, even flexbox and grid layout. My goal is to flesh out your knowledge, help you
bolster your weak spots, and give you a love for the language.

Who should read this book
First and foremost, this book is for developers who are tired of fighting with CSS and
are ready to really understand how it works. You may be a beginner, or you may have
fifteen years of experience.

 I expect you to have a cursory understanding of HTML, CSS, and—in a few
places—JavaScript. As long as you’re familiar with the basic syntax of CSS, you’ll prob-
ably be able to follow along with this book. But it’s primarily written for developers
xxi

www.EBooksWorld.ir

ABOUT THIS BOOKxxii
who have spent time with CSS, run into walls, and come out frustrated. In the places
where I use JavaScript, I have kept it as simple as possible, so as long as you can follow
along with a few short code snippets, you should be in good shape.

 If instead you’re a designer looking to move into the world of web design, I suspect
you too will learn a lot from CSS in Depth—though I haven’t written it with you partic-
ularly in mind. The book may also provide some insight into the perspective of the
developers you’ll be working with.

How this book is organized
The book is 16 chapters long, divided into four parts. In part 1, “Reviewing the funda-
mentals,” we’ll go back to the basics, with a focus on some details you likely missed the
first time around:

■ Chapter 1 covers the cascade and inheritance. These concepts control which
styles are applied to which elements on the page.

■ Chapter 2 discusses relative units, with an emphasis on em and rem. Relative
units are versatile and important tools in CSS, and this chapter will get you
familiar with working with them.

■ Chapter 3 covers the box model. This involves controlling the size of elements
on the page and the amount of space between them.

In part 2, “Mastering layout,” I’ll walk you through the key tools for laying out ele-
ments on the page:

■ Chapter 4 dives into using floats for layout. We’ll build a multicolumn page and
look at taming some of the quirky aspects of floats.

■ Chapter 5 teaches flexbox, which is a fairly new layout method. It begins with
the fundamental concepts and moves on to practical layout examples.

■ Chapter 6 introduces the brand-new layout tool, grid. It makes possible layouts
that have been impossible in CSS until now.

■ Chapter 7 goes deep into positioning using the position property: absolute
positioning, fixed positioning, and more. This is an area that gets a lot of devel-
opers in trouble, and a solid understanding is essential.

■ Chapter 8 covers responsive design. We’ll look at three key principles to build-
ing websites that work on a wide array of screen sizes and device types.

In part 3, “CSS at scale,” we’ll look at some more recent best practices. It’s one thing
to make the elements look how you want on the page. It’s another thing to organize
your code so it can be understood and maintained into the future as your web app
grows and evolves. These chapters will teach you some important techniques for man-
aging your code:

■ Chapter 9 teaches how to organize your CSS in a modular way, so that your code
is reusable and maintainable.

■ Chapter 10 walks you through building a pattern library. This is a vital part of
using and maintaining CSS on a team.

www.EBooksWorld.ir

ABOUT THIS BOOK xxiii
In part 4, “Advanced topics,” I’ll acquaint you with the world of design. We’ll look at
important considerations when working with a designer, and how to do a bit of the
design work yourself—because sometimes you will need to:

■ Chapter 11 discusses shadows, gradients, and blend modes. These work together
to build an elegant user interface.

■ Chapter 12 shows how to work with contrast, color, and space. Attention to
these details goes a long way toward making a good design a great one.

■ Chapter 13 is about web typography: using online font files to bring unique per-
sonality to your site or app.

■ Chapter 14 brings motion to the page with transitions, changing the shape,
color, or size of an element on the page.

■ Chapter 15 covers transforms, which are a vital tool to use in conjunction with
transitions and animations. This chapter also discusses performance implica-
tions of motion on the page.

■ Chapter 16 discusses keyframe animations. You’ll learn how to use complex
motion to communicate meaning to the user.

There are also two appendices:

■ Appendix A is a reference of all the types of CSS selector.
■ Appendix B is an introduction to preprocessors. If you’re not already familiar

with preprocessors, you might want to start with this appendix first.

I’ve put a lot of effort into the progression of the topics in this book. I start with abso-
lute essentials you have to know. From there, the topics build upon one another. In
many places, I refer to earlier concepts and work to tie them together when relevant.
While I’ve included helpful reference material in places, I encourage you to read the
chapters in order.

Code conventions and repository
This book contains many examples of source code, both in numbered listings and in-
line with normal text. In both cases, source code is formatted in a fixed-width font
like this to separate it from ordinary text. Sometimes code is also in bold to high-
light code that has changed from previous steps in the chapter, such as when a new
feature adds to an existing line of code.

 In many cases, the original source code has been reformatted; I’ve added line
breaks and reworked indentation to accommodate the available page space in the
book. In rare cases, even this was not enough, and listings include line-continuation
markers (➥). Additionally, comments in the source code have often been removed
from the listings when the code is described in the text. Code annotations accompany
many of the listings, highlighting important concepts.

 CSS is meant to be paired with HTML; I always provide a code listing for the
HTML and another for the CSS. In most chapters, I reuse the same HTML for multiple

www.EBooksWorld.ir

ABOUT THIS BOOKxxiv
CSS listings. I guide you through editing a stylesheet in many stages, and I’ve tried to
make it clear how I expect you to edit your stylesheet from one CSS listing to the next.

 Source code for the listings in this book available in a git repository at https://
github.com/CSSInDepth/css-in-depth and on the publisher’s website at https://www
.manning.com/books/css-in-depth. At first glance, it may appear that some listings
are missing—because working examples require both HTML and CSS, I’ve put most
listings in an HTML file, using <style> tags for the CSS. This means that both an
HTML listing and a CSS listing are combined in one file in the repository.

 For example, in chapter 1, listing 1.1 is HTML code and listing 1.2 is CSS that is
meant to be applied to that HTML. I have included both in the repository in a file
named listing-1.2.html. Changes are made to this CSS in listing 1.3; these are included
in listing-1.3.html, along with the corresponding HTML from listing 1.1.

Browser versions
Cross-browser testing is an important part of web development. Most of the code in
this book is supported in IE 10 and 11, Microsoft Edge, Chrome, Firefox, Safari,
Opera, and most mobile browsers. Newer features will not work in all of these brows-
ers; I indicate when this is the case.

 Just because a feature is not supported in a particular browser doesn’t mean you
can’t use it. You can often provide fallback behavior for the older browsers as an
acceptable compromise. I show examples of this in many places.

 If you’re following along with the code examples on your computer, I recommend
you use the latest version of Firefox or Chrome.

Note to print book readers
Many graphics in this book are meant to be viewed in color. The eBook versions dis-
play the color graphics, so they should be referred to as you read. To get your free
eBook in PDF, ePub, and Kindle formats, go to https://www.manning.com/freebook
and follow the instructions to complete your pBook registration.

Book forum
Purchase of CSS in Depth includes free access to a private web forum run by Manning
Publications where you can make comments about the book, ask technical questions,
and receive help from the author and from other users. To access the forum, go to
https://forums.manning.com/forums/css-in-depth. You can also learn more about
Manning’s forums and the rules of conduct at https://forums.manning.com/forums/
about.

 Manning’s commitment to our readers is to provide a venue where a meaningful
dialogue between individual readers and between readers and the author can take
place. It is not a commitment to any specific amount of participation on the part of
the author, whose contribution to the forum remains voluntary (and unpaid). We sug-
gest you try asking the author challenging questions lest his interest stray! The forum

www.EBooksWorld.ir

https://github.com/CSSInDepth/css-in-depth
https://github.com/CSSInDepth/css-in-depth
https://www.manning.com/books/css-in-depth
https://www.manning.com/books/css-in-depth
https://www.manning.com/books/css-in-depth
https://www.manning.com/freebook
https://forums.manning.com/forums/css-in-depth
https://forums.manning.com/forums/about
https://forums.manning.com/forums/about

ABOUT THIS BOOK xxv
and the archives of previous discussions will be accessible from the publisher’s website
as long as the book is in print.

About the author
Keith J. Grant is currently a senior web developer at Intercontinental Exchange, Inc.
(ICE), where he wrote and maintains the CSS, both for the corporate and for the New
York Stock Exchange websites. He has 11 years of professional experience building
and maintaining web applications and websites using HTML, CSS, and JavaScript. He
is self-taught in HTML and CSS, and he has several more years of informal experience
working with the technology.

 His manager brought him onto the website team expressly for his expertise in CSS,
when ICE needed to implement a redesign of the websites. CSS enables companies to
brand their sites in unique and creative ways, and to offer complex web applications
with intricate layouts.

 Though Keith has primarily been a JavaScript developer, he has become a very
important CSS instructor at every company he’s worked for.

About the cover illustration
The figure on the cover of CSS in Depth is taken from a nineteenth-century collection
of works by many artists, edited by Louis Curmer and published in Paris in 1841. The
title of the collection is Les Français peints par euxmêmes, which translates as The French
People Painted by Themselves. Each illustration is finely drawn and colored by hand, and
the rich variety of drawings in the collection reminds us vividly of how culturally apart
the world’s regions, towns, villages, and neighborhoods were just 200 years ago. Iso-
lated from each other, people spoke different dialects and languages. In the streets or
in the countryside, it was easy to identify where they lived and what their trade or sta-
tion in life was just by their dress.

 Dress codes have changed since then and the diversity by region, so rich at the
time, has faded away. It is now hard to tell apart the inhabitants of different conti-
nents, let alone different towns or regions. Perhaps we have traded cultural diversity
for a more varied personal life—certainly for a more varied and fast-paced technolog-
ical life.

 At a time when it is hard to tell one computer book from another, Manning cele-
brates the inventiveness and initiative of the computer business with book covers
based on the rich diversity of regional life of two centuries ago, brought back to life by
pictures from collections such as this one.

www.EBooksWorld.ir

www.EBooksWorld.ir

Part 1

Reviewing
the fundamentals

Part 1 takes a deep look into the most essential parts of CSS—the cascade, rel-
ative units, and the box model. These fundamentals, covered in these first three
chapters, control what styles are applied to the elements on the page and how
the sizes of those elements are determined. A comprehensive understanding of
these subjects is foundational to everything else in this book and beyond.

www.EBooksWorld.ir

www.EBooksWorld.ir

Cascade, specificity,
and inheritance
CSS is unlike a lot of things in the world of software development. It’s not a pro-
gramming language, strictly speaking, but it does require abstract thought. It’s not
purely a design tool, but it does require some creativity. It provides a deceptively
simple declarative syntax, but if you’ve worked with it on any large projects, you
know it can grow into unwieldy complexity.

 When you need to learn to do something in conventional programming, you
can usually figure out what to search for (for example, “How do I find items of type
x in an array?”). With CSS, it’s not always easy to distill the problem down to a single
question. Even when you can, the answer is often “it depends.” The best way to

This chapter covers
 The four parts that make up the cascade

 The difference between the cascade and
inheritance

 How to control which styles apply to which
elements

 Common misunderstandings about shorthand
declarations
3

www.EBooksWorld.ir

4 CHAPTER 1 Cascade, specificity, and inheritance
accomplish something is often contingent on your particular constraints and how pre-
cisely you’ll want to handle various edge cases.

 While it’s helpful to know some “tricks” or useful recipes you can follow, mastering
CSS requires an understanding of the principles that make those practices possible.
This book is full of examples, but it is primarily a book of principles.

 Part 1 begins with the most fundamental principles of the language: the cascade,
the box model, and the wide array of unit types available. Most web developers know
about the cascade and the box model. They know about pixel units and may have
heard that they “should use ems instead.” The truth is, there’s a lot to these topics,
and a cursory understanding of them gets you only so far. If you’re ever to master CSS,
you must first know the fundamentals, and know them deeply.

 I know you’re excited to start learning the latest and greatest CSS has to offer. That
is the exciting stuff. But first, we’ll go back to the fundamentals. I’ll quickly review the
basics, which you’re likely already familiar with, and then dive deep into each topic.
My aim is to strengthen the foundation on which the rest of your CSS is built.

 In this chapter, we begin with the C in CSS—the cascade. I’ll articulate how it
works, then show you how to work with it practically. We then look at a related topic,
inheritance. I’ll follow that with a look at shorthand properties and some common
misunderstandings surrounding them.

 Together, these topics are all about applying the styles you want to the elements
you want. There’s a lot of “gotchas” here that often trip up developers. A good
understanding of these topics will give you better control over making your CSS do
what you want it to do. With any luck, you’ll also better appreciate and even enjoy
working with CSS.

1.1 The cascade
Fundamentally, CSS is about declaring rules: Under various conditions, we want cer-
tain things to happen. If this class is added to that element, apply these styles. If ele-
ment X is a child of element Y, apply those styles. The browser then takes these rules,
figures out which ones apply where, and uses them to render the page.

 When you look at small examples, this process is usually straightforward. But as
your stylesheet grows, or the number of pages you apply it to increases, your code can
become complex surprisingly quickly. There are often several ways to accomplish the
same thing in CSS. Depending on which solution you use, you may get wildly different
results when the structure of the HTML changes, or when the styles are applied to dif-
ferent pages. A key part of CSS development comes down to writing rules in such a
way that they’re predictable.

 The first step toward this is understanding how exactly the browser makes sense of
your rules. Each rule may be straightforward on its own, but what happens when two
rules provide conflicting information about how to style an element? You may find
one of your rules doesn’t do what you expect because another rule conflicts with it.
Predicting how rules behave requires an understanding of the cascade.

www.EBooksWorld.ir

5The cascade
 To illustrate, you’ll build a basic page header like one you might see at the top of a
web page (figure 1.1). It has the website title atop a series of teal navigational links.
The last link is colored orange to make it stand out as a sort of featured link.

NOTE TO PRINT BOOK READERS Many graphics in this book are meant to be
viewed in color. The eBook versions display the color graphics, so they should
be referred to as you read. To get your free eBook in PDF, ePub, and Kindle
formats, go to https://www.manning.com/books/css-in-depth to register your
print book.

As you build this page header, you’ll probably be familiar with most of the CSS
involved. This will allow us to focus on aspects of CSS you might take for granted or
only partially understand.

To begin, create an HTML document and a stylesheet named styles.css. Add the code
in listing 1.1 to the HTML.

NOTE A repository containing all code listings in this book is available for
download at https://github.com/CSSInDepth/css-in-depth. The repository has
all CSS embedded with the corresponding HTML in a series of HTML files.

<!doctype html>
<head>
 <link href="styles.css" rel="stylesheet" type="text/css" />
</head>
<body>
 <header class="page-header">
 <h1 id="page-title" class="title">Wombat Coffee Roasters</h1>
 <nav>
 <ul id="main-nav" class="nav">
 Home
 Coffees
 Brewers
 Specials

 </nav>
 </header>
</body>

Listing 1.1 Markup for the page header

Figure 1.1 Page heading and navigation links

Page
title

List of
navigation links

Featured
link

www.EBooksWorld.ir

https://github.com/CSSInDepth/css-in-depth
https://www.manning.com/books/css-in-depth

6 CHAPTER 1 Cascade, specificity, and inheritance
When two or more rules target the same element on your page, the rules may provide
conflicting declarations. The next listing shows how this is possible. It shows three
rulesets, each specifying a different font style for the page title. The title can’t have
three different fonts at one time. Which one will it be? Add this to your CSS file to see.

h1 {
 font-family: serif;
}

#page-title {
 font-family: sans-serif;
}

.title {
 font-family: monospace;
}

Rulesets with conflicting declarations can appear one after the other, or they can be
scattered throughout your stylesheet. Either way, given your HTML, they all target the
same element.

 All three rulesets attempt to set a different font family to this heading. Which one
will win? To determine the answer, the browser follows a set of rules, so the result is
predictable. In this case, the rules dictate that the second declaration, which has an ID
selector, wins; the title will have a sans-serif font (figure 1.2).

 The cascade is the name for this set of rules. It determines how conflicts are
resolved, and it’s a fundamental part of how the language works. Although most expe-
rienced developers have a general sense of the cascade, parts of it are sometimes
misunderstood.

Let’s unpack the cascade. When declarations conflict, the cascade considers three
things to resolve the difference:

1 Stylesheet origin—Where the styles come from. Your styles are applied in conjunc-
tion with the browser’s default styles.

2 Selector specificity—Which selectors take precedence over which.
3 Source order—Order in which styles are declared in the stylesheet.

Listing 1.2 Conflicting declarations

Tag (or type)
selector

ID selector

Class
selector

Figure 1.2 The ID selector
wins over the other rulesets,
producing a sans-serif font for
the title.

www.EBooksWorld.ir

7The cascade
The rules of the cascade are considered in this order. Figure 1.3 shows how they’re
applied at a higher level.

These rules allow browsers to behave predictably when resolving any ambiguity in the
CSS. Let’s step through them one at a time.

A quick review of terminology
Depending on where you learned CSS, you may or may not be familiar with all the
names of the various parts of CSS syntax. I won’t belabor the point, but because I’ll be
using these terms throughout the book, it’s best to be clear about what they mean.

Following is a line of CSS. This is called a declaration. This declaration is made up of
a property (color) and a value (black):

color: black;

Properties aren't to be confused with attributes, which are part of the HTML syntax.
For example, in the element , href is an attribute of the a tag.

A group of declarations inside curly braces is called a declaration block. A declaration
block is preceded by a selector (in this case, body):

body {
 color: black;
 font-family: Helvetica;
}

Together, the selector and declaration block are called a ruleset. A ruleset is also
called a rule—although, it’s my observation that rule is rarely used so precisely and
is usually used in the plural to refer to a broader set of styles.

Finally, at-rules are language constructs beginning with an “at” symbol, such as
@import rules or @media queries.

Conflicting
declarations

Different
origin or

importance?

Is one an
inline style?

(Scope)

Do selectors
have different

?specificity

Use declaration
that comes later in

source order

Use declaration
with higher-
priority origin

Use inline
declaration

Use declaration
with higher
specificity

Yes Yes Yes

NoNoNo

Figure 1.3 High-level flowchart of the cascade showing declaration precedence

www.EBooksWorld.ir

8 CHAPTER 1 Cascade, specificity, and inheritance
1.1.1 Understanding stylesheet origin

The stylesheets you add to your web page aren’t the only ones the browser applies.
There are different types, or origins, of stylesheets. Yours are called author styles; there
are also user agent styles, which are the browser’s default styles. User agent styles have
lower priority, so your styles override them.

NOTE Some browsers let users define a user stylesheet. This is considered a
third origin, with a priority between user agent and author styles. User styles
are rarely used and beyond your control, so I’ve left them out for simplicity.

User agent styles vary slightly from browser to browser, but generally they do the same
things: headings (<h1> through <h6>) and paragraphs (<p>) are given a top and bot-
tom margin, lists (and) are given a left padding, and link colors and default
font sizes are set.

USER AGENT STYLES

Let’s look again at the example page (figure 1.4). The title is sans-serif because of the
styles you added. A number of other things are determined by the user agent styles:
the list has a left padding and a list-style-type of disc to produce the bullets. Links
are blue and underlined. The heading and the list have top and bottom margins.

After user agent styles are considered, the browser applies your styles—the author
styles. This allows declarations you specify to override those set by the user agent
stylesheet. If you link to several stylesheets in your HTML, they all have the same ori-
gin: the author.

 The user agent styles set things you typically want, so they don’t do anything
entirely unexpected. When you don’t like what they do to a certain property, set your
own value in your stylesheet. Let’s do that now. You can override some of the user
agent styles that aren’t what you want so your page will look like figure 1.5.

Figure 1.4 User agent styles set
defaults for your web page header.

Figure 1.5 Author styles override user agent styles because
they have higher priority.

www.EBooksWorld.ir

9The cascade
In the following listing, I’ve removed the conflicting font-family declarations from the
earlier example and added new ones to set colors and override the user agent margins
and the list padding and bullets. Edit your stylesheet to match these changes.

h1 {
 color: #2f4f4f;
 margin-bottom: 10px;
}

#main-nav {
 margin-top: 10px;
 list-style: none;
 padding-left: 0;
}

#main-nav li {
 display: inline-block;
}

#main-nav a {
 color: white;
 background-color: #13a4a4;
 padding: 5px;
 border-radius: 2px;
 text-decoration: none;
}

If you’ve worked with CSS for long, you’re probably used to overriding user agent
styles. When you do, you’re using the origin part of the cascade. Your styles will always
override the user agent styles because the origins are different.

NOTE You may notice I used ID selectors in this code. There are reasons to
avoid doing this, which I’ll cover in a bit.

IMPORTANT DECLARATIONS

There’s an exception to the style origin rules: declarations that are marked as import-
ant. A declaration can be marked important by adding !important to the end of the
declaration, before the semicolon:

color: red !important;

Declarations marked !important are treated as a higher-priority origin, so the overall
order of preference, in decreasing order, is this:

1 Author important
2 Author
3 User agent

Listing 1.3 Overriding user agent styles

Reduces the
margins

Removes user
agent list styles

Makes list items
appear side by side
rather than stacked

Provides a button-
like appearance for
the navigational links

www.EBooksWorld.ir

10 CHAPTER 1 Cascade, specificity, and inheritance
The cascade independently resolves conflicts for every property of every element on
the page. For instance, if you set a bold font on a paragraph, the top and bottom mar-
gin from the user agent stylesheet still applies (unless you explicitly override them).
The concept of style origin will come into play when we get to transitions and anima-
tions because they introduce more origins to this list. The !important annotation is
an interesting quirk of CSS, which we’ll come back to again shortly.

1.1.2 Understanding specificity

If conflicting declarations can’t be resolved based on their origin, the browser next
tries to resolve them by looking at their specificity. Understanding specificity is essen-
tial. You can go a long way without an understanding of stylesheet origin because 99%
of the styles on your website come from the same origin. But if you don’t understand
specificity, it will bite you. Sadly, it’s often a missed concept.

 The browser evaluates specificity in two parts: styles applied inline in the HTML
and styles applied using a selector.

INLINE STYLES

If you use an HTML style attribute to apply styles, the declarations are applied only
to that element. These are, in effect, “scoped” declarations, which override any decla-
rations applied from your stylesheet or a <style> tag. Inline styles have no selector
because they are applied directly to the element they target.

 In your page, you want the featured Specials link in the navigation menu to be
orange, as shown in figure 1.6. I’ll evaluate several ways you can accomplish this,
beginning with inline styles in listing 1.4.

To see this in your browser, edit your page to match the code given here. (You’ll undo
this change in a moment.)

 <a href="/specials" class="featured"
 style="background-color: orange;">
 Specials

Listing 1.4 Inline styles overriding declarations applied elsewhere

Figure 1.6 Applying inline styles overrides the styles applied
using selectors.

Inline style applied via
the style attribute

www.EBooksWorld.ir

11The cascade
To override inline declarations in your stylesheet, you’ll need to add an !important to
the declaration, shifting it into a higher-priority origin. If the inline styles are marked
important, then nothing can override them. It’s preferable to do this from within the
stylesheet. Undo this change, and we’ll look at better approaches.

SELECTOR SPECIFICITY

The second part of specificity is determined by the selectors. For instance, a selector
with two class names has a higher specificity than a selector with only one. If one dec-
laration sets a background to orange, but another with higher specificity sets it to teal,
the browser applies the teal color.

 To illustrate, let’s see what happens when we try to turn the featured link orange
with a simple class selector. Update the final part of your stylesheet so it matches the
code given here.

#main-nav a {
 color: white;
 background-color: #13a4a4;
 padding: 5px;
 border-radius: 2px;
 text-decoration: none;
}

.featured {
 background-color: orange;
}

It doesn’t work! All the links remain teal. Why? The first selector here is more specific
than the second. It’s made up of an ID and a tag name, whereas the second is made
up of a class name. There’s more to this than merely seeing which selector is longer,
however.

 Different types of selectors also have different specificities. An ID selector has a
higher specificity than a class selector, for example. In fact, a single ID has a higher
specificity than a selector with any number of classes. Similarly, a class selector has a
higher specificity than a tag selector (also called a type selector).

 The exact rules of specificity are:

 If a selector has more IDs, it wins (that is, it’s more specific).
 If that results in a tie, the selector with the most classes wins.
 If that results in a tie, the selector with the most tag names wins.

Consider the selectors shown in the following listing (but don’t add them to your
page). These are written in order of increasing specificity.

Listing 1.5 Selectors with different specificities

Higher specificity
selector

Teal background
color

The orange background
declaration won’t override the
teal due to selector specificity.

www.EBooksWorld.ir

12 CHAPTER 1 Cascade, specificity, and inheritance
html body header h1 {
 color: blue;
}

body header.page-header h1 {
 color: orange;
}

.page-header .title {
 color: green;
}

#page-title {
 color: red;
}

The most specific selector here is e, with one ID, so its color declaration of red is
applied to the title. The next specific is d, with two class names. This would be
applied if the ID selector e were absent. Selector d has a higher specificity than
selector c, despite its length: two classes are more specific than one class. Finally, b
is the least specific, with four element types (that is, tag names) but no IDs or classes.

NOTE Pseudo-class selectors (for example, :hover) and attribute selectors
(for example, [type="input"]) each have the same specificity as a class selec-
tor. The universal selector (*) and combinators (>, +, ~) have no effect on
specificity.

If you add a declaration to your CSS and it seems to have no effect, often it’s because a
more specific rule is overriding it. Many times developers write selectors using IDs,
without realizing this creates a higher specificity, one that is hard to override later. If
you need to override a style applied using an ID, you have to use another ID.

 It’s a simple concept, but if you don’t understand specificity, you can drive yourself
mad trying to figure out why one rule works and another doesn’t.

A NOTATION FOR SPECIFICITY

A common way to indicate specificity is in a number form, often with commas
between each number. For example, “1,2,2” indicates a specificity of one ID, two
classes, and two tags. IDs having the highest priority are listed first, followed by classes,
then tags.

 The selector #page-header #page-title has two IDs, no classes, and no tags. We
can say this has a specificity of 2,0,0. The selector ul li, with two tags but no IDs or
classes, has a specificity of 0,0,2. Table 1.1 shows the selectors from listing 1.6.

Listing 1.6 Selectors with increasing specificities

Four tagsb

Three tags and
one classc

Two classesd

One IDe

www.EBooksWorld.ir

13The cascade
It now becomes a matter of comparing the numbers to determine which selector is
more specific. A specificity of 1,0,0 takes precedence over a specificity of 0,2,2 and
even over 0,10,0 (although I don’t recommend ever writing selectors as long as one
with 10 classes), because the first number (IDs) is of the higher priority.

 Occasionally, people use a four-number notation with a 0 or 1 in the most signifi-
cant digit to represent whether a declaration is applied via inline styles. In this case, an
inline style has a specificity of 1,0,0,0. This would override styles applied via selectors,
which could be indicated as having specificities of 0,1,2,0 (one ID and two classes) or
something similar.

SPECIFICITY CONSIDERATIONS

When you tried to apply the orange background using the .featured selector, it didn’t
work. The selector #main-nav a has an ID that overrides the class selector (specificities
1,0,1 and 0,1,0). To correct this, you have some options to consider. Let’s look at sev-
eral possible fixes.

 The quickest fix is to add an !important to the declaration you want to favor.
Change the declaration to match that given here.

#main-nav a {
 color: white;
 background-color: #13a4a4;
 padding: 5px;
 border-radius: 2px;
 text-decoration: none;
}

.featured {
 background-color: orange !important;
}

This works because the !important annotation raises the declaration to a higher-
priority origin. Sure, it’s easy, but it’s also a naive fix. It may do the trick now, but it can
cause you problems down the road. If you start adding !important to multiple decla-
rations, what happens when you need to trump something already set to important?
When you give several declarations an !important, then the origins match and the

Table 1.1 Various selectors and their corresponding specificities

Selector IDs Classes Tags Notation

html body header h1 0 0 4 0,0,4

body header.page-header h1 0 1 3 0,1,3

.page-header .title 0 2 0 0,2,0

#page-title 1 0 0 1,0,0

Listing 1.7 Possible fix one

Makes the declaration
important; it’s now a
higher-priority origin.

www.EBooksWorld.ir

14 CHAPTER 1 Cascade, specificity, and inheritance
regular specificity rules apply. This ultimately will leave you back where you started;
once you introduce an !important, more are likely to follow.

 Let’s find a better way. Instead of trying to get around the rules of selector specific-
ity, let’s try to make them work for us. What if you raised the specificity of your selec-
tor? Update the rulesets in your CSS to match this listing.

#main-nav a {
 color: white;
 background-color: #13a4a4;
 padding: 5px;
 border-radius: 2px;
 text-decoration: none;
}

#main-nav .featured {
 background-color: orange;
}

This fix also works. Now, your selector has one ID and one class, giving it a specificity
of 1,1,0, which is higher than #main-nav a (a specificity of 1,0,1), so the background
color orange is applied to the element.

 You can still make this better, though. Instead of raising the specificity of the sec-
ond selector, let’s see if we can lower the specificity of the first. The element has a class
as well: <ul id="main-nav" class="nav">, so you can change your CSS to target the
element by its class name rather than its ID. Change #main-nav to .nav in your selec-
tors as shown here.

.nav {
 margin-top: 10px;
 list-style: none;
 padding-left: 0;
}

.nav li {
 display: inline-block;
}

.nav a {
 color: white;
 background-color: #13a4a4;
 padding: 5px;
 border-radius: 2px;
 text-decoration: none;
}

Listing 1.8 Possible fix two

Listing 1.9 Possible fix three

Specificity
remains 1,0,1

Increases the
specificity to 1,1,0

The !important annotation
is no longer necessary.

Changes “#main-nav”
to “.nav” throughout
stylesheet

Lowers the first
specificity (0,1,1)

www.EBooksWorld.ir

15The cascade
.nav .featured {
 background-color: orange;
}

You’ve brought the specificity of the selectors down. The orange background is high
enough to override the teal.

 As you can see from these examples, specificity tends to become a sort of arms race.
This is particularly the case with large projects. It is generally best to keep specificity low
when you can, so when you need to override something, your options are open.

1.1.3 Understanding source order

The third and final step to resolving the cascade is source order. If the origin and the
specificity are the same, then the declaration that appears later in the stylesheet—or
appears in a stylesheet included later on the page—takes precedence.

 This means you can manipulate the source order to style your featured link. If you
make the two conflicting selectors equal in specificity, then whichever appears last
wins. Let’s consider the fourth option shown in the following listing.

.nav a {
 color: white;
 background-color: #13a4a4;
 padding: 5px;
 border-radius: 2px;
 text-decoration: none;
}

a.featured {
 background-color: orange;
}

In this solution, the specificities are equal. Source order determines which declaration
is applied to your link, resulting in an orange featured button.

 This addresses your problem but, potentially, also introduces a new one: although
a featured button inside the nav looks correct, what happens if you want to use the
featured class on another link elsewhere on the page, outside of your nav? You’ll get
an odd blend of styles: the orange background, but not the text color, padding, or
border radius of the navigational links (figure 1.7).

Listing 1.10 Possible fix four

Increases the second
specificity (0,2,0)

Makes the
specificities
equal (0,1,1)

Figure 1.7 The featured class outside the nav declaration
produces odd results.

www.EBooksWorld.ir

16 CHAPTER 1 Cascade, specificity, and inheritance
Listing 1.11 shows the markup that creates this behavior. There’s now an element tar-
geted only by the second selector, but not the first, which produces an undesirable
result. You’ll have to decide whether you want this orange button style to work outside
of the nav, and if you do, you’ll need to make sure all the desired styles apply to it as well.

<header class="page-header">
 <h1 id="page-title" class="title">Wombat Coffee Roasters</h1>
 <nav>
 <ul id="main-nav" class="nav">
 Home
 Coffees
 Brewers
 Specials

 </nav>
</header>
<main>
 <p>
 Be sure to check out
 our specials.
 </p>
</main>

With no other information about your needs on this site, I’d be inclined to stick with
fix number three (listing 1.9). Ideally on your website, you’ll be able to make some
educated guesses about your needs elsewhere. Perhaps you know that you are likely to
need a featured link in other places. In that case, perhaps fix four (listing 1.10) would
be what you want, with the addition of styles to support the featured class elsewhere
on the page.

 Very often in CSS, as I said earlier, the best answer is “it depends.” There are many
paths to the same end result. It’s worth considering several options and thinking
about the ramifications of each. When facing a styling problem, I often tackle it in two
phases: First figure out what declarations will get it looking right. Second, think
through the possible ways to structure the selectors and choose the one that best fits
your needs.

LINK STYLES AND SOURCE ORDER

When you began studying CSS, you may have learned that your selectors for styling
links should go in a certain order. That’s because source order affects the cascade.
This listing shows styles for links on a page in the “correct” order.

a:link {
 color: blue;
 text-decoration: none;
}

Listing 1.11 Featured link outside of nav

Listing 1.12 Link styles

Featured link
outside nav will
be partially
styled

www.EBooksWorld.ir

17The cascade
a:visited {
 color: purple;
}

a:hover {
 text-decoration: underline;
}

a:active {
 color: red;
}

The cascade is the reason this order matters: given the same specificity, later styles
override earlier styles. If two or more of these states are true of one element at the
same time, the last one can override the others. If the user hovers over a visited link,
the hover styles take precedence. If the user activates the link (that is, clicks it) while
hovering over it, the active styles take precedence.

 A helpful mnemonic to remember this order is LoVe/HAte—link, visited, hover,
active. Note that if you change one of the selectors to have a different specificity than
the others, this will break down and you may get unexpected results.

CASCADED VALUES

The browser follows these three steps—origin, specificity, and source order to resolve
every property for every element on the page. A declaration that “wins” the cascade is
called a cascaded value. There’s at most one cascaded value per property per element.
A particular paragraph (<p>) on the page can have a top margin and a bottom mar-
gin, but it can’t have two different top margins or two different bottom margins. If the
CSS specifies different values for one property, the cascade will choose only one when
rendering the element. This is the cascaded value.

If a property is never specified for an element, it has no cascaded value for that prop-
erty. The same paragraph, for instance, may not have a border or padding specified.

1.1.4 Two rules of thumb

As you may know, there are two common rules of thumb for working with the cascade.
Because these can be helpful, here’s a reminder:

1 Don’t use IDs in your selector. Even one ID ratchets up the specificity a lot. When
you need to override the selector, you often don’t have another meaningful ID
you can use, so you wind up having to copy the original selector and add
another class to distinguish it from the one you are trying to override.

cascaded value—A value for a particular property applied to an element as a
result of the cascade.

www.EBooksWorld.ir

18 CHAPTER 1 Cascade, specificity, and inheritance
2 Don’t use !important. This is even more difficult to override than an ID, and once
you use it, you’ll need to add it every time you want to override the original dec-
laration—and then you still have to deal with the specificity.

These two rules can be good advice, but don’t cling to them forever. There are excep-
tions where they can be okay, but never use them in a knee-jerk reaction to win a spec-
ificity battle.

A series of practical methodologies has emerged in the last few years to help with man-
aging selector specificity. We’ll look at those in detail in chapter 9. There I’ll talk more
about dealing with specificity, including one place that !important is okay. But now
that you’re clear on how the cascade behaves, we can press on.

1.2 Inheritance
There’s one last way that an element can receive styles—inheritance. The cascade is fre-
quently conflated with the concept of inheritance. Although the two topics are
related, you should understand each individually.

 If an element has no cascaded value for a given property, it may inherit one from
an ancestor element. It’s common to apply a font-family to the <body> element. All
the ancestor elements within will then inherit this font; you don’t have to apply it
explicitly to each element on the page. Figure 1.8 shows how inheritance flows down
the DOM tree.

 Not all properties are inherited, however. By default, only certain ones are. In gen-
eral, these are the properties you’ll want to be inherited. They are primarily properties
pertaining to text: color, font, font-family, font-size, font-weight, font-variant,
font-style, line-height, letter-spacing, text-align, text-indent, text-transform,
white-space, and word-spacing.

 A few others inherit as well, such as the list properties: list-style, list-style
-type, list-style-position, and list-style-image. The table border properties,
border-collapse and border-spacing, are also inherited; note that these control
border behavior of tables, not the more commonly used properties for specifying

An important note about importance
If you’re creating a JavaScript module for distribution (such as an NPM package),
I strongly urge you not to apply styles inline via JavaScript if it can be avoided. If you
do, you’re forcing developers using your package to either accept your styles exactly
or use !important for every property they want to change.

Instead, include a stylesheet in your package. If your component needs to make style
changes dynamically, it’s almost always preferable to use JavaScript to add and
remove classes to the elements. Then users can use your stylesheet, and they have
the option to edit it however they like without battling specificity.

www.EBooksWorld.ir

19Inheritance
borders for non-table elements. (We wouldn’t want a <div> passing its border down to
every descendant element.) This is not quite a comprehensive list, but very nearly.

 You can use inheritance in your favor on your page by applying a font to the body
element, allowing its descendant elements to inherit that value (figure 1.9).

Add this code to the top of your stylesheet to apply this principle to your page.

body {
 font-family: sans-serif;
}

This is applied to the entire page by adding it to the body. But you can also target a
specific element on the page, and it will only inherit to its descendant elements.
The inheritance will pass from element to element until it’s overridden by a cas-
caded value.

Listing 1.13 Applying font-family to a parent element

<body>

<html>

<header>

<h1>

<main>

Inheritance

Figure 1.8 Inherited properties are passed down the DOM tree from parent
nodes to their descendants.

Figure 1.9 Apply a font-family to the body and let all
descendant elements inherit the same value.

An inherited property will
be applied to descendant
elements as well.

www.EBooksWorld.ir

20 CHAPTER 1 Cascade, specificity, and inheritance
1.3 Special values
There are two special values that you can apply to any property to help manipulate the
cascade: inherit and initial. Let’s take a look at these.

Use your DevTools!
A complicated nest of values inheriting and overriding one another can quickly
become difficult to keep track of. If you’re not already familiar with your browser’s
developer tools, get in the habit of using them.

DevTools provide visibility into exactly which rules are applying to which elements
and why. The cascade and inheritance are abstract concepts; DevTools are the
best way I know to get my bearings. Open them by right-clicking an element and
choosing Inspect or Inspect Element from the context menu. Here’s an example of
what you’ll see.

The style inspector shows every selector targeting the inspected element, ordered by
specificity. Below that are all inherited properties. This shows all of the cascade and
inheritance for the element at a glance.

There are lots of subtle features to help you make sense of what's happening with
an element's styles. Styles closer to the top override those below. Overridden styles
are crossed out. The stylesheet and line number for each ruleset are shown on the
right, so you can find them in your source code. This tells you exactly which element
inherited which styles and where they originated. You can also type in the Filter box
at the top to hide all but a certain set of declarations.

Cascaded
values

Inherited
value

Overridden
value

Inline
styles

www.EBooksWorld.ir

21Special values
1.3.1 Using the inherit keyword

Sometimes, you’ll want inheritance to take place when a cascaded value is preventing
it. To do this, you can use the keyword inherit. You can override another value with
this, and it will cause the element to inherit that value from its parent.

 Suppose you add a light gray footer to your page. In the footer, there may be some
links, but you don’t want them to stand out too much because the footer’s isn’t an
important part of the page. So you’ll make the links in the footer dark gray (figure 1.10).

Add this markup to the end of your page. A normal page would have more content
between this and the header, but this will serve the purpose.

<footer class="footer">
 © 2016 Wombat Coffee Roasters —
 Terms of use
</footer>

Typically, you’ll have a font color set for all links on the page (and if you don’t, the
user agent styles sets one), and that color is applied to the Terms of Use link as well.
To make the link in the footer gray, you’ll need to override it. Add this code to your
stylesheet to do that.

a:link {
 color: blue;
}
…
.footer {
 color: #666;
 background-color: #ccc;
 padding: 15px 0;
 text-align: center;
 font-size: 14px;
}

.footer a {
 color: inherit;
 text-decoration: underline;
}

Listing 1.14 Footer with a link

Listing 1.15 The inherit value

Figure 1.10 The Terms of Use link when it inherits the gray text color

Global link color
for the page

Footer text color
set to gray

Inherits font color
from the footer

www.EBooksWorld.ir

22 CHAPTER 1 Cascade, specificity, and inheritance
The third ruleset here overrides the blue link color, giving the link in the footer a cas-
caded value of inherit. Thus, it inherits the color from its parent, <footer>.

 The benefit here is that the footer link will change along with the rest of the footer
should anything alter it. (Editing the second ruleset can do this, or another style else-
where could override it.) If, for example, the footer text on certain pages is a darker
gray, then the link will change to match.

 You can also use the inherit keyword to force inheritance of a property not nor-
mally inherited, such as border or padding. There are few practical uses for this, but
you’ll see one useful case in chapter 3 when we look at box sizing.

1.3.2 Using the initial keyword

Sometimes you’ll find you have styles applied to an element that you want to undo.
You can do this by specifying the keyword initial. Every CSS property has an initial,
or default, value. If you assign the value initial to that property, then it effectively
resets to its default value. It’s like a hard-reset of that value. Figure 1.11 shows how
your footer renders if you give it a value of initial rather than inherit.

WARNING The initial keyword isn’t supported in any version of Internet
Explorer or Opera Mini. It works in all other major browsers, including Edge,
Microsoft's successor to IE11.

The CSS in figure 1.11 is shown in the following listing. Because black is the initial
value for the color property in most browsers, color: initial is equivalent to color:
black.

.footer a {
 color: initial;
 text-decoration: underline;
}

The benefit of this is you don’t have to think about it as much. If you want to remove a
border from an element, set border: initial. If you want to restore an element to its
default width, set width: initial.

 You may be in the habit of using the value auto to do this sort of reset. In fact, you
can use width: auto to achieve the same result. This is because the default value of
width is auto.

Listing 1.16 The initial value

Figure 1.11 The initial value for the color property is black.

www.EBooksWorld.ir

23Shorthand properties
 It’s important to note, however, that auto isn’t the default value for all properties.
It’s not even valid for many properties; for example, border-width: auto and pad-
ding: auto are invalid and therefore have no effect. You could take the time to dig up
the initial value for these, but it’s often easier to use initial.

NOTE Declaring display: initial is equivalent to display: inline. It won’t
evaluate to display: block regardless of what type of element you apply it to.
That’s because initial resets to the initial value for the property, not the ele-
ment; inline is the default value for the display property.

1.4 Shorthand properties
Shorthand properties are properties that let you set the values of several other properties
at one time. For example, font is a shorthand property that lets you set several font
properties. This declaration specifies font-style, font-weight, font-size, line-
height, and font-family:

font: italic bold 18px/1.2 "Helvetica", "Arial", sans-serif;

Similarly,

 background is a shorthand property for multiple background properties:
background-color, background-image, background-size, background-repeat,
background-position, background-origin, background-chip, and background-
attachment.

 border is a shorthand for border-width, border-style, and border-color, which
are each in turn shorthand properties as well.

 border-width is shorthand for the top, right, bottom, and left border widths.

Shorthand properties are useful for keeping your code succinct and clear, but a few
quirks about them aren’t readily apparent.

1.4.1 Beware shorthands silently overriding other styles

Most shorthand properties let you omit certain values and only specify the bits you’re
concerned with. It’s important to know, however, that doing this still sets the omitted
values; they’ll be set implicitly to their initial value. This can silently override styles you
specify elsewhere. If, for example, you were to use the shorthand font property for
the page title without specifying a font-weight, a font weight of normal would still be
set (figure 1.12).

Figure 1.12 Shorthand properties will set omitted values to their
initial value.

www.EBooksWorld.ir

24 CHAPTER 1 Cascade, specificity, and inheritance
Add the code from this listing to your stylesheet for an example of how this works.

h1 {
 font-weight: bold;
}

.title {
 font: 32px Helvetica, Arial, sans-serif;
}

At first glance, it may seem that <h1 class="title"> would result in a bold heading,
but it doesn’t. These styles are equivalent to this code.

h1 {
 font-weight: bold;
}

.title {
 font-style: normal;
 font-variant: normal;
 font-weight: normal;
 font-stretch: normal;
 line-height: normal;
 font-size: 32px;
 font-family: Helvetica, Arial, sans-serif;
}

This means that applying these styles to <h1> results in a normal font weight, not bold.
It can also override other font styles that would otherwise be inherited from an ances-
tor element. Of all the shorthand properties, font is the most egregious for causing
problems, because it sets such a wide array of properties. For this reason, I avoid using
it except to set general styles on the <body> element. You can still encounter this prob-
lem with other shorthand properties, so be aware of this possibility.

1.4.2 Understanding the order of shorthand values

Shorthand properties try to be lenient when it comes to the order of the values you
specify. You can set border: 1px solid black or border: black 1px solid and either
will work. That’s because it’s clear to the browser which value specifies the width,
which specifies the color, and which specifies the border style.

 But there are many properties where the values can be more ambiguous. In these
cases, the order of the values is significant. It’s important to understand this order for
the shorthand properties you use.

Listing 1.17 Shorthand property specifying all associated values

Listing 1.18 Expanded equivalent to the shorthand in listing 1.17

Initial values
of these
properties

www.EBooksWorld.ir

25Shorthand properties
TOP, RIGHT, BOTTOM, LEFT

Shorthand property order particularly trips up developers when it comes to properties
like margin and padding, or some of the border properties that specify values for each
of the four sides of an element. For these properties, the values are in clockwise order,
beginning at the top.

 Remembering this order can keep you out of trouble. In fact, the word TRouBLe is
an mnemonic you can use to remember the order: top, right, bottom, left.

 You can use this mnemonic to set padding on the four sides of an element. The links
shown in figure 1.13 have a top padding of 10 px, right padding of 15 px, bottom pad-
ding of 0, and left padding of 5 px. This looks uneven, but it illustrates the principle.

This listing shows the CSS for these links.

.nav a {
 color: white;
 background-color: #13a4a4;
 padding: 10px 15px 0 5px;
 border-radius: 2px;
 text-decoration: none;
}

Properties whose values follow this pattern also support truncated notations. If the
declaration ends before one of the four sides is given a value, that side takes its value
from the opposite side. Specify three values, and the left and right side will both use
the second one. Specify two values, and the top and bottom will use the first one. If
you specify only one value, it will apply to all four sides. Thus, the following declara-
tions are all equivalent:

padding: 1em 2em;
padding: 1em 2em 1em;
padding: 1em 2em 1em 2em;

These are equivalent to one another as well:

padding: 1em;
padding: 1em 1em;
padding: 1em 1em 1em;
padding: 1em 1em 1em 1em;

For many developers, the most problematic of these is when three values are given.
Remember, this specifies the top, right, and bottom. Because no left value is given, it
will take the same value as the right; the second value will be applied to both the left

Listing 1.19 Specifying padding on each side of an element

Figure 1.13 Elements with
various paddings on each side

Top, right, bottom,
and left padding

www.EBooksWorld.ir

26 CHAPTER 1 Cascade, specificity, and inheritance
and right sides. Thus, padding: 10px 15px 0 applies 15 px padding to both the left
and right sides, whereas the top padding is 10 px and the bottom padding is 0.

 Most often, however, you’ll need two values. On smaller elements in particular, it’s
often better to have more padding on the sides than on the top and bottom. This
approach looks good on buttons or, in your page, navigational links (figure 1.14).

Update your stylesheet to match this listing. It uses the property shorthand to apply
the vertical padding first, then the horizontal.

.nav a {
 color: white;
 background-color: #13a4a4;
 padding: 5px 15px;
 border-radius: 2px;
 text-decoration: none;
}

Because so many common properties follow this pattern, it’s worth committing this
order to memory.

HORIZONTAL, VERTICAL

The TRouBLe mnemonic only applies to properties that apply individually to all four
sides of the box. Other properties only support up to two values. These include prop-
erties like background-position, box-shadow, and text-shadow (although these aren’t
shorthand properties, strictly speaking). Compared to the four-value properties like
padding, the order of these values is reversed. Whereas padding: 1em 2em specifies
the vertical top/bottom values first, followed by the horizontal right/left values,
background-position: 25% 75% specifies the horizontal right/left values first, fol-
lowed by the vertical top/bottom values.

 Although it seems counter-intuitive that these are opposite, the reason for this is
straightforward: the two values represent a Cartesian grid. Cartesian grid measure-
ments are typically given in the order x, y (horizontal and then vertical). If, for exam-
ple, you wanted to apply a shadow like the one shown in figure 1.15, you’d specify the
x (horizontal) value first.

Listing 1.20 Specifying two padding values

Figure 1.14 Many elements look
better with more horizontal padding.

Top and bottom
padding, then left
and right padding

Figure 1.15 Box shadow positioned at 10px 2px

www.EBooksWorld.ir

27Summary
The styles for this element are given here.

.nav .featured {
 background-color: orange;
 box-shadow: 10px 2px #6f9090;
}

The first (larger) value applies to the horizontal offset, whereas the second (smaller)
value applies to the vertical.

 If you’re working with a property that specifies two measurements from a corner,
think “Cartesian grid.” If you’re working with one that specifies measurements for
each side all the way around an element, think “clock.”

Summary
 Keep selector specificity under control.
 Don’t confuse cascade with inheritance.
 Certain properties are inherited, including those for text, lists, and table borders.
 Don’t confuse initial and auto values.
 Stay out of TRouBLe with shorthand properties.

Listing 1.21 Box-shadow specifies x value then y value

Shadow offset 10px to the
right and 2px down

www.EBooksWorld.ir

Working with
relative units
When it comes to specifying values, CSS provides a wide array of options to choose
from. One of the most familiar, and probably easiest to work with, is pixels. These
are known as absolute units; that is, 5 px always means the same thing. Other units,
such as em and rem, are not absolute, but relative. The value of relative units
changes, based on external factors; for example, the meaning of 2 em changes
depending on which element (and sometimes even which property) you’re using it
on. Naturally, this makes relative units more difficult to work with.

 Developers, even experienced CSS developers, often dislike working with rela-
tive units, the notorious em included. The way the value of an em can change
makes it seem unpredictable and less clear-cut than the pixel. In this chapter, I’ll
remove the mystery surrounding relative units. First, I’ll explain the unique value
they bring to CSS, then I’ll help you make sense of them. I’ll explain how they

This chapter covers
 The versatility of relative units

 How to use ems and rems, without letting them
drive you mad

 Using viewport-relative units

 An introduction to CSS variables
28

www.EBooksWorld.ir

29The power of relative values
work, and I’ll show you how to tame their seemingly unpredictable nature. You can
make relative values work for you, and wielded correctly, they’ll make your code sim-
pler, more versatile, and easier to work with.

2.1 The power of relative values
CSS brings a late-binding of styles to the web page: The content and its styles aren’t
pulled together until after the authoring of both is complete. This adds a level of
complexity to the design process that doesn’t exist in other types of graphic design,
but it also provides more power—one stylesheet can be applied to hundreds, even
thousands, of pages. Furthermore, the final rendering of the page can be altered
directly by the user, who, for example, can change the default font size or resize the
browser window.

 In early computer application development (as well as in traditional publishing),
developers (or publishers) knew the exact constraints of their medium. A particular
program window might be 400 px wide by 300 px tall, or a page could be 4 in. wide by
6½ in. tall. Consequently, when developers set about laying out the application’s but-
tons and text, they knew exactly how big they could make those elements and exactly
how much space that would leave them to work with for other items on the screen. On
the web, this is not the case.

2.1.1 The struggle for pixel-perfect design

In the web environment, the user can have their browser window set to any number of
sizes, and the CSS has to apply to it. Furthermore, users can resize the page after it’s
opened, and the CSS needs to adjust to new constraints. This means that styles can’t
be applied when you create your page; the browser must calculate those when the
page is rendered onscreen.

 This adds a layer of abstraction to CSS. We can’t style an element according to an
ideal context; we need to specify rules that’ll work in any context where that element
could be placed. With today’s web, your page will need to render on a 4-in. phone
screen as well as on a 30-in. monitor.

 For a long time, designers mitigated this complexity by focusing on “pixel-perfect”
designs. They’d create a tightly defined container, often a centered column around
800 px wide. Then, within these constraints, they’d go about designing more or less
like their predecessors did with native applications or print publications.

2.1.2 The end of the pixel-perfect web

As technology improved and manufacturers introduced higher-resolution monitors,
the pixel-perfect approach slowly started to break down. In the early 2000s, there was
a lot of discussion on whether we developers could safely design for displays 1,024 px
wide instead of 800 px wide. Then, we’d have the same conversation all over again for
1,280 px. We had to make judgment calls. Was it better to make our site too wide
for older computers or too narrow for new ones?

www.EBooksWorld.ir

30 CHAPTER 2 Working with relative units
 When smartphones emerged, developers were forced to stop pretending everyone
could have the same experience on their sites. Whether we loved it or hated it, we had
to abandon columns of some known number of pixels, and begin thinking about
responsive design. We could no longer hide from the abstraction that comes with CSS.
We had to embrace it.

Added abstraction means additional complexity. If I give an element a width of 800
px, how will that look in a smaller window? How will a horizontal menu look if it
doesn’t all fit on one line? As you write your CSS, you need to be able to think simulta-
neously in specifics, as well as in generalities. When you’ve multiple ways to solve a
particular problem, you’ll need to favor the solution that works more generally under
multiple and different circumstances.

 Relative units are one of the tools CSS provides to work at this level of abstraction.
Instead of setting a font size at 14 px, you can set it to scale proportionally to the size
of the window. Or, you can set the size of everything on the page relative to the base
font size, and then resize the entire page with a single line of code. Let’s take a look at
what CSS provides to make this sort of approach possible.

responsive—In CSS, this refers to styles that “respond” differently, based on
the size of the browser window. This entails intentional consideration for
mobile, tablet, or desktop screens of any size. We’ll take a good look at
responsive design in chapter 8, but in this chapter, I’ll lay some important
groundwork before we get there.

Pixels, points, and picas
CSS supports several absolute length units, the most common of which, and the
most basic, is the pixel (px). Less common absolute units are mm (millimeter), cm
(centimeter), in. (inch), pt (point—typographic term for 1/72nd of an inch), and pc
(pica—typographic term for 12 points). Any of these units can be translated directly
to another if you want to work out the math: 1 in. = 25.4 mm = 2.54 cm = 6 pc = 72
pt = 96 px. Therefore, 16 px is the same as 12 pt (16 / 96 × 72). Designers are often
more familiar with the use of points, where developers are more accustomed to pix-
els, so you may have to do some translation between the two when communicating
with a designer.

Pixel is a slightly misleading name—a CSS pixel does not strictly equate to a moni-
tor’s pixel. This is notably the case on high-resolution (“retina”) displays. Although
the CSS measurements can be scaled a bit, depending on the browser, the operating
system, and the hardware, 96 px is usually in the ballpark of 1 physical inch
onscreen, though this can vary on certain devices or with a user’s resolution settings.

www.EBooksWorld.ir

31Ems and rems
2.2 Ems and rems
Ems, the most common relative length unit, are a measure used in typography, refer-
ring to a specified font size. In CSS, 1 em means the font size of the current element;
its exact value varies depending on the element you’re applying it to. Figure 2.1 shows
a div with 1 em of padding.

The code to produce this is shown in the next listing. The ruleset specifies a font size
of 16 px, which becomes the element’s local definition for 1 em. Then the code uses
ems to specify the padding of the element. Add this to a new stylesheet, and put some
text in a <div class="padded"> to see it in your browser.

.padded {
 font-size: 16px;
 padding: 1em;
}

This padding has a specified value of 1em. This is multiplied by the font size, produc-
ing a rendered padding of 16 px. This is important: Values declared using relative
units are evaluated by the browser to an absolute value, called the computed value.

 In this example, editing the padding to 2 em would produce a computed value of
32 px. If another selector targets the same element and overrides it with a different
font size, it’ll change the local meaning of em, and the computed padding will change
to reflect that.

 Using ems can be convenient when setting properties like padding, height, width,
or border-radius because these will scale evenly with the element if it inherits differ-
ent font sizes, or if the user changes the font settings.

 Figure 2.2 shows two differently sized boxes. The font size, padding, and border
radius in each is not the same.

Listing 2.1 Applying ems to padding

Figure 2.1 Element with 1 em padding (dashed lines added to illustrate padding)

Sets padding on all sides
equal to font-size

Figure 2.2 Elements with a relatively
sized padding and border radius

www.EBooksWorld.ir

32 CHAPTER 2 Working with relative units
You can define the styles for these boxes by specifying the padding and border radius
using ems. By giving each a padding and border radius of 1 em, you can specify a
different font size for each element, and the other properties will scale along with
the font.

 In your HTML, create two boxes as shown next. Add the box-small and box-large
classes to each, respectively, as size modifiers.

Small
Large

Now, add the styles shown next to your stylesheet. This defines a box using ems. It also
defines small and large modifiers, each specifying a different font size.

.box {
 padding: 1em;
 border-radius: 1em;
 background-color: lightgray;
}

.box-small {
 font-size: 12px;
}

.box-large {
 font-size: 18px;
}

This is a powerful feature of ems. You can define the size of an element and then scale
the entire thing up or down with a single declaration that changes the font size. You’ll
build another example of this in a bit, but first, let’s talk about ems and font sizes.

2.2.1 Using ems to define font-size

When it comes to the font-size property, ems behave a little differently. As I said,
ems are defined by the current element’s font size. But, if you declare font size:
1.2em, what does that mean? A font size can’t equal 1.2 times itself. Instead, font-size
ems are derived from the inherited font size.

 For a basic example, see figure 2.3. This shows two bits of text, each at a different
font size. You’ll define these using ems in listing 2.4.

Listing 2.2 Appying ems to different elements (HTML)

Listing 2.3 Applying ems applied to different elements (CSS)

Different font sizes,
which will define the
elements’ em size

Figure 2.3 Two different font sizes using ems

www.EBooksWorld.ir

33Ems and rems
Change your page to match the following listing. The first line of text is inside the
<body> tag, so it’ll render at the body’s font size. The second part, the slogan, inherits
that font size.

<body>
 We love coffee
 <p class="slogan">We love coffee</p>
</body>

The CSS in the next listing specifies the body’s font size. I’ve used pixels here for clar-
ity. Next, you’ll use ems to scale up the size of the slogan.

body {
 font-size: 16px;
}

.slogan {
 font-size: 1.2em;
}

The slogan’s specified font size is 1.2 em. To determine the calculated pixel value,
you’ll need to refer to the inherited font size of 16 px: 16 times 1.2 equals 19.2, so the
calculated font size is 19.2 px.

TIP If you know the pixel-based font size you’d like, but want to specify the
declaration in ems, here’s a simple formula: divide the desired pixel size by
the parent (inherited) pixel size. For example, if you want a 10 px font and
your element is inheriting a 12 px font, 10 / 12 = 0.8333 em. If you want a 16
px font and the parent font is 12 px, 16 / 12 = 1.3333 em. We’ll do this calcu-
lation several times throughout this chapter.

It’s helpful to know that, for most browsers, the default font size is 16 px. Technically,
it’s the keyword value medium that calculates to 16 px.

EMS FOR FONT SIZE TOGETHER WITH EMS FOR OTHER PROPERTIES

You’ve now defined ems for font-size (based on an inherited font size). And, you’ve
defined ems for other properties like padding and border-radius (based on the cur-
rent element’s font size). What makes ems tricky is when you use them for both font
size and any other properties on the same element. When you do this, the browser
must calculate the font size first, and then it uses that value to calculate the other val-
ues. Both properties can have the same declared value, but they’ll have different com-
puted values.

 In the previous example, we calculated the font size to be 19.2 px (16 px inherited
font size times 1.2 em). Figure 2.4 shows the same slogan element, but with an added

Listing 2.4 Relative font-size markup

Listing 2.5 Applying ems to font-size

The slogan inherits its
font size from <body>.

Calculates to 1.2
times the element’s
inherited font size

www.EBooksWorld.ir

34 CHAPTER 2 Working with relative units
padding of 1.2 em and a gray background to make the padding size more apparent.
This padding is a bit larger than the font size, even though both have the same
declared value.

What’s happening here is the paragraph inherits a font size of 16 px from the body,
producing a calculated font size of 19.2 px. This means that 19.2 px is now the local
value for an em, and that value is used to calculate the padding. The CSS for this is
shown next. Update your stylesheet to see this in your test page.

body {
 font-size: 16px;
}

.slogan {
 font-size: 1.2em;
 padding: 1.2em;
 background-color: #ccc;
}

In this example, padding has a specified value of 1.2 em. This multiplied by 19.2 px
(the current element’s font size) produces a calculated value of 23.04 px. Even
though font-size and padding have the same specified value, their calculated values
are different.

THE SHRINKING FONT PROBLEM

Ems can produce unexpected results when you use them to specify the font sizes of
multiple nested elements. To know the exact value for each element, you’ll need to
know its inherited font size, which, if defined on the parent element in ems, requires
you to know the parent element’s inherited size, and so on up the tree.

 This becomes quickly apparent when you use ems for the font size of lists and then
nest lists several levels deep. Almost every web developer at some point in their career
loads their page to find something resembling figure 2.5. The text is shrinking! This is
exactly the sort of problem that leaves developers dreading the use of ems.

Listing 2.6 Applying ems to font-size and padding

Figure 2.4 Element with 1.2 em font and 1.2 em padding

Evaluates to
19.2 px

Evaluates to
23.04 px

Figure 2.5 Nested lists
with shrinking text

www.EBooksWorld.ir

35Ems and rems
Shrinking text occurs when you nest lists several levels deep and apply an em-based
font size to each level. Listings 2.7 and 2.8 provide an example of this by setting the
font size of unordered lists to .8 em. The selector targets every on the page; so
when these lists inherit their font size from other lists, the ems compound.

body {
 font-size: 16px;
}

ul {
 font-size: .8em;
}

 Top level

 Second level

 Third level

 Fourth level

 Fifth level

Each list has a font size 0.8 times that of its parent. This means the first list has a font
size of 12.8 px, but the next one down is 10.24 px (12.8 px × 0.8), and the third level is
8.192 px, and so on. Similarly, if you specified a size larger than 1 em, the text would
continually grow instead. What we want is to specify the font at the top level, then
maintain the same font size all the way down, as in figure 2.6.

Listing 2.7 Applying ems to a list

Listing 2.8 Nested lists

This list is nested inside the first
one, inheriting its font size . . .

. . . and this one is nested inside of that,
inheriting the second list’s font size . . .

. . . and so on

Figure 2.6 Nested lists with corrected text

www.EBooksWorld.ir

36 CHAPTER 2 Working with relative units
One way you can accomplish this is with the code in listing 2.9. This sets the font size
of the first list to .8 em as before (listing 2.7). The second selector in the listing then
targets all unordered lists within an unordered list—all of them except the top level.
The nested lists now have a font size equal to their parents, as shown in figure 2.6.

ul {
 font-size: .8em;
}

ul ul {
 font-size: 1em;
}

This fixes the problem, though it’s not ideal; you’re setting a value and then immedi-
ately overriding it with another rule. It would be nicer if you could avoid overriding
rules by inching up the specificity of the selectors.

 By now, it should be clear that ems can get away from you if you’re not careful.
They’re nice for padding, margins, and element sizing, but when it comes to font size,
they can get complicated. Thankfully, there is a better option—rems.

2.2.2 Using rems for font-size

When the browser parses an HTML document, it creates a representation in memory
of all the elements on the page. This representation is called the DOM (Document
Object Model). It’s a tree structure, where each element is represented by a node. The
<html> element is the top-level (or root) node. Beneath it are its child nodes, <head>
and <body>. And beneath those are their children, then their children, and so on.

 The root node is the ancestor of all other elements in the document. It has a spe-
cial pseudo-class selector (:root) that you can use to target it. This is equivalent to
using the type selector html with the specificity of a class rather than a tag.

 Rem is short for root em. Instead of being relative to the current element, rems are
relative to the root element. No matter where you apply it in the document, 1.2 rem
has the same computed value: 1.2 times the font size of the root element. The follow-
ing listing establishes the root font size and then uses rems to define the font size for
unordered lists relative to that.

:root {
 font-size: 1em;
}

ul {
 font-size: .8rem;
}

Listing 2.9 Correcting the shrinking text

Listing 2.10 Specifying font size using rems

Lists within lists should have the
same font size as their parent.

The :root pseudo-class is
equivalent to the HTML
type selector.

Uses the browser’s
default size (16 px)

www.EBooksWorld.ir

37Stop thinking in pixels
In this example, the root font size is the browser’s default of 16 px (an em on the root
element is relative to the browser’s default). Unordered lists have a specified font size
of .8 rem, which calculates to 12.8 px. Because this is relative to the root, the font
size will remain constant, even if you nest lists.

Rems simplify a lot of the complexities involved with ems. In fact, they offer a good
middle ground between pixels and ems by providing the benefits of relative units, but
are easier to work with. Does this mean you should use rems everywhere and abandon
the other options? No.

 In CSS, again, the answer is often, “it depends.” Rems are but one tool in your tool
bag. An important part of mastering CSS is learning when to use which tool. My
default is to use rems for font sizes, pixels for borders, and ems for most other mea-
sures, especially paddings, margins, and border radius (though I favor the use of per-
centages for container widths when necessary).

 This way, font sizes are predictable, but you’ll still get the power of ems scaling
your padding and margins, should other factors alter the font size of an element. Pix-
els make sense for borders, particularly when you want a nice fine line. These are my
go-to units for the various properties, but again, they’re tools, and in some circum-
stances, a different tool does the job better.

TIP When in doubt, use rems for font size, pixels for borders, and ems for
most other properties.

2.3 Stop thinking in pixels
One pattern, or rather, antipattern, that has been common for the past several years is
to reset the font size at the page’s root to .625 em or 62.5%.

Accessibility: use relative units for font size
Some browsers provide two ways for the user to customize the size of text: zoom
and a default font size. By pressing Ctrl-plus (+) or Ctrl-minus (–), the user can zoom
the page up or down. This visually scales all fonts and images and generally makes
everything on the page larger or smaller. In some browsers, this change is only
applied to the current tab and is temporary, meaning it doesn’t get carried over to
new tabs.

Setting a default font size is a bit different. Not only is it harder to find where to set
this (usually in the browser's settings page), but changes at this level remain perma-
nent, until the user returns and changes the value again. The catch is that this setting
does not resize fonts defined using pixels or other absolute units. Because a default
font size is vital to some users, particularly those who are vision-impaired, you should
always specify font sizes with relative units or percentages.

www.EBooksWorld.ir

38 CHAPTER 2 Working with relative units
html {
 font-size: .625em;
}

I don’t recommend this. This takes the browser’s default font size, 16 px, and scales it
down to 10 px. This practice simplifies the math: If your designer tells you to make the
font 14 px, you can easily divide by 10 in your head and type 1.4 rem, all while still
using relative units.

 Initially, this may be convenient, but there are two problems with this approach.
First, it forces you to write a lot of duplicate styles. Ten pixels is too small for most text,
so you’ll have to override it throughout the page. You’ll find yourself setting para-
graphs to 1.4 rem and asides to 1.4 rem and nav links to 1.4 rem and so on. This intro-
duces more places for error, more points of contact in your code when it needs to
change, and increases the size of your stylesheet.

 The second problem is that when you do this, you’re still thinking in pixels. You
might type 1.4 rem into your code, but in your mind, you’re still thinking “14 pixels.”
On a responsive web, you should get comfortable with “fuzzy” values. It doesn’t matter
how many pixels 1.2 em evaluates to; all you need to know is that it’s a bit bigger than
the inherited font size. And, if it doesn’t look how you want it onscreen, change it.
This takes some trial and error, but in reality, so does working with pixels. (In chap-
ter 13, we’ll look at additional concrete rules to refine this approach.)

 When working with ems, it’s easy to get bogged down obsessing over exactly how
many pixels things will evaluate to, especially font sizes. You’ll drive yourself mad
dividing and multiplying em values as you go. Instead, I challenge you to get into the
habit of using ems first. If you’re accustomed to using pixels, using em values may take
practice, but it’s worth it.

 This isn’t to say you’ll never have to work with pixels. If you’re working with a
designer, you’ll probably need to talk in some concrete pixel numbers, and that’s
okay. At the beginning of a project, you’ll need to establish a base font size (and often
a few common sizes for headings and footnotes). Absolute values are easier to use
when discussing the size of things.

 Converting to rems will involve arithmetic, so keep a calculator handy. (I press
Command-Space on my Mac, and type the equation into Spotlight.) Putting a root
font size in place defines a rem. From that point on, working in pixels should be the
exception, not the norm.

 I’ll continue to mention pixels throughout this chapter. This will help me reiter-
ate why the relative units behave the way they do, as well as help you get accustomed
to the calculation of ems. After this chapter, I’ll primarily discuss font sizes using rel-
ative units.

Listing 2.11 Antipattern: globally resetting font-size to 10 px

www.EBooksWorld.ir

39Stop thinking in pixels
2.3.1 Setting a sane default font size

Let’s say you want your default font size to be 14 px. Instead of setting a 10 px default
then overriding it throughout the page, set that value at the root. The desired value
divided by the inherited value—in this case, the browser’s default—is 14/16, which
equals 0.875.

 Add the following listing to the top of a new stylesheet, as you’ll be building on it.
This sets the default font at the root (<html>).

:root {
 font-size: 0.875em;
}

Now your desired font size is applied to the whole page. You won’t need to specify it
elsewhere. You’ll only need to change it in places where the design deviates from this,
such as headings.

 Let’s create the panel shown in figure 2.7. You’ll build this panel based on the 14
px font size, using relative measurements.

The markup for this is shown here. Add this to your page.

<div class="panel">
 <h2>Single-origin</h2>
 <div class="panel-body">
 We have built partnerships with small farms around the world to
 hand-select beans at the peak of season. We then carefully roast
 in small batches to maximize their
 potential.
 </div>
</div>

The next listing shows the styles. You’ll use ems for the padding and border radius, rem
for the font size of the heading, and px for the border. Add these to your stylesheet.

Listing 2.12 Setting the true default font size

Listing 2.13 Markup for a panel

Or use the HTML selector

14/16 (desired px / inherited
px) equals .875

Figure 2.7 Panel with relative units and an inherited font size

www.EBooksWorld.ir

40 CHAPTER 2 Working with relative units
.panel {
 padding: 1em;
 border-radius: 0.5em;
 border: 1px solid #999;
}

.panel > h2 {
 margin-top: 0;
 font-size: 0.8rem;
 font-weight: bold;
 text-transform: uppercase;
}

This code puts a thin border around the panel and styles the heading. I opted for a
header that is smaller, but bold and all caps. (You can make this larger or a different
typeface if your design calls for it.)

 The > in the second selector is a direct descendant combinator. It targets an h2 that’s a
child element of a .panel element. See appendix A for a complete reference of selec-
tors and combinators.

 In listing 2.13, I added a panel-body class to the main body of the panel for clarity,
but you’ll notice you didn’t need to use it in your CSS. Because this element already
inherits the root font size, it already appears how you want it to look.

2.3.2 Making the panel responsive

Let’s take this a bit further. You can use some media queries to change the base font size,
depending on the screen size. This’ll make the panel render at different sizes based
on the size of the user’s screen (shown in figure 2.8).

Listing 2.14 Panel with relative units

media query—An @media rule used to specify styles that will be applied only to
certain screen sizes or media types (for example, print or screen). This is a
key component of responsive design. See listing 2.15 for an example; I’ll
cover this in greater depth in chapter 8.

Uses ems for padding
and border radius

Uses 1 px for a thin border

Removes extra space from the panel
top; more on this in chapter 3

Styles the heading font
using rems for font size

Figure 2.8 Responsive panel on different screen sizes: 300 px (top left), 800 px (top right), and 1,440 px
(bottom)

www.EBooksWorld.ir

41Stop thinking in pixels
To see this result, edit this portion of your stylesheet to match this listing.

:root {
 font-size: 0.75em;
}

@media (min-width: 800px) {
 :root {
 font-size: 0.875em;
 }
}

@media (min-width: 1200px) {
 :root {
 font-size: 1em;
 }
}

This first ruleset specifies a small default font size. This is the font size that we want
to apply on smaller screens. Then you used media queries to override that value
with incrementally larger font sizes on screens with a width of 800 px and 1,200 px
or more.

 By applying these font sizes at the root on your page, you’ve responsively redefined
the meaning of em and rem throughout the entire page. This means that the panel is
now responsive, even though you made no changes to it directly. On a small screen, such
as a smartphone, the font will be rendered smaller (12 px); likewise, the padding and
border radius will be smaller to match. And, on larger screens more than 800 px and
1,200 px wide, the component scales up to a 14 px and 16 px font size, respectively.
Resize your browser window to watch these changes take place.

 If you are disciplined enough to style your entire page in relative units like this, the
entire page will scale up and down based on the viewport size. This can be a huge part
of your responsive strategy. These two media queries near the top of your stylesheet
can eliminate the need for dozens of media queries throughout the rest of your CSS.
But it doesn’t work if you define your values in pixels.

 Similarly, if your boss or your client decides the fonts on the site you built are too
small or too large, you can change them globally by only touching one line of code.
The change will ripple throughout the rest of your page, effortlessly.

2.3.3 Resizing a single component

You can also use ems to scale an individual component on the page. Sometimes you
might need a larger version of the same part of your interface on certain parts of the
page. Let’s do this with our panel. You’ll add a large class to the panel: <div
class="panel large">.

Listing 2.15 Responsive base font-size

Applies to all screens,
but is overridden for
larger screens

Applies only to screens 800
px and wider, overriding
the original value

Applies only to screens
1,200 px and larger,
overriding both values

www.EBooksWorld.ir

42 CHAPTER 2 Working with relative units
 Figure 2.9 shows both the normal and the large panel for comparison. The effect is
similar to the responsive panels, but both sizes can be used simultaneously on the
same page.

Let’s make a small change to the way you defined the panel’s font sizes. You’ll still use
relative units, but you’ll adjust what they’re relative to. First, add the declaration font-
size: 1rem to the parent element of each panel. This means each panel will establish
a predictable font size for itself, no matter where it’s placed on the page.

 Second, redefine the heading’s font size using ems rather than rems to make it rel-
ative to the parent’s font size you just established at 1 rem. The code for this is next.
Update your stylesheet to match.

.panel {
 font-size: 1rem;
 padding: 1em;
 border: 1px solid #999;
 border-radius: 0.5em;
}

.panel > h2 {
 margin-top: 0;
 font-size: 0.8em;
 font-weight: bold;
 text-transform: uppercase;
}

This change has no effect on the appearance of the panel, but now it sets you up to
make the larger version of the panel with a single line of CSS. All you have to do is
override the parent element’s 1 rem with another value. Because all the component’s
measurements are relative to this, overriding it will resize the entire panel. Add the
CSS in the next listing to your stylesheet to define a larger version.

Listing 2.16 Creating a larger version of the panel

Figure 2.9 A normal panel and a large panel defined on the same page

Establishes a predictable
font size for the
component

Uses ems to make other fonts
relative to the established
parent font size

www.EBooksWorld.ir

43Viewport-relative units
.panel.large {
 font-size: 1.2rem;
}

Now, you can use class="panel" for a normal panel and class="panel large" for
a larger one. Similarly, you could define a smaller version of the panel by setting a
smaller font size. If the panel were a more complicated component, with multiple font
sizes or paddings, it’d still only take this one declaration to resize it, as long as every-
thing inside is defined using ems.

2.4 Viewport-relative units
You’ve learned that ems and rems are defined relative to font-size, but these aren’t
the only type of relative units. There are also viewport-relative units for defining lengths
relative to the browser’s viewport.

If you’re not familiar with viewport-relative units, here is a brief explanation.

 vh—1/100th of the viewport height
 vw—1/100th of the viewport width
 vmin—1/100th of the smaller dimension, height or width (IE9 supports vm

instead of vmin)
 vmax—1/100th of the larger dimension, height or width (not supported in IE

or, at the time of writing, Edge)

For example, 50 vw is equal to half the width of the viewport, and 25 vh equals 25% of
the viewport’s height. vmin is based on which of the two (height or width) is smaller.
This is helpful for ensuring that an element will fit on the screen regardless of its ori-
entation: If the screen is landscape, it’ll be based on the height; if portrait, it’s based
on the width.

 Figure 2.10 shows a square element as it appears in several viewports with different
screen sizes. It’s defined with both a height and a width of 90 vmin, which equals 90%
of the smaller of the two dimensions—90% of the height on landscape screens, or
90% of the width on portrait.

 Listing 2.18 shows the styles for this element. It produces a large square that always
fits in the viewport no matter how the browser is sized. You can add a <div class=
"square"> to your page to see this.

Listing 2.17 Scaling the entire panel with one declaration

viewport—The framed area in the browser window where the web page is vis-
ible. This excludes the browser’s address bar, toolbars, and status bar, if
present.

Compound selector targets
elements with both panel
and large classes

www.EBooksWorld.ir

44 CHAPTER 2 Working with relative units
.square {
 width: 90vmin;
 height: 90vmin;
 background-color: #369;
}

The viewport-relative lengths are great for things like making a large hero image fill
the screen. Your image can be inside a long container, but setting the image height to
100 vh, makes it exactly the height of the viewport.

NOTE Viewport-relative units are a newer feature for most browsers, so there
are a few odd bugs when you use them in more exotic combinations with
other styles. See “Known Issues” at http://caniuse.com/#feat=viewport-units
for a list.

Listing 2.18 Square element sized using vmin

CSS3
Several of the unit types in this chapter weren’t in earlier versions of CSS (rems and
viewport-relative units, in particular). They were added amid a series of changes to
the language, which is often called CSS3.

In the late 1990s and early 2000s, after initial work on the CSS specification, little
changed for a long time. The W3C (World Wide Web Consortium) published the CSS

Figure 2.10 An element with a height and width
of 90 vmin will always display as a square a little
smaller than the viewport, regardless of its size
or orientation.

www.EBooksWorld.ir

http://caniuse.com/#feat=viewport-units

45Viewport-relative units
2.4.1 Using vw for font size

One application for viewport-relative units that may not be immediately obvious is
font size. In fact, I find this use more practical than applying vh and vw to element
heights or widths.

 Consider what would happen if you applied font-size: 2vw to an element. On a
desktop monitor at 1,200 px, this evaluates to 24 px (2% of 1,200). On a tablet with a
screen width of 768 px, it evaluates to about 15 px (2% of 768). And, the nice thing is,
the element scales smoothly between the two sizes. This means there’re no sudden
breakpoint changes; it transitions incrementally as the viewport size changes.

 Unfortunately, 24 px is a bit too large on a big screen. And worse, it scales all the
way down to 7.5 px on an iPhone 6. What would be nice is this scaling effect, but with
the extremes a little less severe. You can achieve this with CSS’s calc() function.

2.4.2 Using calc() for font size

The calc() function lets you do basic arithmetic with two or more values. This is par-
ticularly useful for combining values that are measured in different units. This func-
tion supports addition (+), subtraction (-), multiplication (*) and division (/). The

2 specification in May 1998. Shortly thereafter, work began on version 2.1 to correct
issues and bugs in version 2. Work on CSS 2.1 continued for many years, with few
significant additions to the language. It was not finalized as a Proposed Recommen-
dation until April 2011. By this point, browsers had already implemented most of the
CSS 2.1 changes, and were well on their way to adding newer features under the
moniker CSS3.

The “3” is an informal version number; there’s no CSS3 specification. Instead, the
specification was broken up into individual modules, each independently versioned.
The specification for backgrounds and borders is now separate from the one for box
models, and from the one for cascading and inheritance. This allows the W3C to
make new revisions to one area of CSS without unnecessarily updating areas that
are not changing. Many of these specifications remain at version 3 (now called level
3), but some, such as the selectors specification, are at level 4 and others, such as
a flexbox, are at level 1.

As these changes were introduced, we saw an explosion of new features rolling out
in browsers from 2009 through 2013. Notable additions at this time included rems
and viewport-relative units, as well as new selectors, media queries, web fonts,
rounded borders, animations, transitions, transformations, and different ways to
specify colors. And, new features are steadily emerging each year.

This means we’re no longer working with one particular version of CSS. It’s a living
standard. Each browser is continually adding support for new features. Developers
work with those changes and adapt to them. There won’t be a CSS4, except perhaps
as a more generic marketing term. Although this book covers CSS3 features, I don’t
necessarily call them out at as such because, as far as the web is concerned, it’s
all CSS.

www.EBooksWorld.ir

46 CHAPTER 2 Working with relative units
addition and subtraction operators must be surrounded by whitespace, so I suggest
getting in the habit of always adding a space before and after each operator; for exam-
ple, calc(1em + 10px).

 You’ll use calc() in the next listing to combine ems with vw units. Remove the
previous base font size (and the related media queries) from your stylesheet. Add this
in its place.

:root {
 font-size: calc(0.5em + 1vw);
}

Now, open the page and slowly resize your browser. You’ll see the font scale smoothly
as you do. The 0.5 em here operates as a sort of minimum font size, and the 1 vw adds
a responsive scalar. This’ll give you a base font size that scales from 11.75 px on an
iPhone 6 up to 20 px in a 1,200 px browser window. You can adjust these values to
your liking.

 You’ve now accomplished a large piece of your responsive strategy without a single
media query. Instead of three or four hard-coded breakpoints, everything on your
page will scale fluidly according to the viewport.

2.5 Unitless numbers and line-height
Some properties allow for unitless values (that is, a number with no specified unit).
Properties that support this include line-height, z-index, and font-weight (700 is
equivalent to bold; 400 is equivalent to normal, and so on). You can also use the unit-
less value 0 anywhere a length unit (such as px, em, or rem) is required because, in
these cases, the unit does not matter—0 px equals 0% equals 0 em.

WARNING A unitless 0 can only be used for length values and percentages,
such as in paddings, borders, and widths. It can’t be used for angular values,
such as degrees or time-based values like seconds.

The line-height property is unusual in that it accepts both units and unitless values.
You should typically use unitless numbers because they’re inherited differently. Let’s
put text into the page and see how this behaves. Add the code in the following listing
to your stylesheet.

<body>
 <p class="about-us">
 We have built partnerships with small farms around the world to
 hand-select beans at the peak of season. We then carefully roast in
 small batches to maximize their potential.
 </p>
</body>

Listing 2.19 Using calc() to define font-size in ems and vh units

Listing 2.20 Inherited line-height markup

www.EBooksWorld.ir

47Unitless numbers and line-height
You’ll specify a line height for the body element and allow it to be inherited by the rest
of the document. This will work as expected, no matter what you do to the font sizes
in the page (figure 2.11).

Add listing 2.21 to your stylesheet for these styles. The paragraph inherits a line height
of 1.2. Because the font size is 32 px (2 em × 16 px, the browser’s default), the line
height is calculated locally to 38.4 px (32 px × 1.2). This will leave an appropriate
amount of space between lines of text.

body {
 line-height: 1.2;
}

.about-us {
 font-size: 2em;
}

If instead you specify the line height using a unit, you may encounter unexpected
results, like that shown in figure 2.12. The lines of text overlap one another. Listing 2.22
shows the CSS that generated the overlap.

body {
 line-height: 1.2em;
}

.about-us {
 font-size: 2em;
}

Listing 2.21 Line height with a unitless number

Listing 2.22 Line height with units results in unexpected output

Figure 2.11 Unitless line height is recalculated
for each descendant element.

Descendant elements
inherit the unitless value.

Figure 2.12 Overlapping lines due
to an inherited line-height

Descendant elements
inherit the calculated
value (19.2 px).

Evaluates to 32 px

www.EBooksWorld.ir

48 CHAPTER 2 Working with relative units
These results are due to a peculiar quirk of inheritance: when an element has a value
defined using a length (px, em, rem, and so forth), its computed value is inherited by
child elements. When units such as ems are specified for a line height, their value is
calculated, and that calculated value is passed down to any inheriting children. With
the line-height property, this can cause unexpected results if the child element has a
different font size, like the overlapping text.

When you use a unitless number, that declared value is inherited, meaning its com-
puted value is recalculated for each inheriting child element. This will almost always
be the result you want. Using a unitless number lets you set the line height on the
body and then forget about it for the rest of the page, unless there are particular
places where you want to make an exception.

2.6 Custom properties (aka CSS variables)
In 2015, a long-awaited CSS specification titled Custom Properties for Cascading Vari-
ables was published as a Candidate Recommendation. This specification introduced
the concept of variables to the language, which enabled a new level of dynamic,
context-based styles. You can declare a variable and assign it a value; then you can
reference this value throughout your stylesheet. You can use this to reduce repeti-
tion in your stylesheet, as well as some other beneficial applications as you’ll see
shortly.

 At the time of writing, support for custom properties has rolled out in all major
browsers except IE. For up-to-date support information on lesser-known browsers,
check “Can I Use” at http://caniuse.com/#feat=css-variables.

NOTE If you happen to use a CSS preprocessor that supports its own vari-
ables, such as Sass (syntactically awesome stylesheets) or Less, you may be
tempted to disregard CSS variables. Don’t. The new CSS variables are differ-
ent in nature and are far more versatile than anything a preprocessor can
accomplish. I tend to refer to them as “custom properties” rather than vari-
ables to emphasize this distinction.

To define a custom property, you declare it much like any other CSS property. List-
ing 2.23 is an example of a variable declaration. Start a fresh page and stylesheet,
and add this CSS.

length—The formal name for a CSS value that denotes a distance measure-
ment. It’s a number followed by a unit, such as 5 px. Length comes in two
flavors: absolute and relative. Percentages are similar to lengths, but strictly
speaking, they’re not considered lengths.

www.EBooksWorld.ir

http://caniuse.com/#feat=css-variables

49Custom properties (aka CSS variables)
:root {
 --main-font: Helvetica, Arial, sans-serif;
}

This listing defines a variable named --main-font, and sets its value to a set of com-
mon sans-serif fonts. The name must begin with two hyphens (--) to distinguish it
from CSS properties, followed by whatever name you’d like to use.

 Variables must be declared inside a declaration block. I’ve used the :root selector
here, which sets the variable for the whole page—I’ll explain this shortly.

 By itself, this variable declaration doesn’t do anything until we use it. Let’s apply it
to a paragraph to produce a result like that in figure 2.13.

A function called var() allows the use of variables. You’ll use this function to refer-
ence the --main-font variable just defined. Add the ruleset shown in the following
listing to put the variable to use.

:root {
 --main-font: Helvetica, Arial, sans-serif;
}

p {
 font-family: var(--main-font);
}

Custom properties let you define a value in one place, as a “single source of truth,”
and reuse that value throughout the stylesheet. This is particularly useful for recurring
values like colors. The next listing adds a brand-color custom property. You can use
this variable dozens of times throughout your stylesheet, but if you want to change it,
you only have to edit it in one place.

:root {
 --main-font: Helvetica, Arial, sans-serif;
 --brand-color: #369;
}

Listing 2.23 Defining a custom property

Listing 2.24 Using a custom property

Listing 2.25 Using custom properties for colors

Figure 2.13 Simple paragraph using a variable’s sans-serif font

Sets the font family for
paragraphs to Helvetica,
Arial, sans-serif

Defines a blue
brand-color variable

www.EBooksWorld.ir

50 CHAPTER 2 Working with relative units
p {
 font-family: var(--main-font);
 color: var(--brand-color);
}

The var() function accepts a second parameter, which specifies a fallback value. If the
variable specified in the first parameter is not defined, then the second value is used
instead.

:root {
 --main-font: Helvetica, Arial, sans-serif;
 --brand-color: #369;
}

p {
 font-family: var(--main-font, sans-serif);
 color: var(--secondary-color, blue);
}

This listing specifies fallback values in two different declarations. In the first, --main
-font is defined as Helvetica, Arial, sans-serif, so this value is used. In the second,
--secondary-color is an undefined variable, so the fallback value blue is used.

NOTE If a var() function evaluates to an invalid value, the property will be
set to its initial value. For example, if the variable in padding: var(--brand
-color) evaluates to a color, it would be an invalid padding value. In that
case, the padding would be set to 0 instead.

2.6.1 Changing custom properties dynamically

In the examples so far, custom properties are merely a nice convenience; they can save
you from a lot of repetition in your code. But what makes them particularly interest-
ing is that the declarations of custom properties cascade and inherit: You can define
the same variable inside multiple selectors, and the variable will have a different value
for various parts of the page.

 You can define a variable as black, for example, and then redefine it as white inside
a particular container. Then, any styles based on that variable will dynamically resolve
to black if they are outside the container and to white if inside. Let’s use this to
achieve a result like that shown in figure 2.14.

 This panel is similar to the one you saw earlier (figure 2.7). The HTML for this is
shown in listing 2.27. It has two instances of the panel: one inside the body and one
inside a dark section. Update your HTML to match this.

Listing 2.26 Providing fallback values

Specifies a fallback
value of sans-serif

The secondary-color variable
is not defined, so the fallback
value blue is used.

www.EBooksWorld.ir

51Custom properties (aka CSS variables)
<body>
 <div class="panel">
 <h2>Single-origin</h2>
 <div class="body">
 We have built partnerships with small farms
 around the world to hand-select beans at the
 peak of season. We then careful roast in
 small batches to maximize their potential.
 </div>
 </div>

 <aside class="dark">
 <div class="panel">
 <h2>Single-origin</h2>
 <div class="body">
 We have built partnerships with small farms
 around the world to hand-select beans at the
 peak of season. We then careful roast in
 small batches to maximize their potential.
 </div>
 </div>
 </aside>
</body>

Let’s redefine the panel to use variables for text and background color. Add the next
listing to your stylesheet. This sets the background color to white and the text to black.
I’ll explain how this works before you add styles for the dark variant.

Listing 2.27 Two panels in different contexts on the page

Figure 2.14 Custom properties produce different colored panels based on local
variable values.

A regular panel
on the page

The second panel inside
a dark container

www.EBooksWorld.ir

52 CHAPTER 2 Working with relative units
:root {
 --main-bg: #fff;
 --main-color: #000;
}

.panel {
 font-size: 1rem;
 padding: 1em;
 border: 1px solid #999;
 border-radius: 0.5em;
 background-color: var(--main-bg);
 color: var(--main-color);
}

.panel > h2 {
 margin-top: 0;
 font-size: 0.8em;
 font-weight: bold;
 text-transform: uppercase;
}

Again, you’ve defined the variables inside a ruleset with the :root selector. This is sig-
nificant because it means these values are set for everything in the root element (the
entire page). When a descendant element of the root uses the variables, these are
the values they’ll resolve to.

 You have two panels, but they still look the same. Now, let’s define the variables
again, but this time with a different selector. The next listing provides styles for the
dark container. It sets a dark gray background on the container, as well as a little pad-
ding and margin. It also redefines both variables. Add this to your stylesheet.

.dark {
 margin-top: 2em;
 padding: 1em;
 background-color: #999;
 --main-bg: #333;
 --main-color: #fff;
}

Reload the page, and the second panel will have a dark background and white text.
This is because when the panel uses these variables, they’ll resolve to the values
defined on the dark container, rather than on the root. Notice you didn’t have to
restyle the panel, or apply any additional classes.

Listing 2.28 Using variables to define the panel colors

Listing 2.29 Styling the dark container

Defines background and text
color variables as white and
black, respectively

Uses the variables
in the panel's styles

Puts a margin between the
dark container and the
preceding panel

Applies a dark gray
background to the
dark containerRedefines the --main-bg and

--main-color variables within
the scope of the container

www.EBooksWorld.ir

53Custom properties (aka CSS variables)
 In this example, you’ve defined custom properties twice: first on the root (where
--main-color is black), and then on the dark container (where --main-color is
white). The custom properties behave as a sort of scoped variable because the values
are inherited by descendant elements. Inside the dark container, --main-color is
white; elsewhere on the page, it’s black.

2.6.2 Changing custom properties with JavaScript

Custom properties can also be accessed and manipulated live in the browser using
JavaScript. Because this isn’t a book on JavaScript, I’ll show you enough to get
acquainted with the concept. I’ll leave it to you to integrate this into your JavaScript
projects.

 The following listing shows how to access a property on an element. It adds a script
to the page, which logs the value of the root element’s --main-bg property.

<script type="text/javascript">
 var rootElement = document.documentElement;
 var styles = getComputedStyle(rootElement);
 var mainColor = styles.getPropertyValue('--main-bg');
 console.log(String(mainColor).trim());
</script>

Because you can specify new values for custom properties on the fly, you can use Java-
Script to set a new value for --main-bg dynamically. If you set it to a light blue, it’ll
appear as shown in figure 2.15.

The code in the next listing sets a new value to --main-bg on the root element. Add
this at the end of the <script> tag.

var rootElement = document.documentElement;
rootElement.style.setProperty('--main-bg', '#cdf');

Listing 2.30 Accessing a custom property in JavaScript

Listing 2.31 Setting a custom property in JavaScript

Gets the styles object
for an element

Gets the --main-bg
value from the
styles object

Ensures mainColor is a String and
trims whitespace; logs “#fff”

Figure 2.15 JavaScript can set the panel’s background by changing the --main-bg variable.

Sets --main-bg to a
light blue on the
root element

www.EBooksWorld.ir

54 CHAPTER 2 Working with relative units
If you run this script, any elements inheriting the --main-bg property will update to
use this new value. On your page, this changes the background of the first panel to light
blue. The second panel remains unchanged, as it’s still inheriting the property from
the dark container.

 With this technique, you can use JavaScript to re-theme your site, live in the
browser. Or, you could highlight certain parts of the page or make any number of
other on-the-fly changes. Using only a few lines of JavaScript, you can make changes
that’ll affect a large number of elements on the page.

2.6.3 Experimenting with custom properties

Custom properties are a whole new area of CSS that developers are just beginning to
explore. Because browser support has been limited, it hasn’t yet seen much “prime-
time” use. I’m sure that over time, you’ll see best practices and novel uses emerge.
This is something to keep your eye on. Experiment with custom properties and see
what you can come up with.

 Be aware that any declaration using var() will be ignored by old browsers that
don’t understand it. Provide a fallback behavior for those browsers when possible:

color: black;
color: var(--main-color);

This will not always be possible, however, given the dynamic nature of custom proper-
ties. Keep an eye on browser support at http://caniuse.com.

Summary
 Embrace the use of relative units, allowing the page’s structure to determine

the meaning of your styles.
 Favor the use of rems for font size, but selectively use ems for simple scaling of

components on the page.
 You can make your entire page scale responsively without any media queries.
 Use unitless values when specifying line height.
 You can start getting familiar with one of CSS’s newest features, custom properties.

www.EBooksWorld.ir

http://caniuse.com

Mastering the box model
When it comes to laying out elements on the page, you’ll find a lot of things going
on. On a complex site, you may have floats, absolutely positioned elements, and
other elements of various sizes. You may also have some layouts using newer CSS
constructs, such as a flexbox or a grid layout. You have a lot of things to keep track
of, and learning everything involved with layout can be overwhelming.

 We’ll spend several chapters taking a close look at several layout techniques.
Before we get to those, it’s important to have a solid grasp on the fundamentals of
how the browser sizes and positions elements. The more advanced topics of layout
are built atop concepts like document flow and the box model; these are the basic
rules that determine the position and size of elements on the page.

 In this chapter, you’ll build a two-column page layout. You may be familiar with
this as a classic beginner exercise for CSS, but I’ll guide you through it in a way that

This chapter covers
 Practical advice for element sizing

 Vertical centering

 Columns of equal height

 Negative margins and margin collapsing

 Consistent spacing of components on the page
55

www.EBooksWorld.ir

56 CHAPTER 3 Mastering the box model
highlights several, often-overlooked nuances of layout. We’ll look at some of the edge
cases of the box model, and I’ll give you practical advice for sizing and aligning ele-
ments. We’ll also tackle two of the most notorious problems in CSS: vertical centering
and equal-height columns.

3.1 Difficulties with element width
In this chapter, you’ll build a simple page with a header at the top and two columns
beneath. By the end of the chapter, your page will look like the one shown in figure 3.1.
I’ve intentionally made the page design a bit “blocky,” so you can readily see the size and
position of all the elements.

Start a new page and an empty stylesheet, and then link them. Add the markup shown
next to your page. Your page will have a header, as well as a main element and a side-
bar element that will make up the two columns on your page. A container wraps the
two columns.

<body>
 <header>
 <h1>Franklin Running Club</h1>
 </header>
 <div class="container">
 <main class="main">
 <h2>Come join us!</h2>
 <p>
 The Franklin Running club meets at 6:00pm every Thursday
 at the town square. Runs are three to five miles, at your
 own pace.
 </p>
 </main>
 <aside class="sidebar">
 <div class="widget"></div>
 <div class="widget"></div>
 </aside>
 </div>
</body>

Listing 3.1 HTML for page with a two-column layout

Figure 3.1 Two-column page layout with header

www.EBooksWorld.ir

57Difficulties with element width
Let’s begin with some of the obvious styles. You’ll set the font for the page, then back-
ground colors for the page and each of the main containers. This will help you see the
position and size of each as you go. After you do this, your page will looks like the one
shown in figure 3.2.

For some site designs, the background color of several containers might be transpar-
ent. When this is the case, it might be helpful to temporarily apply a background color
to the container until you get it sized and positioned accordingly.

 The styles for this are shown in listing 3.2. Currently, the sidebar is empty so, by
default, it has no height. You’ll add padding to give it some height. The other contain-
ers will need padding eventually, but we’ll come back to that. For now, add this code
to your stylesheet.

body {
 background-color: #eee;
 font-family: Helvetica, Arial, sans-serif;
}

header {
 color: #fff;
 background-color: #0072b0;
 border-radius: .5em;
}

main {
 display: block;
}

.main {
 background-color: #fff;
 border-radius: .5em;
}

.sidebar {
 padding: 1.5em;
 background-color: #fff;

Listing 3.2 Applying font and colors

Figure 3.2 Three main containers with background colors

Fixes IE
bug

Adds padding to
the sidebar

www.EBooksWorld.ir

58 CHAPTER 3 Mastering the box model
 border-radius: .5em;
}

NOTE IE has a bug where <main> elements are rendered inline by default,
rather than as blocks. We corrected that here by adding a display: block
declaration.

Next, let’s put your two columns in place. To begin, you’ll use a float-based layout.
You’ll float the main and the sidebar to the left and give them widths of 70% and
30%, respectively. Update your stylesheet to match the CSS shown here.

.main {
 float: left;
 width: 70%;
 background-color: #fff;
 border-radius: .5em;
}

.sidebar {
 float: left;
 width: 30%;
 padding: 1.5em;
 background-color: #fff;
 border-radius: .5em;
}

You can see the result in figure 3.3, but it’s not quite what you wanted.

Instead of the two columns sitting side by side, they line wrapped. Even though you
specified widths of 70% and 30%, the columns took up more than 100% of the avail-
able space. That’s because of the default behavior of the box model (figure 3.4).
When you set the width or height of an element, you’re specifying the width or height
of its content; any padding, border, and margins are then added to that width.

 This behavior means that an element with a 300 px width, a 10 px padding, and a 1
px border has a rendered width of 322 px (width plus left and right padding plus left
and right border). This gets even more confusing when the units aren't all the same.

Listing 3.3 Aligning two columns

Floats the main
column left and sets
the width at 70%

Floats the sidebar
left and sets the
width at 30%

Figure 3.3 Main and sidebar columns with widths of 70% and 30%, respectively

www.EBooksWorld.ir

59Difficulties with element width
In the example (listing 3.3), the sidebar has a width of 30% plus 1.5 em left and right
padding; the main container has only a width of 70%. This brings the total of the two
columns to 100% plus 3 ems. In order to fit, the containers have to wrap.

3.1.1 Avoiding magic numbers

The naive fix is to reduce the width of one of the columns (the sidebar, for example).
On my screen, a width of 26% for the sidebar works, but this is unreliable. The 26% is
known as a magic number. Instead of using a desired value, I found it by making hap-
hazard changes to my styles until I got the result I wanted.

 For programming in general, magic numbers aren’t desirable. It’s often hard to
explain why a magic number works. If you don’t understand where the number comes
from, you won’t understand how it will behave under different circumstances. My
screen is 1440 px wide, so on smaller viewports, the sidebar will still line-wrap.
Although there’s a place for trial and error in CSS, typically that’s for choices that are
stylistic in nature and not for forcing things to fit into position.

 One alternative to this magic number is to let the browser do the math. In this
case, the columns are 3 em too wide (due to padding), so you can use the calc()
function to reduce the width by exactly that much. A sidebar width of calc(30% - 3em)
gives you exactly what you need. But, there’s still a better way.

3.1.2 Adjusting the box model

Because of the problems you’ve just encountered, the default box model isn’t what
you’ll typically want to use. Instead, you’ll want your specified widths to include the
padding and borders. CSS allows you to adjust the box model behavior with its box-
sizing property.

 By default, box-sizing is set to the value of content-box. This means that any
height or width you specify only sets the size of the content box. You can assign a value
of border-box to the box sizing instead. That way, the height and width properties set
the combined size of the content, padding, and border, which is exactly what you want
in this example.

Width

Height

Content

Padding

Border

Margin Figure 3.4 The default box model

www.EBooksWorld.ir

60 CHAPTER 3 Mastering the box model
 Figure 3.5 shows the box model with box sizing set to border-box. With this
model, padding doesn’t make an element wider; it makes the inner content narrower.
It also does the same for height.

If you update these elements to use border box sizing, they’ll fit on the same line,
regardless of the left and right padding (figure 3.6).

To adjust the box model for the two elements, main and sidebar, update your
stylesheet to match this listing.

.main {
 box-sizing: border-box;
 float: left;
 width: 70%;
 background-color: #fff;
 border-radius: .5em;
}

.sidebar {
 box-sizing: border-box;
 float: left;
 width: 30%;
 padding: 1.5em;

Listing 3.4 Floating columns with a corrected box model

Width

Height

Content

Padding

Border

Margin
Figure 3.5 The box model with box
sizing set to border-box

Figure 3.6 Columns with an adjusted box model now fit side by side.

Changes the box
model to border-
box sizing

www.EBooksWorld.ir

61Difficulties with element width
 background-color: #fff;
 border-radius: .5em;
}

Using box-sizing: border-box, the two elements add up to an even 100% width.
Their widths of 70% and 30% are now inclusive of their padding, so they fit on the
same line.

3.1.3 Using universal border-box sizing

You have made box sizing more intuitive for these two elements, but you'll surely run
into other elements with the same problem. It would be nice to fix it once, universally
for all elements, so you won’t have to think about this adjustment again. You can do
this with the universal selector (*), which targets all elements on the page as the fol-
lowing listing shows. I’ve added selectors to target every pseudo-element on the page
as well. Put this code at the top of your stylesheet.

*,
::before,
::after {
 box-sizing: border-box;
}

After applying this to the page, height and width will always specify the actual height
and width of an element. Padding won’t change them.

NOTE Adding this snippet near the beginning of your stylesheet has become
common practice.

If, however, you add third-party components with their own CSS to your page, you
may see some broken layouts for those components, especially if their CSS wasn’t
written with this fix in mind. Because the universal border-box fix targets every ele-
ment in the component with the universal selector, correcting this can be problem-
atic. You would need to target every element inside the component to revert to the
content-box sizing.

 You can make this easier with a slightly modified version of the fix and inheritance.
Update this portion of your stylesheet to match the following listing.

:root {
 box-sizing: border-box;
}

*,
::before,
::after {

Listing 3.5 Universal border-box fix

Listing 3.6 More robust universal border-box fix

Applies border box sizing to
all elements and pseudo-
elements on the page

Applies border box sizing
to the root element

www.EBooksWorld.ir

62 CHAPTER 3 Mastering the box model
 box-sizing: inherit;
}

Box sizing isn’t normally an inherited property, but by using the inherit keyword,
you can force it to be. With the version shown here, you can convert a third-party com-
ponent into a content-box when necessary by targeting its top-level container. Then
all elements inside the component will inherit the box sizing:

.third-party-component {
 box-sizing: content-box;
}

Now, every element on your site will have a more predictable box model. I recom-
mend that you add listing 3.6 to your CSS every time you start a new site; it’ll save you
a lot of trouble in the long run. It can be a little problematic in an existing stylesheet,
however, especially if you’ve already written lots of styles based on the default content-
box model. If you do add this to an existing project, be sure to give it a thorough
review for any resulting bugs.

NOTE From this point on, every example in this book will assume that this
border-box fix is at the beginning of your stylesheet.

3.1.4 Adding a gutter between columns

It’s often more visually appealing to have a small gap (or gutter) between columns. You
can sometimes achieve this by adding padding to one column; but in some cases, this
approach doesn’t work. If both columns have a background color or border, as with
your example page, you’ll want the gutter to appear between the two elements’ bor-
ders (figure 3.7). Note the gray space between the two white backgrounds. You can
achieve this look in a handful of ways. Let's look at a couple of them, shown in list-
ings 3.7 and 3.8.

First, you can add a margin to one of the columns and adjust the widths of your ele-
ments to account for the added space. Listing 3.7 shows how to subtract 1% from the
sidebar column width and move it to the margin. Update your CSS to match.

Tells all other elements
and pseudo-elements to
inherit their box sizing

Figure 3.7 Gutter added between the two columns

www.EBooksWorld.ir

63Difficulties with element width
.main {
 float: left;
 width: 70%;
 background-color: #fff;
 border-radius: .5em;
}

.sidebar {
 float: left;
 width: 29%;
 margin-left: 1%;
 padding: 1.5em;
 background-color: #fff;
 border-radius: .5em;
}

This adds a gutter, but its width is based on the outer container’s width—the percent-
age is relative to the full width of the parent. What if you want to specify the gutter in
units other than a percentage? (I prefer an em-based gutter, which I find more consis-
tent.) You can accomplish this with calc().

 Instead of moving 1% from the width into the margin, you can move 1.5 em.
This listing shows how calc() makes this possible. Change your CSS again to match
this listing.

.main {
 float: left;
 width: 70%;
 background-color: #fff;
 border-radius: .5em;
}

.sidebar {
 float: left;
 width: calc(30% - 1.5em);
 margin-left: 1.5em;
 padding: 1.5em;
 background-color: #fff;
 border-radius: .5em;
}

Not only does this allow you to use ems rather than percentages for the gutter, but it
also has the benefit of being a little more explicit in code. When reviewing the code
later, it might not be apparent where a specific percentage comes from, but 30% - 1.5em
provides a clue that you’re doing something based on 30%.

Listing 3.7 Percent-based gutter margin

Listing 3.8 Using calc() to subtract the gutter from the width

Subtracts 1% from
the width . . .

. . . and adds it as a
margin for the gutter

Subtracts 1.5 em
from the width . . .

. . . and adds it
as a margin

www.EBooksWorld.ir

64 CHAPTER 3 Mastering the box model
3.2 Difficulties with element height
Working with element height is different than working with element width. The
border-box fixes you’ve made thus far still apply and can be helpful; but, typically
it’s best to avoid setting explicit heights on elements. Normal document flow is
designed to work with a constrained width and an unlimited height. Contents fill
the width of the viewport and then line wrap as necessary. Because of this, the
height of a container is organically determined by its contents, not by the container
itself.

3.2.1 Controlling overflow behavior

When you explicitly set an element’s height, you run the risk of its contents overflowing
the container. This happens when the content doesn’t fit the specified constraint and
renders outside of the parent element. Figure 3.8 shows this behavior. Document flow
doesn’t account for overflow, and any content below the container will render over
the top of the overflowing content.

You can control the exact behavior of the overflowing content with the overflow
property, which supports four values:

 visible (default value)—All content is visible, even when it overflows the con-
tainer’s edges.

 hidden—Content that overflows the container’s padding edge is clipped and
won’t be visible.

 scroll—Scrollbars are added to the container so the user can scroll to see the
remaining content. On some operating systems, both horizontal and vertical
scrollbars are added, even if all the content is visible. In this case, the scrollbars
will be disabled (grayed).

 auto—Scrollbars are added to the container only if the contents overflow.

Normal document flow refers to the default layout behavior of elements on the
page. Inline elements flow along with the text of the page, from left to right,
line wrapping when they reach the edge of their container. Block-level ele-
ments fall on individual lines, with a line break above and below.

Figure 3.8 Content overflowing its container

www.EBooksWorld.ir

65Difficulties with element height
Typically, I prefer auto rather than scroll because, in most cases, I don't want the
scrollbars to appear except when necessary. Figure 3.9 shows four containers with
these overflow settings.

Be judicious with the use of scrollbars. Browsers insert a scrollbar for scrolling the
page, and adding nested scrollable areas inside your page can be frustrating to users.
If a user is using a mouse scroll wheel to scroll down the page, and their cursor
reaches a smaller scrollable area, their scroll wheel will stop scrolling the page and will
scroll the smaller box instead.

3.2.2 Applying alternatives to percentage-based heights

Specifying height using a percentage is problematic. Percentage refers to the size of
an element’s containing block; the height of that container, however, is typically deter-
mined by the height of its children. This produces a circular definition that the
browser can’t resolve, so it’ll ignore the declaration. For percentage-based heights to
work, the parent must have an explicitly defined height.

 One reason people try to use percentage-based heights is to make a container fill
the screen. A better approach is to use the viewport-relative vh units, which you
reviewed in chapter 2. A height of 100 vh is exactly the height of the viewport. The
most common use, though, is to create columns of equal height. This too can be
solved without a percentage.

COLUMNS OF EQUAL HEIGHT

The columns-of-equal-height problem is one weakness that has plagued CSS from the
beginning. In the early 2000s, CSS supplanted the use of HTML tables for laying out
content. At the time, tables were the only way to produce two columns of equal

Horizontal overflow
It’s possible for content to overflow horizontally, not just vertically. One typical situa-
tion is when a long URL appears in a narrow container. The same rules apply here as
with vertical overflow.

You can control only horizontal overflow using the overflow-x property, or vertical
overflow with overflow-y. These properties support the same values as the over-
flow property. Explicitly setting both x and y to different values, however, tends to
have unpredictable results.

Figure 3.9 Overflow from left to right: visible, hidden, scroll, and auto

www.EBooksWorld.ir

66 CHAPTER 3 Mastering the box model
height, or, more specifically, columns of the same height without explicitly specifying
the height. You could easily set all columns to a height of 500 px or some other arbi-
trary value. But if you allowed the columns to determine their heights naturally, each
element would evaluate to a different height, based on its content. This became a sim-
ple use case fraught with frustration.

 It took some creative hacks to work around the issue. As CSS evolved, solutions
involving pseudo-elements or negative margins emerged. If you’re still using any of
these complicated methods, it’s time to fix that. Modern browsers make it much eas-
ier—they support CSS tables. For example, IE8+ supports display: table, and IE10+
allows for a flexible box, or flexbox, both of which, by default, produce equal-height
columns.

NOTE When I say modern browsers, I mean recent versions of auto-updating,
(evergreen) browsers. These include Chrome, Firefox, Edge, Opera, and, in
most cases, Safari. Internet Explorer is the biggest concern; if I say something
is supported in IE10+, that generally implies the evergreen browsers support
it as well.

A number of common designs call for equal-height columns. Your two-column page is
a great example. It’d look more polished if you were to align the heights of the main
column and the sidebar (figure 3.10). As the content in either column grows, each
column will grow as needed so the bottoms are always flush.

You could accomplish this by setting an arbitrary height on both columns, but what
value would you choose? Too big, and you’ll have a large empty space at the bottom of
your containers; too small, and you’ll have overflow to deal with.

 The best solution is for the columns to size themselves naturally, and then extend
the shorter column so that its height is equal to the height of the taller one. I’ll show
you how to do this using both CSS-based table layouts and a flexbox.

CSS TABLE LAYOUTS

First, you’ll use a CSS-based table layout. Instead of using floats, you’ll make the con-
tainer a display: table and each column a display: table-cell. Update your styles

Figure 3.10 Columns of equal height

www.EBooksWorld.ir

67Difficulties with element height
to match listing 3.9. (You may notice there’s no table-row element. With CSS tables,
the inclusion of a row element isn’t as strict a requirement as it is with HTML tables.)

.container {
 display: table;
 width: 100%;
}

.main {
 display: table-cell;
 width: 70%;
 background-color: #fff;
 border-radius: .5em;
}

.sidebar {
 display: table-cell;
 width: 30%;
 margin-left: 1.5em;
 padding: 1.5em;
 background-color: #fff;
 border-radius: .5em;
}

By default, an element with a table display value won’t expand to a 100% width like a
block element will, so you’ll have to declare the width explicitly b. This code gets you
close, but now the gutter is missing. That’s because margins c can’t be applied to
table-cell elements. You’ll have to make more changes to get this exactly how you
want it.

 To define space between cells of a table, you can use the border-spacing prop-
erty of the table element. This property accepts two length values: one for horizon-
tal spacing and one for vertical spacing. (You can also specify only one value to apply
to both.) You could add border-spacing: 1.5em 0 to your container, but this has a
peculiar side effect: that value is also applied to the outside edges of the table. Now
your two columns no longer align with the header on the left and right edges (fig-
ure 3.11).

Listing 3.9 Equal-height columns using a CSS-based table layout

Makes the container
layout resemble a table

Makes the table fill
its container’s widthb

Makes the
column layout
mimic table cells

Margin no
longer worksc

Figure 3.11 The border-spacing applies between table cells and affects the outside edges.

www.EBooksWorld.ir

68 CHAPTER 3 Mastering the box model
You can fix this with the clever use of a negative margin, but that needs to go on a new
container that wraps around the whole table. Here’s how. Add a <div class="wrap-
per"> around the container and apply a left and right margin of -1.5 em to counteract
the 1.5 em of the border spacing on the sidebars. This portion of your stylesheet
should look like this.

.wrapper {
 margin-left: -1.5em;
 margin-right: -1.5em;
}

.container {
 display: table;
 width: 100%;
 border-spacing: 1.5em 0;
}

.main {
 display: table-cell;
 width: 70%;
 background-color: #fff;
 border-radius: .5em;
}

.sidebar {
 display: table-cell;
 width: 30%;
 padding: 1.5em;
 background-color: #fff;
 border-radius: .5em;
}

Instead of positive margins pushing in the edges of the container, the negative margin
pulls the edges out. Combined with border-spacing, the outside column edges now
align with the edges of the <body> (the containing box for the wrapper). You now have
the layout you want: two columns with equal height, a 1.5 em gutter, and outside
edges that align with the header (figure 3.12).

Listing 3.10 Table-based columns with a corrected gutter

Adds a new wrapper element
with negative margins

Applies horizontal
border spacing
between table cells

Figure 3.12 Columns of equal height working correctly

www.EBooksWorld.ir

69Difficulties with element height
Negative margins have some interesting uses that we’ll look at in a bit.

FLEXBOX

Accomplishing a two-column layout with equal-height columns can also be done with
a flexbox shown in listing 3.11. Notably, a flexbox doesn’t necessitate the use of an
extra div wrapper. By default, using a flexbox produces elements of equal height; you
won’t have to worry about negative margins.

TIP Favor the use of a flexbox instead of a table layout if you aren’t actively
supporting IE9 or older.

Remove the div wrapper you’ve added to the table layout, and update your stylesheet to
match the following listing. If you’re new to flexbox, this will be a gentle introduction.

.container {
 display: flex;
}

.main {
 width: 70%;
 background-color: #fff;
 border-radius: 0.5em;
}

.sidebar {
 width: 30%;
 padding: 1.5em;
 margin-left: 1.5em;
 background-color: #fff;
 border-radius: .5em;
}

Tables for layout?
If you’ve worked in web development for a while, you’ve likely heard that it’s bad prac-
tice to use HTML tables for layouts. Many website designers in the early 2000s laid
out their sites using <table> elements. It was often easier to lay out pages using
tables instead of fighting with floats (the only viable alternative at the time). Eventu-
ally, there was a lot of backlash against the use of tables for layouts because doing
so meant using non-semantic HTML. Instead of the HTML tags representing content,
they were doing the work of layout—something CSS should be responsible for.

Browsers now support table display for all sorts of elements other than <table>, so
you can enjoy the benefits of table layouts and maintain semantic markup. It’s not a
"holy grail" solution, however. The HTML table attributes colspan and rowspan have
no equivalent, and floats, flexboxes, and inline-blocks can layout content in ways that
tables can’t.

Listing 3.11 Equal-height columns using a flexbox

Applies flex display
to the container

Items inside the flex
container don’t need
specified display or
float properties.

Margins work as
before with floats

www.EBooksWorld.ir

70 CHAPTER 3 Mastering the box model
By applying display: flex to the container, it becomes a flex container. Its child ele-
ments will become the same height by default. You can set widths and margins on the
items; even though this would add up to more than a 100%, the flexbox sorts it out.
This listing renders pixel-for-pixel the same as the table layout. It doesn’t need the
extra wrapper, and the CSS is a bit simpler.

 A flexbox provides a lot of options, which I’ll dive into in chapter 5. This example
shows all that you need to build your first flexbox-based layout. (IE10 requires some
vendor-prefixed properties as well; I’ll address those in chapter 5.)

WARNING Never explicitly set the height of an element unless you have no
other choice. Always seek an alternative approach first. Setting a height invari-
ably leads to further complications.

3.2.3 Using min-height and max-height

Two properties that can be immensely helpful are min-height and max-height.
Instead of explicitly defining a height, you can use these properties to specify a mini-
mum or maximum value, allowing the element to size naturally within those bounds.

 Suppose you want to place your hero image behind a larger paragraph of text, and
you’re concerned about it overflowing the container. Instead of setting an explicit
height, you can specify a minimum height with min-height. This means the element
will be at least as high as you specify, and if the content doesn't fit, the browser will
allow the element to grow naturally to prevent overflow.

 Figure 3.13 shows three elements. The element on the left has no min-height, so
its height is determined naturally, while each of the other two has a min-height of 3
em. The element in the middle would have a natural height shorter than that, but the
min-height value has brought it to a height of 3 em. The element on the right has
enough content that it has exceeded 3 em, and the container has grown naturally to
contain the content.

Likewise, max-height allows an element to size naturally, up to a point. If that size is
reached, the element doesn’t become any taller, and the contents will overflow. Simi-
lar properties min-width and max-width constrain an element’s width.

No min-height

{ min-height: 3em; }

{ min-height: 3em; }

Figure 3.13 Three elements: one with no specified height, and two elements with a 3 em min-height

www.EBooksWorld.ir

71Difficulties with element height
3.2.4 Vertically centering content

Vertical centering in CSS is another notorious problem. Historically there have been
several ways to achieve vertical centering, with each one working only under certain
circumstances. With CSS, the answer to a problem is often “it depends,” and that can
certainly be the case here.

A lot of the trouble comes from setting the height of a container at a constant value,
and then attempting to center a dynamically sized piece of content inside it. When
possible, try to achieve your desired effect by allowing the browser to determine
heights naturally.

 Here’s the simplest way to vertically center in CSS—give a container equal top and
bottom padding, and let both the container and its contents determine their height
naturally (figure 3.14). Listing 3.12 shows the code for this. You can temporarily add
this code to your stylesheet to view it on your page (be sure to remove it afterward, as
it’s not part of your design).

header {
 padding-top: 4em;
 padding-bottom: 4em;
 color: #fff;

Why doesn’t vertical-align work?
Developers are often frustrated when they apply vertical-align: middle to a
block element, expecting it to center the contents of the block. Instead, this declara-
tion is ignored by the browser.

A vertical-align declaration only affects inline and table-cell elements. With inline
elements, it controls alignment among other elements on the same line. You can use
it to control how an inline image aligns with the neighboring text, for example.

With table-cell elements, vertical-align controls the alignment of the contents
within the cell. If a CSS table layout works for your page, then you can accomplish
vertical centering with vertical-align.

Listing 3.12 Using padding to vertically center contents

Figure 3.14 Using padding to vertically center the contents

Equal top and bottom padding
vertically centers an element’s
content without a fixed height.

www.EBooksWorld.ir

72 CHAPTER 3 Mastering the box model
 background-color: #0072b0;
 border-radius: .5em;
}

This approach works whether the content inside the container is inline, block, or of
any other display value. Sometimes, however, you may need to set a certain height on
the container, or you don’t have the option of using padding because you want
another child in the container near the top or bottom.

 This is also a common problem that arises with columns of equal height, particu-
larly if you use an older technique with floats. Fortunately, both CSS tables and flex-
boxes make centering easy. (If you use one of the older techniques, you’ll have to find
another way to center content.) For help dealing with various scenarios, see the fol-
lowing sidebar.

Guide to vertical centering
The best approach to centering contents inside a container may depend on a number
of factors based on your particular scenario. To help you decide, step through these
questions until you encounter a solution that you can use. Some of these techniques
will be covered in later chapters, so I’ve directed you to where you can find the
answer.

 Can you use a natural height container? Apply an equal top and bottom pad-
ding to the container to center its contents.

 Do you need a specific height container, or do you need to avoid using pad-
ding? Use display: table-cell and vertical-align: middle on your
container.

 Can you use flexbox? If you don’t need to support IE9, you can center your
content with flexbox. See chapter 5.

 Is the inner content only one line of text? Set a tall line height equal to the
desired container height. This will force the container to grow to contain the
line height. If the contents aren’t inline, you may have to set them to inline
-block.

 Do you know the height of both the container and the inner content? Center
the contents with absolute positioning. See chapter 7. (I only recommend this
when all approaches mentioned here fail.)

 What if you don't know the height of the inner element? Use absolute position-
ing in conjunction with a transform. See chapter 15 for an example. (Again, I
only recommend this if you've ruled out all other options.)

When in doubt, see http://howtocenterincss.com. It’s a great resource. You can fill
in several options based on your exact scenario, and it will produce the code you can
use for vertical centering.

www.EBooksWorld.ir

http://howtocenterincss.com

73Negative margins
3.3 Negative margins
Unlike padding and border width, you can assign a negative value to margins. This
has some peculiar uses, such as allowing elements to overlap or stretch wider than
their containers.

 The exact behavior of a negative margin depends on which side of the element
you apply it to. You can see this illustrated in figure 3.15. If applied to the left or top,
the negative margin moves the element leftward or upward, respectively. This can
cause the element to overlap another element preceding it in the document flow. If
applied to the right or bottom side, a negative margin doesn’t shift the element;
instead, it pulls in any succeeding element. Giving an element a negative bottom mar-
gin is not unlike giving the element(s) beneath it a negative top margin.

When a block element doesn’t have a specified width, it naturally fills the width of its
container. A negative right margin, however, can change this: As long as no width is
specified, it pulls the edge of the element to the right, bringing it outside the con-
tainer. Join this with an equal negative left margin, and both sides of the element will
be extended outside the container. This quirk is what allowed you to resize the table
layout in figure 3.12 to fill the <body> width, despite the border spacing.

WARNING Using negative margins to overlap elements can render some ele-
ments unclickable if they’re moved beneath other elements.

Negative margins may not be something you use often, but they’re useful in some cir-
cumstances. In particular, they come in handy when building column layouts. Be sure
not to use them too frequently, though, or you may quickly find you lose track of
what's happening on the page.

Negative left or top margins pull
the element leftward or upward.

Adding negative right or bottom margins
will pull the succeeding element(s)

leftward or upward (to overlap)

BottomRightTopLeft

Figure 3.15 Behavior of negative margins

www.EBooksWorld.ir

74 CHAPTER 3 Mastering the box model
3.4 Collapsed margins
Take another look at your page. Notice something strange going on with the margins?
You haven’t applied any margin to the header or the container, yet there’s a gap
between them (figure 3.16). Why is that gap there?

When top and/or bottom margins are adjoining, they overlap, combining to form a
single margin. This is referred to as collapsing. The space below the header in figure 3.16
is the result of collapsed margins. Let’s look at how this works.

3.4.1 Collapsing between text

The main reason for collapsed margins has to do with the spacing of blocks of text.
Paragraphs (<p>), by default, have a 1 em top margin and a 1 em bottom margin. This
is applied by the user agent stylesheet. But when you stack two paragraphs, one after
the other, their margins don’t add up to a gap of 2 em. Instead they collapse, overlap-
ping to produce only 1 em of space between the two paragraphs.

 You can see this sort of collapsed margin in the left column on the page. The
title (“Come join us!”) in an <h2> has a bottom margin of 0.83 em, which collapses
with the top margin of the following paragraph. The margins of each are illustrated
in figure 3.17. Note how the margins of each element occupy the same space on
the page.

Gap between header
and main area

Figure 3.16 Gap caused by the margins collapsing

Figure 3.17 Outlined margins of the heading (left) and paragraph (right)

www.EBooksWorld.ir

75Collapsed margins
The size of the collapsed margin is equal to the largest of the joined margins. In this
case, the heading has a bottom margin of 19.92 px (24 px font size × 0.83 em), and
the paragraph has a top margin of 16 px (16 px font size × 1 em margin). The larger
of these, 19.92 px, is the amount of space rendered between the two elements.

3.4.2 Collapsing multiple margins

Elements don’t have to be adjacent siblings for their margins to collapse. Even if you
wrap the paragraph inside an extra div, as in the next listing, the visual result will be
the same. In the absence of any other CSS interfering, all the adjacent top and bottom
margins will collapse.

<main class="main">
 <h2>Come join us!</h2>
 <div>
 <p>
 The Franklin Running club meets at 6:00pm
 every Thursday at the town square. Runs
 are three to five miles, at your own pace.
 </p>
 </div>
</main>

In this case, there are three different margins collapsing together: the bottom margin
of the <h2>, the top margin of the <div>, and the top margin of the <p>. The com-
puted values of these are 19.92 px, 0 px, and 16 px, respectively, so the space between
the elements is still 19.92 px, the largest of the three. In fact, you can nest the para-
graph inside several divs, and it will still render the same—all the margins collapse
together.

 In short, any adjacent top and bottom margins will collapse together. If you add an
empty, unstyled div (one with no height, border, or padding) to the page, its own top
and bottom margins will collapse.

NOTE Margin collapsing only occurs with top and bottom margins. Left and
right margins don’t collapse.

Collapsed margins act as a sort of “personal space bubble.” If two people standing at a
bus stop are each comfortable with 3 feet of personal space between, they’ll happily
stand 3 feet apart. They don’t need to stand 6 feet apart to both be satisfied.

 This behavior typically means you can style margins on various elements without
much concern for what might appear above or below them. If you apply a bottom
margin of 1.5 em to the headings, you can expect the same spacing following the
headings, whether the next element is a <p> with a top margin of 1 em or a div with
no top margin. The collapsed margin between the elements only appears larger if the
following element requires more space.

Listing 3.13 Paragraph wrapped in a div, with the same result

Margins still
collapse even with
the paragraph
wrapped inside
another div.

www.EBooksWorld.ir

76 CHAPTER 3 Mastering the box model
3.4.3 Collapsing outside a container

The way three consecutive margins collapse might catch you off guard. An element's
margin collapsing outside its container typically produces an undesirable effect if the
container has a background.

 Take another look at the gap below the header in figure 3.16. The page title is a
<h1>, with a 0.67 em (21.44 px) bottom margin applied by the user agent styles. That
title is inside a <header> with no margins. The bottom margins of both elements are
adjacent, so they collapse, resulting in a 21.44 px bottom margin on the header. The
same thing happens with the top margins of the two elements as well.

 This is a little strange. In this case, you want the <h1>’s margin to stay inside the
<header>. Margins don’t always collapse exactly to the spot where you want. Fortu-
nately, there are a number of ways to prevent this. In fact, you’ve already fixed it for
the main section of the page; notice that the margin above “Come join us!” doesn’t
collapse upward outside of its container. That’s because the margins of flexbox items
don’t collapse, and you laid out that part of the page using a flexbox.

 Padding provides another solution. If you add top and bottom padding to the
header, the margins inside it won’t collapse to the outside. While you’re at it, let’s
update the header so it looks like figure 3.18, and apply left and right padding as well.
To do so, update your stylesheet to match listing 3.14. You’ll notice this now means
there’s no margin between the header and the main content. We’ll come back to
address that shortly.

header {
 padding: 1em 1.5em;
 color: #fff;
 background-color: #0072b0;
 border-radius: .5em;
}

Here are ways to prevent margins from collapsing:

 Applying overflow: auto (or any value other than visible) to the container
prevents margins inside the container from collapsing with those outside the
container. This is often the least intrusive solution.

 Adding a border or padding between two margins stops them from collapsing.

Listing 3.14 Applying padding to the header

Figure 3.18 Adding padding to the header prevents margin collapsing

www.EBooksWorld.ir

77Spacing elements within a container
 Margins won’t collapse to the outside of a container that is floated, that is an
inline block, or that has an absolute or fixed position.

 When using a flexbox, margins won’t collapse between elements that are part of
the flex layout. This is also the case with grid layout (chapter 6).

 Elements with a table-cell display don’t have a margin, so they won’t collapse.
This also applies to table-row and most other table display types. Exceptions
are table, table-inline, and table-caption.

Many of these change the layout behavior of the element, though, so you probably
won't want to apply them unless they produce the layout you’re looking for.

3.5 Spacing elements within a container
The interplay between the padding of a container and the margins of its content can
be tricky to work with. Let’s put a few items in your sidebar and work through prob-
lems that might arise. In the end, I’ll show you a useful technique that can greatly sim-
plify things.

 You’ll add two buttons that link to social media pages and another, less important
link to the sidebar. Your goal is for the sidebar to look like figure 3.19.

Let’s start with the two social links. Add them to your sidebar as shown in the follow-
ing listing. The button-link class will be a good target for your CSS selector.

<aside class="sidebar">

 follow us on Twitter

 like us on Facebook

</aside>

Next, you’ll apply styles for the buttons’ general appearance. You’ll make them block
elements so they’ll fill the width of the container, and each will appear on its own line.
Add this CSS to your stylesheet.

Listing 3.15 Adding two social buttons to the sidebar

Figure 3.19 The sidebar with
properly spaced contents

www.EBooksWorld.ir

78 CHAPTER 3 Mastering the box model
.button-link {
 display: block;
 padding: 0.5em;
 color: #fff;
 background-color: #0090C9;
 text-align: center;
 text-decoration: none;
 text-transform: uppercase;
}

Now the links are styled correctly, but you still need to figure out the spacing between
them. Without margins, they’ll stack directly atop one another, as they do now. You
have options: you could give them separate top and bottom margins or both, where
margin collapsing would occur between the two buttons.

 No matter which approach you choose, however, you’ll still encounter a problem:
the margin needs to work in conjunction with the sidebar’s padding. If you add
margin-top: 1.5em, you’ll get the result shown in figure 3.20.

Now you’ll have extra space at the top of the container. The first button’s top margin
plus the container’s top padding produce spacing that’s uneven with the other three
sides of the container.

 You can fix this in a number of ways. Listing 3.17 shows one of the simpler fixes. It
uses the adjacent sibling combinator (+) to target only button-links that immediately
follow other button-links as siblings under the same parent element. Now the mar-
gin only appears between two buttons.

.button-link {
 display: block;
 padding: .5em;
 color: #fff;
 background-color: #0090C9;
 text-align: center;
 text-decoration: none;
 text-transform: uppercase;
}

Listing 3.16 Setting size, fonts, and colors for the sidebar buttons

Listing 3.17 Using an adjacent sibling combinator to apply a margin between buttons

The block element fills the
available width and puts
each link on its own line.

Figure 3.20 The top margin adds
spacing to the container’s padding.

www.EBooksWorld.ir

79Spacing elements within a container
.button-link + .button-link {
 margin-top: 1.5em;
}

This appears to work (figure 3.21). The first button no longer has a top margin, so the
spacing is even.

3.5.1 Considering changing content

You’re on the right track, but the spacing problem arises again as soon as you add
more content to the sidebar. Add the third link to your page, as shown in the follow-
ing listing. This one has the class sponsor-link so you can apply different styles to
the link.

<aside class="sidebar">

 follow us on Twitter

 like us on Facebook<
 /a>

 become a sponsor

</aside>

You’ll style this one, but again, you’ll have to address the question of the spacing
between it and the other buttons. Figure 3.22 shows how the link will look before you
fix the margin.

Listing 3.18 Adding a different type of link to the sidebar

Only apply a top margin to
button-links that immediately
follow another button-link

Figure 3.21 Even spacing is
applied around the buttons.

Adds a different type
of link to the sidebar

Figure 3.22 Spacing is off between
the second button and the bottom link.

www.EBooksWorld.ir

80 CHAPTER 3 Mastering the box model
The styles for this are shown in the next listing. Add these to your stylesheet. You’re
probably tempted to add a top margin to the link as well; hold off on that for now. I’ll
show you an interesting alternative next.

.sponsor-link {
 display: block;
 color: #0072b0;
 font-weight: bold;
 text-decoration: none;
}

You could add a top margin, and it would look right. But consider this: HTML has a
nasty habit of changing. At some point, whether next month or next year, something
in this sidebar will need to be moved or replaced. Maybe the sponsorship link will
need to be moved to the top of the sidebar. Or, maybe you’ll need to add a widget to
sign up for an email newsletter.

 Every time things change, you’ll have to revisit the question of these margins.
You’ll need to make sure that there’s space between each item, but no extraneous
space at the top (or bottom) of the container.

3.5.2 Creating a more general solution: the lobotomized owl selector

Web designer Heydon Pickering once said margins are “like applying glue to one
side of an object before you’ve determined whether you actually want to stick it to
something or what that something might be.” Instead of fixing margins for the cur-
rent page contents, let’s fix it in a way that works no matter how the page gets
restructured. You’ll do this with something Pickering calls a lobotomized owl selector. It
looks like this: * + *.

 That’s a universal selector (*) that targets all elements, followed by an adjacent sib-
ling combinator (+), followed by another universal selector. It earns its name because
it resembles the vacant stare of an owl. The lobotomized owl is not unlike the selector
you used earlier: .social-button + .social-button. Except, instead of targeting but-
tons that immediately follow other buttons, it targets any element that immediately
follows any other element. That is, it selects all elements on the page that aren’t the
first child of their parent.

 Let’s use the lobotomized owl to add top margins to elements throughout your
page. Doing so will evenly space each item in your sidebar. It’ll also target the main
container because a sibling immediately follows the header, providing the space you
want there as well. The result is shown in figure 3.23.

 Add listing 3.20 near the top of your stylesheet. I’ve included body at the begin-
ning of the selector. This restricts the selector to only target items inside the body. If
you use the lobotomized owl by itself, it will target the <body> element because it’s an
adjacent sibling of the <head> element.

Listing 3.19 Adding styles for the sponsor link

www.EBooksWorld.ir

81Spacing elements within a container
body * + * {
 margin-top: 1.5em;
}

NOTE You might be worried about the performance implications of the uni-
versal selector (*). In IE6, it was incredibly slow, so developers avoided using
it. Today, this is no longer a concern because modern browsers handle it well.
Furthermore, using it in the lobotomized owl potentially reduces the number
of selectors in your stylesheet, because it globally fixes most elements. In fact,
it might be more performant, depending on the particulars of your stylesheet.

The lobotomized owl top margin has one unwanted side effect on the sidebar.
Because the sidebar is an adjacent sibling of the main column, it too receives a top
margin. You’ll have to revert that to zero. You’ll also have to add padding to the main
columns because you haven’t done so yet. Update the corresponding portion of your
stylesheet to match the listing shown here.

.main {
 width: 70%;
 padding: 1em 1.5em;
 background-color: #fff;
 border-radius: .5em;
}

.sidebar {
 width: 30%;
 padding: 1.5em;
 margin-top: 0;
 margin-left: 1.5em;
 background-color: #fff;
 border-radius: .5em;
}

Listing 3.20 Globally space stacked items with the lobotomized owl

Listing 3.21 Final touches

Figure 3.23 All adjacent sibling elements now have a top margin

Adds padding to
the main column

Removes the top
margin applied by the
lobotomized owl

www.EBooksWorld.ir

82 CHAPTER 3 Mastering the box model
These are the final touches for your page. It should now look like figure 3.24.

Using the lobotomized owl like this is a tradeoff. It simplifies many margins through-
out your page, but you’ll have to override it in places where you don’t want it to apply.
This will generally only be in places where you’ve elements side by side, as with multi-
column layouts. Depending on your design, you’ll also need to set the desired mar-
gins on paragraphs and headings.

 I’ll use the lobotomized owl in more examples in the next few chapters to help you
get a feel for the tradeoffs involved. The lobotomized owl may not be the correct solu-
tion for every project, and it’s difficult to add to an existing project without breaking
the layout, but consider it the next time you start a new website or web application.

 The full stylesheet is given here.

:root {
 box-sizing: border-box;
}

*,
::before,
::after {
 box-sizing: inherit;
}

body {
 background-color: #eee;
 font-family: Helvetica, Arial, sans-serif;
}

body * + * {
 margin-top: 1.5em;
}

header {
 padding: 1em 1.5em;
 color: #fff;

Listing 3.22 Final stylesheet

Figure 3.24 Final page with a two-column layout

www.EBooksWorld.ir

83Summary
 background-color: #0072b0;
 border-radius: .5em;
}

.container {
 display: flex;
}

.main {
 width: 70%;
 padding: 1em 1.5em;
 background-color: #fff;
 border-radius: .5em;
}

.sidebar {
 width: 30%;
 padding: 1.5em;
 margin-top: 0;
 margin-left: 1.5em;
 background-color: #fff;
 border-radius: .5em;
}

.button-link {
 display: block;
 padding: .5em;
 color: #fff;
 background-color: #0090C9;
 text-align: center;
 text-decoration: none;
 text-transform: uppercase;
}

.sponsor-link {
 display: block;
 color: #0072b0;
 font-weight: bold;
 text-decoration: none;
}

Summary
 Always use a universal border-box fix for predictable element sizing.
 Avoid explicitly setting the height of an element to avoid overflow issues.
 Use modern layout techniques like display: table or a flexbox to produce col-

umns of equal height or to vertically center content.
 If your margins behave oddly, take steps to prevent margins from collapsing.
 Consider using the lobotomized owl selector on your page to globally apply

margins between stacked elements.

www.EBooksWorld.ir

www.EBooksWorld.ir

Part 2

Mastering layout

CSS provides several tools you can use to control the layout of a web page.
In part 2 (chapters 4–8), we’ll look at the most important of these tools, from
floats to flexbox to positioning. None of these tools is intrinsically better than
another, but rather they each accomplish something a little different. I’ll show
you how they each work so you can use this understanding to mix and match
them on a page to achieve the result you need.

www.EBooksWorld.ir

www.EBooksWorld.ir

Making sense of floats
At the end of part 1, we covered some fundamental concepts of element sizing
and spacing. Throughout part 2, we’ll build on these concepts by looking closer
at the primary methods for laying out the page. We’ll look at the three most
important methods to alter document flow—floats, flexbox, and grid layout.
Then we’ll look at positioning, which is used primarily for stacking elements in
front of one another. The flexbox and grid layouts are both new to CSS and are
proving to be essential tools. Although floats and positioning are not new, they’re
often misunderstood.

 In this chapter, we’ll first look at floats. They’re the oldest method for laying out
a web page, and for many years were the only way. They’re a little odd, however.
Making sense of floats begins with an understanding of their original purpose,

This chapter covers
 How floats work and how to avoid common

pitfalls

 Container collapsing and the clearfix

 The media object and double container pattern

 Block formatting contexts

 How to build and understand a grid system
87

www.EBooksWorld.ir

88 CHAPTER 4 Making sense of floats
which is where we’ll start. I’ll show you how to deal with some of their quirks, includ-
ing a tool called a clearfix. This will put some context to their behavior.

 As we go, you’ll also learn about two patterns that you might often see in page
layouts: the double container pattern and the media object. To wrap up, you’ll put
your knowledge to work to build a grid system, which is a versatile tool for structur-
ing a page.

4.1 The purpose of floats
Although floats were not originally intended to construct page layouts, they have
served that job well. In order to make sense of floats, however, we must first bear in
mind their original purpose.

 A float pulls an element (often an image) to one side of its container, allowing the
document flow to wrap around it (figure 4.1). This layout is common in newspapers
and magazines, so floats were added to CSS to achieve this effect.

This illustration shows an element pulled to the left, but you can also float an element
to the right. A floated element is removed from the normal document flow and pulled
to the edge of the container. The document flow then resumes, but it’ll wrap around
the space where the floated element now resides. If you float multiple elements in the
same direction, they’ll stack alongside one another, as shown in figure 4.2.

Figure 4.1 Lines of text wrap
around floated elements

Figure 4.2 Two floated elements
stacked alongside one another

www.EBooksWorld.ir

89The purpose of floats
If you’ve been writing CSS for a while, this behavior is probably not new to you. But
the important thing to note is this: We don’t always use floats in this way, even though
it’s their original purpose.

 In the early days of CSS, developers realized they could use this simple tool to
move sections of the page around to build all sorts of layouts. It was not intended to be
a page layout tool, but for nearly two decades, we’ve been using it as such.

 We did this because it was our only option. Eventually, the ability to use display:
inline-block or display: table emerged, which offered alternatives, albeit limited
ones. Until the addition of the flexbox and grid layouts in the past few years, floats
remained our heavy hitter for page layout. Let’s take a good look at how they work. As
a guide, you’ll build the page shown in figure 4.3.

In the examples in this chapter, you’ll use floats to position each of the four gray
boxes. Inside the boxes, you’ll then float the images beside the text. Create a blank
page and link it to a new stylesheet, then add the code in this listing to your page.

<body>
 <div class="container">
 <header>
 <h1>Franklin Running Club</h1>
 </header>

Listing 4.1 HTML for a page with a float-based layout

Figure 4.3 Web page with a float-based layout

Header layout
similar to that
in chapter 3

www.EBooksWorld.ir

90 CHAPTER 4 Making sense of floats
 <main class="main clearfix">
 <h2>Running tips</h2>

 <div>
 <div class="media">

 <div class="media-body">
 <h4>Strength</h4>
 <p>
 Strength training is an important part of
 injury prevention. Focus on your core—
 especially your abs and glutes.
 </p>
 </div>
 </div>

 <div class="media">

 <div class="media-body">
 <h4>Cadence</h4>
 <p>
 Check your stride turnover. The most efficient
 runners take about 180 steps per minute.
 </p>
 </div>
 </div>

 <div class="media">

 <div class="media-body">
 <h4>Change it up</h4>
 <p>
 Don't run the same every time you hit the
 road. Vary your pace, and vary the distance
 of your runs.
 </p>
 </div>
 </div>

 <div class="media">

 <div class="media-body">
 <h4>Focus on form</h4>
 <p>
 Run tall but relaxed. Your feet should hit
 the ground beneath your hips, not out in
 front of you.
 </p>
 </div>
 </div>

 </div>
 </main>
 </div>
</body>

Main element, the white box,
that contains most of the page

Four media
objects for
each of the
gray boxes

www.EBooksWorld.ir

91The purpose of floats
This listing gives you the page structure: a header and a main element that will con-
tain the rest of the page. Inside the main element is the page title, followed by an
anonymous div (that is, a div with no class or ID). This serves to group the four gray
media elements, each of which contains an image and a body element.

TIP It’s usually easiest to lay out the large regions of a page first, then work
your way to the smaller elements within.

Before you start floating elements, you’ll put the outer structure of the page in place.
Add the next listing to your stylesheet.

:root {
 box-sizing: border-box;
}

*,
::before,
::after {
 box-sizing: inherit;
}

body {
 background-color: #eee;
 font-family: Helvetica, Arial, sans-serif;
}

body * + * {
 margin-top: 1.5em;
}

header {
 padding: 1em 1.5em;
 color: #fff;
 background-color: #0072b0;
 border-radius: .5em;
 margin-bottom: 1.5em;
}

.main {
 padding: 0 1.5em;
 background-color: #fff;
 border-radius: .5em;
}

This sets some base styles for the page, including a box-sizing fix and lobotomized owl
from chapter 3. Next, you’ll want to constrain the width of the page contents, shown
in figure 4.4. Notice the light gray margins on both sides and how both the header
and the main container are equal widths within.

Listing 4.2 Base styles for the page

Global border-box
fix (from chapter 3)

Lobotomized owl
global margins
(from chapter 3)

Header colors
and padding

Main (white
container) colors
and padding

www.EBooksWorld.ir

92 CHAPTER 4 Making sense of floats
This layout is common for centering content on a page. You can achieve it by placing
your content inside two nested containers and then set margins on the inner con-
tainer to position it within the outer one (figure 4.5). Web developer Brad Westfall
calls this the double container pattern.

In our example, <body> serves as the outer container. By default, this is already 100%
of the page width, so you won’t have to apply any new styles to it. Inside that, you’ve
wrapped the entire contents of the page in a <div class="container">, which serves
as the inner container. To that you’ll apply a max-width and auto margins to center
the contents. Add this listing to your stylesheet.

Figure 4.4 Page with constrained width

Figure 4.5 The double container pattern

www.EBooksWorld.ir

93Container collapsing and the clearfix
.container {
 max-width: 1080px;
 margin: 0 auto;
}

By using max-width instead of width, the element shrinks to below 1080 px if the
screen’s viewport is smaller than that. That is to say, in smaller viewports, the inner
container will fill the screen, but on larger ones, it’ll expand to 1080 px. This is
important to avoid horizontal scrolling on devices with smaller screens.

4.2 Container collapsing and the clearfix
In the past, browser bugs have plagued the behavior of floats, albeit mostly in IE 6 and 7.
It’s almost certain you no longer need to support these browsers, so you don’t need to
worry about those bugs. Now you can trust that browsers will handle floats consistently.

 A few behaviors of floats still might catch you off guard, however. These are not
bugs, but rather floats behaving precisely how they’re supposed to behave. Let’s
look at how they work and how you can adjust their behavior to achieve the layout
you want.

Listing 4.3 Styles for the double container

Do you still need to know how to use floats?
Flexbox is rapidly supplanting the use of floats for page layout. Its behavior is straight-
forward and often more predictable for new developers. You might find yourself ask-
ing whether you need to know about floats at all. Has CSS moved past this?

With modern browsers, you can certainly go a lot further without floats than you could
in the past. You can probably get by without floats altogether. But if you need to sup-
port Internet Explorer, you may not want to let go of them just yet. Flexbox is only sup-
ported in IE 10 and 11, and even then it has a few bugs. If you don’t want to worry
about browser bugs or you need to support older browsers, floats could be a better
option.

If you’re supporting an older codebase, it likely uses floats; you’ll need to know how
they work in order to maintain it. Additionally, float-based layouts often require less
markup, where newer methods require the addition of container elements. If you have
limited control over the markup you’re styling, floats might be more capable of doing
what you need.

And floats are still the only way to move an image to the side of the page and allow
text to wrap around it.

Sets a maximum
width of 1,080 px

Auto left and right margins will grow to fill
the available space, centering the element
within the outer container.

www.EBooksWorld.ir

94 CHAPTER 4 Making sense of floats
4.2.1 Understanding container collapsing

On your page, let’s float the four media boxes to the left. The problems will immedi-
ately become apparent (figure 4.6).

What happened to the white background? We see it behind the page title (“Running
tips”), but it stops there instead of extending down to encompass the media boxes. To
see this on your page, add the following listing to your stylesheet. Then we’ll look at
why this happens and how you can fix it.

.media {
 float: left;
 width: 50%;
 padding: 1.5em;
 background-color: #eee;
 border-radius: 0.5em;
}

You’ve set a light gray background on each media box, expecting to see the white
background of the container behind (or rather, around) them. Instead, the white
background stopped above the top row of media boxes. Why is this?

Listing 4.4 Floating the four media boxes to the left

Figure 4.6 Container with its floated descendants

Floats each media
box to the left

Sets a width to fit two
boxes across the page

www.EBooksWorld.ir

95Container collapsing and the clearfix
 The problem is that, unlike elements in the normal document flow, floated ele-
ments do not add height to their parent elements. This may seem odd, but it goes
back to the original purpose of floats.

 As you learned near the beginning of this chapter, floats are intended to allow
text to wrap around them. When you float an image inside a paragraph, the para-
graph does not grow to contain the image. This means, if the image is taller than the
text of the paragraph, the next paragraph will start immediately below the text of
the first, and the text in both paragraphs will wrap around the float. This is illus-
trated in figure 4.7.

In your page, everything inside the main element is floated except for the page title,
so only the page title contributes height to the container, leaving all the floated media
elements extending below the white background of the main. This isn’t the behavior
we want, so let’s fix it. The main element should extend down to contain the gray
boxes (shown in figure 4.8).

 One way you can correct this is with the float’s companion property, clear. If you
place an element at the end of the main container and use clear, it causes the con-
tainer to expand to the bottom of the floats. The code in the next listing shows, in
principle, what we want to do. You can add this to your page temporarily to see how
it works.

<main class="main">
 ...
 <div style="clear: both"></div>
</main>

Listing 4.5 Container extends to contain an element that clears floats

Figure 4.7 The float in one container
extends into the next container, allowing
text in both containers to wrap around the
floated element (containers highlighted
with dashed lines).

Adds an empty div with
a clear at the end of the
main container

www.EBooksWorld.ir

96 CHAPTER 4 Making sense of floats
The clear: both declaration causes this element to move below the bottom of floated
elements, rather than beside them. You can give this property the value left or right
to clear only elements floated to the left or right, respectively. Because this empty div
itself is not floated, the container will extend to encompass it, thereby containing the
floats above it as well.

 This sizes the container how you want, but it’s rather hacky; you’re adding
unwanted markup to your HTML to do the work that should be done by the CSS. Go
ahead and delete that empty div. Let’s look at a way you can accomplish this purely in
your CSS.

4.2.2 Understanding the clearfix

Instead of adding an extra div to your markup, you’ll use a pseudo-element. By using the
::after pseudo-element selector, you can effectively insert an element into the DOM
at the end of the container, without adding it to the markup.

Figure 4.8 Container extended to encompass the floats

www.EBooksWorld.ir

97Container collapsing and the clearfix
Listing 4.6 shows a common approach to the problem of containing floats, called a
clearfix. (Some developers like to abbreviate the class name to cf, which is conve-
niently also an abbreviation for “contain floats.”) Add this to your stylesheet.

.clearfix::after {
 display: block;
 content: " ";
 clear: both;
}

It’s important to know that the clearfix is applied to the element that contains the
floats; a common mistake is to apply it to the wrong element, such as the floats or
the container after the one that contains them.

NOTE The clearfix has gone through dozens of iterations over the years,
some more complicated than others. Many versions had nuances to correct
various browser bugs. Most of the workarounds are no longer necessary,
though this example has one such workaround in place: the space in the
content value. An empty string ("") works as well, but the added space char-
acter fixes an obscure bug in older versions of Opera. I tend to leave this fix
in because it’s unobtrusive.

One inconsistency with this clearfix remains: Margins of floated elements inside won’t
collapse to the outside of the clearfixed container; but, margins of non-floated ele-
ments will collapse as normal. You can see this in your page where the heading “Run-
ning tips” is pressed directly against the top of the white <main> (figure 4.8); its
margin has collapsed out of the container.

 Some developers prefer to use a modified version of the clearfix that will contain
all margins because it can be slightly more predictable. Adding this version to your
page will prevent the top margin of the page title from collapsing outside of the main,
as shown in figure 4.9, leaving appropriate spacing above the heading.

 For the modified version, update the clearfix in your stylesheet to match this listing.

pseudo-element—Special selectors that target certain parts of the document.
These begin with a double-colon (::) syntax, though most browsers also sup-
port a single-colon syntax for backward compatibility. The most common
pseudo-elements are ::before and ::after, which are used to insert content
at the beginning or end of an element. See appendix A for more information.

Listing 4.6 Using clearfix to contain floats

Targets the pseudo-element
at the end of the container

A non-inline display value and a
content value cause the pseudo-
element to appear in the document.

Makes the pseudo-element clear
all floats in the container

www.EBooksWorld.ir

98 CHAPTER 4 Making sense of floats
.clearfix::before,

.clearfix::after {
 display: table;
 content: " ";
}

.clearfix::after {
 clear: both;
}

This version makes use of display: table rather than display: block. By applying
this to both the ::before and ::after pseudo-elements, you’ll contain any child ele-
ments’ margins at both the top and bottom of the container. See the sidebar “Clearfix
and display: table” for a more complete explanation of why this works.

TIP This version of the clearfix also doubles as a useful way to prevent mar-
gin collapsing where we don’t want it.

Listing 4.7 Modifying clearfix to contain all margins

Figure 4.9 A modified clearfix contains all floats and margins; notice the top margin of the heading “Running
tips” is now contained inside the white <main>.

Causes both ::before and ::after
pseudo elements to appear

Prevents margins from collapsing
through the pseudo elements

Only the ::after
pseudo element
needs to clear floats.

www.EBooksWorld.ir

99Unexpected “float catching”
Which version of the clearfix you use in your projects is up to you. Some developers
make the argument that margin collapsing is a fundamental feature of CSS, so they
prefer not to contain margins. But, because neither version contains the margins of
floated elements, others prefer the more consistent behavior of the modified version.
Each argument has its merit.

4.3 Unexpected “float catching”
Now that the white container contains the floated media elements on your page,
another issue becomes apparent: The four media boxes aren’t laying out in two even
rows like you want. Instead, the first two boxes (“Strength” and “Cadence”) are in a
row as expected, but the third box (“Change it up”) is on the right, beneath the sec-
ond box. This leaves a large gap below the first box, which happens because the
browser places floats as high as possible. See figure 4.10 for a simplified diagram.

Clearfix and display: table
Using display: table in the clearfix contains margins because of a few peculiarities
of CSS. The creation of a display-table element (or, in this case, pseudo-element)
implicitly creates a table row within the element and a table cell within that. Because
margins don’t collapse through table-cell elements (as mentioned in chapter 3), they
won’t collapse through a display-table pseudo element either.

It might seem, then, that you could use display: table-cell to the same effect.
However, the clear property only works when applied to block-level elements. A table
is a block-level element, but a table cell is not; thus, the clear property could not be
applied along with display: table-cell. Therefore, you need to use display:
table to clear floats and its implied table cell to contain the margins.

Figure 4.10 Three left-floated boxes:
Box 3 doesn’t float all the way to the left
if box 1 is taller than box 2, instead it
floats up against box 1.

www.EBooksWorld.ir

100 CHAPTER 4 Making sense of floats
Because box 2 is shorter than box 1, there’s room for box 3 beneath it. Instead of
clearing box 1, box 3 “catches” on it. That is to say, it doesn’t float all the way to the
left edge, but rather floats against the bottom corner of box 1.

 The exact nature of this behavior is dependent on the heights of each of the
floated blocks. Even a 1 px difference in element heights can cause this problem. On
the other hand, if box 1 is shorter than box 2, there’ll be no edge for the third box to
catch on, and you won’t see the problem until the content changes later, resulting in
changed element heights.

 By floating a series of elements to one side, you can end up with a wild array of lay-
outs, depending on the heights of each box. Even changing the browser width can
alter things as this will affect line wrapping and will change the heights of the ele-
ments. What you want to see on your page instead is two floated boxes per row, as in
figure 4.11.

The fix for this is simple: The third float needs to clear the floats above it. Or, more
generally, the first element of each row needs to clear the float above it. Because you
know you have two boxes per row, you’ll need the odd numbered elements to each

Figure 4.11 Two elements per row: the second row of media elements should clear the elements in the first row.

www.EBooksWorld.ir

101Unexpected “float catching”
clear the row above. You can target these with the :nth-child() pseudo-class selector.
Add this ruleset to your stylesheet.

.media {
 float: left;
 width: 50%;
 padding: 1.5em;
 background-color: #eee;
 border-radius: 0.5em;
}

.media:nth-child(odd) {
 clear: left;
}

This code will work even if you add more elements to the page later. It targets the first,
third, fifth elements, and so on. If, instead, you had three items per row, you could tar-
get every third with the selector .media:nth-child(3n+1). See appendix A for more
on using the :nth-child selector.

NOTE This technique for clearing each row only works when you know how
many elements are on each row. If the width is defined using something other
than a percentage, the number of items can vary, depending on the viewport
width. In this case, your best bet is to use a different layout technique such as
the flexbox or inline-block elements.

Let’s also add margins to our media elements to provide a gutter between them. The
lobotomized owl will also add a top margin to every element except the first. This mis-
aligns the elements in the top row, so you’ll need to reset the top margin on those as
well. Update your stylesheet to match the following listing.

.media {
 float: left;
 margin: 0 1.5em 1.5em 0;
 width: calc(50% - 1.5em);
 padding: 1.5em;
 background-color: #eee;
 border-radius: 0.5em;
}

.media:nth-child(odd) {
 clear: left;
}

By adding right margins to the elements, they’ll no longer fit two to a row, so you’ll
have to subtract an equal amount from the element width using calc().

Listing 4.8 Using the :nth-child() selector to target every odd media element

Listing 4.9 Adding margins to the media elements

Each new row clears
the row above

Adds a right and bottom margin
to each media element

Subtracts the margin
from the width to avoid
unwanted line wrapping

www.EBooksWorld.ir

102 CHAPTER 4 Making sense of floats
4.4 Media objects and block formatting contexts
Now that each of the four gray boxes is laid out, let’s look at their contents. In our
intended design, we have an image on one side and a block of text beside it (figure
4.12). This is another common pattern in page layouts, which web developer Nicole
Sullivan has called the “media object.”

This pattern can be implemented in a number of ways, including the flexbox or table
displays, but we’ll do it using floats. The markup for one of the media objects in your
page looks like this:

<div class="media">

 <div class="media-body">
 <h4>Change it up</h4>
 <p>
 Don't run the same every time you hit the
 road. Vary your pace, and vary the distance
 of your runs.
 </p>
 </div>
</div>

I’ve added the classes media-image and media-body to the left and right parts of each
media object, which you’ll use to position them. You’ll start by floating the image to
the left. As you can see (figure 4.13), merely floating the image is not enough. When
the text is long enough, it wraps around the floated element. This is the normal float
behavior, but it’s not what we want in this case.

Add listing 4.10 to your stylesheet so that your page matches figure 4.13, then we’ll
take a look at how you can fix it. This code also removes the top margins from the
media body and the title within.

Figure 4.12 The media object
pattern: an image on the left and
descriptive content on the right

Figure 4.13 Unwanted text
wrapping around the floated image

www.EBooksWorld.ir

103Media objects and block formatting contexts
.media-image {
 float: left;
}

.media-body {
 margin-top: 0;
}

.media-body h4 {
 margin-top: 0;
}

To fix the behavior of the text, you’ll need to understand a little more about how
floats work.

4.4.1 Establishing a block formatting context

If you examine the media body in your browser’s DevTools (right-click and select
Inspect or Inspect Element), you’ll see that its box extends all the way to the left, so it
envelops the floated image (figure 4.14, left). The text inside the body wraps around
the image, but once it’s clear of the bottom of the image, it moves all the way to the
left of the box. What we want instead is to position the media body’s left edge to the
right of the floated image (figure 4.14, right).

To achieve the layout on the right, you’ll need to establish something called a block
formatting context for the media body. A block formatting context (sometimes called a
BFC) is a region of the page in which elements are laid out. A block formatting con-
text itself is part of the surrounding document flow, but it isolates its contents from
the outside context. This isolation does three things for the element that establishes
the BFC:

1 It contains the top and bottom margins of all elements within it. They won’t col-
lapse with margins of elements outside of the block formatting context.

2 It contains all floated elements within it.
3 It doesn’t overlap with floated elements outside the BFC.

Listing 4.10 Floating the media object image to the left

Floats image
to the left

Removes the top
margin applied by
the lobotomized owl

Overrides the top
margin applied by
user agent styles

Figure 4.14 By default, the text in the media object body wraps around the floated image (left). By giving the
body a block formatting context, the text doesn’t overlap (right).

www.EBooksWorld.ir

104 CHAPTER 4 Making sense of floats
Put simply, the contents inside a block formatting context will not overlap or interact
with elements on the outside as you would normally expect. If you apply clear to an
element, it’ll only clear floats within its own BFC. And, if you force an element to have
a new BFC, it won’t overlap with other BFCs.

 You can establish a new block formatting context in several ways. Applying any of
the following property values to an element triggers one:

 float: left or float: right—anything but none
 overflow: hidden, auto, or scroll—anything but visible
 display: inline-block, table-cell, table-caption, flex, inline-flex,

grid, or inline-grid—these are called block containers.
 position: absolute or position: fixed

NOTE The page’s root element also creates a top-level block formatting con-
text for the page.

4.4.2 Using a block formatting context for media object layouts

Once each media-body establishes its own block formatting context, your page will
have the layout you want (figure 4.15). The best way to do this is often to set an over-
flow value, either hidden or auto.

Let’s set the overflow value in your stylesheet. Update the corresponding portion of
your stylesheet to match this listing.

Figure 4.15 Block formatting contexts applied to all media bodies

www.EBooksWorld.ir

105Grid systems
.media {
 float: left;
 margin: 0 1.5em 1.5em 0;
 width: calc(50% - 1.5em);
 padding: 1.5em;
 background-color: #eee;
 border-radius: 0.5em;
}

.media:nth-child(odd) {
 clear: left;
}

.media-image {
 float: left;
 margin-right: 1.5em;
}

.media-body {
 overflow: auto;
 margin-top: 0;
}

.media-body h4 {
 margin-top: 0;
}

Using overflow: auto for the BFC is generally the simplest approach. You can use
instead the other properties mentioned earlier, but some have considerations to take
into account: A float or an inline-block will grow to 100% width, so you’d need to
restrict the width of the element to prevent it from line wrapping below the float. On
the contrary, a table-cell element will only grow enough to contain its contents, so you
may need to set a large width to force it to fill the remaining space.

NOTE In some circumstances, the contents from one block formatting con-
text may still overlap the contents of another. This will happen if the contents
overflow the container (for example, the content is too wide) or if negative
margins pull the contents outside the container.

For more on the media object, read Nicole Sullivan’s seminal post about it at
http://mng.bz/6wj3w. This post gets into a methodology called Object-Oriented CSS
(OOCSS), which we’ll look at in more depth in chapter 9.

4.5 Grid systems
You’ve now built your full page layout, but it’s not without faults. Most notably, you
haven’t set yourself up to easily reuse parts of the styles. You’ve coded the media
objects to have a width of 50%, so they’re always in rows of two. What if later you want
to use the same design in rows of three instead?

Listing 4.11 Adding overflow auto triggers a new block formatting context

Adds a margin to the
image to insert space
between it and the body

Establishes a new block formatting
context so the body doesn’t
overlap the floated image

www.EBooksWorld.ir

http://www.stubbornella.org/content/2010/06/25/the-media-object-saves-hundreds-of-lines-of-code

106 CHAPTER 4 Making sense of floats
 One popular way to facilitate code reuse is with the help of a grid system. This is a
series of class names you can add to your markup to structure portions of the page
into rows and columns. It should provide no visual styles, like colors or borders, to the
page—it should only set widths and positions of containers. Inside each of these con-
tainers, you can add new elements to visually style however you want.

 Most of the popular CSS frameworks include a grid system of some sort. Details vary
from one to another, but usually the general principle is the same: put a row container
around one or more column containers. The classes applied to the column containers
will each determine their respective widths. Let’s build our own grid system so you’ll
have a good sense of how they work, then you can apply it to your page.

4.5.1 Understanding a grid system

Before you build the grid system, let’s look at how you can expect it to behave. A grid
system is usually defined to hold a certain number of columns in each row; this is usu-
ally 12, but that can vary. The child elements of a row may have a width anywhere from
one column up to 12 columns wide.

 Figure 4.16 illustrates a couple of rows in a 12-column grid. The first row has six,
1-column elements and three, 2-column elements. The next row has a 4-column ele-
ment followed by an 8-column element. Each set adds up to 12 columns, so they’ll fill
the width of the row.

Twelve is a good number of columns because it is divisible by two, three, four, and six,
which provides a lot of flexibility. This makes it easy to do a three-column layout
(three, 4-column elements) or a four-column layout (four, 3-column elements). You
can also build asymmetrical layouts, such as a 9-column main element and a 3-column
sidebar. Inside each column element, you can place whatever markup you need.

CSS framework—A library of prebuilt CSS code that provides styles for pat-
terns common in web development. These can be useful for rapid prototyp-
ing or providing a solid starting point upon which you can build additional
styles. Common frameworks include Bootstrap, Foundation, and Pure.

1 column 1 column 1 column 1 column 1 column 1 column

4 column

2 column 2 column 2 column

8 column

Figure 4.16 Two rows of a 12-column grid system: child elements of each row can be any width from 1 to 12
columns.

www.EBooksWorld.ir

107Grid systems

a
ea

o

 The markup for this example is straightforward. Each row has a row container div
and inside that you’ll place a div for each column element with a column-n class
(where n is the number of columns across the grid):

<div class="row">
 <div class="column-4">4 column</div>
 <div class="column-8">8 column</div>
</div>

4.5.2 Building a grid system

Let’s convert your page so that it uses a grid system. This will prove to be a little more
verbose than our previous approach to the page, but the tradeoff for more reusable
CSS will be worth it. Edit your HTML to match this listing.

<main class="main clearfix">
 <h2>Running tips</h2>

 <div class="row">
 <div class="column-6">
 <div class="media">

 <div class="media-body">
 <h4>Strength</h4>
 <p>
 Strength training is an important part of
 injury prevention. Focus on your core—
 especially your abs and glutes.
 </p>
 </div>
 </div>
 </div>

 <div class="column-6">
 <div class="media">

 <div class="media-body">
 <h4>Cadence</h4>
 <p>
 Check your stride turnover. The most efficient
 runners take about 180 steps per minute.
 </p>
 </div>
 </div>
 </div>
 </div>

 <div class="row">
 <div class="column-6">
 <div class="media">

Listing 4.12 HTML restructured to use a grid system

Adds
a row
round
ch set
of two
media
bjects

Adds a column-6
around each media
object, placing each
media object in its
own column

Closes the first row
before opening the
second

www.EBooksWorld.ir

108 CHAPTER 4 Making sense of floats
 <div class="media-body">
 <h4>Change it up</h4>
 <p>
 Don't run the same every time you hit the
 road. Vary your pace, and vary the distance
 of your runs.
 </p>
 </div>
 </div>
 </div>

 <div class="column-6">
 <div class="media">

 <div class="media-body">
 <h4>Focus on form</h4>
 <p>
 Run tall but relaxed. Your feet should hit
 the ground beneath your hips, not out in
 front of you.
 </p>
 </div>
 </div>
 </div>
 </div>
</main>

This listing gives you a row around each set of two media objects. Inside that you’ve
wrapped each media object within its own 6-column container.

 Let’s add the styles to lay out the grid. First, you’ll define the row class. Add this
code to your stylesheet.

.row::after {
 content: " ";
 display: block;
 clear: both;
}

This is nothing more than a clearfix. You add it here so you don’t need to add a
clearfix class every time you use a row. You’ll add more to this in a bit, but funda-
mentally all the row does is provide a wrapper to contain the columns, and that’s what
this clearfix does for you.

 Next, you’ll add the initial styles for the columns. This is where the “heavy lift-
ing” takes place, but as you’ll see, it’s not too complicated. You’ll float all the col-
umns to the left and specify widths for each column value. Add this listing to your
stylesheet.

Listing 4.13 CSS for the grid rows

Adds a column-6 around each
media object, placing each media
object in its own column

Replicates the
clearfix so the row
contains its floated
columns

www.EBooksWorld.ir

109Grid systems
[class*="column-"] {
 float: left;
}

.column-1 { width: 8.3333%; }

.column-2 { width: 16.6667%; }

.column-3 { width: 25%; }

.column-4 { width: 33.3333%; }

.column-5 { width: 41.6667%; }

.column-6 { width: 50%; }

.column-7 { width: 58.3333%; }

.column-8 { width: 66.6667%; }

.column-9 { width: 75%; }

.column-10 { width: 83.3333%; }

.column-11 { width: 91.6667% }

.column-12 { width: 100%; }

The first selector here may be new to you. It’s an attribute selector, targeting elements
based on their class attribute. This allows you to do something a little more com-
plex than what you can do with a normal class selector. The *= comparator specifies
any values that include the substring specified: any elements with column- anywhere
within the class attribute. This targets <div class="column-2"> as well as <div
class="column-6">. In short, it targets any of your column classes. Now all col-
umns, regardless of their size, will float left. See appendix A for more on attribute
selectors.

NOTE This attribute selector casts a wider net than you’ll need, as it also tar-
gets something like a <div class="column-header">. Keep this in mind as
you write more styles. For our purposes, it’d be best to consider “column” in a
class name as a sort of reserved word from here on out so you don’t collide
with these rules.

After applying float: left to all columns, you then target each one individually, spec-
ifying their widths. This may take a little work on a calculator to get each value: the
desired number of columns divided by the total number of columns (12). Be sure to
keep at least a few decimal points of precision to avoid rounding errors.

 At this stage, you’ve got the basics of a grid system in place. Your page should look
like figure 4.17. It looks a bit broken at this point because the media objects still have
some styles that are duplicating the work done by the grid system.

 You can now simplify the media object. It doesn’t need to float left anymore, as the
grid column does that for you. It also doesn’t need a width; without one, it’ll naturally
fill 100% of its container. The container is a column-6 element, which is the size you
want. You can also remove the margins and the nth-child selector that clears each row.
Then your page should match figure 4.18.

Listing 4.14 CSS for the grid columns

Targets all elements with
a class attribute that
includes “column-”

1/12

2/12

3/12, and so on . . .

www.EBooksWorld.ir

110 CHAPTER 4 Making sense of floats
After deleting these portions, all your styles for the media object should match those
in the next listing.

.media {
 padding: 1.5em;
 background-color: #eee;
 border-radius: 0.5em;
}

Listing 4.15 Removing positioning and sizing declarations from the media object

Figure 4.17 With the grid system applied, the media objects no longer need some of their styles.

Figure 4.18 Removing position-related properties from the media object allows the grid system to position and
size them accordingly.

Deleted float,
margin, and width
declarations Deleted the .media:nth-

child(odd) ruleset with the
clear: left declaration

www.EBooksWorld.ir

111Grid systems
.media-image {
 float: left;
 margin-right: 1.5em;
}

.media-body {
 overflow: auto;
 margin-top: 0;
}

.media-body h4 {
 margin-top: 0;
}

Because you removed all margins from the media object, including the bottom mar-
gin, there’s no longer a gap below the last row of media objects and the bottom of
their container. Let’s use a padding on the container to bring that back.

.main {
 padding: 0 1.5em 1.5em;
 background-color: #fff;
 border-radius: .5em;
}

Now you’re close to the final design, although there are a few more details to put into
place.

4.5.3 Adding gutters

One thing your grid system still lacks is a gutter between each column. Let’s add those
next, along with a couple other details. After you finish, your page should look like fig-
ure 4.19.

 You can create gutters by adding left and right padding to each grid column. By
adding this to the grid system instead of individual components, like the media object,
you’ll be able to re-use the grid over and over on other pages without worrying about
gutters again.

 Because you want a gutter size of 1.5 em, you can divide that in half and then put
half on the left and half on the right of each column element. Update your grid styles
to match the next listing. This also removes the top margin from all columns, overrid-
ing the lobotomized owl again.

[class*="column-"] {
 float: left;
 padding: 0 0.75em;
 margin-top: 0;
}

Listing 4.16 Adding a bottom padding to the main container

Listing 4.17 Adding gutters to the grid system

Adds a 1.5 em bottom
padding to match the
left and right padding

Adds .75 em left and right padding
to each column element

Removes top margins
from columns

www.EBooksWorld.ir

112 CHAPTER 4 Making sense of floats
Now the grid column elements will always have a nice 1.5 em gutter between them,
and things look pretty good. This code does, however, introduce a slight misalignment
between a grid column and content outside the grid row. Figure 4.20 shows where this
occurs on the page: the left edge of the page title (“Running tips”) should align with
the edge of the media object in the first column. Instead, the column padding pushes
the gray box of the media object a little to the right.

You could fix this by removing the left padding from the first column in each row and
right padding from the last column in each row; but instead of applying a bunch of
specific rules for that, let’s adjust the width of the row.

Figure 4.19 Complete page with fully working grid system

Figure 4.20 The left side of the page title aligns with the edge of the
column element (dashed line); instead, it should align with the contents
inside the column.

www.EBooksWorld.ir

113Grid systems
 You can stretch the row to be a little wider using negative margins. By applying a -
0.75 em left margin to the row, the negative margin pulls the row left outside its con-
tainer. After doing this, the padding of the column will push its contents 0.75 em back
to the right, making the first column align with the title (figure 4.21). Applying a neg-
ative margin on the right as well will do the same on the right side.

The code for this is shown in listing 4.18. No matter where you place a row, it’ll now be
stretched to 1.5 em wider than its container; padding on the columns will then shift
their contents back to align with the edges of the outer container. This is effectively a
modified version of the double container pattern, where the row is the inner con-
tainer inside its wrapper.

.row {
 margin-left: -0.75em;
 margin-right: -0.75em;
}

You now have a fully working grid system, powered by floats. Whether you use this
one, or one you find in a CSS framework, you should now have an understanding of
how it does what it does. Your full stylesheet should now match the following listing.

:root {
 box-sizing: border-box;
}

*,
::before,
::after {

Listing 4.18 Adding negative margins to the grid row

Listing 4.19 Complete stylesheet

Figure 4.21 Applying a negative margin to the row pulls it left,
compensating for the column’s padding. Its contents now align with
the page title.

www.EBooksWorld.ir

114 CHAPTER 4 Making sense of floats
 box-sizing: inherit;
}

body {
 background-color: #eee;
 font-family: Helvetica, Arial, sans-serif;
}

body * + * {
 margin-top: 1.5em;
}

.row {
 margin-left: -0.75em;
 margin-right: -0.75em;
}

.row::after {
 content: " ";
 display: block;
 clear: both;
}

[class*="column-"] {
 float: left;
 padding: 0 0.75em;
 margin-top: 0;
}

.column-1 { width: 8.3333%; }

.column-2 { width: 16.6667%; }

.column-3 { width: 25%; }

.column-4 { width: 33.3333%; }

.column-5 { width: 41.6667%; }

.column-6 { width: 50%; }

.column-7 { width: 58.3333%; }

.column-8 { width: 66.6667%; }

.column-9 { width: 75%; }

.column-10 { width: 83.3333%; }

.column-11 { width: 91.6667% }

.column-12 { width: 100%; }

header {
 padding: 1em 1.5em;
 color: #fff;
 background-color: #0072b0;
 border-radius: .5em;
 margin-bottom: 1.5em;
}

.main {
 padding: 0 1.5em 1.5em;
 background-color: #fff;
 border-radius: .5em;
}

www.EBooksWorld.ir

115Summary
.container {
 max-width: 1080px;
 margin: 0 auto;
}

.media {
 padding: 1.5em;
 background-color: #eee;
 border-radius: 0.5em;
}

.media-image {
 float: left;
 margin-right: 1.5em;
}

.media-body {
 overflow: auto;
 margin-top: 0;
}

.media-body h4 {
 margin-top: 0;
}

.clearfix::before,

.clearfix::after {
 display: table;
 content: " ";
}
.clearfix::after {
 clear: both;
}

You’ve now laid out a page using floats entirely. They have their quirks, but they get
the job done. With a deeper understanding of their behavior, you’ll hopefully not find
floats too intimidating. As I mentioned earlier, there are more easy-to-understand
alternatives to float-based layouts. We’ll take a look at those in the next two chapters.

Summary
 Floats exist to allow text to wrap around an element—but that’s not often the

effect you want.
 Use a clearfix to contain floated elements.
 Understand the three tricks of a block formatting context: containing floats,

preventing margin collapse, and preventing document flow from wrapping
around a floated element.

 Use the double container pattern to center page contents.
 Use the media object pattern to position descriptive text alongside an image.
 Use a grid system to create a wide array of page layouts.

www.EBooksWorld.ir

 Flexbox
If you’ve been in the CSS world in the past few years, you’ve almost certainly heard
someone sing the praises of flexbox. Flexbox—formally Flexible Box Layout—is a
new method for laying out elements on the page. It’s more predictable and offers
far more specific control than floats. It’s also a simple solution to the long-standing
problems of vertical centering and equal height columns.

 Flexbox has been on the horizon for several years, and developers who only
need to support cutting-edge browsers have been using it for a little while. But now
we’ve reached a point where it’s supported in all major browsers, including partial
support in IE10. In fact, it has broader support than even the border-radius prop-
erty (which isn’t supported in Opera Mini). If you’ve been waiting for the right
time to learn flexbox, that time has arrived. This chapter will get you acquainted.

 If flexbox has one weakness, it’s the overwhelming number of options it pro-
vides. It introduces 12 new properties to CSS, including some shorthand proper-

This chapter covers
 Flex containers and flex items

 Main axis and cross axis

 Element sizes in flexbox

 Element alignment in flexbox
116

www.EBooksWorld.ir

117Flexbox principles
ties. That can be a lot to take in at once. When I first started learning flexbox, it felt a
bit like drinking from a fire hose, and I had a hard time committing all the new prop-
erties to memory. I’m going to take a different approach in teaching you about flex-
box—we’ll ease into it.

 I’ll cover a few basic principles of the flexbox layout that you’ll need to under-
stand, followed by practical examples. You don’t need to learn all 12 new properties in
order to use flexbox. I’ve found that only a few of them do most of the heavy lifting, so
we’ll focus on those. The rest of the properties provide options for aligning and spac-
ing elements. Near the end of the chapter, I’ll explain those and provide a quick refer-
ence guide that you can return to when you need it.

5.1 Flexbox principles
Flexbox begins with the familiar display property. Applying display: flex to an ele-
ment turns it into a flex container, and its direct children turn into flex items. By default,
flex items align side by side, left to right, all in one row. The flex container fills the
available width like a block element, but the flex items may not necessarily fill the width
of their flex container. The flex items are all the same height, determined naturally by
their contents.

TIP You can also use display: inline-flex. This creates a flex container
that behaves more like an inline-block element rather than a block. It flows
inline with other inline elements, but it won’t automatically grow to 100%
width. Flex items within it generally behave the same as with display: flex.
Practically speaking, you won’t need to use this very often.

Flexbox is unlike previous display values (inline, inline-block, and so on), which only
affect the elements they are applied to. Instead, a flex container asserts control over
the layout of the elements within. A flex container and its items are illustrated in fig-
ure 5.1.

The items are placed along a line called the main axis, which goes from the main-start
(left) to the main-end (right). Perpendicular to the main axis is the cross axis. This goes
from the cross-start (top) to the cross-end (bottom). The direction of these axes can be
changed; I’ll show you how to do this later in the chapter.

C
ro

s
s
 a

x
is

Main axis

Flex items

Flex container

1 2 3 4

Figure 5.1 A flexbox container
and its elements

www.EBooksWorld.ir

118 CHAPTER 5 Flexbox
NOTE Because flexbox layout is defined in terms of the main axis and cross
axis, I’ll use the terms start and end in reference to the axes, rather than left
and right or top and bottom.

These concepts (flex container, flex items, and the two axes) cover a lot of what you
need to know about flexbox. Applying display: flex gets you pretty far before you’ll
need to pick up any of those 12 new properties. To try it out, you’ll build the page
shown in figure 5.2.

I’ve structured this page to cover a number of ways to use flexbox. We’ll use flexbox
for the navigational menu across the top and to lay out the three white boxes and the
stylistic $20.00 text on the bottom right.

 Start a new page and link it to a new stylesheet. Then add this markup to your
page.

<!doctype html>
<head>
 <title>Flexbox example page</title>
 <link href="styles.css" rel="stylesheet"
 type="text/css" />
</head>
<body>
 <div class="container">
 <header>

Listing 5.1 Markup for the page

Figure 5.2 Finished page with a flexbox layout

www.EBooksWorld.ir

119Flexbox principles
 <h1>Ink</h1>
 </header>
 <nav>
 <ul class="site-nav">
 Home
 Features
 Pricing
 Support
 <li class="nav-right">
 About

 </nav>

 <main class="flex">
 <div class="column-main tile">
 <h1>Team collaboration done right</h1>
 <p>Thousands of teams from all over the
 world turn to Ink to communicate
 and get things done.</p>
 </div>

 <div class="column-sidebar">
 <div class="tile">
 <form class="login-form">
 <h3>Login</h3>
 <p>
 <label for="username">Username</label>
 <input id="username" type="text"
 name="username"/>
 </p>
 <p>
 <label for="password">Password</label>
 <input id="password" type="password"
 name="password"/>
 </p>
 <button type="submit">Login</button>
 </form>
 </div>
 <div class="tile centered">
 <small>Starting at</small>
 <div class="cost">
 $
 20
 .00
 </div>

 Sign up

 </div>
 </div>
 </main>
 </div>
</body>

Navigation
menu

Large
main tile

Sidebar containing
two stacked tiles

www.EBooksWorld.ir

120 CHAPTER 5 Flexbox
To get your stylesheet started, enter this CSS. (Hopefully, these styles are becoming
familiar by now.)

:root {
 box-sizing: border-box;
}

*,
::before,
::after {
 box-sizing: inherit;
}

body {
 background-color: #709b90;
 font-family: Helvetica, Arial, sans-serif;
}

body * + * {
 margin-top: 1.5em;
}

.container {
 max-width: 1080px;
 margin: 0 auto;
}

Now that the page is started, let’s start laying out some things with flexbox. You’ll start
with the navigational menu at the top.

5.1.1 Building a basic flexbox menu

For this example, you’ll want the navigational menu to look like figure 5.3. Most of
the menu items will align to the left, but you’ll pull one over to the right side.

To build this menu, you should consider which element needs to be the flex con-
tainer; keep in mind that its child elements will become the flex items. In the case of
our page menu, the flex container should be the unordered list (). Its children,
the list items (), will be the flex items. Here’s what this looks like:

<ul class="site-nav">
 Home
 Features

Listing 5.2 Base styles for the page

Global
box-sizing fix
(chapter 3)

Sets green background
color and sans-serif
font for the page

Global margins
(chapter 3)

Double-container to
center page contents
(chapter 4)

Figure 5.3 Navigational menu with items laid out using flexbox

www.EBooksWorld.ir

121Flexbox principles
 Pricing
 Support
 <li class="nav-right">About

We’ll take a few passes at this as I walk you through building this menu step by step.
First, you’ll apply display: flex to the list. You’ll also need to override the default list
styles from the user agent stylesheet and the lobotomized owl top margins. You’ll also
apply the colors. Figure 5.4 shows the result for these steps.

In the markup, you’ve given the a site-nav class, which you can then use to tar-
get it in the styles. Add these declarations to your stylesheet.

.site-nav {
 display: flex;
 padding-left: 0;
 list-style-type: none;
 background-color: #5f4b44;
}

.site-nav > li {
 margin-top: 0;
}

.site-nav > li > a {
 background-color: #cc6b5a;
 color: white;
 text-decoration: none;
}

Note that you’re working with three levels of elements here: the site-nav list (the
flex container), the list items (the flex items), and the anchor tags (the links) within
them. I’ve used direct descendant combinators (>) to ensure you only target direct
child elements. This is probably not strictly necessary; that is, it’s unlikely future
changes will add a nested list inside the navigational menu, but it doesn’t hurt to
play it safe. If you’re not familiar with this combinator, see appendix A for more
information.

Listing 5.3 Applying flexbox and colors to the menu

Figure 5.4 Menu with flexbox and colors applied

Makes site-nav the flex container
and its children the flex items

Removes the left padding
and list bullets in the
user agent styles

Overrides the
lobotomized owl
top margin

Removes the underline
from link text in the
user agent styles

www.EBooksWorld.ir

122 CHAPTER 5 Flexbox
Vendor prefixes
If you happen to use flexbox in an older browser, such as IE10 or Safari 8, you’ll find
that it doesn’t work. That’s because older browsers require vendor prefixes on flexbox
attributes. This is how browsers have supported several new CSS features before the
specification was stable. Instead of implementing display: flex, for example, older
versions of Safari implemented display: -webkit-flex. You’ll need to add this
declaration for flexbox to work in Safari 8, followed by the normal one:

.site-nav {
 display: -webkit-flex;
 display: flex;
}

A browser ignores declarations it doesn’t understand, so in Safari 8, the cascaded
value will be -webkit-flex, which behaves the same as flex in more recent ver-
sions. The same goes for property names as well as values. For example, you’ll need
to declare the flex property (which I’ll cover later in this chapter) like this:

 -webkit-flex: 1;
 flex: 1;

For IE10, it gets even more complicated, as that browser implements an older version
of the flexbox specification. To add support for this version, you’ll need to know the
older property names (for example, flexbox instead of flex) and then add prefixed
versions of those:

 display: -ms-flexbox;
 display: -webkit-flex;
 display: flex;

This is a lot to keep track of, and adds a lot of repetition to your stylesheet. I strongly
recommend you automate this process with a tool called Autoprefixer, which is avail-
able at https://github.com/postcss/autoprefixer. This tool parses your CSS and out-
puts a new file with all the relevant prefixes added where necessary. It’ll also convert
to the older flexbox standard for IE10 when necessary. It works with a wide array of
build tools, so you can incorporate it into whatever workflow you are comfortable with.

For simplicity, I’m leaving prefixes out of the examples in this chapter. The examples
will work in all modern browsers, but when it comes to production-ready code, please
run your code through Autoprefixer first so it’ll work with a broader range of browser
versions.

It’s important to know, too, that the concept of prefixes is going away. All major
browsers have switched (or are in the process of switching) to a new method of sup-
porting upcoming, unstable features behind an “experimental features” option. I’ll
walk you through this in chapter 6.

www.EBooksWorld.ir

https://github.com/postcss/autoprefixer

123Flexbox principles
5.1.2 Adding padding and spacing

Our menu looks rather scrawny at this point. Let’s flesh it out a bit with some padding.
You’ll add padding to both the container and to the menu links. After this step, your
menu will look like figure 5.5.

If you’re not too familiar with building this sort of menu (whether with flexbox or any
other layout method), it’s important to note how to do this. In the examples, you’ll
apply the menu item padding to the internal <a> elements, not the elements.
You’ll need the entire area that looks like a menu link to behave like a link when the
user clicks it. Because the link behavior comes from clicking the <a> element, you
don’t want to turn the into a big nice-looking button, but only have a small click-
able target area (the <a>) inside it.

 Update your styles to match those in this listing. This will fill out the padding of
the menu.

.site-nav {
 display: flex;
 padding: .5em;
 background-color: #5f4b44;
 list-style-type: none;
 border-radius: .2em;
}

.site-nav > li {
 margin-top: 0;
}

.site-nav > li > a {
 display: block;
 padding: .5em 1em;
 background-color: #cc6b5a;
 color: white;
 text-decoration: none;
}

You’ll notice you made the links a display block. If they were to remain inline, the
height they’d contribute to their parent would be derived from their line height—not
their padding and content, which is the behavior you want for this page. You also
applied a little more horizontal padding than vertical, which is generally more aes-
thetically pleasing.

Listing 5.4 Adding padding to the menu and its links

Figure 5.5 Menu with padding and link styles added

Adds padding to menu,
outside of the links

Makes links block level so
they add to the parent
elements’ height

Adds padding
inside the links

www.EBooksWorld.ir

124 CHAPTER 5 Flexbox
 Next, you’ll need to add space between the menu items. Regular old margins will
do the trick. Even better, flexbox allows you to use margin: auto to fill available space
between the flex items. You can also use this to move the final menu item to the right
side. After applying the margins, the menu will be complete (figure 5.6).

See the styles for this in listing 5.5, where you’ll apply a margin between each item, but
not to the outside edges. You can achieve this layout by using the margin-left prop-
erty and an adjacent sibling combinator, which is a method similar to the lobotomized
owl from chapter 3. You’ll also apply an auto left margin to the last button, which
causes the margin to fill all the available space, pushing the last button all the way to
the right. Add this listing to your stylesheet.

.site-nav > li + li {
 margin-left: 1.5em;
}

.site-nav > .nav-right {
 margin-left: auto;
}

You applied the auto margin to only one element (About). You could apply it to the
Support menu item instead to shift both it and the About item to the right.

 Margins work well here because you want different spacing between these items. If
you wanted equal spacing between the items, the justify-content property would be
a better approach. I’ll come back to this in a bit.

5.2 Flex item sizes
The previous listing used margins for spacing between the flex items. To define their
size, you could use the familiar width and height properties, but flexbox provides
more options for sizing and spacing than the familiar margin, width, and height
properties alone can accomplish. Let’s look at one of the more useful flexbox proper-
ties, flex.

 The flex property controls the size of the flex items along the main axis (that is,
the width). In listing 5.6, you’ll apply a flex layout to the main area of the page, then
you’ll use the flex property to control the size of the columns. Initially, your main
area will look like figure 5.7.

Listing 5.5 Using margins to space the items

Figure 5.6 Margins apply spacing between flex items

Targets every list item that
follows another list item
(that is, all but the first)

Auto margins inside a flexbox
will fill the available space.

www.EBooksWorld.ir

125Flex item sizes
Add the styles in the next listing to your stylesheet. This listing provides a white back-
ground to the three tiles via the tile class and a flex layout to the <main> element by
targeting the flex class.

.tile {
 padding: 1.5em;
 background-color: #fff;
}

.flex {
 display: flex;
}

.flex > * + * {
 margin-top: 0;
 margin-left: 1.5em;
}

Now your content is divided into two columns: on the left is the larger area for the pri-
mary content of the page, and on the right is a login form and a small pricing box.
You haven’t done anything yet to specify the width of the two columns, so they’ll size
themselves naturally, based on their content. On my screen (figure 5.7), this means
they don’t quite fill the width of the available space, though this isn’t necessarily the
case with a smaller window size.

Listing 5.6 Applying flexbox to the main container

Figure 5.7 Main area with a flex layout applied

Adds a background
color and padding
to the three tiles

Applies a flexbox
layout to the
main container

Removes the top margin
and applies space between
the flex items

www.EBooksWorld.ir

126 CHAPTER 5 Flexbox
NOTE When it comes to CSS, it’s important to consider not only the spe-
cific content you have on the page now, but also what will happen as that
content changes, or as the stylesheet is applied to similar pages. You need to
decide how you want things like these two columns to behave under various
circumstances.

The flex property, which is applied to the flex items, gives you a number of options.
Let’s apply the most basic use case first to get familiar with it. You’ll use the column-main
and column-sidebar classes to target the columns, using flex to apply widths of two-
thirds and one-third. Add the following to your stylesheet.

.column-main {
 flex: 2;
}

.column-sidebar {
 flex: 1;
}

Now the two columns grow to fill the space, so together they are the same width as the
nav bar, with the main column twice as wide as the sidebar. Flexbox was kind enough
to take care of the math for you. Let’s take a closer look at what’s going on.

 The flex property is shorthand for three different sizing properties: flex-grow,
flex-shrink, and flex-basis. In this listing, you’ve only supplied flex-grow, leaving
the other two properties to their default values (1 and 0% respectively). So flex: 2 is
equivalent to flex: 2 1 0%. These shorthand declarations are generally preferred, but
you can also declare the three individually:

flex-grow: 2;
flex-shrink: 1;
flex-basis: 0%;

Let’s look at what these three properties mean, one at a time. We’ll start with flex-
basis, as the other two are based on it.

5.2.1 Using the flex-basis property

The flex basis defines a sort of starting point for the size of an element—an initial
“main size.” The flex-basis property can be set to any value that would apply to
width, including values in px, ems, or percentages. Its initial value is auto, which
means the browser will look to see if the element has a width declared. If so, the
browser uses that size; if not, it determines the element’s size naturally by the con-
tents. This means that width will be ignored for elements that have any flex basis
other than auto. Figure 5.8 illustrates this.

Listing 5.7 Using the flex property to set column widths

www.EBooksWorld.ir

127Flex item sizes
Once this initial main size is established for each flex item, they may need to grow or
shrink in order to fit (or fill) the flex container along the main axis. That’s where
flex-grow and flex-shrink come in.

5.2.2 Using flex-grow

Once flex-basis is computed for each flex item, they (plus any margins between
them) will add up to some width. This width may not necessarily fill the width of the
flex container, leaving a remainder (figure 5.8).

 The remaining space (or remainder) will be consumed by the flex items based on
their flex-grow values, which is always specified as a non-negative integer. If an item
has a flex-grow of 0, it won’t grow past its flex basis. If any items have a non-zero
growth factor, those items will grow until all of the remaining space is used up. This
means the flex items will fill the width of the container (figure 5.9).

Declaring a higher flex-grow value gives that element more “weight”; it’ll take a larger
portion of the remainder. An item with flex-grow: 2 will grow twice as much as an
item with flex-grow: 1 (figure 5.10).

flex-basis: 20%flex-basis: 20% flex-basis: 20% Remainder: 40%

Figure 5.8 Three flex items with a flex basis of 20%, giving each an initial main size (width)
of 20%

flex-basis: 20%
: 0flex-grow

1/2 of remainder

flex-basis: 20%
: 0flex-grow

flex-basis: 20%
: 1flex-grow

flex-basis: 20%
: 1flex-grow

1/2 of remainder

Figure 5.9 Remaining width partitioned evenly among items with equal flex-grow values

flex-basis: 20%
: 0flex-grow

1/3 of
remainder

flex-basis: 20%
: 0flex-grow

flex-basis: 20%
: 2flex-grow

flex-basis: 20%
: 1flex-grow

2/3 of remainder

Figure 5.10 Items with a higher flex-grow value consume a higher proportion of the remaining
available width.

www.EBooksWorld.ir

128 CHAPTER 5 Flexbox
This is what you did on your page. The shorthand declarations flex: 2 and flex: 1
set a flex basis of 0%, so 100% of the container’s width is the remainder (minus the
1.5 em margin between the two columns). The remainder is then distributed to the
two columns: two-thirds to the first column and the remaining third to the second
(figure 5.11).

TIP Favor the use of the shorthand flex property instead of individually
declaring flex-grow, flex-shrink, or flex-basis. Unlike most shorthand
properties, these aren’t set to their initial values when omitted. Instead, the
shorthand assigns useful default values for any of the three that you omit:
flex-grow of 1, flex-shrink of 1, and a flex-basis of 0%. These are most
commonly what you’ll need.

5.2.3 Using flex-shrink

The flex-shrink property follows similar principles as flex-grow. After determining
the initial main size of the flex items, they could exceed the size available in the flex
container. Without flex-shrink, this would result in an overflow (figure 5.12).

Figure 5.11 The two columns fill the flex container’s width.

flex-basis: 40%

Overflow

flex-basis: 40% flex-basis: 40%

Figure 5.12 Flex items can have an initial size exceeding that of the flex container.

www.EBooksWorld.ir

129Flex item sizes
The flex-shrink value for each item indicates whether it should shrink to prevent
overflow. If an item has a value of flex-shrink: 0, it will not shrink. Items with a
value greater than 0 will shrink until there is no overflow. An item with a higher value
will shrink more than an item with a lower value, proportional to the flex-shrink
values.

 As an alternate approach to your page, you could achieve the two columns sizing
by relying on flex-shrink. To do this, specify the flex basis for each column using the
desired percent (66.67% and 33.33%). The width plus the 1.5 em gutter would over-
flow by 1.5 em. Give both columns a flex-shrink of 1, and 0.75 em is subtracted from
the width of each, allowing them to fit in the container. The following listing shows
what this code would look like.

.column-main {
 flex: 66.67%;
}

.column-sidebar {
 flex: 33.33%;
}

This is a different approach to effectively get the same result as before (listing 5.7).
Either one suits our purposes for this page.

NOTE If you look at the nitty gritty details, there’s a slight discrepancy
between the results of listing 5.7 and listing 5.8. The reason for this is a little
complicated, but in short, it’s because the column-main has padding but the
column-sidebar doesn’t. The padding changes the way the initial main size
of the flex item is determined when flex-basis is 0%. Therefore, the
column-main from listing 5.7 is 3 em wider than that in listing 5.8—the size
of its left and right padding. If you need your measurements to be precise,
either ensure the paddings are equal or use the flex basis method shown in
listing 5.8.

5.2.4 Some practical uses

You can make use of the flex property in countless ways. You can define propor-
tional columns using flex-grow values or flex-basis percentages as you did on
your page. You can define fixed width columns and “fluid” columns that scale with
the viewport. You can build a grid system, much like the one you built in chapter 4,
using flexbox instead of floats. Figure 5.13 illustrates some of layouts you can build
with flexbox.

 The third example illustrates part of the “Holy Grail” layout. This is a layout that
has been notoriously difficult in CSS. The two sidebars are a fixed width, whereas the

Listing 5.8 Using the flex property to set widths

Equivalent to flex:
1 1 66.67%

Equivalent to flex:
1 1 33.33%

www.EBooksWorld.ir

130 CHAPTER 5 Flexbox
center column is “fluid,” meaning it will grow to fill the available space. Most notably,
all three columns are equal height, as determined by their contents. Although this lay-
out is possible using floats, it requires the use of some obscure and brittle hacks. As
you might imagine, you can mix and match these layouts in any number of ways, with
any different number of flex items.

5.3 Flex direction
Another important option in flexbox is the ability to shift the direction of the axes.
The flex-direction property, applied to the flex container, controls this. Its initial
value (row) causes the items to flow left-to-right, as you’ve done. Specifying flex-
direction: column causes the flex items to stack vertically (top to bottom) instead.
Flexbox also supports row-reverse to flow items right to left, and column-reverse to
flow items bottom to top (figure 5.14).

 You’ll use this in the right column of the page, where two tiles are stacked atop one
another. This may seem unnecessary; after all, the two tiles in our right column are
already stacked. Normal block elements behave like this. But there’s a problem with
the page layout that isn’t immediately obvious. It shows up if you add more content to
the main tile. This is shown in figure 5.15.

 Add a few more headings and paragraphs to the column-main in your code. You’ll
see that the main tile grows beyond the bottom of the tiles on the right. Flexbox is
supposed to provide columns of equal height, so why isn’t this working?

flex: 0 0 300px flex: 1

flex: 50% flex: 25% flex: 25%

flex: 0 0 200px flex: 1 flex: 0 0 200px

Items grow to their natural
width. They don’t necessarily
fill the width of the container.

First item has a fixed width of
300 px. Optionally add a max-width
to prevent its contents from forcing
it to grow wider. Second items fills
all remaining space.

The “Holy Grail” layout. The first
and third item have a fixed width
of 200 px each. Center items grow
to fill all remaining space.

Items grow to percentage widths
specified. Can be used to build a
grid system like that in chapter 4.

flex: none flex: none flex: none

Figure 5.13 Ways you can define item sizes using flex

www.EBooksWorld.ir

131Flex direction
Figure 5.15 shows (by the dashed outline I’ve added) that the flex items are in fact
equal height. The problem is that the tiles inside the right flex item don’t grow to
fill it.

1

flex-direction: row

flex-direction: row-reverse

flex-direction:
column

1

2

3

4

flex-direction:
column-reverse

4

3

2

1

3 42

4 3 2 1

Figure 5.14 Changing the flex direction changes the main axis. The cross axis
changes as well, to remain perpendicular to the main axis.

Figure 5.15 The main tile grows beyond the height of the tiles in the right column (dashed line indicates the size
of column-sidebar).

www.EBooksWorld.ir

132 CHAPTER 5 Flexbox
 The ideal layout would be the one shown in figure 5.16. The two tiles on the right
grow to fill the column, even when the content on the left is longer. Before flexbox,
this effect was impossible to achieve using CSS (though it was possible with a little help
from JavaScript).

5.3.1 Changing the flex direction

What you need is for the two columns to grow if necessary to fill the container’s
height. To do this, turn the right column (the column-sidebar) into a flex con-
tainer with a flex-direction: column. Then, apply a non-zero flex-grow value to
both tiles within. The next listing shows the code for this. Update your stylesheet
to match.

.column-sidebar {
 flex: 1;
 display: flex;
 flex-direction: column;
}

.column-sidebar > .tile {
 flex: 1;
}

Listing 5.9 Creating a flex column on the right

Figure 5.16 The ideal layout: Tiles in the right column align with the large tile on the left.

A flex item for the
outer flexbox and a
flex container for the
new inner one

Applies flex-grow to
the items within

www.EBooksWorld.ir

133Flex direction
You now have nested flexboxes. The element <div class="column-sidebar"> is a flex
item for the outer flexbox, and it’s the flex container for the inner flexbox. The over-
all structure of these elements looks like this (with text removed for brevity):

<main class="flex">
 <div class="column-main tile">
 ...
 </div>
 <div class="column-sidebar">
 <div class="tile”>...</div>
 <div class="tile”>...</div>
 </div>
</div>

The inner flexbox here has a flex direction of column, so the main axis is rotated. It
flows from top to bottom (and the cross axis now flows from left to right). This means
that for those flex items, flex-basis, flex-grow, and flex-shrink now apply to the
element height rather than the width. By specifying flex: 1, the height of these items
will stretch if necessary to fill the container. Now, regardless of which side is taller, the
bottom of the large tile and the bottom of the second smaller tile align.

 When working with a vertical flexbox (column or column-reverse), the same gen-
eral concepts for rows apply, but there’s one difference to keep in mind—in CSS,
working with height is fundamentally different than working with widths. A flex con-
tainer will be 100% the available width, but the height is determined naturally by its
contents. This behavior does not change when you rotate the main axis.

 The flex container’s height is determined by its flex items. They fill it perfectly. In
a vertical flexbox, flex-grow and flex-shrink applied to the items will have no effect
unless something else forces the height of the flex container to a specific size. On your
page, that “something” is the height derived from the outer flexbox.

5.3.2 Styling the login form

You’ve now applied the overall layout to the entire page. All that remains is styling the
smaller elements in the two tiles on the right: the login form and the signup link. You
don’t need flexbox for the login form, but for the sake of completeness, I’ll walk you
through it briefly. Afterwards, the form should look like figure 5.17.

Figure 5.17 Login form

www.EBooksWorld.ir

134 CHAPTER 5 Flexbox
The <form> has the class login-form, so you’ll use that to target it in your CSS. Add
the code in this listing to your stylesheet. This will style the login form in three parts:
the heading, the input fields, and the button.

.login-form h3 {
 margin: 0;
 font-size: .9em;
 font-weight: bold;
 text-align: right;
 text-transform: uppercase;
}

.login-form input:not([type=checkbox]):not([type=radio]) {
 display: block;
 width: 100%;
 margin-top: 0;
}

.login-form button {
 margin-top: 1em;
 border: 1px solid #cc6b5a;
 background-color: white;
 padding: .5em 1em;
 cursor: pointer;
}

First is the heading, which uses font properties you should be familiar with. You
used text-align to shift the text to the right and text-transform to make the text
all uppercase. Notice it wasn’t capitalized in the HTML. When capitalization is
purely a styling decision, as this is, you would normally capitalize it according to
standard grammatical rules in the HTML and use CSS to manipulate it. This way,
you can change it in the future without having to retype portions of the HTML in
proper caps.

 The second ruleset styles the input boxes. The selector here is peculiar, mainly
because the <input> element is peculiar. The input element is used for text inputs
and passwords, as well as a number of other HTML5 inputs that look similar, like num-
bers, emails, and dates. It’s also used for form input items that look entirely different;
namely, radio buttons and checkboxes.

 I’ve combined the :not() pseudo-class with the attribute selectors [type=check-
box] and [type=radio] (see appendix A for details). This targets all input elements
except checkboxes and radio buttons. It’s a blacklist approach, excluding what I
don’t want to target. You could alternately use a whitelist approach, using multiple
attribute selectors to name every type of input you want to target, but this can get
rather long.

Listing 5.10 Login form styles

Makes the
heading bold,
right-aligned,
and all caps

Styles all text-like
inputs (not
checkboxes or
radio buttons)

Styles the
button

www.EBooksWorld.ir

135Alignment, spacing, and other details
NOTE The form for this page only uses a text input and a password input, but
it’s important for you to consider other markup the CSS could be applied to
in the future and try to account for that.

Inside the ruleset, you make the inputs display block, so they appear on their own
line. You also had to specify a width of 100%. Normally, display block elements auto-
matically fill the available width, but <input> is a bit different. Its width is determined
by the size attribute, which indicates roughly the number of characters it should con-
tain without scrolling. This attribute reverts to a default value if not specified. You can
force a specific width with the CSS width property.

 The third ruleset styles the Login button. These styles are mostly straightforward;
however, the cursor property may be unfamiliar. It controls the appearance of the
mouse cursor when the cursor is over the element. The value pointer turns the cursor
into a hand with a pointing finger, like the default cursor when pointing at links. This
communicates to the user that they can click the element. It gives a final detail of pol-
ish to the button.

5.4 Alignment, spacing, and other details
You should now have a solid grasp of the most essential parts of flexbox. But as I
mentioned earlier, there’s a wide array of options that you’ll occasionally need.
These pertain mostly to the alignment or spacing of flex items within the flex con-
tainer. You can also enable line wrapping or reorder individual flex items. The prop-
erties that control these are all illustrated on the following pages: table 5.1 lists all
the properties that may be applied to a flex container, and table 5.2 lists all the prop-
erties for flex items.

 In general, you’ll begin a flexbox with the methods we’ve already covered:

 Identify a container and its items and use display: flex on the container
 If necessary, set the flex-direction on the container
 Declare margins and/or flex values for the flex items where necessary to con-

trol their size

Once you’ve put elements roughly where they belong, you can add other flexbox
properties where necessary. My suggestion is to get familiar with the concepts we’ve
covered thus far. Go ahead and read through the rest of this chapter to get a sense for
the other options flexbox supplies, but don’t worry about committing them all to
memory until you need them. When you find you do need them, return here as a ref-
erence. Most of these final options are fairly straightforward, though you’ll only need
them occasionally.

5.4.1 Understanding flex container properties

Several properties can be applied to a flex container to control the layout of its flex
items. The first is flex-direction, which I’ve already covered in section 5.3. Let’s
look at some others.

www.EBooksWorld.ir

136 CHAPTER 5 Flexbox
Table 5.1 Flex container properties

Property Values (initial values in bold)

flex-direction

This specifies the direction of
the main axis. The cross axis will
be perpendicular to the main
axis.

flex-wrap

This specifies whether flex items
will wrap on to a new row inside
the flex container (or on to a new
column if flex-direction is
column or column-reverse).

flex-flow Shorthand for <flex-direction> <flex-wrap>

justify-content

Controls how items are posi-
tioned along the main axis.

www.EBooksWorld.ir

137Alignment, spacing, and other details
align-items

Controls how items are posi-
tioned along the cross axis.

align-content

If flex-wrap is enabled, this con-
trols the spacing of the flex rows
along the cross axis. If items
don’t wrap, this property is
ignored.

Table 5.2 Flex item properties

Property Values

flex-grow

An integer that specifies the
“growth factor,” determining
how much the item will grow
along the main axis to fill
unused space

flex-shrink

An integer that specifies the
“shrink factor,” determining
how much the item will shrink
along the main axis, if needed,
to prevent overflow. Ignored if
the container has flex wrap
enabled.

Table 5.1 Flex container properties (continued)

Property Values (initial values in bold)

www.EBooksWorld.ir

138 CHAPTER 5 Flexbox
FLEX-WRAP PROPERTY

The flex-wrap property can be used to allow flex items to wrap to a new row (or
rows). This can be set to nowrap (the initial value), wrap, or wrap-reverse. When
wrapping is enabled, the items don’t shrink according to their flex-shrink values.
Instead, any items that would overflow the flex container wrap onto a new line.

 If the flex direction is column or column-reverse, then flex-wrap will allow the
flex items to overflow into a new column. However, this only happens if something
constrains the height of the container; otherwise, it grows to contain its flex items.

FLEX-FLOW PROPERTY

The flex-flow property is shorthand for both flex-direction and flex-wrap. For
example, flex-flow: column wrap specifies that the flex items will flow from top to
bottom, wrapping onto a new column if necessary.

JUSTIFY-CONTENT PROPERTY

The justify-content property controls how the items are spaced along the main axis
if they don’t fill the size of the container. Supported values include a number of new

flex-basis

Specifies the initial size of the
item before flex-grow or
flex-shrink is applied.

<length> or <percent>

flex Shorthand for: <flex-grow> <flex-shrink> <flex-basis>

align-self

Controls how the item is
aligned on the cross axis. This
will override the container’s
align-items value for spe-
cific item(s). Ignored if the
item has an auto margin set
on the cross axis.

order

An integer that moves a flex
item to a specific position
among its siblings, disregard-
ing source order.

Table 5.2 Flex item properties (continued)

Property Values

www.EBooksWorld.ir

139Alignment, spacing, and other details
keywords: flex-start, flex-end, center, space-between, and space-around. A value
of flex-start (the default) stacks the items against the beginning of the main axis—
the left side in a normal row direction. There will be no space between them unless
the items have margins specified. A value of flex-end stacks the items at the end of
the main axis and, accordingly, center centers them.

 The value space-between puts the first flex item at the beginning of the main axis,
and the last item at the end. Remaining items are positioned evenly between them.
The value space-around is similar, but it will also add even spacing before the first
item and after the last.

 Spacing is applied after margins and flex-grow values are calculated. This means if
any items have a non-zero flex-grow value, or any items have an auto margin on the
main axis, then justify-content has no effect.

ALIGN-ITEMS PROPERTY

Whereas justify-content controls item alignment along the main axis, align-items
adjusts their alignment along the cross axis. The initial value for this is stretch, which
causes all items to fill the container’s height in a row layout, or width in a column lay-
out. This provides columns of equal height.

 The other values allow flex items to size themselves naturally, rather than filling
the container size. (This is similar conceptually to the vertical-align property.)

 flex-start and flex-end align the items along the start or end of the cross
axis (top or bottom of a row, respectively).

 center centers the items.
 baseline aligns the items so that the baseline of the first row of text in each flex

item is aligned.

The value baseline is useful if you want the baseline of a header in one flex item with
a large font to line up with the baseline of smaller text in the other flex items.

TIP It’s easy to confuse the names of the properties justify-content and
align-items. I remember them by thinking of styling text: you can “justify”
text to spread it horizontally from edge to edge. And, much like vertical-
align, you can “align” inline items vertically.

ALIGN-CONTENT PROPERTY

If you enable wrapping (using flex-wrap), this property controls the spacing of each
row inside the flex container along the cross axis. Supported values are flex-start,
flex-end, center, stretch (the initial value), space-between, and space-around.
These values apply spacing similar to the way described above for justify-content.

5.4.2 Understanding flex item properties

I’ve described flex-grow, flex-shrink, flex-basis, and their collective shorthand,
flex (section 5.2). We’ll next look at two additional properties for flex items: align
-self and order.

www.EBooksWorld.ir

140 CHAPTER 5 Flexbox
ALIGN-SELF PROPERTY

This property controls a flex item’s alignment along its container’s cross axis. This does
the same thing as the flex container property align-items, except it lets you align indi-
vidual flex items differently. Specifying the value auto will defer to the container’s align-
items value—this is the initial value. Any other value overrides the container’s setting.
The align-self property supports the same keyword values as align-items: flex-
start, flex-end, center, stretch, and baseline.

ORDER PROPERTY

Normally, flex items are laid out in the order they appear in the HTML source. They
are stacked along the main axis, beginning at the start of the axis. By using the order
property, you can change the order the items are stacked. You may specify any integer,
positive or negative. If multiple flex items have the same value, they’ll appear accord-
ing to source order.

 Initially, all flex items have an order of 0. Specifying a value of -1 to one item will
move it to the beginning of the list, and a value of 1 will move it to the end. You can
specify order values for each item to rearrange them however you wish. The numbers
don’t necessarily need to be consecutive.

WARNING Be careful with the use of order. Making the visual layout order on
the screen drastically different from the source order can harm accessibility
of your site. Navigation using the Tab key will still follow the source order in
most browsers, which can be confusing. Screen-reading software for visually
impaired users will also follow the source order in most cases.

5.4.3 Using alignment properties

Let’s use a couple of these properties to finish your page. The final tile has a stylized
price and a call-to-action (CTA) button. When you’re done, the last step in the page
should render like figure 5.18.

The markup for this section is already in your page. It’s as follows:

<div class="tile centered">
 <small>Starting at</small>

Figure 5.18 Stylized text using flexbox

www.EBooksWorld.ir

141Alignment, spacing, and other details
 <div class="cost">
 $
 20
 .00
 </div>

 Sign up

</div>

The text $20.00 is wrapped in a <div class="cost">, which you’ll use as the flex con-
tainer. It has three flex items for the three different parts of the text you want to align
($, 20, and .00). I’ve chosen spans for these, rather than divs, because these are inline
by default. If for some reason the CSS fails to load, or the browser doesn’t support
flexbox, the text $20.00 will still appear on one line.

 In the next listing, you’ll use justify-content to horizontally center the flex
items within the container. Then you’ll use align-items and align-self to control
their vertical alignment. Add this code to your stylesheet.

.centered {
 text-align: center;
}

.cost {
 display: flex;
 justify-content: center;
 align-items: center;
 line-height: .7;
}

.cost > span {
 margin-top: 0;
}

.cost-currency {
 font-size: 2rem;
}
.cost-dollars {
 font-size: 4rem;
}
.cost-cents {
 font-size: 1.5rem;
 align-self: flex-start;
}

.cta-button {
 display: block;
 background-color: #cc6b5a;
 color: white;
 padding: .5em 1em;

Listing 5.11 Setting styles for the cost tile

Centers flex items on both
the main and cross axes

Overrides margins from
the lobotomized owl

Sets different font
sizes for each part
of the cost

Overrides align-items
for this item, aligning
it to the top instead
of center

www.EBooksWorld.ir

142 CHAPTER 5 Flexbox
 text-decoration: none;
}

This code lays out the flexbox for the stylized $20.00, as well as defining a centered
class to center the rest of the text, and a cta-button class for the CTA button.

 The one strange declaration here is line-height: .7. This is because the line
height of the text inside each flex item is what determines the height of each item.
This means that the elements had a little more height than the height of the text
itself—an em-height includes descenders, which this text doesn’t have, so the charac-
ters here are actually a little less than 1 em tall. I arrived at this value purely by trial-
and-error until the tops of the 20 and .00 aligned visually. See chapter 13 for more on
working with text.

5.5 A couple of things to be aware of
Flexbox is a huge step forward for CSS. Once you’re familiar with it, you might be
tempted to start using it for everything on the page. I caution you to trust the normal
document flow and only add flexbox where you know you’ll need it. There’s no rea-
son to avoid it; but don’t go crazy treating everything as a nail to its hammer.

5.5.1 Flexbugs

The implementation of flexbox isn’t perfect in all browsers, especially IE10 and IE11.
Flexbox works fine in most cases, but there are some bugs you might encounter if you
have the wrong circumstances on your page. Always be sure to test your flexbox imple-
mentations in any older browsers that you want to support.

 Rather than spend a lot of time discussing bugs you may or may not ever need
to deal with, I’ll instead refer you to a great resource called Flexbugs. Visit it at
https://github.com/philipwalton/flexbugs. This is an up-to-date list of all known flex-
box browser bugs (14 total at the time of writing). It explains exactly what circum-
stances cause them and, in most cases, offers a workaround to deal with the bug. If you
ever find your flexbox layout behaving strangely in a particular browser, visit this page
and see if you’ve encountered one of these browser bugs.

5.5.2 Full-page layout

One of the interesting things about flexbox is how the flex sizes are calculated based
on the number of flex items and the amount (and size) of content within them. This
can lead to an odd behavior if your page is large or is loaded over a slow connection.

 As the browser loads content, it progressively renders it to the screen, even as it
continues to download the remainder of the page. Assume you have a three-column
layout, built using a flexbox (flex-direction: row). If the content for two of these
columns loads, the browser might render them before it loads the content for the
third column. Then, when the rest of the content loads, the browser recalculates the
sizes of each flex item and renders the page again. The user will see a two-column

www.EBooksWorld.ir

https://github.com/philipwalton/flexbugs

143Summary
layout momentarily, then the columns will resize (perhaps drastically), and the third
column will appear.

 Jake Archibald, a developer advocate for Google Chrome, has written about this at
https://jakearchibald.com/2014/dont-use-flexbox-for-page-layout/. You can see exam-
ples of this happening in that article. One suggestion he gives is to favor grid layout
for the full page layout (which I cover in the next chapter).

NOTE This behavior is only an issue with multiple columns in a row. It doesn’t
occur with multiple rows in a column (flex-direction: column) for the main
page layout.

Summary
 Use flexbox for versatile, easy-to-control layout of page content.
 Autoprefixer can simplify flexbox support for older browsers.
 Use flex to specify almost any imaginable combination of flex item sizes.
 Use nested flexboxes to piece together more complicated layouts and to fill the

heights of naturally sized boxes.
 Flexbox automatically creates columns of equal height.
 Use align-items or align-self to vertically center a flex item inside its flex

container.

www.EBooksWorld.ir

https://jakearchibald.com/2014/dont-use-flexbox-for-page-layout/

Grid layout
Flexbox has revolutionized the way we do layout on the web, but it’s only the begin-
ning. It has a big brother: another new specification called the Grid Layout Mod-
ule. Together, these two specifications provide a full-featured layout engine for the
web like you’ve never seen before.

 In this chapter, I’ll show you how you can start learning grid layout today. I’ll
give you an overview of how it works, then take you through several examples to
illustrate the different things grid layout can do. Building a basic grid is simple. It’s
also powerful enough to enable complex layouts, but doing so requires learning
new properties and keywords. This chapter will guide you through them.

 The CSS grid lets you define a two-dimensional layout of columns and rows
and then place elements within the grid. Some elements may only fill one cell of
the grid; others can span multiple columns or rows. The size of the grid can be

This chapter covers
 Using CSS’ first true layout system—grid

 Understanding grid layout options

 Laying out items on a grid

 Using flexbox and grid together to build a
cohesive web page layout
144

www.EBooksWorld.ir

145Web layout is here
defined precisely, or you can allow it to automatically size itself as needed to fit the
contents within. You can place items precisely within the grid, or allow them to flow
naturally to fill in the gaps. A grid lets you build complex layouts like the one shown
in figure 6.1.

6.1 Web layout is here
The emergence of grid layout was not like that of other CSS features, such as flexbox.
As browsers implemented early versions of flexbox, they made it available through the
use of vendor prefixes. The original intention of vendor prefixes was to allow develop-
ers to experiment with the technology before using it in production. This is not how
things played out, however.

 It took several years to develop the flexbox specification to a stable point. In the
meantime, developers got excited about the new feature and started using it, prefixes
and all. Then, as the specification evolved, browsers updated their implementations.
Developers had to update their code to match, but they also had to leave the old code
in place to support older browsers as well. It made for a rough introduction of flexbox
into the world.

 To prevent this from happening again, browser vendors approached grid layout
differently. Instead of implementing it with vendor prefixes, they implemented it as a
feature the user must explicitly opt into. Developers could experiment with it to learn
how it worked and to report bugs, but as far as your average user was concerned,
browser support was effectively zero. At the same time, browsers had almost com-
pletely implemented grid layout.

 Instead of a long, drawn-out rollout of development and debugging, all major
browsers were able to turn on a full-featured, mostly debugged implementation of
grid, virtually overnight. In March 2017, they started flipping the switch. In the span of
three weeks, Firefox, Chrome, Opera, and Safari all released updates to their brows-
ers, enabling the grid layout. Microsoft Edge followed suit in June 2017. In the span of
three months, browser support grew from 0% to almost 70% of users. This is unprece-
dented in the world of CSS.

 Level 1 of the grid specification is stable, and all modern browsers now conform to
it. This means grid layout is ready for production use now, as long as you do a little
work to ensure a reasonable fallback design. I’ll cover this near the end of the chapter.

Figure 6.1 Boxes in a sample grid layout

www.EBooksWorld.ir

146 CHAPTER 6 Grid layout
NOTE Microsoft implemented an early version of grid layout using vendor
prefixes. This means IE10 and IE11 have partial support for grid layout using
a -ms- prefix. To support these browsers, use Autoprefixer as discussed in
chapter 5 (see the sidebar “Vendor prefixes”).

6.1.1 Building a basic grid

Now, let’s create a simple grid layout to make sure it works in your browser. You’ll lay
out six boxes in three columns as shown in figure 6.2. The markup for this grid is
shown in listing 6.1.

Create a new page and link it to a new stylesheet. Add the code in the following listing
to your page. In the code, I’ve added the letters a through f so it’s apparent where
each element ends up in the grid.

<div class="grid">
 <div class="a">a</div>
 <div class="b">b</div>
 <div class="c">c</div>

Enabling experimental features
Before browsers supported grid layout by default, they allowed developers to enable
it. Even though grid is now enabled, it’s important to know how to access other exper-
imental features should you want to learn those in the future.

In Chrome and Opera, this is done by enabling a flag in the browser settings. In
Chrome, type chrome://flags into your address bar and press Enter. If you use
Opera, go to opera://flags instead. Then scroll down until you find Experimental
Web Platform Features (or use the browser’s search feature) and click Enable.

If you prefer Firefox, you’ll need to download and install either Firefox Developer Edi-
tion (https://www.mozilla.org/en-US/firefox/developer/) or Firefox Nightly (https://
nightly.mozilla.org/). If you use Safari, you can install the Safari Technology Preview
or the Webkit Nightly Builds edition.

Listing 6.1 A grid with six items

Figure 6.2 A simple grid with three columns and two rows

The grid container

The container’s children
become the grid items

www.EBooksWorld.ir

https://www.mozilla.org/en-US/firefox/developer/
https://nightly.mozilla.org/
https://nightly.mozilla.org/
https://nightly.mozilla.org/

147Web layout is here
 <div class="d">d</div>
 <div class="e">e</div>
 <div class="f">f</div>
</div>

As with flexbox, grid layout applies to two levels of the DOM hierarchy. An element
with display: grid becomes a grid container. Its child elements then become grid items.

 Next, you’ll apply a few new properties to define the specifics of the grid. Add the
styles from this listing to your stylesheet.

.grid {
 display: grid;
 grid-template-columns: 1fr 1fr 1fr;
 grid-template-rows: 1fr 1fr;
 grid-gap: 0.5em;
}

.grid > * {
 background-color: darkgray;
 color: white;
 padding: 2em;
 border-radius: 0.5em;
}

If your browser supports grid layout, this code will render six equal-sized boxes in
three columns (figure 6.2). A number of new things are going on here. Let’s take a
closer look at them.

 First, you’ve applied display: grid to define a grid container. The container
behaves like a block display element, filling 100% of the available width. Although not
shown in this listing, you could also use the value inline-grid; in which case, the ele-
ment will flow inline and will only be as wide as is necessary to contain its children.
You’ll most likely not use inline-grid as often.

 Next come the new properties: grid-template-columns and grid-template-rows.
These define the size of each of the columns and rows in the grid. This example
uses a new unit, fr, which represents each column’s (or row’s) fraction unit. This unit
behaves essentially the same as the flex-grow factor in flexbox. The declaration
grid-template-columns: 1fr 1fr 1fr declares three columns with an equal size.

 You don’t necessarily have to use fraction units for each column or row. You can
also use other measures such as px, em, or percent. Or, you could mix and match. For
instance, grid-template-columns: 300px 1fr would define a fixed-size column of
300 px followed by a second column that will grow to fill the rest of the available
space. A 2 fr column would be twice as wide as a 1 fr column.

 Finally, the grid-gap property defines the amount of space to add to the gutter
between each grid cell. You can optionally provide two values to specify vertical and
horizontal spacing individually (for example, grid-gap: 0.5em 1em).

Listing 6.2 Laying out a basic grid

The container’s children
become the grid items

Makes the element
a grid container

Defines three columns
of equal width

Defines two rows
of equal height

Applies a gutter
between each
grid cell

www.EBooksWorld.ir

148 CHAPTER 6 Grid layout
 I encourage you to experiment with these values to see how they affect the final
layout. Add new columns or change their widths. Add or remove grid items. Continue
to experiment with the other layouts throughout this chapter. This will be the best way
to get the hang of things.

6.2 Anatomy of a grid
It’s important to understand the various parts of a grid. I’ve already mentioned grid
containers and grid items, which are the elements that make up the grid. Four other
important terms to know are illustrated in figure 6.3.

 Grid line—These make up the structure of the grid. A grid line can be vertical or
horizontal and lie on either side of a row or column. The grid-gap, if defined,
lies atop the grid lines.

 Grid track—A grid track is the space between two adjacent grid lines. A grid has
horizontal tracks (rows) and vertical tracks (columns).

 Grid cell—A single space on the grid, where a horizontal grid track and a vertical
grid track overlap.

 Grid area—A rectangular area on the grid made up by one or more grid cells.
The area is between two vertical grid lines and two horizontal grid lines.

You’ll refer to these parts of the grid as you build grid layouts. For instance, declaring
grid-template-columns: 1fr 1fr 1fr defines three vertical grid tracks of equal width.
It also defines four vertical grid lines: one down the left edge of the grid, two more
between each grid track, and one more along the right edge.

 In the previous chapter, you built a page using flexbox. Let’s take another look at
that design and consider how you could implement it using grid. The design is shown
in figure 6.4. I’ve added dashed lines to indicate the location of each grid cell. Notice
that some of the sections span multiple cells—filling a larger grid area.

 This grid has two columns and four rows. The top two horizontal grid tracks are
each dedicated to the page title (Ink) and the main navigational menu. The main
area fills the remaining two cells in the first vertical track, and the two sidebar tiles are
each placed in one of the remaining cells in the second vertical track.

NOTE Your design doesn’t need to fill every cell of the grid. Leave a cell
empty where you want to add whitespace.

Grid line Grid track Grid cell Grid area

Figure 6.3 The parts of a grid

www.EBooksWorld.ir

149Anatomy of a grid
It’s important to note the use of grid here does not render flexbox useless. As we go
through the page, you’ll see that flexbox is still an important part of the layout. I’ll
point out places on the page where it makes sense to use flexbox.

 When you built this page using flexbox, you had to nest the elements in a certain
way. You used one flexbox to define columns and nested another flexbox inside it to
define rows (listing 5.1). To build this layout with grid requires a different HTML
structure: You’ll need to flatten the HTML. Each item you place on the grid must be a
child of the main grid container. The new markup is shown next. Create a new page
(or modify your page from chapter 5) to match this listing.

<body>
 <div class="container">
 <header>
 <h1 class="page-heading">Ink</h1>
 </header>

 <nav>
 <ul class="site-nav">
 Home

Listing 6.3 HTML structure for a grid layout

Figure 6.4 Page layout created with grid. The dashed lines are added to indicate location of
each grid cell.

The “container” becomes
your grid container.

Each grid item must
be a child element of
the grid container.

www.EBooksWorld.ir

150 CHAPTER 6 Grid layout
 Features
 Pricing
 Support
 <li class="nav-right">
 About

 </nav>

 <main class="main tile">
 <h1>Team collaboration done right</h1>
 <p>Thousands of teams from all over the
 world turn to Ink to communicate
 and get things done.</p>
 </main>

 <div class="sidebar-top tile">
 <form class="login-form">
 <h3>Login</h3>
 <p>
 <label for="username">Username</label>
 <input id="username" type="text"
 name="username"/>
 </p>
 <p>
 <label for="password">Password</label>
 <input id="password" type="password"
 name="password"/>
 </p>
 <button type="submit">Login</button>
 </form>
 </div>

 <div class="sidebar-bottom tile centered">
 <small>Starting at</small>
 <div class="cost">
 $
 20
 .00
 </div>

 Sign up

 </div>
 </div>
</body>

This version of the page has placed each section of the page as a grid item: the header,
the menu (nav), the main, and the two sidebars. I’ve also added the tile class to the
main and the two sidebars, as this class provides the white background color and the
padding that these elements have in common.

 Let’s apply grid layout to the page, and put each section in place. We’ll pull in a lot
of styles from the version in chapter 5 momentarily, but first let’s get a general shape

Each grid item must
be a child element of
the grid container.

www.EBooksWorld.ir

151Anatomy of a grid
of the page in place. (I find it’s generally easier to build a page from the outside in.)
After building the basic grid, the page will appear as in figure 6.5.

Create an empty stylesheet and link to it from the page. Add this listing to the new
stylesheet. This code introduces a few new concepts, which I’ll walk you through in a bit.

:root {
 box-sizing: border-box;
}

*,
::before,
::after {
 box-sizing: inherit;
}

body {
 background-color: #709b90;
 font-family: Helvetica, Arial, sans-serif;
}

.container {
 display: grid;
 grid-template-columns: 2fr 1fr;

Listing 6.4 Applying a top-level page layout using grid

Figure 6.5 Page with basic grid structure in place

Defines two
vertical grid tracks

www.EBooksWorld.ir

152 CHAPTER 6 Grid layout
 grid-template-rows: repeat(4, auto);
 grid-gap: 1.5em;
 max-width: 1080px;
 margin: 0 auto;
}

header,
nav {
 grid-column: 1 / 3;
 grid-row: span 1;
}

.main {
 grid-column: 1 / 2;
 grid-row: 3 / 5;
}

.sidebar-top {
 grid-column: 2 / 3;
 grid-row: 3 / 4;
}

.sidebar-bottom {
 grid-column: 2 / 3;
 grid-row: 4 / 5;
}

.tile {
 padding: 1.5em;
 background-color: #fff;
}

.tile > :first-child {
 margin-top: 0;
}

.tile * + * {
 margin-top: 1.5em;
}

This listing provides a number of new concepts. Let’s take them one at a time.
 You set the grid container and defined its grid tracks using grid-template-columns

and grid-template-rows. The columns are defined using the fraction units 2 fr and 1
fr, so the first column will grow twice as much as the second. The rows use something
new, the repeat() function. This function provides a shorthand for declaring multi-
ple grid tracks.

 The declaration, grid-template-rows: repeat(4, auto); defines four horizontal
grid tracks of height auto. It’s equivalent to grid-template-rows: auto auto auto
auto. The track size of auto will grow as necessary to the size of its content.

 You can also define a repeating pattern with the repeat() notation. For instance,
repeat(3, 2fr 1fr) defines six grid tracks by repeating the pattern three times, result-
ing in 2fr 1fr 2fr 1fr 2fr 1fr. Figure 6.6 illustrates the resulting columns.

Defines four horizontal
grid tracks of size auto

Spans from
vertical grid line
1 to grid line 3

Spans exactly one
horizontal grid track

Positions other
grid items between
various grid lines

www.EBooksWorld.ir

153Anatomy of a grid
Or you can use repeat() as part of a longer pattern. grid-template-columns: 1fr
repeat(3, 3fr) 1fr, for instance, defines a 1 fr column followed by three 3 fr columns
then another 1 fr column (or 1fr 3fr 3fr 3fr 1fr). As you can see, the longhand is a
bit tricky to parse visually, which is why the repeat() shorthand comes in handy.

6.2.1 Numbering grid lines

With the grid tracks defined, the next portion of the code places each grid item into a
specific location on the grid. The browser assigns numbers to each grid line in a grid,
as shown in figure 6.7. The CSS uses these numbers to indicate where each item
should be placed.

You can use the grid numbers to indicate where to place each grid item using the
grid-column and grid-row properties. If you want a grid item to span from grid line
1 to grid line 3, you’ll apply grid-column: 1 / 3 to the element. Or, you can apply

grid-template-columns: repeat(3, 2fr 1fr);

grid-template-columns: 1fr repeat(3, 3fr) 1fr;

2fr 1fr 2fr 1fr 2fr 1fr

1fr 3fr 3fr 3fr 1fr

Figure 6.6 Using the repeat() function to define a repeating
pattern in a template definition

1 2 3

1

2

3

4

5

-1-2-3

-1

-2

-3

-4

-5

Figure 6.7 Grid lines are numbered beginning with 1 on the top left.
Negative numbers refer to the position from the bottom right.

www.EBooksWorld.ir

154 CHAPTER 6 Grid layout
grid-row: 3 / 5 to a grid item to make it span from the horizontal grid line 3 to grid
line 5. These two properties together specify the grid area you want for an element.

 In your page, several grid items are positioned this way:

.main {
 grid-column: 1 / 2;
 grid-row: 3 / 5;
}

.sidebar-top {
 grid-column: 2 / 3;
 grid-row: 3 / 4;
}

.sidebar-bottom {
 grid-column: 2 / 3;
 grid-row: 4 / 5;
}

This code positions the main in the first column (between grid lines 1 and 2), span-
ning the third and fourth rows (between grid lines 3 and 5). It places each sidebar tile
in the right column (between grid lines 2 and 3), stacked atop each other in the third
and fourth rows.

NOTE These properties are in fact shorthand properties: grid-column is
short for grid-column-start and grid-column-end; grid-row is short for
grid-row-start and grid-row-end. The forward slash is only needed in the
shorthand version to separate the two values. The space before and after
the slash is optional.

The ruleset that positions the header and nav at the top of the page is a little bit differ-
ent. Here I’ve used the same ruleset to target both:

header,
nav {
 grid-column: 1 / 3;
 grid-row: span 1;
}

This example uses grid-column as you’ve seen previously, making the grid item span
the full width of the grid. You can also specify grid-row and grid-column using a spe-
cial keyword, span (used in this example for grid-row). This tells the browser that the
item will span one grid track. I didn’t specify an explicit row with which to start or end,
so the grid item will be placed automatically using the grid item placement algorithm.
The placement algorithm will position items to fill the first available space on the grid
where they fit; in this case, the first and second rows. We’ll look closer at auto-placement
later in the chapter.

www.EBooksWorld.ir

155Anatomy of a grid
6.2.2 Working together with flexbox

After learning about grid, developers often ask about flexbox. Specifically, are these
two competing layout methods? The answer is no; they’re complementary. They were
largely developed in conjunction. Although there’s some overlap in what each can
accomplish, they each shine in different scenarios. Choosing between flexbox and
grid for a piece of a design is going to come down to your particular needs. The two
layout methods have two important distinctions:

 Flexbox is basically one-dimensional, whereas grid is two-dimensional.
 Flexbox works from the content out, whereas grid works from the layout in.

Because flexbox is one-dimensional, it’s ideal for rows (or columns) of similar ele-
ments. It supports line wrapping using flex-wrap, but there’s no way to align items in
one row with those in the next. Grid, on the contrary, is two-dimensional. It’s intended
to be used in situations where you want to align items in one track with those in
another. This distinction is illustrated in figure 6.8.

The second major distinction, as articulated by CSS WG member Rachel Andrew, is that
flexbox works from the content out, whereas a grid works from the layout in. Flexbox
lets you arrange a series of items in a row or column, but their sizes don’t need to be
explicitly set. Instead, the content determines how much space each item needs.

 With grid, however, you are first and foremost describing a layout, then placing items
into that structure. While the content of each grid item has the ability to influence the

Flexbox:
-one dimensional
alignment

If lines wrap, items
don’tin one row

necessarily align with
items in another row

Grid:
-two dimensional
alignment

Figure 6.8 Flexbox aligns items in one direction, while grid aligns items in two directions.

www.EBooksWorld.ir

156 CHAPTER 6 Grid layout
size of its grid track, this will affect the size of the entire track and, therefore, the size
of other grid items in the track.

 We’ve positioned the main regions of the page using grid because we want the con-
tents to adhere to the grid as it is defined. But for some other items on the page, such
as the navigational menu, we can allow the contents to have a greater influence on the
outcome; that is, items with more text can be wider, and items with less text can be
narrower. It’s also a horizontal (one-dimensional) layout. For these reasons, flexbox is
a more appropriate solution for these items. Let’s style these items using flexbox to
finish the page.

 Figure 6.9 shows the page with a top navigational menu that consists of a list of
links aligned horizontally. We’ll also use flexbox for the stylized pricing number on
the lower right. After adding these and a few other styles, we’ll arrive at the page’s
final look and feel.

The styles to do this are identical to those from the styles in chapter 5, minus the high-
level layout you’ve applied using grid (listing 6.4). I’ve repeated them in the next list-
ing. Add this to your stylesheet.

.page-heading {
 margin: 0;
}

Listing 6.5 Remaining styling for the page

Figure 6.9 Fully styled page

www.EBooksWorld.ir

157Anatomy of a grid
.site-nav {
 display: flex;
 margin: 0;
 padding: .5em;
 background-color: #5f4b44;
 list-style-type: none;
 border-radius: .2em;
}

.site-nav > li {
 margin-top: 0;
}

.site-nav > li > a {
 display: block;
 padding: .5em 1em;
 background-color: #cc6b5a;
 color: white;
 text-decoration: none;
}

.site-nav > li + li {
 margin-left: 1.5em;
}

.site-nav > .nav-right {
 margin-left: auto;
}

.login-form h3 {
 margin: 0;
 font-size: .9em;
 font-weight: bold;
 text-align: right;
 text-transform: uppercase;
}

.login-form input:not([type=checkbox]):not([type=radio]) {
 display: block;
 margin-top: 0;
 width: 100%;
}

.login-form button {
 margin-top: 1em;
 border: 1px solid #cc6b5a;
 background-color: white;
 padding: .5em 1em;
 cursor: pointer;
}

.centered {
 text-align: center;
}

The flexbox
menu

www.EBooksWorld.ir

158 CHAPTER 6 Grid layout
.cost {
 display: flex;
 justify-content: center;
 align-items: center;
 line-height: .7;
}

.cost > span {
 margin-top: 0;
}

.cost-currency {
 font-size: 2rem;
}
.cost-dollars {
 font-size: 4rem;
}
.cost-cents {
 font-size: 1.5rem;
 align-self: flex-start;
}

.cta-button {
 display: block;
 background-color: #cc6b5a;
 color: white;
 padding: .5em 1em;
 text-decoration: none;
}

When your design calls for an alignment of items in two dimensions, use grid. When
you’re only concerned with a one-directional flow, use flexbox. In practice, this will
often (but not always) mean grid makes the most sense for a high-level layout of the
page, and flexbox makes more sense for certain elements within each grid area. As
you continue to work with both, you’ll begin to get a feel for which is appropriate in
various instances.

6.3 Alternate syntaxes
There are two other alternate syntaxes for laying out grid items: named grid lines and
named grid areas. Choosing between them is a matter of preference. In some designs,
one syntax may be easier to read and understand than the others. Let’s look at both.

6.3.1 Naming grid lines

Sometimes it can be a bit tricky to keep track of all the numbered grid lines, especially
when working with a lot of grid tracks. To make this easier, you can name the grid
lines and use the names instead of numbers. When declaring grid tracks, place a
name in brackets to name a grid line between any two tracks.:

grid-template-columns: [start] 2fr [center] 1fr [end];

Stylized “cost”
using flexbox

www.EBooksWorld.ir

159Alternate syntaxes
This declaration defines a two-column grid with three vertical grid lines named start,
center, and end. You can then reference these names instead of the numbers when
placing grid items in your grid. For example:

grid-column: start / center;

This declaration places a grid item so it spans from grid line 1 (start) to grid line 2
(center). You can also provide multiple names for the same grid line as shown in this
example (I’ve added line breaks to aid readability):

grid-template-columns: [left-start] 2fr
 [left-end right-start] 1fr
 [right-end];

In this declaration, grid line 2 is named both left-end and right-start. You can then use
either of these names when placing a grid item. This declaration allows for another
trick here as well: by naming grid lines left-start and left-end, you’ve defined an area
called left that spans between them. The -start and -end suffixes act as a sort of key-
word defining an area in between. If you apply grid-column: left to an element, it’ll
span from left-start to left-end.

 The CSS in the next listing uses named grid lines to lay out the page. This pro-
duces the same result as the approach in listing 6.4. Update this portion of your
stylesheet to match.

.container {
 display: grid;
 grid-template-columns: [left-start] 2fr
 [left-end right-start] 1fr
 [right-end];
 grid-template-rows: repeat(4, [row] auto);
 grid-gap: 1.5em;
 max-width: 1080px;
 margin: 0 auto;
}

header,
nav {
 grid-column: left-start / right-end;
 grid-row: span 1;
}

.main {
 grid-column: left;
 grid-row: row 3 / span 2;
}

.sidebar-top {

Listing 6.6 Grid layout using named grid lines

Names each
vertical grid line

Names horizontal
grid lines “row”

Spans from left-
start to left-end

Places the item beginning at
the third row grid line and
spanning two grid tracks

www.EBooksWorld.ir

160 CHAPTER 6 Grid layout
 grid-column: right;
 grid-row: 3 / 4;
}

.sidebar-bottom {
 grid-column: right;
 grid-row: 4 / 5;
}

This example places each item into the appropriate grid columns using the named
grid lines. It also declares a named horizontal grid line inside the repeat() function.
Doing this names each horizontal grid line row (except for the last one). This may
seem peculiar, but it’s perfectly valid to use the same name repeatedly. You then place
the main element so it begins at row 3 (the third grid line named row) and spans two
grid tracks from there.

 You can use named grid lines in countless ways. How you use them can vary from
one grid to the next, depending on the particular structure of each grid. One possible
example is shown in figure 6.10.

This scenario presents a repeating pattern of two grid columns, naming the grid line
before each pair of grid tracks (grid-template-columns: repeat(3, [col] 1fr 1fr)).
Then you can use named grid lines to position an item in the second set of columns
(grid-column: col 2 / span 2).

6.3.2 Naming grid areas

Another approach you can take is to name the grid areas. Instead of counting or nam-
ing the grid lines, you can use these named areas to position items in the grid. This is
done with the grid-template property on the grid container and a grid-area prop-
erty on the grid items.

 The code in listing 6.7 shows an example of this. Again, this code produces exactly
the same result as the previous layout (listings 6.4 and 6.6). It’s an alternate syntax
that can be used instead. Update your stylesheet to match these styles.

Spans from right-
start to right-end

1 2 3
1

2

4 5 6 7

col col col

Figure 6.10 Placing a grid item at the second “col” grid line,
spanning two tracks (col 2 / span 2)

www.EBooksWorld.ir

161Alternate syntaxes
.container {
 display: grid;
 grid-template-areas: "title title"
 "nav nav"
 "main aside1"
 "main aside2";
 grid-template-columns: 2fr 1fr;
 grid-template-rows: repeat(4, auto);
 grid-gap: 1.5em;
 max-width: 1080px;
 margin: 0 auto;
}

header {
 grid-area: title;
}

nav {
 grid-area: nav;
}

.main {
 grid-area: main;
}

.sidebar-top {
 grid-area: aside1;
}

.sidebar-bottom {
 grid-area: aside2;
}

The grid-template-areas property lets you draw a visual representation of the grid
directly into your CSS, using a sort of “ASCII art” syntax. This declaration provides a
series of quoted strings, each one representing a row of the grid, with whitespace
between each column.

 In this example, the first row is assigned entirely to the grid area title. The sec-
ond row is assigned to nav. The left column of the next two rows is assigned to main,
and each sidebar tile is assigned to aside1 and aside2. Each grid item is then placed
into these named areas using the grid-area property.

WARNING Each named grid area must form a rectangle. You cannot create
more complex shapes like an L or a U.

You can also leave a cell empty by using a period as its name. For example, this code
defines four grid areas surrounding an empty grid cell in the middle:

grid-template-areas: "top top right"
 "left . right"
 "left bottom bottom";

Listing 6.7 Using named grid areas

Assigns each grid cell
to a named grid area

Defines grid track
sizes as before

Places each grid
item into a named
grid area

www.EBooksWorld.ir

162 CHAPTER 6 Grid layout
When you build a grid, use whichever syntax is most comfortable for you, given the
design: numbered grid lines, named grid lines, or named grid areas. The latter is
likely to be a favorite for a lot of developers, and it shines when you know exactly
where you want to place each grid item.

6.4 Explicit and implicit grid
In some instances, you may not know exactly where you want to place each item in the
grid. Perhaps you’re working with a large number of grid items and placing each one
explicitly is unwieldy. You might even have an unknown number of items populated by
a database. In these cases, it’ll probably make more sense to loosely define a grid, and
then allow the grid item placement algorithm to fill it for you.

 This will require you to rely on an implicit grid. When you use the grid-template-*
properties to define grid tracks, you’re creating an explicit grid. But grid items can still
be placed outside of these explicit tracks; in which case, implicit tracks will be auto-
matically generated, expanding the grid so it contains these elements.

 Figure 6.11 illustrates a grid with only one explicit grid track in each direction.
When a grid item is placed in the second track (between grid lines two and three),
additional tracks are added to include it.

By default, implicit grid tracks will have a size of auto, meaning they’ll grow to the size
necessary to contain the grid item contents. The properties grid-auto-columns and
grid-auto-rows can be applied to the grid container to specify a different size for all
implicit grid tracks (for example, grid-auto-columns: 1fr).

NOTE Implicit grid tracks don’t change the meaning of negative numbers
when referencing grid lines. Negative grid-line numbering still begins at the
bottom/right of the explicit grid.

Let’s lay out another page using an implicit grid. This will be a photography portfolio,
as shown in figure 6.12. For this layout, you’ll set grid tracks for the columns, but the
grid rows will be implicit. This way, the page isn’t structured for any specific number
of images; it’ll be adaptable for any number of grid items. Any time the images need
to wrap onto a new row, another row will be added implicitly.

1 2 3
1

2

3

grid-column: 2 / 3;
grid-row: 2 / 3;

-1-2

-1

-2

Figure 6.11 If a grid item is placed outside the
declared grid tracks, implicit tracks will be added
to the grid until it can contain the item.

www.EBooksWorld.ir

163Explicit and implicit grid
This is a fun layout because it would be difficult to achieve with flexbox or floats. It
showcases the unique power of grids.

 To build this, you’ll need a new page. Create a blank page and a new stylesheet and
link them. The markup for this is shown here. Add it to the page.

<div class="portfolio">
 <figure class="featured">

 <figcaption>Monkey</figcaption>
 </figure>
 <figure>

 <figcaption>Eagle</figcaption>
 </figure>

Listing 6.8 Markup for a portfolio

Figure 6.12 A series of photographs laid out in a grid using implicit grid rows

Each <figure> will
be a grid item.

Encloses the image and
its caption inside the
<figure> element

www.EBooksWorld.ir

164 CHAPTER 6 Grid layout
 <figure class="featured">

 <figcaption>Bird</figcaption>
 </figure>
 <figure>

 <figcaption>Bear</figcaption>
 </figure>
 <figure class="featured">

 <figcaption>Swan</figcaption>
 </figure>
 <figure>

 <figcaption>Elephants</figcaption>
 </figure>
 <figure>

 <figcaption>Owl</figcaption>
 </figure>
</div>

This markup is a portfolio element (which will be the grid container) and a series of
figures (which will be the grid items). Each figure contains an image and a caption.
I’ve added the class featured to a few items, which you’ll use to make those larger
than the other images.

 I’ll walk you through this in a few phases. First, you’ll shape the grid tracks and see
the images in a basic grid formation (figure 6.13). After that, you’ll enlarge the “fea-
tured” images and apply a few other finishing touches.

 The styles for this are shown in listing 6.9. It uses grid-auto-rows to specify a 1 fr
size for all implicit grid rows, so each row will be the same height. It also introduces

The featured class
will make certain
images larger.

Figure 6.13 Images laid out in a basic grid

www.EBooksWorld.ir

165Explicit and implicit grid
two new concepts: auto-fill and the minmax() function, which I’ll explain in a
moment. Add these styles to your stylesheet.

body {
 background-color: #709b90;
 font-family: Helvetica, Arial, sans-serif;
}

.portfolio {
 display: grid;
 grid-template-columns: repeat(auto-fill, minmax(200px, 1fr));
 grid-auto-rows: 1fr;
 grid-gap: 1em;
}

.portfolio > figure {
 margin: 0;
}

.portfolio img {
 max-width: 100%;
}

.portfolio figcaption {
 padding: 0.3em 0.8em;
 background-color: rgba(0, 0, 0, 0.5);
 color: #fff;
 text-align: right;
}

Sometimes you won’t want to set a fixed size on a grid track, but you’ll want to con-
strain it within certain minimum and maximum values. This is where the minmax()
function comes in. It specifies two values—a minimum size and a maximum size. The
browser will ensure the grid track falls between these values. (If the maximum size
is smaller than the minimum size, then the maximum is ignored.) By specifying
minmax(200px, 1fr), the browser ensures that all tracks are at least 200 px wide.

 The auto-fill keyword is a special value you can provide for the repeat() func-
tion. With this set, the browser will place as many tracks onto the grid as it can fit, with-
out violating the restrictions set by the specified size (the minmax() value).

 Together, auto-fill and minmax(200px, 1fr) mean your grid will place as many
grid columns as the available space can hold, without allowing any of them to be
smaller than 200 px. And because no track can be larger than 1 fr (our maximum
value), all the grid tracks will be the same size.

 In figure 6.13, the viewport has room for four columns of 200 px, so that’s how
many tracks were added. If the screen is wider, more may fit. If it’s narrower, then
fewer will be created.

Listing 6.9 A grid with implicit grid rows

Sets a minimum column
width of 200 px and

auto-fills the grid

Sets an implicit
horizontal grid
track size of 1 fr

Overrides user
agent margins

www.EBooksWorld.ir

166 CHAPTER 6 Grid layout
 Note that auto-fill can also result in some empty grid tracks, if there are not
enough grid items to fill them all. If you don’t want empty grid tracks, you can use the
keyword auto-fit instead of auto-fill. This causes the non-empty tracks to stretch
to fill the available space. See http://gridbyexample.com/examples/example37/ for
an example of the difference.

 Whether you use auto-fill or auto-fit depends on whether you want to ensure
you get the expected grid track size or whether you want to make certain the length of
the entire grid container is filled. I typically find I prefer auto-fit.

6.4.1 Adding variety

Next, let’s add visual interest to your grid by increasing the size of the featured images
(the bird and the swan in this example). Each grid item currently fills a 1 x 1 area on
the grid. You’ll increase the size of featured images to fill a 2 x 2 grid area. You can tar-
get these items with the featured class and make them span two grid tracks in each
direction.

 This introduces a problem, however. Depending on the order of the items, increas-
ing the size for some grid items could result in gaps in the grid. Figure 6.14 illustrates
these gaps. The bird in this figure is the third item in the grid. But because it’s a larger
item, it doesn’t fit in the space to the right of the second image, the eagle. Instead, it
has dropped down to the next grid track.

 When you don’t specifically position items on a grid, they are positioned automati-
cally by the grid item placement algorithm. By default, this algorithm places grid

Figure 6.14 Increasing the size of some grid items introduced gaps in the layout where the large items
don’t fit.

www.EBooksWorld.ir

http://gridbyexample.com/examples/example37/

167Explicit and implicit grid
items column by column, row by row, according to the order of the items in the
markup. When an item doesn’t fit in one row (that is, it spans too many grid tracks),
the algorithm moves to the next row, looking for space large enough to accommodate
the item. In this case, the bird is moved down to the second row, beneath the eagle.

 The Grid Layout Module provides another property, grid-auto-flow, that can be
used to manipulate the behavior of the placement algorithm. Its initial value, row,
behaves as I’ve described. Given the value column, it instead places items in the col-
umns first, moving to the next row only after a column is full.

 You can also add the keyword dense (for example, grid-auto-flow: column
dense). This causes the algorithm to attempt to fill gaps in the grid, even if it means
changing the display order of some grid items. If you apply this to your page, smaller
grid items will “backfill” the gaps created by the larger grid items. The result is shown
in figure 6.15.

Figure 6.15 Using dense grid auto-flow allows small grid items to backfill gaps in the grid.

www.EBooksWorld.ir

168 CHAPTER 6 Grid layout
With the dense auto-flow option, smaller grid items fill the gaps left by larger items.
The source order here is still the monkey, eagle, bird, then bear, but the bear is moved
into position before the bird, thus filling the gap.

 Add the next listing to your stylesheet. This enlarges featured images to fill two
grid tracks in each direction and applies a dense auto-flow.

.portfolio {
 display: grid;
 grid-template-columns: repeat(auto-fill, minmax(200px, 1fr));
 grid-auto-rows: 1fr;
 grid-gap: 1em;
 grid-auto-flow: dense;
}

.portfolio .featured {
 grid-row: span 2;
 grid-column: span 2;
}

This listing uses the declaration grid-auto-flow: dense, which is equivalent to grid-
auto-flow: row dense. (In the first part of the value, row is implied because it’s the
initial value.) Then it targets the featured items and sets them to span two grid tracks
in each direction. Note this example uses only the span keyword and doesn’t expressly
place any grid items on a specific grid track. This allows the grid item placement algo-
rithm to position the grid items where it sees fit.

 Depending on your viewport size, your screen may not match figure 6.12 exactly.
That’s because you used auto-fill to determine the number of vertical grid tracks. A
larger screen will have room for more tracks; a smaller screen will have fewer. I took
this screenshot with a viewport about 1,000 px wide, producing four grid tracks. Resize
your browser width to various sizes to see how the grid automatically responds, filling
available space.

 Use caution with a dense auto-flow because items may not be displayed in the same
order as they appear in the HTML. This can cause some confusion for users navigat-
ing via the keyboard (Tab key) or a screen reader as those methods navigate accord-
ing to source order, not display order.

Listing 6.10 Enlarging featured images

Subgrids
One limitation of grid is the specific DOM structure required—namely, all grid items
must be direct children of the grid container. Thus, it’s not possible to align deeply
nested elements on the grid.

You can give the grid item display: grid to create an inner grid within the outer one.
But the grid items of the inner grid will not necessarily align to the grid tracks of the

Enables the dense grid
placement algorithm

Enlarges featured images to span
two grid tracks in each direction

www.EBooksWorld.ir

169Explicit and implicit grid
6.4.2 Adjusting grid items to fill the grid track

You now have a fairly complex layout. You didn’t have to do a lot of work to place each
item in a precise location, but rather allowed the browser to figure that out for you.

 One last issue remains: the larger images aren’t completely filling the grid cells,
which leaves a small gap beneath them. Ideally, both the top and bottom edges of
each grid item should align with others on the same grid track. Our top edges align,
but the bottom edges don’t as shown in figure 6.16.

Let’s fix that gap. If you recall, each grid item is a <figure> that contains two child
elements—an image and a caption:

<figure class="featured">

 <figcaption>Monkey</figcaption>
</figure>

outer grid. Nor will the size of items in one grid affect the size of the grid tracks in the
other grid.

In the future, the solution to this will be subgrids. By applying display: subgrid to
a grid item, it becomes its own inner grid container, with grid tracks that align to the
grid tracks of the outer grid. Unfortunately, this feature is not yet implemented in any
browser and has been pushed back to the Level 2 version of the specification.

This feature is highly anticipated. Keep an eye out for it.

Unwanted space

Figure 6.16 Images are not entirely filling the grid cells, leaving an unwanted gap.

www.EBooksWorld.ir

170 CHAPTER 6 Grid layout
By default, each grid item is stretched to fill the entire grid area, but its child elements
are not stretched to fill it, so the grid area has some unused height. An easy way to fix
this is with flexbox. In listing 6.11, you’ll make each <figure> a flex container with a
direction of column so items stack vertically, atop one another. You can then apply a flex
grow to the image, forcing it to stretch to fill the space.

 Stretching an image is problematic, however. This will change its height-to-width
ratio, distorting the picture. Fortunately, CSS provides a special property for con-
trolling this behavior, object-fit. By default, an has an object-fit value of
fill, meaning the entire image will be resized to fill the element. You can also
set other values to change this.

 For example, the object-fit property accepts the values cover and contain
(illustrated in figure 6.17). These values tell the browser to resize the image within the
rendered box, without distorting its aspect ratio.

 To expand the image to fill the box (resulting in part of the image being cut
off), use cover.

 To resize the image so that it fits entirely in the box (resulting in empty space
within the box), use contain.

There’s an important distinction to make here: there is the box (determined by the
 element’s height and width), and there is the rendered image. By default, these
are the same size. The object-fit property lets you manipulate the size of the ren-
dered image within that box, but the size of the box itself remains unchanged.

 Because you’ll use the flex-grow property to stretch the images, you should also
apply object-fit: cover to prevent the images from being distorted. This will crop
off a small bit of the edge of the images, which is a compromise you’ll have to make.

fill (default) cover contain

Figure 6.17 Using object-fit to control how an image is rendered in its box

www.EBooksWorld.ir

171Explicit and implicit grid
The end result is shown in figure 6.18. For a more detailed look at this property, see
https://css-tricks.com/on-object-fit-and-object-position/.

Now the top and bottom edges of all the images and their captions align in each grid
track. The code for this is shown here. Add it to your stylesheet.

.portfolio > figure {
 display: flex;
 flex-direction: column;
 margin: 0;
}

.portfolio img {
 flex: 1;

Listing 6.11 Using a column flexbox to stretch images to fill the grid area

Figure 6.18 All images now fill their grid areas and align cleanly.

Makes each grid item
a vertical flexbox

Uses flex grow to make
the image fill the available
space in the flex container

www.EBooksWorld.ir

https://css-tricks.com/on-object-fit-and-object-position/

172 CHAPTER 6 Grid layout
 object-fit: cover;
 max-width: 100%;
}

This completes the design of your photography portfolio. Everything aligns in a
neat grid, and the browser makes decisions for you regarding the number and size
of each vertical grid track. Using a dense auto-flow allows the browser to fill in
gaps neatly.

6.5 Feature queries
Now that you have a general grasp of grid layout, you might be wondering: Do you
have to wait until all browsers support grid before you can start using it? The answer is,
no. You can start using it today if you want. You’ll need to consider what you want the
browser to do for your layout if it doesn’t support grid and provide those styles as a
fallback.

 CSS has recently added something called a feature query that can help with this. It
looks like this:

@supports (display: grid) {
 ...
}

The @supports rule is followed by a declaration in parentheses. If the browser under-
stands the declaration (in this case, it supports grid), it applies any rulesets that
appear between the braces. If it doesn’t understand this, it won’t apply them.

 This means you can provide one set of styles using older layout technologies like
floats. These will not necessarily be ideal styles (you’ll have to make some compro-
mises), but it will get the job done. Then, using a feature query, apply the full-featured
layout using grid.

 Let’s use this in the portfolio. You can provide a more basic layout for older
browsers using inline-block elements, then put all the code related to the grid layout
inside a feature query. Browsers that don’t support grid will render the page as in
figure 6.19.

 This layout has a couple of compromises: featured images will not be shown at a
larger size and columns will be a fixed 300 px rather than stretching to fill the avail-
able screen width. Because the figures are displayed inline-block, they’ll line wrap
normally. This allows for more images per row when there is enough screen space
for them.

 The code for this (including a feature query) is shown in listing 6.12. Update your
stylesheet to match.

Allows the image to fill the
box without being stretched
(cropping edges instead)

www.EBooksWorld.ir

173Feature queries
.portfolio > figure {
 display: inline-block;
 max-width: 300px;
 margin: 0;
}

.portfolio img {
 max-width: 100%;
 object-fit: cover;
}

.portfolio figcaption {
 padding: 0.3em 0.8em;
 background-color: rgba(0, 0, 0, 0.5);
 color: #fff;
 text-align: right;
}

@supports (display: grid) {
 .portfolio {

Listing 6.12 Using a feature query for progressive enhancement

Figure 6.19 Fallback layout for browsers that don’t support grid

Uses inline-block for
the fallback layout

Feature query
for grid support

www.EBooksWorld.ir

174 CHAPTER 6 Grid layout
 display: grid;
 grid-template-columns: repeat(auto-fill, minmax(200px, 1fr));
 grid-auto-rows: 1fr;
 grid-gap: 1em;
 grid-auto-flow: dense;
 }

 .portfolio > figure {
 display: flex;
 flex-direction: column;
 max-width: initial;
 }

 .portfolio img {
 flex: 1;
 }

 .portfolio .featured {
 grid-row: span 2;
 grid-column: span 2;
 }
}

The fallback and other basic styles such as colors are outside of the feature query
block, so they’ll always apply. If you open the page in a browser that doesn’t support
grid, you’ll see the fallback layout (figure 6.19). All styles relating to the grid-based
layout are within the feature query block, so they’ll only apply if the browser sup-
ports grid.

 The @supports rule can be used to query for all sorts of CSS features. Use @supports
(display: flex) to query for flexbox support, or @supports (mix-blend-mode:
overlay) to query for blend mode support (see chapter 11 for more on blend modes).

WARNING IE doesn’t support the @supports rule. That browser ignores any
rules within the feature query block, regardless of the actual feature sup-
port. This is usually okay, as you’ll want the older browser to render the fall-
back layout.

Feature queries may be constructed in a few other ways as well:

 @supports not(<declaration>)—Only apply rules in the feature query block if
the queried declaration isn’t supported

 @supports (<declaration>) or (<declaration>)—Apply rules if either que-
ried declaration is supported

 @supports (<declaration>) and (<declaration>)—Apply rules only if both
queried declarations are supported

These can be combined as well to query for more complex situations. The or keyword
can be useful to query for support using prefixed properties:

@supports (display: grid) or (display: -ms-grid)

Puts all grid layout
styles within feature

query block

Overrides
fallback styles

www.EBooksWorld.ir

175Alignment
This declaration will target browsers that support the un-prefixed version of the prop-
erty as well as older versions of MS Edge, which require the -ms- prefix. I caution that
partial grid support in older versions of Edge is not as robust as modern browsers.
Chances are, it’s more trouble than it’s worth trying to make the prefixed @supports
query work, and you’ll be better off omitting it. This will leave older versions of Edge
to render your fallback layout.

6.6 Alignment
The grid module makes use of several of the same alignment properties that flexbox
uses, as well as a couple of new ones. I’ve covered most of these in the previous chap-
ter, but let’s look to see how they apply to a grid. If you need more control over various
aspects of a grid layout, these properties may come in handy.

 CSS provides three justify properties: justify-content, justify-items, justify
-self. These properties control horizontal placement. I remember this by thinking
about justifying text in a word processor, which spreads out text horizontally.

 And there are three alignment properties: align-content, align-items, align
-self. These control vertical placement. I remember this by thinking about the
vertical-align property from table layouts. These properties are each illustrated
in figure 6.20.

You can use justify-content and align-content to place the grid tracks horizon-
tally and vertically within the grid container. This becomes necessary if the total size of
the grid doesn’t fill the size of the grid container. Consider this code:

.grid {
 display: grid;

justify-content

align-content

Properties AlignsApplies to

justify-items

align-items

justify-self

align-self

Grid container

Grid container

Grid item

Items within

grid areas

Item within

grid area

Grid tracks

within container

Figure 6.20 Alignment properties for a grid

www.EBooksWorld.ir

176 CHAPTER 6 Grid layout
 height: 1200px;
 grid-template-rows: repeat(4, 200px);
}

It explicitly sets the height of a grid container to 1,200 px, but only defines 800 px
worth of horizontal grid tracks. The align-content property specifies how to distrib-
ute the remaining 400 px of space. Supported values are as follows:

 start—Places grid tracks to the top/left of the grid container (use flex-start
in a flexbox)

 end—Places grid tracks to the bottom/right of the grid container (use flex-
end in a flexbox)

 center—Places grid tracks in the middle of the grid container
 stretch—Resizes the tracks to fill the size of the grid container
 space-between—Evenly distributes remaining space between each grid track

(effectively overriding any grid-gap)
 space-around—Distributes space between each grid track, with a half-sized space

on each end
 space-evenly—Distributes space between each grid track, with an equal amount

of space on each end (not supported in flexbox)

For detailed examples of all these justify/alignment properties, visit http://gridby-
example.com/. This is an excellent resource. It’s a large collection of grid examples
put together by Rachel Andrew, a developer and member of the W3C.

 Because there’s a lot to grid layout, I’ve taken you through the essential concepts
you’ll need to know. I encourage you to experiment with grids further. There are far
more ways to mix and match these than I could cover in one chapter, so challenge
yourself to try new things. When you come across an interesting page layout on the
web, see if you can replicate it using grids.

Summary
 Grid is excellent for a high-level layout of the web page (but it is not limited

to that).
 You can use grid in conjunction with flexbox for a complete layout system.
 You should use whichever syntax (numbered grid lines, named grid lines, or

named grid areas) is the most intuitive for you and the given situation.
 You can use auto-fill/auto-fit and the implicit grid for layouts with a large or

unknown number of grid items.
 You can use feature queries for progressive enhancement.

www.EBooksWorld.ir

http://gridbyexample.com/
http://gridbyexample.com/

 Positioning
and stacking contexts
We’ve now looked at multiple ways to control the layout of the page, from table dis-
play to flexbox to floats. In this chapter, we’ll look at one important technique: the
position property, which you can use to build dropdown menus, modal dialogs,
and other essential effects for modern web applications.

 Positioning can get complicated. It’s a subject where many developers only
have a cursory understanding. Without a complete grasp on positioning, and the
ramifications involved, it’s easy to dig yourself into a hole. You can find yourself
with the wrong elements in front of others and correcting the problem isn’t
always straightforward.

 As we look at the various types of positioning, I’ll make sure you understand pre-
cisely what they do. Then, you’ll learn about something called a stacking context,

This chapter covers
 The types of element positioning: fixed, relative,

and absolute

 Building modal dialogs and dropdown menus

 CSS triangles

 Understanding z-index and stacking contexts

 A new type of positioning: sticky
177

www.EBooksWorld.ir

178 CHAPTER 7 Positioning and stacking contexts
which is a sort of hidden side effect of positioning. Understanding the stacking con-
text will keep you out of trouble, and if you ever find yourself “out in the weeds”
with a page layout, this understanding will give you the tools you need to get back
on track.

 The initial value of the position property is static. Everything we’ve done in
previous chapters is with static positioning. When you change this value to anything
else, the element is said to be positioned. An element with static positioning is thus
not positioned.

 The layout methods we’ve covered in previous chapters do various things to
manipulate the way document flow behaves. Positioning is different: it removes ele-
ments from the document flow entirely. This allows you to place the element some-
where else on the screen. It can place elements in front of or behind one another,
thus overlapping one another.

7.1 Fixed positioning
Fixed positioning, although not as common as some of the other types of positioning,
is probably the simplest to understand, so we’ll start there. Applying position: fixed
to an element lets you position the element arbitrarily within the viewport. This is
done with four companion properties: top, right, bottom, and left. The values you
assign to these properties specify how far the fixed element should be from each edge
of the browser viewport. For example, top: 3em on a fixed element means its top edge
will be 3 em from the top of the viewport.

 By setting these four values, you also implicitly define the width and height of the
element. For example, specifying left: 2em; right: 2em means the left edge of the ele-
ment will be 2 em from the left side of the viewport, and the right edge will be 2 em
from the right side; thus, the element will be 4 em less than the total viewport width.
Likewise with top, bottom, and the viewport height.

7.1.1 Creating a modal dialog with fixed positioning

Let’s use these properties to build the modal dialog box shown in figure 7.1. This
dialog will pop up in front of the page content, masking it from view until the dialog
is closed.

 Typically, you’ll use a modal dialog to require the user to read something or to
input something before continuing. For example, this modal (figure 7.1) displays a
form where a user can sign up for a newsletter. You’ll initially hide the dialog with
display: none, and you’ll then use a bit of JavaScript to change its value to block in
order to open the modal.

 Create a new page and add the following listing to the <body> element. It places
the content inside two containing elements and uses a <script> tag with some Java-
Script to provide basic functionality.

www.EBooksWorld.ir

179Fixed positioning
<header class="top-banner">
 <div class="top-banner-inner">
 <p>Find out what's going on at Wombat Coffee each
 month. Sign up for our newsletter:
 <button id="open">Sign up</button>
 </p>
 </div>
</header>
<div class="modal" id="modal">
 <div class="modal-backdrop"></div>
 <div class="modal-body">
 <button class="modal-close" id="close">close</button>
 <h2>Wombat Newsletter</h2>
 <p>Sign up for our monthly newsletter. No spam.
 We promise!</p>
 <form>
 <p>
 <label for="email">Email address:</label>
 <input type="text" name="email"/>

Listing 7.1 Creating a modal dialog box

Figure 7.1 A modal dialog box

Button to trigger
the modal

Container for
the modal

A “backdrop” to
obscure content
behind the modal

Modal
contents

www.EBooksWorld.ir

180 CHAPTER 7 Positioning and stacking contexts
 </p>
 <p><button type="submit">Submit</button></p>
 </form>
 </div>
</div>

<script type="text/javascript">
 var button = document.getElementById('open');
 var close = document.getElementById('close');
 var modal = document.getElementById('modal');

 button.addEventListener('click', function (event) {
 event.preventDefault();
 modal.style.display = 'block';
 });

 close.addEventListener('click', function (event) {
 event.preventDefault();
 modal.style.display = 'none';
 });
</script>

The first element in this listing is a banner across the top of the page. It contains the
button that triggers the modal. The second element is the modal dialog. It includes
an empty modal-backdrop, which you’ll use to obscure the rest of the page, drawing
the user’s focus to the contents of the dialog. The contents are inside a modal-body
element.

 The CSS to implement this is shown next. Add it to your stylesheet. It includes
basic styling for the top banner as well as the styles for the modal.

body {
 font-family: Helvetica, Arial, sans-serif;
 min-height: 200vh;
 margin: 0;
}

button {
 padding: 0.5em 0.7em;
 border: 1px solid #8d8d8d;
 background-color: white;
 font-size: 1em;
}

.top-banner {
 padding: 1em 0;
 background-color: #ffd698;
}

.top-banner-inner {
 width: 80%;

Listing 7.2 Adding modal styles

Opens the modal
when the user clicks
the Sign up button

Closes the modal
when the user clicks
the Close button

Forces the page height
to enable scrolling (for
demo purposes only)

www.EBooksWorld.ir

181Fixed positioning
 max-width: 1000px;
 margin: 0 auto;
}

.modal {
 display: none;
}

.modal-backdrop {
 position: fixed;
 top: 0;
 right: 0;
 bottom: 0;
 left: 0;
 background-color: rgba(0, 0, 0, 0.5);
}

.modal-body {
 position: fixed;
 top: 3em;
 bottom: 3em;
 right: 20%;
 left: 20%;
 padding: 2em 3em;
 background-color: white;
 overflow: auto;
}

.modal-close {
 cursor: pointer;
}

In this CSS, you’ve used fixed positioning twice. First on the modal-backdrop with
each of the four sides set to 0. This makes the backdrop fill the entire viewport. You’ve
given it a background color of rgba(0, 0, 0, 0.5). This color notation specifies red,
green, and blue values of 0, which evaluates to black. The fourth value is the “alpha”
channel, which specifies its transparency: a value of 0 is completely transparent, and 1
is completely opaque. The value 0.5 is half transparent. This serves to darken all of
the page contents behind the element.

 The second place you used fixed positioning is in the modal-body. You’ve posi-
tioned each of its four sides inside the viewport: 3 em from the top and bottom edges
and 20% from the left and right sides. You also set a white background color. This
makes the modal a white box, centered on the screen. You can scroll the page how-
ever you wish, but the backdrop and the modal body remain in place.

 Load the page and you’ll see a pale yellow banner across the top of the screen with
a button. Click the button to open the positioned modal. Because of fixed position-
ing, the modal remains in place, even when you scroll the page (the large min-height
value on the body enables scrolling to illustrate this behavior).

 Click the close button at the top of the modal to close it. This button is in an odd
location now, but we’ll come back and position it in a bit.

Hides the modal by
default; JavaScript will
set display: block when
it opens the modal.

Uses a semi-transparent
backdrop to obscure the
rest of the page while the
modal is open

Positions the
main part of
the modal

Allows the modal
body to scroll, if
necessary

www.EBooksWorld.ir

182 CHAPTER 7 Positioning and stacking contexts
7.1.2 Controlling the size of positioned elements

When positioning an element, you’re not required to specify values for all four sides.
You can specify only the sides you need and then use width and/or height to help
determine its size. You can also allow the element to be sized naturally. Consider these
declarations:

position: fixed;
top: 1em;
right: 1em;
width: 20%

These would affix the element 1 em from the top and right edges of the viewport with
a width 20% of the viewport width. By omitting both bottom and height properties,
the element’s height will be determined naturally by its contents. This can be used to
affix a navigational menu to the screen, for example. It’ll remain in place even as the
user scrolls down through the content on the page.

 Because a fixed element is removed from the document flow, it no longer affects
the position of other elements on the page. They’ll follow the normal document flow
as if it’s not there, which means they’ll often flow behind the fixed element, hidden
from view. This is usually fine with a modal dialog because you want it to be front and
center until the user dismisses it.

 With something persistent, such as a side navigational menu, you’ll need to take
care that other content doesn’t flow behind it. This is usually easiest to do by adding a
margin to the content. For instance, place all your content in a container with a
right-margin: 20%. This margin will flow behind your fixed element, and the content
won’t overlap.

7.2 Absolute positioning
Fixed positioning, as you’ve just seen, lets you position an element relative to the view-
port. This is called its containing block. The declaration left: 2em, for example, places
the left edge of a positioned element 2 em from the left edge of the containing block.

 Absolute positioning works the same way, except it has a different containing
block. Instead of its position being based on the viewport, its position is based on the
closest positioned ancestor element. As with a fixed element, the properties top, right,
bottom, and left place the edges of the element within its containing block.

7.2.1 Absolutely positioning the Close button

To see how this works, let’s reposition the Close button to the top right corner of your
modal dialog. After doing so, the modal will look like figure 7.2.

 To do this, you’ll declare absolute positioning for the Close button. Its parent ele-
ment is modal-body, which has fixed positioning, so it becomes the containing block
for the button. Edit your button’s styles to match listing 7.3.

www.EBooksWorld.ir

183Absolute positioning
.modal-close {
 position: absolute;
 top: 0.3em;
 right: 0.3em;
 padding: 0.3em;
 cursor: pointer;
}

This listing places the button 0.3 em from the top and 0.3 em from the right of the
modal-body. Typically, as in this example, the containing block will be the element’s
parent. In cases where the parent element is not positioned, then the browser will
look up the DOM hierarchy at the grandparent, great-grandparent, and so on until a
positioned element is found, which is then used as the containing block.

NOTE If none of the element’s ancestors are positioned, then the absolutely
positioned element will be positioned based on something called the initial
containing block. This is an area with dimensions equal to the viewport size,
anchored at the top of the page.

7.2.2 Positioning a pseudo-element

You’ve positioned the Close button where you want it, but it’s rather spartan. For a
Close button such as this, users typically expect to see some graphical indication such
as an x as in figure 7.3.

Listing 7.3 Absolutely positioned Close button

Figure 7.2 Close button positioned at top right corner of modal dialog

Figure 7.3 Close button replaced with an x

www.EBooksWorld.ir

184 CHAPTER 7 Positioning and stacking contexts
Your first temptation may be to remove the word close from your markup and replace
it with an x, but this would introduce an accessibility problem: Assistive screen readers
read the text of the button, so it should give some meaningful indication of the but-
ton’s purpose. The HTML must make sense on its own before the CSS is applied.

 Instead, you can use CSS to hide the word close and display an x. You’ll accomplish
this by doing two things. First, you’ll push the button’s text outside the button and
hide the overflow. Second, you’ll use the content property to add the x to the button’s
::after pseudo-element and absolute positioning to center it within the button.
Update you button’s styles to match listing 7.4.

TIP Instead of the letter x, I recommend the unicode character for the mul-
tiplication sign. It’s more symmetrical and usually more esthetically pleasing
for this purpose. The HTML character × will render as this character,
but in the CSS content property, you must use the escaped unicode number:
\00D7.

.modal-close {
 position: absolute;
 top: 0.3em;
 right: 0.3em;
 padding: 0.3em;
 cursor: pointer;
 font-size: 2em;
 height: 1em;
 width: 1em;
 text-indent: 10em;
 overflow: hidden;
 border: 0;
}

.modal-close::after {
 position: absolute;
 line-height: 0.5;
 top: 0.2em;
 left: 0.1em;
 text-indent: 0;
 content: "\00D7";
}

This listing explicitly sets the button size to 1 em square. The text-indent property
then pushes the text to the right, outside of the element. The exact value doesn’t mat-
ter as long as it’s more than the width of the button. Then, because text-indent is an
inherited property, you reset it to 0 on the pseudo-class so the x isn’t also indented.

 The pseudo-class is now absolutely positioned. It behaves like a child element of
the button, so the button being positioned becomes the containing block for its
pseudo-element. The short line-height keeps the pseudo-element from being too

Listing 7.4 Replacing the Close button with an x

Makes the button
a small square

Forces the text to
overflow the element
and hides it

Adds the unicode
character U+00D7
(multiplication sign)

www.EBooksWorld.ir

185Relative positioning
tall, and the top and left properties position it in the center of the button. I arrived
at the exact values here through some trial and error; I encourage you to experi-
ment with those values in your browser’s development tools to see how they affect
the positioning.

 Absolute positioning is the heavy hitter among the positioning types. It’s used
often in conjunction with JavaScript for popping up menus, tooltips, and “info” boxes.
We’ll use it to build a dropdown menu, but to do that, you’ll need to take a look at its
companion, relative positioning.

7.3 Relative positioning
Relative positioning is probably the least understood positioning type. When you first
apply position: relative to an element, you won’t usually see any visible change on
the page. The relatively positioned element, and all elements on the page around it,
will remain exactly where they were (though you may see some changes regarding
which elements are in front of which. We’ll get to that in a bit).

 The top, right, bottom, and left properties, if applied, will shift the element
from its original position, but it won’t change the position of any elements around it.
See figure 7.4 for an example. It shows four inline-block elements. I’ve applied three
additional properties to the second element: position: relative; top: 1em; left:
2em. As you can see, this has shifted the element from its initial position, but the other
elements are unaffected. They still follow normal document flow around the initial
position of the shifted element.

Applying top: 1em moves the element down 1 em (away from its original top edge).
And left: 2em shifts the element right 2 em (away from its original left edge). These
shifts may cause that element to overlap elements below or beside it. When position-
ing, negative values are supported as well, so bottom: -1em would shift the element
down 1 em, just as top: 1em does.

NOTE Unlike fixed and absolute positioning, you cannot use top, right,
bottom, and left to change the size of a relatively positioned element. Those
values will only shift the position of the element up or down, left or right. You
can use top or bottom, but not both together (bottom will be ignored); like-
wise, you can use left or right, but not both (right will be ignored).

Using these properties to adjust the position of a relative element may be useful to
nudge an element into place on occasion, but truth be told, this is rarely why you’ll

Figure 7.4 The second element
shifted using relative positioning

www.EBooksWorld.ir

186 CHAPTER 7 Positioning and stacking contexts
use relative positioning. Far more often, you’ll use position: relative to establish
the containing block for an absolutely positioned element inside it.

7.3.1 Creating a dropdown menu

Let’s use relative and absolute positioning to cre-
ate a dropdown menu. Initially it’ll be a simple rect-
angle, but when the user hovers the mouse over it,
it pops open a list of links like those shown in fig-
ure 7.5.

 Listing 7.5 shows the markup for this menu.
Append it to your HTML after the closing </div> of
the <div class="modal"> element. This code
includes a container that you’ll use to center the
content and align it with the banner’s content. I’ve
also added an <h1> below the popup to illustrate
how the popup appears in front of other content on
the page.

<div class="container">
 <nav>
 <div class="dropdown">
 <div class="dropdown-label">Main Menu</div>
 <div class="dropdown-menu">
 <ul class="submenu">
 Home
 Coffees
 Brewers
 Specials
 About us

 </div>
 </div>
 </nav>

 <h1>Wombat Coffee Roasters</h1>
</div>

The dropdown container includes two children: the label, a gray rectangle that’s
always visible, and the dropdown menu that will show and hide as the dropdown is
opened and closed. The dropdown menu will be absolutely positioned so it doesn’t
shift around the layout of the page when it’s revealed. This means it appears in front
of other content when it’s visible.

 Next, you’ll apply relative positioning to the dropdown container. This establishes
the containing block for the absolutely positioned menu. Add these styles to your
stylesheet.

Listing 7.5 Adding the dropdown menu’s HTML

Figure 7.5 Dropdown menu

Container for
the dropdown Label will always

be visible.

Div to show and
hide as the menu
is opened and
closed

www.EBooksWorld.ir

187Relative positioning
.container {
 width: 80%;
 max-width: 1000px;
 margin: 1em auto
}

.dropdown {
 display: inline-block;
 position: relative;
}

.dropdown-label {
 padding: .5em 1.5em;
 border: 1px solid #ccc;
 background-color: #eee;
}

.dropdown-menu {
 display: none;
 position: absolute;
 left: 0;
 top: 2.1em;
 min-width: 100%;
 background-color: #eee;
}
.dropdown:hover .dropdown-menu {
 display: block;
}

.submenu {
 padding-left: 0;
 margin: 0;
 list-style-type: none;
 border: 1px solid #999;
}

.submenu > li + li {
 border-top: 1px solid #999;
}

.submenu > li > a {
 display: block;
 padding: .5em 1.5em;
 background-color: #eee;
 color: #369;
 text-decoration: none;
}

.submenu > li > a:hover {
 background-color: #fff;
}

Listing 7.6 Opening the dropdown menu on hover

Establishes the
containing block

Hides the
menu initially

Positions the menu below
the dropdown menu

Reveals the
menu on hover

www.EBooksWorld.ir

188 CHAPTER 7 Positioning and stacking contexts
Now, when you move your mouse pointer over the Main Menu label, the dropdown
menu pops open beneath it. Notice that you used the :hover state of the whole
container to open the menu. This means that as long as the cursor remains over
any of its contents—either the dropdown-label or the dropdown-menu—the menu
remains open.

 On the absolutely positioned dropdown-menu, you used left: 0 to align its left side
with the left side of the dropdown. Then you used top: 2.1em to place its top edge
beneath the label (with the padding and border, the label is about 2.1 em tall). A min-
width of 100% ensures it’ll be at least as wide as the dropdown container (whose
width is determined by dropdown-label). You then used the submenu class to style the
menu inside the dropdown. (If you open the modal dialog at this point, you might
notice it appears behind the dropdown menu in an odd way. That’s okay; we’ll address
that issue soon.)

7.3.2 Creating a CSS triangle

Let’s add one finishing touch to your dropdown menu. It works as is, but it may not be
immediately apparent to the user that there’s more content to discover along with the
Main Menu label. Let’s add a small down arrow to the label to indicate there’s more
to explore.

 You can use a little trick with borders to draw a triangle that serves as the down-
pointing arrow. You’ll use the dropdown label’s ::after pseudo-element to draw the
triangle, then use absolute positioning to put it on the right side of the label.

 Most of the time, when you add borders to an element, you make them thin: usu-
ally 1 px or 2 px is enough. But observe what happens when you make a border much

Important concerns when using dropdown menus
For simplicity, the example in listing 7.6 uses a :hover pseudo-class to open the
menu when the user hovers the mouse cursor over it. This example is not complete.
Typically, a more robust approach would be to use JavaScript to add and remove a
class that controls whether the menu is opened. This lets you add a slight delay
before opening or closing the menu to prevent the user from unintentionally triggering
it when mousing quickly past.

Furthermore, although the example here works with a mouse, it won’t work on some
touchscreen devices (only certain touchscreen devices trigger the :hover state on
tap). It also doesn’t address the accessibility concerns of a screen reader or of key-
board navigation. It would be prudent to augment the dropdown to ensure touch-
screen controls work and the menu stays open when the user uses the Tab key to
navigate through the links in the menu.

The JavaScript to do this is beyond the scope of this book, but if you’re adept at it,
you can address these concerns with the code you write there. Alternately, you can
use a third-party library that provides dropdown functionality to take care of this for
you, then use CSS to customize its appearance to your liking.

www.EBooksWorld.ir

189Relative positioning
thicker as shown in figure 7.6. I’ve made each side of the border a unique color to
highlight where one edge ends and the next begins.

Notice what happens in the corners where the borders from two edges meet: they
form a diagonal edge. Now observe what happens if you shrink the element to a
height and width of zero (figure 7.7). The borders all come together and join in
the middle.

The border for each side of the element forms a triangle. The top border points
down; the right border points left, and so on. With this in mind, you can use one bor-
der to give you the triangle you need and then set the color of the remaining borders
to transparent. An element with transparent left and right borders and a visible top
border will look like figure 7.8—a simple triangle.

Let’s apply styles to the dropdown-label::after pseudo-element to make a triangle
and position it using absolute positioning. Add this to your stylesheet.

Figure 7.6 An element with thick borders

Figure 7.7 When the element has no height
or width, each border forms a triangle.

Figure 7.8 Triangle formed from an
element’s top border

www.EBooksWorld.ir

190 CHAPTER 7 Positioning and stacking contexts
.dropdown-label {
 padding: 0.5em 2em 0.5em 1.5em;
 border: 1px solid #ccc;
 background-color: #eee;
}

.dropdown-label::after {
 content: "";
 position: absolute;
 right: 1em;
 top: 1em;
 border: 0.3em solid;
 border-color: black transparent transparent;
}

.dropdown:hover .dropdown-label::after {
 top: 0.7em;
 border-color: transparent transparent black;
}

The pseudo-element has no content, so it has no height or width. You then used the
border-color shorthand property to set the top border black and the side and right
borders transparent, giving you the down arrow. An extra bit of padding on the
dropdown-label makes space on the right, where you can place the triangle. The final
result is shown in figure 7.9.

When you open the menu, the arrow reverses directions, pointing upward to indicate
the menu can be closed. The slight change in the top value (from 1 em to 0.7 em)
helps the up arrow to optically appear in the same spot as the down arrow.

 Alternately, you can add this arrow with the use of an image or background image,
but a few extra lines of CSS can save your users the extraneous request over the net-
work. The result of this is a small finishing touch that can add a lot of polish to your
application or website.

 You can use this technique to build other complicated shapes, such as trapezoids,
hexagons, and stars. For a list of dozens of shapes built in CSS, see https://css-tricks
.com/examples/ShapesOfCSS/.

7.4 Stacking contexts and z-index
Positioning is useful, but it’s important to know the ramifications involved. When you
remove an element from the document flow, you become responsible for all the
things the document flow normally does for you.

Listing 7.7 Absolutely positioning a triangle on the dropdown label

Increases the right
padding to add space
for the arrow

Positions the element on
the right side of the label

Uses the top border to
form a down arrow

On hover, changes
to an up arrow

Figure 7.9 Dropdown label with a down arrow

www.EBooksWorld.ir

https://css-tricks.com/examples/ShapesOfCSS/
https://css-tricks.com/examples/ShapesOfCSS/
https://css-tricks.com/examples/ShapesOfCSS/

191Stacking contexts and z-index
 You need to ensure the element doesn’t accidentally overflow outside the browser
viewport, thus becoming hidden from the user. And, you need to make sure it doesn’t
inadvertently cover important content you need visible.

 Eventually, you’ll encounter problems with stacking. When you position multiple
elements on the same page, you may run into a scenario where two different posi-
tioned elements overlap. You may occasionally be surprised to find the “wrong” one
appearing in front of the other. In fact, in this chapter, I’ve intentionally set up such a
scenario to illustrate this.

 On the page you’ve built, click the Sign up button in the page header to open the
modal dialog. If you placed the markup for the dropdown after the modal in your
HTML, it’ll look like figure 7.10. Notice the dropdown you added to the page now
appears in front of the modal.

You can address this problem in a couple of ways. Before we get to that, it’s important
to understand how the browser determines the stacking order. For that, we need to
take a closer look at how the browser renders a page.

7.4.1 Understanding the rendering process and stacking order

As the browser parses HTML into the DOM, it also creates another tree structure
called the render tree. This represents the visual appearance and position of each ele-
ment. It’s also responsible for determining the order in which the browser will paint
the elements. This order is important because elements painted later appear in front
of elements painted earlier, should they happen to overlap.

 Under normal circumstances (that is, before positioning is applied), this order is
determined by the order the elements appear in the HTML. Consider the three ele-
ments in this bit of markup:

<div>one</div>
<div>two</div>
<div>three</div>

Figure 7.10 The modal dialog incorrectly appears behind the dropdown menu

www.EBooksWorld.ir

192 CHAPTER 7 Positioning and stacking contexts
Their stacking behavior is illustrated in figure 7.11. I’ve used some negative margins
to force them to overlap, but I haven’t applied any positioning to them. The elements
appearing later in the markup are painted over the top of the previous ones.

This behavior changes when you start positioning elements. The browser first paints
all non-positioned elements, then it paints the positioned ones. By default, any posi-
tioned element appears in front of any non-positioned elements. In figure 7.12, I’ve
added position: relative to the first two elements. This brings them to the front,
covering the statically positioned third element, even though the order of the ele-
ments in the HTML is unchanged.

 Notice that among the positioned elements, the second element still appears in
front of the first. Positioned elements are brought to the front, but the source-depen-
dent stacking between them remains unchanged.

On your page, this means that both the modal and the dropdown menu appear in
front of the static content (which you want), but whichever appears later in your
markup displays in front of the other. One way to fix your page would be to move the
<div class="modal"> and all of its contents to somewhere after the dropdown menu.

Figure 7.11 Three elements
stacking normally—later
elements appear in front of
earlier ones

Figure 7.12 Positioned
elements are painted in front
of static elements.

www.EBooksWorld.ir

193Stacking contexts and z-index
 Typically, modals are added to the end of the page as the last bit of content before
the closing </body> tag. Most JavaScript libraries for building modal dialogs will do
this automatically. Because the modal uses fixed positioning, it doesn’t matter where
in the markup it appears; it’ll always be positioned in the center of the screen.

 Moving the element to somewhere else in the markup tends to be harmless for
fixed positioning, but this isn’t a solution you can normally use for relative or absolute
positioning. Relative positioning depends on the document flow, and absolute posi-
tioning depends on its positioned ancestor element. We need a way to control their
stacking behavior. This is done through a property called z-index.

7.4.2 Manipulating stacking order with z-index

The z-index property can be set to any integer (positive or negative). Z refers to the
depth dimension in a Cartesian X-Y-Z coordinate system. Elements with a higher z-index
appear in front of elements with a lower z-index. Elements with a negative z-index appear
behind static elements.

 Using z-index is the second approach you can use to fix your page’s stacking prob-
lem. This approach gives you more freedom in how you structure the HTML. Let’s
apply a z-index of 1 to the modal-backdrop and a z-index of 2 to the modal-body (this
will ensure the body appears in front of the backdrop). Update this portion of your
stylesheet to match the next listing.

.modal-backdrop {
 position: fixed;
 top: 0;
 right: 0;
 bottom: 0;
 left: 0;
 background-color: rgba(0, 0, 0, 0.5);
 z-index: 1;
}

.modal-body {
 position: fixed;
 top: 3em;
 bottom: 3em;
 right: 20%;
 left: 20%;
 padding: 2em 3em;
 background-color: white;
 overflow: auto;
 z-index: 2;
}

Z-index seems straightforward, but using it introduces two gotchas. First, z-index only
works on positioned elements. You cannot manipulate the stacking order of static

Listing 7.8 Adding z-indexes to the modal dialog to bring it in front of the dropdown

Brings the backdrop
in front of elements
without a z-index

Brings the modal-body
in front of the backdrop

www.EBooksWorld.ir

194 CHAPTER 7 Positioning and stacking contexts
elements. Second, applying a z-index to a positioned element establishes something
called a stacking context.

7.4.3 Understanding stacking contexts

A stacking context consists of an element or a group of elements that are painted
together by the browser. One element is the root of the stacking context, so when you
add a z-index to a positioned element that element becomes the root of a new stack-
ing context. All of its descendant elements are then part of that stacking context.

 Stacking contexts are not to be confused with block formatting contexts (chapter 4).
The two are separate concepts, though not necessarily mutually exclusive. Stacking
contexts deal with which elements are in front of other elements; block formatting
contexts deal with the document flow and whether or not elements will overlap.

 The fact that all the elements of the stacking context are painted together has an
important ramification: No element outside the stacking context can be stacked
between any two elements that are inside it. Put another way, if an element is stacked
in front of a stacking context, no element within that stacking context can be brought
in front of it. Likewise, if an element on the page is stacked behind the stacking con-
text, no element within that stacking context can be stacked behind that element.

 This can be a little tricky to get your head around, so lets put together a scenario to
illustrate this. In a fresh HTML page, add this markup.

<div class="box one positioned">
 one
 <div class="absolute">nested</div>
</div>
<div class="box two positioned">two</div>
<div class="box three">three</div>

This markup consists of three boxes, two of which will be positioned and given a z-
index of 1. The absolute element inside the first box will be positioned and given a z-
index of 100. Despite its high z-index, it still appears behind the second box because
its parent forms a stacking context behind the second box (figure 7.13).

Listing 7.9 Stacking contexts example

Figure 7.13 The entire
stacking context is stacked
together relative to other
elements on the page.

www.EBooksWorld.ir

195Stacking contexts and z-index
The styles for this scenario are in listing 7.10. Apply this to your page. Most of these
styles are for sizing and coloring to make the exact stacking order plainly visible. The
negative margins force the elements to overlap. The only essential declarations are
position and z-index for the various elements.

body {
 margin: 40px;
}

.box {
 display: inline-block;
 width: 200px;
 line-height: 200px;
 text-align: center;
 border: 2px solid black;
 background-color: #ea5;
 margin-left: -60px;
 vertical-align: top;
}

.one { margin-left: 0; }

.two { margin-top: 30px; }

.three { margin-top: 60px; }

.positioned {
 position: relative;
 background-color: #5ae;
 z-index: 1;
}

.absolute {
 position: absolute;
 top: 1em;
 right: 1em;
 height: 2em;
 background-color: #fff;
 border: 2px dashed #888;
 z-index: 100;
 line-height: initial;
 padding: 1em;
}

Box one, stacked behind box two, is the root of a stacking context. Because of this, the
absolutely positioned element within it cannot be made to appear in front of box two,
even with a high z-index value. Play around with this example in your browser’s devel-
oper tools to get a feel for things. Manipulate the z-index of each element to see what
happens.

NOTE Adding a z-index to a positioned element is the most notable way a
stacking context is created, but a few other properties can create one as well.

Listing 7.10 Creating the stacking contexts

Each positioned box
establishes a stacking
context with z-index of 1.

A z-index only controls
the element’s stacking
position within its
stacking context.

www.EBooksWorld.ir

196 CHAPTER 7 Positioning and stacking contexts
An opacity below 1 creates one, as do the transform or filter properties.
These fundamentally affect how the element and its children are rendered so
they are all painted together. The document root (<html>) also creates a top-
level stacking context for the whole page.

All the elements within a stacking context are stacked in this order, from back to front:

 The root element of the stacking context
 Positioned elements with a negative z-index (along with their children)
 Non-positioned elements
 Positioned elements with a z-index of auto (and their children)
 Positioned elements with a positive z-index (and their children)

If you ever find that z-index isn’t behaving how you’d expect, look up the DOM tree at
the element’s ancestors until you find one that is the root of a stacking context. Then
use z-index to bring the entire stacking context forward or backward. Be careful, as
you may find multiple stacking contexts nested within one another.

 When the page is complicated, it can be difficult to determine exactly which stack-
ing context is responsible for the behavior you see. For this reason, always be cautious
when creating a stacking context. Don’t create one unless you have a specific reason
for it. This is doubly true for elements that encompass large portions of the page.
When possible, bring standalone positioned elements like modals to the top level of
the DOM, right before the closing </body> tag, so you don’t have to break them free
from any outer stacking contexts.

Use variables to keep track of z-indexes
It’s easy for a stylesheet to devolve into a z-index war, with no clear order as to the
priority of various components. Without clear guidance, developers adding to the
stylesheet might add something like a modal and, for fear of it appearing behind
something else on the page, they’ll give it a ridiculously high z-index, like 999999.
After this happens a few times, it’s anybody’s guess what the z-index for another new
component should be.

If you use a preprocessor such as LESS or SASS (see appendix B), or if you’re sup-
porting browsers that all support custom properties (see chapter 2), then use this to
your advantage. Put all your z-index values into variables, all in one place. That way
you can see at a glance what is supposed to appear in front of what:

--z-loading-indicator: 100;
--z-nav-menu: 200;
--z-dropdown-menu: 300;
--z-modal-backdrop: 400;
--z-modal-body: 410;

Use increments of 10 or 100, so you can insert new values in between should the
need arise.

www.EBooksWorld.ir

197Sticky positioning
 Some developers fall into the trap of positioning a large number of elements all
over the page. You should fight this urge. The more you use positioning, the more
complicated the page becomes, and the harder it is to debug. If you find you’re posi-
tioning dozens of elements, step back and re-assess the situation. This is particularly
important if you find yourself fighting to get the layout to behave the way you want.
When your layout can be accomplished using other methods, you should use those
methods instead.

 If you can get the document flow to do the work for you, rather than explicitly
positioning things, the browser will take care of a lot of edge-cases for you. Remember,
positioning takes elements out of the document flow. Generally speaking, you should
only do this when you need to stack elements in front of one another.

7.5 Sticky positioning
The four main positioning types (static, fixed, absolute, and relative) have been
around for a long time, but there’s a new type of positioning making its way into
browsers: sticky positioning. It’s sort of a hybrid between relative and fixed positioning:
The element scrolls normally with the page until it reaches a specified point on the
screen, at which point it will “lock” in place as the user continues to scroll. The com-
mon use-case for this is sidebar navigation.

 Sticky positioning has been supported in only Firefox for some time. But at the
time of writing, this feature is available in Chrome and Edge browsers. Safari supports
it with the vendor prefix (position: -webkit-sticky). Be sure to check http://caniuse
.com/#feat=css-sticky for the latest support information. Typically, you’ll use fixed or
absolute positioning as a fallback behavior for other browsers.

 Let’s update your page that has the modal dialog and dropdown menu. You’ll
change it to a two-column layout, adding a sticky-positioned sidebar as the right-hand
column. This will look like the screenshot in figure 7.14.

 When the page initially loads, the position of the sidebar appears routine. It’ll
scroll normally with the page—up to a point. As soon as it’s about to leave the viewport,

Figure 7.14 The sticky-positioned sidebar is initially positioned normally.

www.EBooksWorld.ir

http://caniuse.com/#feat=css-sticky
http://caniuse.com/#feat=css-sticky
http://caniuse.com/#feat=css-sticky

198 CHAPTER 7 Positioning and stacking contexts
it’ll lock into place. It’ll then stay there like a fixed-positioned element, remaining on
the screen as the rest of the page continues to scroll. After scrolling down the page a
little, it’ll look like figure 7.15.

Let’s restructure your page a bit to define two columns. Edit the container in your
HTML to match the next listing. This places your existing content (the dropdown
menu and page heading) into a left column and adds a right column with an
“affix” menu.

<div class="container">
 <main class="col-main">
 <nav>
 <div class="dropdown">
 <div class="dropdown-label">Main Menu</div>
 <div class="dropdown-menu">
 <ul class="submenu">
 Home
 Coffees
 Brewers
 Specials
 About us

 </div>
 </div>
 </nav>
 <h1>Wombat Coffee Roasters</h1>
 </main>

 <aside class="col-sidebar">
 <div class="affix">
 <ul class="submenu">
 Home
 Coffees
 Brewers
 Specials
 About us

Listing 7.11 Changing to a two-column layout with a sidebar

Figure 7.15 The sidebar remains “stuck” in place.

Wraps existing content
in a col-main for the
main column

Adds a second column with
an affix element inside it

www.EBooksWorld.ir

199Summary
 </div>
 </aside>
</div>

Next, you’ll update the CSS so the container becomes a flex container to size the two
columns. For this demo, you’ll repurpose the submenu styles from the dropdown
menu, though you could alternately add whatever elements and styles you want into
the sidebar. Add these styles to your stylesheet.

.container {
 display: flex;
 width: 80%;
 max-width: 1000px;
 margin: 1em auto;
 min-height: 100vh;
}

.col-main {
 flex: 1 80%;
}

.col-sidebar {
 flex: 20%;
}

.affix {
 position: sticky;
 top: 1em;
}

Most of these changes are setting up the two-column layout. With that established, it
only takes two declarations to position the affix element. The top value sets the loca-
tion where the element will lock into place: 1 em from the top of the viewport.

 A sticky element will always remain within the bounds of its parent element—the
col-sidebar in this case. As you scroll down the page, the col-sidebar will always
scroll normally, but the affix element will scroll until it locks into place. Continue
scrolling far enough and it’ll unlock and resume scrolling. This occurs when the bot-
tom edge of the parent reaches the bottom edge of the sticky menu. Note that the par-
ent must be taller than the sticky element in order for it to stick into place, which is
why I artificially increased its height by adding a min-height to its flex container.

Summary
 Use fixed positioning for modal dialogs.
 Use absolute positioning for dropdown menus, tooltips, and other dynamic

interactions.

Listing 7.12 Creating a two-column layout and sticky-position side menu

Makes the container a
flex container for the
two-column layout

Artificially adds height
to the container

Lays out the
two columns

Applies sticky positioning
to the side menu. It will
dock 1 em from the top of
the viewport.

www.EBooksWorld.ir

200 CHAPTER 7 Positioning and stacking contexts
 Be aware of accessibility concerns when building these features.
 There are two gotchas of z-index: it only works on positioned elements and

using it creates a new stacking context.
 Be aware of the potential pitfalls when creating multiple stacking contexts on

a page.
 Keep an eye out for better browser support of sticky positioning.

www.EBooksWorld.ir

Responsive design
In our modern world, the web is everywhere. We use it on our desktop in our office.
We lie in bed surfing on our tablet. It’s even on some of our television screens in
the living room. And we carry it everywhere with us on our smartphones. The web
platform of HTML, CSS, and JavaScript is a universal ecosystem unlike anything
that has come before.

 This poses an interesting problem for us as web developers: How do we design
our site so it’s usable and appealing on any device our users might use to access it?
Initially, many developers approached this problem by creating two websites: desk-
top and mobile. The server then redirected mobile devices from http://www.wom-
batcoffee.com to http://m.wombatcoffee.com. This mobile website would usually
offer a more minimal experience and a streamlined design for smaller screens.

This chapter covers
 Building web pages for multiple devices and

screen sizes

 Using media queries to alter your design based
on viewport size

 Taking the “mobile first” approach

 Responsive images
201

www.EBooksWorld.ir

202 CHAPTER 8 Responsive design
 This approach began to break down as more and more devices emerged on the
market. Do you direct a tablet to the mobile website or to the desktop? What about a
large “phablet” phone? An iPad Mini? What if a mobile user wants to perform an
action you only have available on the desktop version of your site? In the end, a forced
dichotomy between desktop and mobile causes more problems than it solves. Plus,
you have to maintain an extra website to make it work.

 A far better approach is to serve the same HTML and CSS to all your users. By
using a few key techniques, you can make your content render differently, based on
your user’s browser viewport size (or, occasionally, based on screen resolution). This
way, you don’t need two distinct websites. You create one website that works on a
smartphone, a tablet, or anything else you throw at it. This approach, popularized by
web designer Ethan Marcotte, is called responsive design.

 As you browse the web, make note of the responsive designs you come across. See
how websites respond to different browser widths. Newspaper sites are particularly
interesting because they have so much content crammed onto the page. At the time of
writing, www.bostonglobe.com/ is a great example, offering a one-, two-, or three-col-
umn layout depending on the width of your browser window. Typically, you can resize
the width of the browser window and see the page layout respond immediately. This is
responsive design at work.

 The three key principles to responsive design:

1 A mobile first approach to design. This means you build the mobile version before
you construct the desktop layout.

2 The @media at-rule. With this rule, you can tailor your styles for viewports of dif-
ferent sizes. This syntax (often called media queries) lets you write styles that only
apply under certain conditions.

3 The use of fluid layouts. This approach allows containers to scale to different sizes
based on the width of the viewport.

This chapter takes a look at these three principles. Let’s start by building a responsive
page, and I’ll unpack each of those as we go. After that, we’ll also take a look images,
which require special considerations on responsive sites.

8.1 Mobile first
The first principle of responsive design is mobile first. As mentioned, this means exactly
what it sounds like: You build your mobile layout before you build the desktop. This is
the best way to ensure both versions work.

 Developing for mobile is an exercise in constraints. Screen space is limited. The
network is often slower. The user on a mobile device uses a different set of interactive
controls. Typing is possible, but cumbersome. The user can’t hover over elements to
trigger effects. If you begin by designing a full interactive website, then try to scale it
down to meet these constraints, you’ll often fail.

www.EBooksWorld.ir

http://www.bostonglobe.com/

203Mobile first
 Instead, the mobile first approach dictates you design your site with these con-
straints in mind from the beginning. Once your mobile experience works (or is at
least planned), you can use “progressive enhancement” to augment the experience
for large screen users.

 Figure 8.1 shows the page you’re going to build. You guessed it—that’s the mobile
design.

This page has three main components: a header, the hero image with a bit of text
superimposed over it, and the main content. You can also show a hidden menu by
tapping or clicking the icon on the top right (figure 8.2). This icon, with three hori-
zontal lines, is often called a hamburger icon because it resembles the buns and patty
of a burger.

 A mobile layout is mostly a no-frills design. Apart from the interactive menu, this
design is highly focused on the content. On larger screens, you can afford to dedicate
a lot of space to things like the header, the hero image, and the menu. But on mobile
devices, users are often more task-oriented. They might be out with their friends and
want to quickly find store hours or another specific piece of information, like a price
or address.

 A mobile design is about the content. Consider a desktop design that has an article
on one side and sidebar on the other, where the sidebar has links and less important
items. You’ll want to ensure the article appears first on the mobile design. This means
you’ll want the most important content to appear first in the HTML. Conveniently,

Figure 8.1 Mobile page design

www.EBooksWorld.ir

204 CHAPTER 8 Responsive design
this coincides with accessibility concerns: A screen reader gets right to the “good
stuff,” or a user navigating via the keyboard gets to the links in the article before those
in the sidebar.

 That said, this isn’t always a hard and fast rule. You could probably make the argu-
ment that your hero image isn’t as important as the content below it. But it’s a striking
part of the design; so, in this case, I think it’s worth having that image close to the top
of the page. It also contains little content, so it takes minimal effort to navigate past it.

IMPORTANT When writing the HTML for a responsive design, it’s important
to ensure it has everything you need for each screen size. You can apply differ-
ent CSS for each instance, but they must all share the same HTML.

Now, let’s consider our design for larger viewports. You’ll code the mobile layout first,
but keeping your overall design in mind will help guide your decisions as you do that.
For this exercise, you’ll add a medium and large breakpoint. Figure 8.3 shows the
medium layout.

At this viewport size, you’ve a little more space to work with. The header and hero can
afford more padding. The menu items can fit beside each other on one line so they

breakpoint—A particular point at which the page styles change to provide the
best possible layout for the screen size.

Figure 8.2 Mobile page with the
menu opened by clicking or tapping
the hamburger icon

www.EBooksWorld.ir

205Mobile first
no longer need to be hidden, and the hamburger icon is gone because you don’t
need it to open the menu. Now the main content can be arranged into three equal-
width columns. Most of the elements fill to within 1 em of the sides of the viewport.

 The larger viewport will be the same, but you’ll increase the margins on the sides
of the page and make the hero image even larger. This design is shown in figure 8.4.

Figure 8.3 Page on medium-sized viewport

Figure 8.4 Page on large viewport

www.EBooksWorld.ir

206 CHAPTER 8 Responsive design
Because you’ll build the mobile design first, it’s important to have an idea of how
the larger viewports will look as that can influence how you structure the HTML.
Create a new web page and stylesheet. Link the stylesheet and add listing 8.1 to the
HTML’s <body>.

 The markup looks much the same as that for a non-responsive design. I’ve made a
couple of considerations for the mobile design, which I’ll highlight momentarily.

<header id="header" class="page-header">
 <div class="title">
 <h1>Wombat Coffee Roasters</h1>
 <div class="slogan">We love coffee</div>
 </div>
</header>

<nav class="menu" id="main-menu">
 <button class="menu-toggle" id="toggle-menu">
 toggle menu
 </button>
 <div class="menu-dropdown">
 <ul class="nav-menu">
 About
 Shop
 Menu
 Brew

 </div>
</nav>

<aside id="hero" class="hero">
 Welcome to Wombat Coffee Roasters! We are
 passionate about our craft, striving to bring you
 the best hand-crafted coffee in the city.
</aside>

<main id="main">
 <div class="row">
 <section class="column">
 <h2 class="subtitle">Single-origin</h2>
 <p>We have built partnerships with small farms
 around the world to hand-select beans at the
 peak of season. We then carefully roast in
 small batches
 to maximize their potential.</p>
 </section>
 <section class="column">
 <h2 class="subtitle">Blends</h2>
 <p>Our tasters have put together a selection of
 carefully balanced blends. Our famous
 house blend
 is available year round.</p>
 </section>
 <section class="column">

Listing 8.1 Page markup for a responsive design

Adds the hamburger
button for a mobile
menu

Main menu that will
be hidden by default
on mobile devices

Adds row and
columns for
medium and
large viewports

www.EBooksWorld.ir

207Mobile first
 <h2 class="subtitle">Brewing Equipment</h2>
 <p>We offer our favorite kettles, French
 presses, and pour-over cones. Come to one of
 our brewing
 classes to learn how to brew the perfect
 pour-over cup.</p>
 </section>
 </div>
</main>

In this markup, the button to toggle the menu for mobile screens is inside the nav ele-
ment. The nav-menu is placed where it can meet your needs for both mobile and desk-
top designs. And the row and column classes are in place to allow for the desktop
design. (You may not know this all up front, which is okay.)

 Let’s begin styling the page. First, you’ll add some of the simpler styles like the font,
headings, and colors, as shown in figure 8.5. Because we’re concerned right now with
mobile styles, resize your browser to a narrow size to mimic a mobile device. This helps
to show you what the page will look like on a small screen.

These styles are given in listing 8.2. Add them to your stylesheet to establish border-
box sizing, font, and link colors. The listing adds the responsive viewport-based font
size you learned about in chapter 2 (section 2.4.1). Then, it defines styles for the
header and the main body of the page.

:root {
 box-sizing: border-box;
 font-size: calc(1vw + 0.6em);
}

Listing 8.2 Adding initial styles for the page

Figure 8.5 First set of styles applied

Base font size scales
slightly with the viewport.

www.EBooksWorld.ir

208 CHAPTER 8 Responsive design
*,
*::before,
*::after {
 box-sizing: inherit;
}

body {
 margin: 0;
 font-family: Helvetica, Arial, sans-serif;
}

a:link {
 color: #1476b8;
 font-weight: bold;
 text-decoration: none;
}
a:visited {
 color: #1430b8;
}
a:hover {
 text-decoration: underline;
}
a:active {
 color: #b81414;
}

.page-header {
 padding: 0.4em 1em;
 background-color: #fff;
}

.title > h1 {
 color: #333;
 text-transform: uppercase;
 font-size: 1.5rem;
 margin: 0.2em 0;
}

.slogan {
 color: #888;
 font-size: 0.875em;
 margin: 0;
}

.hero {
 padding: 2em 1em;
 text-align: center;
 background-image: url(coffee-beans.jpg);
 background-size: 100%;
 color: #fff;
 text-shadow: 0.1em 0.1em 0.3em #000;
}

Page header
and title

Adds the hero
image to the page

A dark text shadow helps light
text remain readable in front
of complex background.

www.EBooksWorld.ir

209Mobile first
 main {
 padding: 1em;
 }

.subtitle {
 margin-top: 1.5em;
 margin-bottom: 1.5em;
 font-size: 0.875rem;
 text-transform: uppercase;
}

These styles are mostly straightforward. They transform the page title and the subtitles
in the body to all caps. They add some margins and padding, and adjust font sizes for
the various components on the page.

 The text-shadow property in the hero image might be new to you. It consists of
several values that together define a shadow to add behind the text. The first two val-
ues are Cartesian coordinates, indicating how far the shadow should shift from the
text’s position. The values 0.1em 0.1em shift the shadow slightly right and down. The
third value (0.3em) indicates how much to blur the shadow. Finally, #000 defines the
color of the shadow.

8.1.1 Creating a mobile menu

At this point, you’re left with the most complicated part of the page: the menu. Let’s
build that now. When you’re done, it’ll look like figure 8.6.

Writing code in any language is often an iterative process, and CSS is no different. For
this page, the menu took some careful consideration. I originally tried to place the
<nav> inside the <header> because that’s where I wanted the hamburger button to
appear. But after I started on the CSS, I realized I should keep the two elements as sib-
lings because this allows them to stack naturally in the desktop layout. Sometimes it
takes a few passes over certain parts of the HTML to get it right.

 Functionally, this menu is much like the dropdown menu you built in the last
chapter (listing 7.6). Initially, you’ll hide the menu-dropdown. Then, instead of using
a hover effect, you’ll add some proper JavaScript functionality. When the user clicks

Main content

Figure 8.6 Opened navigational
menu on a mobile device

www.EBooksWorld.ir

210 CHAPTER 8 Responsive design
(or taps) the menu-toggle, the dropdown will appear. Clicking a second time hides
the menu.

TIP Screen readers use certain HTML5 elements such as <form>, <main>,
<nav>, and <aside> as landmarks. This helps users with poor vision to quickly
navigate the page. It’s important that you place the button to reveal your
menu within the <nav> so it’s quickly discoverable when the user navigates
there. Otherwise, the user would jump to the <nav> only to find it empty (the
screen reader ignores the dropdown menu when display: none is applied).

In listing 8.1, notice that the <nav> appears after the <header> as a sibling element.
This means it’ll flow to the space beneath the header. You’ll have to do one unusual
thing here to match the design: you’ll use absolute positioning to pull the menu-
toggle button up so it appears inside the header element. Add this listing to your
stylesheet to style the menu.

.menu {
 position: relative;
}

.menu-toggle {
 position: absolute;
 top: -1.2em;
 right: 0.1em;

 border: 0;
 background-color: transparent;

 font-size: 3em;
 width: 1em;
 height: 1em;
 line-height: 0.4;
 text-indent: 5em;
 white-space: nowrap;
 overflow: hidden;
}

The controversial hamburger menu
Hamburger menus have become popular in recent years. They can solve the problem
of fitting more on a small screen, but they come with a cost. Hiding important ele-
ments (such as your main navigational menu) has been shown to reduce user inter-
action with those elements.

These are considerations you’ll need to evaluate with your team or designer. Some-
times they’re the right choice; other times, they may not be. Regardless, it’s import-
ant to know the techniques involved in building a hamburger menu.

Listing 8.3 Mobile menu styles

Establishes containing
block for both absolutely
positioned children

A negative top pulls the
button up outside its
containing block.

Overrides user
agent button styles

Hides the text content
of the button and fixes
its size at 1 em

www.EBooksWorld.ir

211Mobile first
.menu-toggle::after {
 position: absolute;
 top: 0.2em;
 left: 0.2em;
 display: block;
 content: "\2261";
 text-indent: 0;
}

.menu-dropdown {
 display: none;
 position: absolute;
 right: 0;
 left: 0;
 margin: 0;
}

.menu.is-open .menu-dropdown {
 display: block;
}

A lot is going on here, but it’s mostly a series of techniques you’ve already seen. The
menu is relatively positioned to establish a containing block for both its child ele-
ments: the toggle button and the dropdown. The toggle button is pulled upward with
a negative top, and the right property positions it on the right side of the screen.
This makes it appear in the header to the right of the page title.

 You then use a replacement trick on the button: A constrained width, a large text-
indent, and hidden overflow all work together to hide the text of the button (toggle
menu). Then you give the button’s ::after pseudo-element a unicode character
(\2261) for its content. This character is a mathematical symbol with three horizontal
lines: a hamburger menu. If you want to tailor the icon further, you could instead use
a background image on the pseudo-element.

 If you’re unsure why any of these particular styles are used, comment them out and
look at the effect they have on the page. The page will look a little funny on a large
viewport; resize your browser window to a narrower size for a better approximation of
the mobile look.

 The is-open class is a new “trick.” When this class is present, the final selector
(.menu.is-open .menu-dropdown) targets the dropdown. When this class is absent,
the selector will not. This enables the dropdown’s functionality. Figure 8.7 shows the
dropdown menu before the rest of the styling is applied (note the four links in front
of the hero image on the left).

 The JavaScript in listing 8.4 adds and removes the is-open class when the toggle
button is pressed. Add it to your page before the closing </body> tag.

Overlays the button with
a unicode symbol, the
hamburger icon

Displays the dropdown
menu when the class
is-open is added to
the menu

www.EBooksWorld.ir

212 CHAPTER 8 Responsive design
<script type="text/javascript">
(function () {
 var button = document.getElementById('toggle-menu');
 button.addEventListener('click', function(event) {
 event.preventDefault();
 var menu = document.getElementById('main-menu');
 menu.classList.toggle('is-open');
 });
})();
</script>

Now when you click the hamburger icon, it should open the dropdown. You can see
the text of the menu in front of the content behind it. Click the hamburger again to
close it. This way, the CSS will do the work of showing and hiding the correct ele-
ments; the JavaScript only needs to change one class name.

 Now that the dropdown works, the nav-menu needs some styling. Add this listing to
your stylesheet.

.nav-menu {
 margin: 0;
 padding-left: 0;
 border: 1px solid #ccc;
 list-style: none;
 background-color: #000;
 color: #fff;
}

.nav-menu > li + li {
 border-top: 1px solid #ccc;
}

Listing 8.4 JavaScript for dropdown functionality

Listing 8.5 Styling the navigational menu

Figure 8.7 Hamburger button working

Click-event listener
(also fires on a
touchscreen tap
event)

Toggles is-open
class on the menu

Applies a border
between each
menu item

www.EBooksWorld.ir

213Mobile first
.nav-menu > li > a {
 display: block;
 padding: 0.8em 1em;
 color: #fff;
 font-weight: normal;
}

Again, this is nothing new. Because the menu is a list (), you override the user
agent left padding and remove the list bullets. The adjacent sibling combinator tar-
gets every menu item but the first, adding a border between each item.

 An important thing to note here is the padding on the menu item links. You’re
designing for mobile devices, which are typically touchscreen. Key clickable areas
should be large and easy to tap with a finger.

TIP When designing for mobile touchscreen devices, be sure to make all the
key action items large enough to easily tap with a finger. Don’t make your
users zoom in in order to tap precisely on a tiny button or link.

8.1.2 Adding the viewport meta tag

At this stage, your mobile design is complete, but there’s one important detail miss-
ing: the viewport meta tag. This is an HTML tag that tells mobile devices you’ve inten-
tionally designed for small screens. Without it, a mobile browser assumes your page is
not responsive, and it will attempt to emulate a desktop browser. All your hard work
on a mobile design will be for naught. We don’t want that. Update the <head> of your
HTML to include the meta tag as shown in the next listing.

<head>
 <meta charset="UTF-8">
 <meta name="viewport"
 content="width=device-width, initial-scale=1">
 <title>Wombat Coffee Roasters</title>
 <link href="styles.css" />
</head>

The meta tag’s content attribute indicates two things. First, it tells the browser to use
the device width as the assumed width when interpreting the CSS, instead of pretend-
ing to be a full size desktop browser. Second, it uses initial-scale to set the zoom
level at 100% when the page loads.

TIP The DevTools in modern browsers provide the ability to emulate a mobile
browser, including a smaller viewport size and the behavior of the viewport
meta tag. These are helpful tools for testing out your responsive design. For
more information on these modes, see https://developers.google.com/web/
tools/chrome-devtools/device-mode/ (Chrome) or https://developer.mozilla
.org/en-US/docs/Tools/Responsive_Design_Mode (Firefox).

Listing 8.6 Adding the viewport meta tag for mobile responsiveness

Uses a healthy amount
of padding to ensure a
large clickable area

Viewport
meta tag

www.EBooksWorld.ir

https://developers.google.com/web/tools/chrome-devtools/device-mode/
https://developer.mozilla.org/en-US/docs/Tools/Responsive_Design_Mode
https://developers.google.com/web/tools/chrome-devtools/device-mode/
https://developer.mozilla.org/en-US/docs/Tools/Responsive_Design_Mode

214 CHAPTER 8 Responsive design
Other options are available, but the settings here are most likely the ones you’ll want.
For instance, you could explicitly set width=320 to make the browser assume a view-
port width of 320 pixels. This is generally not preferable, though, as mobile devices
come in a wide array of sizes. Using device-width allows content to render at the
most appropriate size.

 A third common option that many developers add to the content attribute is
user-scalable=no, which prohibits the user from using two fingers to zoom in and
out on their mobile device. Including this is generally a bad practice, and I discourage
its use. If a link is too small to tap, or the user wants to take a closer look at an image,
this setting would prevent them from using zoom to assist.

 For more information on the meta viewport tag, see the MDN documentation at
https://developer.mozilla.org/en-US/docs/Mozilla/Mobile/Viewport_meta_tag.

8.2 Media queries
The second component of responsive design is the use of media queries. Media queries
allow you to write a set of styles that only apply to the page under certain conditions.
This lets you tailor your styles differently, based on the screen size. You can define a set
of styles that apply to small devices, another set for medium-sized devices, and yet a
third set for large screens to allow for laying out parts of the page differently.

 Media queries use the @media at-rule to target devices that match a specified fea-
ture. A basic media query looks like this:

@media (min-width: 560px) {
 .title > h1 {
 font-size: 2.25rem;
 }
}

Any rulesets can be defined within the outer set of braces. The @media rule is a condi-
tional check that must be true for any of these styles to be applied to the page. In this
case, the browser checks for a min-width: 560px. The padding will only be applied to
a page-header element if the user’s device has a viewport width of 560 px or greater. If
the viewport is less than this, the rules inside are ignored.

 The rules inside a media query still follow the normal rules of the cascade. They
can override rules outside of the media query (based on selector specificity or source
order), or they can be overridden by those rules. The media query itself does not
affect the specificity of the selectors within.

WARNING You should use ems for media query breakpoints. It’s the only unit
that performs consistently in all major browsers should the user zoom the
page or change the default font size. Pixel- and rem-based breakpoints are
less reliable in Safari. Ems also have the benefit of scaling up or down with the
user’s default font size, which is generally preferable.

www.EBooksWorld.ir

https://developer.mozilla.org/en-US/docs/Mozilla/Mobile/Viewport_meta_tag

215Media queries
I used px in the example, but it’s a better idea to use ems in your media queries, based
on the browser’s default font size (usually 16 px). Instead of 560 px, you should use 35
em (560 / 16).

 Find the .title styles in your stylesheet and insert the media query in this listing
to add some responsive behavior to the page header.

.title > h1 {
 color: #333;
 text-transform: uppercase;
 font-size: 1.5rem;
 margin: .2em 0;
}

@media (min-width: 35em) {
 .title > h1 {
 font-size: 2.25rem;
 }
}

Now the title has two different font sizes, depending on the viewport size. It’ll be 1.5
rem for viewports below 35 em and 2.25 rem for those above.

 You can test these styles by resizing the width of your browser window. Make it nar-
row and you’ll see the smaller mobile title. Then, slowly expand your browser window.
You’ll see the font size change fluidly because of the responsive (calc()) font size
applied to the page (listing 8.2). Once it reaches a width of 35 em (or 560 px), the
title’s font size will snap to a larger 2.25 rem.

 This point, where the window is 560 px wide, is known as a breakpoint. Most often,
you’ll re-use the same few breakpoints in multiple media queries throughout your
stylesheet. We’ll discuss how to choose these breakpoints later in the chapter.

8.2.1 Understanding types of media query

You can further refine a media query by joining the two clauses with the keyword and:

@media (min-width: 20em) and (max-width: 35em) { … }

This combined media query only targets devices that meet both criteria. If you want a
media query that targets one of multiple criteria, use a comma:

@media (max-width: 20em), (min-width: 35em) { … }

This example targets both viewports 20 em and narrower and those 35 em and wider.

Listing 8.7 Adding a breakpoint to the page title styles

Targets breakpoints
above 35 em

Overrides the mobile font size
(1.5 rem) with a larger one

www.EBooksWorld.ir

216 CHAPTER 8 Responsive design
MIN-WIDTH, MAX-WIDTH, AND BEYOND

In the listings, you’ve used min-width, which targets devices with a viewport above a
certain width, and max-width, which targets devices below a certain width. These are
each called a media feature.

 min-width and max-width are the most common ones you’ll use by far. But you
can also use a number of other types of media features. Here’s some examples:

 (min-height: 20em)—Targets viewports 20 em and taller
 (max-height: 20em)—Targets viewports 20 em and shorter
 (orientation: landscape)—Targets viewports that are wider than they are tall
 (orientation: portrait)—Targets viewports that are taller than they are wide
 (min-resolution: 2dppx)—Targets devices with a screen resolution of 2 dots

per pixel or higher; targets retina displays
 (max-resolution: 2dppx)—Targets devices with a screen resolution of up to 2

dots per pixel

See the MDN documentation at https://developer.mozilla.org/en-US/docs/Web/
CSS/@media for a complete list of media features.

 Resolution-based media queries can be a little tricky, as browser support for this
is newer. Some browsers have limited support and/or require a proprietary syntax.
IE9–11 and Opera Mini, for example, don’t support the dppx unit, so you’ll need to
use the dpi (dots per inch) unit instead (for example, 192 dpi instead of 2 dppx).
Safari and iOS Safari support the proprietary -webkit-min-device-pixel-ratio
media feature. In short, the best way to target a high resolution (retina) display is to
combine the two:

@media (-webkit-min-device-pixel-ratio: 2),
 (min-resolution: 192dpi) { … }

This approach will work on all modern browsers. Use it when you want to serve
higher-resolution imagery or icons to screens that can benefit from them. This way,
users with lower-resolution screens won’t waste bandwidth loading larger images when
they won’t be able to see the difference. We’ll look more at responsive imagery later in
the chapter.

TIP You can also place a media query in the <link> tag. Adding <link
rel="stylesheet" media="(min-width: 45em)" href="large-screen.css"
/> to your page will apply the contents of the large-screen.css file to the page
only if the min-width media query is true. Note that the stylesheet will always
download, regardless of the width of the viewport, so this is merely a tactic for
code organization, not network traffic reduction.

www.EBooksWorld.ir

https://developer.mozilla.org/en-US/docs/Web/CSS/@media
https://developer.mozilla.org/en-US/docs/Web/CSS/@media
https://developer.mozilla.org/en-US/docs/Web/CSS/@media

217Media queries
MEDIA TYPES

One last option available in your media queries is the ability to target the media type.
The two media types you’ll generally need to think about are screen and print. Using
a print media query lets you control how your page will lay out if the user prints the
page, so you can do things like removing background images (to save on ink) and hid-
ing unneeded navigation. When a user prints the page, they typically only want the
main page text.

 To write print styles that apply only when printing, use the query @media print. No
parentheses are necessary as with min-width and other media features. To target
screen only, use @media screen.

8.2.2 Adding breakpoints to the page

Practically speaking, a mobile-first approach means the type of media query you’ll use
the most should be min-width. You’ll write your mobile styles first, outside of any
media queries. Then you’ll work your way up to larger breakpoints. This follows the
general structure shown in listing 8.8. (You don’t need to add this to your page yet.)

Considerations for print styles
When it comes to CSS development, print styles are often an afterthought, if they’re
considered at all. But, it’s good to consider whether your users might want to print
any of your pages. To help with printing, there are some common steps you should
take. In most cases, it’ll be helpful to apply basic print styles inside of a @media
print {…} media query.

Use display: none to hide non-essential parts of the page, such as navigational
menus and footers. If a user is printing a page, they’ll almost certainly care only about
the main content on the page.

You can also globally change font colors to black and remove all background
images and colors behind blocks of text. In many cases, a universal selector does
the job for this. I use !important here so I don’t need to worry about the cascade
overriding it:

@media print {
 * {
 color: black !important;
 background: none !important;
 }
}

Spending even a brief amount of time on print styles can be a great service to your
users. If you’re working on a site where you expect a lot of printing (for example, a
recipe site), you’ll want to spend more time making sure everything prints correctly.

www.EBooksWorld.ir

218 CHAPTER 8 Responsive design
.title {
 ...
}

@media (min-width: 35em) {
 .title {
 ...
 }
}

@media (min-width: 50em) {
 .title {
 ...
 }
}

The mobile styles are first. Because they’re outside of any media queries, these rules
apply to all breakpoints. This is followed by a media query to target medium screens
with rules that override and build upon the mobile styles. Last is a media query to tar-
get large screens, where you add the final layer.

 Depending on your design, you may have only one breakpoint, or you could have
several. For many elements on your page, you may not need to add styles for every
breakpoint—the rules at small or medium breakpoints may be complete to also
account for larger breakpoints.

 On occasion, your mobile-only styles might be complex. It can be tedious overrid-
ing these rules at a larger breakpoint. In this case, it might make sense to contain
these styles in a max-width media query so they only apply at the smaller breakpoint.
Too many max-width media queries, however, could be a sign you haven’t followed
the mobile first approach. They should be an exception and not the rule.

 Let’s add the rest of the styles for the medium breakpoint. On a larger screen,
there’s more space to work with, so you can loosen up the spacing. In listing 8.9, you’ll
add a little more padding to the header and main elements. Then you’ll add a lot
more padding to the hero image so it “pops” and adds more visual interest to the
page. You no longer need to hide the navigational menu, so you’ll also hide the ham-
burger button and reveal the menu at all times (listing 8.10). Finally, you can shift the
main content to a three-column layout (listing 8.11). Afterward, the page will look like
figure 8.8.

 Several of these changes are straightforward, such as slight increases to padding or
font size. It’s generally best to add each change immediately following the rules for
the associated selectors. For simplicity, I’ve consolidated them into listing 8.9. Add
these to your stylesheet.

Listing 8.8 General structure of responsive CSS

Mobile styles; applied
to all breakpoints

Medium breakpoint;
overrides select
mobile styles

Large breakpoint; overrides
select small and medium
breakpoint styles

www.EBooksWorld.ir

219Media queries
.page-header {
 padding: 0.4em 1em;
 background-color: #fff;
}

@media (min-width: 35em) {
 .page-header {
 padding: 1em;
 }
}

.hero {
 padding: 2em 1em;
 text-align: center;
 background-image: url(coffee-beans.jpg);
 background-size: 100%;
 color: #fff;
 text-shadow: 0.1em 0.1em 0.3em #000;
}

@media (min-width: 35em) {
 .hero {
 padding: 5em 3em;
 font-size: 1.2rem;

Listing 8.9 Padding and font adjustments for the medium breakpoint

Larger title

Horizontal
menu items

Larger hero
image

Content in
three columns

Figure 8.8 Page at medium breakpoint

Increases header
padding

Increases hero
image padding
and font size

www.EBooksWorld.ir

220 CHAPTER 8 Responsive design
 }
}

main {
 padding: 1em;
}

@media (min-width: 35em) {
 main {
 padding: 2em 1em;
 }
}

Always be sure each media query comes after the styles it overrides, so the styles within
the media query take precedence. Resize your browser from narrow to wide to see
these changes snap into place above 35 em.

 Next, let’s work on the menu. This will involve two changes: First, you’ll remove
the open and close behavior of the dropdown so it’s always visible. Second, you’ll
change the menu from vertically stacked links into horizontal ones. Both are done
next. Add these media query blocks to your stylesheet following the styles you already
have for .menu and .nav-menu.

@media (min-width: 35em) {
 .menu-toggle {
 display: none;
 }

 .menu-dropdown {
 display: block;
 position: static;
 }
}

@media (min-width: 35em) {
 .nav-menu {
 display: flex;
 border: 0;
 padding: 0 1em;
 }

 .nav-menu > li {
 flex: 1;
 }
 .nav-menu > li + li {
 border: 0;
 }

 .nav-menu > li > a {
 padding: 0.3em;
 text-align: center;
 }
}

Listing 8.10 Restructuring the nav menu for a medium breakpoint

Increases
padding on main

Hides toggle button
and reveals the
dropdown contents

Overrides absolute
positioning

Changes the menu
to a flex container
and allows items
to grow to fill the
screen width

www.EBooksWorld.ir

221Media queries

fo
Even though the menu had a lot of complicated styles to make the mobile layout
work, it doesn’t take much to override those and revert the layout to a static, block-
display element. You won’t need to override the top, left, and right properties from
the mobile styles, as those now have no effect with static positioning.

 Flexbox makes a great approach here for the list items; they’ll grow to fill the avail-
able width. You’ve also adjusted the padding of the menu items as you did with other
elements; but this time, you’ve reduced the padding. With a medium breakpoint, you
can assume the user isn’t on a small phone, so you don’t need the clickable areas quite
so large.

8.2.3 Adding responsive columns

The final change to make for the medium breakpoint is the introduction of multiple
columns. This is done exactly like multi-column layouts you’ve built in previous chap-
ters. You simply need to wrap them in a media query, so they don’t apply below a cer-
tain breakpoint.

 When you wrote your markup, you added a row and column class where you antici-
pated a three-column layout. Let’s define the styles for those now. Add this listing to
your stylesheet.

@media (min-width: 35em) {
 .row {
 display: flex;
 margin-left: -.75em;
 margin-right: -.75em;
 }

 .column {
 flex: 1;
 margin-right: 0.75em;
 margin-left: 0.75em;
 }
}

Now, resize your browser to see the columns snap into place at the breakpoint. No
specific styles apply to these elements below the breakpoint, so they stack atop one
another according to normal document flow. Above the breakpoint, they become a
flex container with flex items.

 A lot of responsive design will come down to this sort of approach: when your
design calls for items side-by-side, only place them beside each other on larger
screens. On smaller screens, allow your elements to sit on their own line and fill the
width of the screen. This technique can be applied to columns, media objects, or any
other items that feel cramped on a narrow screen. You might be wondering how I
arrived at a breakpoint of 35 em in listing 8.7. I chose it because this is the point where

Listing 8.11 Three-column layout inside a media query

Uses
flexbox

r equal-
width

columns

Uses negative margins to widen
the row container to compensate
for column margins (chapter 4,
section 4.5.2)

Adds column
gutters

www.EBooksWorld.ir

222 CHAPTER 8 Responsive design
the three columns started to feel overcrowded. In this case, below 35 ems, the col-
umns were too narrow.

 Web designer Brad Frost has compiled a list of responsive patterns that you can
browse at https://bradfrost.github.io/this-is-responsive/patterns.html. You can arrange
your columns for responsive design as a wide column and a narrow column, equal-
width columns, or a two-column or three-column layout, to name a few examples.
Ultimately, these arrangements come down to a variation of our approach here, with a
combination of columns or column widths.

 Sometimes, you won’t even need the media queries, as natural line wrapping will
take care of that for you. Flexbox layouts using flex-wrap: wrap and a reasonable
flex-basis is an excellent way to do this. Similarly, a grid layout with auto-fit or
auto-fill grid columns will determine how many items will fit in a row before wrap-
ping to a new one. You could also use inline-block elements, though in that case, they
won’t grow to fill the width of the container.

BREAKPOINT SELECTION

I began this chapter by taking you through the simpler responsive elements of the
page first, to get you accustomed to using media queries. Most of the time, you’ll want
to start setting breakpoints with the parts of your design that have multiple columns.
Try a number of breakpoints until you find one that feels right. Ensure your columns
aren’t too narrow above that breakpoint.

 It’s easy to get sucked into thinking about specific devices. An iPhone 7 is this
many pixels wide; a certain tablet is that many. Try not to worry about that. You’ll find
hundreds of devices with hundreds of different screen resolutions; you’ll never test
them all. Choose the breakpoints that make sense for your design, and it’ll play out
well, regardless of the device a user has.

Wanted: Container queries
Media queries build responsive designs based on the viewport size, but for several
years, developers and browser vendors have been trying to find a better way. The fea-
ture many developers would like to see are container queries (initially called element
queries).

Instead of responding to the viewport, this type of query would enable styles to respond
to the size of an element’s container. Consider the media object you built in chapter 4.

A media object with image
and text side by side

www.EBooksWorld.ir

https://bradfrost.github.io/this-is-responsive/patterns.html

223Fluid layouts
8.3 Fluid layouts
The third and final principle of responsive design is fluid layout. Fluid layout (some-
times called liquid layout) refers to the use of containers that grow and shrink accord-
ing to the width of the viewport. This is in contrast to a fixed layout, where columns
are defined using pixels or ems. A fixed container (for example, one with width:
800px) will overflow the viewport on smaller devices, forcing the need for horizontal
scrolling. A fluid container automatically shrinks to fit.

 In a fluid layout, the main page container typically doesn’t have an explicit width, or
it has one defined using a percentage. It may, however, have left and right padding, or
auto left and right margins to add breathing room between its edges and the edges of
the viewport. This means it can be slightly narrower than the viewport, but never wider.

 Inside the main container(s), any columns are defined using a percentage (for
instance, a main column of 70% width and a sidebar of 30% width). This way, no matter

This works on a larger screen when there is room for a side-by-side layout of the
image and the content. But in a mobile design, this sort of pattern is often split so
the image stacks above the text.

Occasionally, you might want this mobile layout at a large breakpoint. Consider what
would happen if this media object were placed inside of a narrow column (as those
in listing 8.11): the container would be too narrow to allow for the side-by-side layout,
even above the breakpoint. Instead, it would be more appropriate if you could define
the responsive behavior of the media object based not on the viewport width, but
rather the width of its container. Unfortunately, this isn’t directly possible. The only
way to achieve this layout is through the use of carefully constructed descendant
selectors that would account for this scenario (for example, .column .media >
.media-image), but this approach can be fragile.

Keep an eye out for container queries to address this need. Container queries are
difficult to implement in the browser, which is why this feature hasn’t emerged yet,
but they’re in high demand. Hopefully container queries, or something that can
achieve the same result, will make their way into browsers in coming years.

A stacked version of the media object
might be more appropriate when
horizontal space is limited.

www.EBooksWorld.ir

224 CHAPTER 8 Responsive design
what the screen width is, the containers fit within. A flexbox layout works as well,
assuming the flex items have flex-grow and, more importantly, flex-shrink values
that allow the items to fit regardless of the screen width. Do make it a habit to think of
container widths in percentages rather than in any fixed size.

NOTE The web page in this chapter isn’t the only example of fluid containers
you’ve seen. In fact, I’ve been using fluid layouts almost exclusively through-
out this book. By now, you should already be somewhat familiar with this
approach.

A web page is responsive by default. Before you apply any CSS, block-level elements
are no wider than the viewport and inline elements line wrap to avoid horizontal over-
flow. As you add styles, it’s your job to maintain the responsive nature of the page.
That’s sometimes easier said than done, but I find it helpful to know I always start out
in a good state.

8.3.1 Adding styles for a large viewport

Let’s add more media queries for your next breakpoint. As you do, observe how at
every breakpoint you never fix the width of the containers. You allow them to grow
naturally to 100% (minus some padding and/or margin). And, in the case of the
three-column portion of the page, you use flexbox to allow the columns to achieve
columns one-third the viewport width.

 The final, large viewport layout of your page is shown in figure 8.9. It’s similar to
the medium viewport, but there is a lot more space to work with here! You can be lib-
eral with padding, so that’s exactly what you’ll do.

The padding along the left and right edges has been increased from 1 em to 4 em.
The padding on all sides of the hero image text has also been increased, allowing for a
larger graphic. The additional styles are shown in listing 8.12.

Even larger
hero image

Increased
padding on
edges of page

Figure 8.9 Page layout on a large viewport

www.EBooksWorld.ir

225Fluid layouts
 Add all the (min-width: 50em) media query blocks to your stylesheet. Again, be
sure they appear below the equivalent rules at smaller breakpoints (for .page-header,
.hero, and main) so the styles in these media queries can override them.

@media (min-width: 50em) {
 .page-header {
 padding: 1em 4em;
 }
}

@media (min-width: 50em) {
 .hero {
 padding: 7em 6em;
 }
}

@media (min-width: 50em) {
 main {
 padding: 2em 4em;
 }
}

@media (min-width: 50em) {
 .nav-menu {
 padding: 0 4em;
 }
}

One last adjustment is needed. You’ve defined a responsive font size on the root ele-
ment—font-size: calc(1vw + 0.6em). On large screens, this grows too large for my
taste. To fix that, you can apply an upper bound to this font size at your highest break-
point. Update your stylesheet to match this listing.

:root {
 box-sizing: border-box;
 font-size: calc(1vw + 0.6em);
}

@media (min-width: 50em) {
 :root {
 font-size: 1.125em;
 }
}

You now have a responsive page with three breakpoints. Go ahead and experiment with
it. Change the breakpoint widths and see how it affects your browsing experience.

Listing 8.12 Increasing paddings for large breakpoints

Listing 8.13 Adding an upper limit to the responsive font size

Increases
left and right
padding on
edges of page
to 4 em

Increases hero padding on all
sides for a larger hero image

Applies a non-scaling
font size above the
highest breakpoint

www.EBooksWorld.ir

226 CHAPTER 8 Responsive design
8.3.2 Dealing with tables

Tables are particularly problematic for fluid layout on mobile devices. If a table has
more than a handful of columns, it can easily overflow the screen width (figure 8.10).

If at all possible, I recommend you find another way to organize the data for mobile
users. For instance, you could move the data from each row into its own tile, then
allow the tiles to stack atop one another. Or, you could create a visual graph or chart
that fits well on smaller viewports. Sometimes, however, you just need a table.

 One approach you can take is to force the table to display as normal block ele-
ments. Figure 8.11 shows an example of this.

This layout is made up of <table>, <tr>, and <td> elements, but the declaration
display: block has been applied, overriding their normal table, table-row, and table-
cell display values. You can use a max-width media query to limit these changes to

Figure 8.10 Right edge of a table
clipped on a mobile device

Figure 8.11 Tabular data with display:
block applied to each row and cell

www.EBooksWorld.ir

227Responsive images
small viewports. The CSS for this table is shown in the next listing. (You can apply this
to any <table> markup to see the results.)

table {
 width: 100%;
}

@media (max-width: 30em) {
 table, thead, tbody, tr, th, td {
 display: block;
 }

 thead tr {
 position: absolute;
 top: -9999px;
 left: -9999px;
 }

 tr {
 margin-bottom: 1em;
 }
}

This causes each cell to stack atop one another, then adds a margin between each
<tr>. This approach makes the <thead> row no longer line up with columns beneath
it, so I use some absolute positioning to remove the header row from view. I avoid
display: none for accessibility: I want the headings to remain present to a screen
reader. This is not a perfect solution by any means, but when all else fails, it could be
the best approach.

8.4 Responsive images
In responsive design, images need special attention. Not only do you need to fit them
on the screen, you must also consider the bandwidth limitations of mobile users.
Images tend to be among the largest resources used on a page. The first thing you
should do is always make sure your images are well compressed. Use the Save for web
option in your image editor, which will greatly reduce the image’s file size, or use
another image compression tool such as https://tinypng.com/.

 You should also ensure they’re not any higher resolution than necessary. Determin-
ing what “necessary” means, however, depends on the viewport size. You don’t need to
serve as large a file to smaller screens because they’ll be scaled down anyway.

8.4.1 Using multiple images for different viewport sizes

The best practice is to create a few copies of an image, each at a different resolution. If
you know, based on media queries, that the screen is a certain size, there’s no sense
sending an extremely large image; the browser will have to downscale it to make it fit.

Listing 8.14 Forcing a responsive table layout on a mobile device

Makes all table
elements block
display

Hides the headings
row by moving it off
the screen

Adds a little space
between each set of
table data

www.EBooksWorld.ir

https://tinypng.com/

228 CHAPTER 8 Responsive design

 Use responsive techniques to serve each to users with the appropriate screen size.
For the hero image on your page, this looks like the CSS shown here. Add this to your
stylesheet.

.hero {
 padding: 2em 1em;
 text-align: center;
 background-image: url(coffee-beans-small.jpg);
 background-size: 100%;
 color: #fff;
 text-shadow: 0.1em 0.1em 0.3em #000;
}

@media (min-width: 35em) {
 .hero {
 padding: 5em 3em;
 font-size: 1.2rem;
 background-image: url(coffee-beans-medium.jpg);
 }
}

@media (min-width: 50em) {
 .hero {
 padding: 7em 6em;
 background-image: url(coffee-beans.jpg);
 }
}

If you load this in your browser, you won’t notice a difference at all. And that’s exactly
the point. If you’re on a small breakpoint, your screen isn’t wide enough to show the
full resolution image anyway. But you did download tens or even hundreds of kilo-
bytes fewer than the full resolution image. On an image-heavy page, this can add up
and cause a noticeable difference in the page’s loading time.

8.4.2 Using srcset to serve the correct image

Media queries solve the problem when the image is included via the CSS, but what
about images added via the HTML tag? For inlined images, a different
approach is necessary: the srcset attribute (short for “source set”).

 This attribute is a newer addition to HTML. It allows you to specify multiple image
URLs for one tag, specifying the resolution of each. The browser will then fig-
ure out which image it needs and download that one.

<img alt="A white coffee mug on a bed of coffee beans"
 src="coffee-beans-small.jpg"

Listing 8.15 Adding a responsive background image

Listing 8.16 Responsive srcset image

Uses the smallest
image on mobile
devices

Uses a larger image
on medium-size
screens

Uses the full
resolution image
on large screens

Supplies a normal src for
browsers that don’t support
srcset (for example, IE and
Opera Mini)

www.EBooksWorld.ir

229Summary
 srcset="coffee-beans-small.jpg 560w,
 coffee-beans-medium.jpg 800w,
 coffee-beans.jpg 1280w"
/>

Most browsers now support srcset, but those that don’t will fall back to the specified
src, loading whichever URL is specified there. This allows you to optimize for multi-
ple screen sizes. Even better, the browser will make adjustments for higher resolution
screens. If the device’s screen has a 2x pixel density, it can download a higher resolu-
tion image accordingly.

 For a closer look at responsive images, visit https://jakearchibald.com/2015/anat-
omy-of-responsive-images/. This article covers a few other useful options, such as
adjusting the display size based on which image is loaded.

TIP As part of a fluid layout, you should always ensure images don’t overflow
their container’s width. Do yourself a favor and always add this rule to your
stylesheet to prevent that from happening: img { max-width: 100%; }.

Structuring regions of the page in responsive design can be done in countless ways.
Building any of them comes down to the application of the three principles—mobile
first, media queries, and fluid layout.

Summary
 Always build your designs mobile first.
 Use media queries to progressively enhance the page at larger and larger view-

ports.
 Use fluid layouts that fit the screen at any browser size.
 Use responsive images to fit the bandwidth limitation of mobile devices.
 Don’t forget to include your meta viewport tag.

URL of each image
and its width

www.EBooksWorld.ir

https://jakearchibald.com/2015/anatomy-of-responsive-images/
https://jakearchibald.com/2015/anatomy-of-responsive-images/

www.EBooksWorld.ir

Part 3

CSS at scale

Code is communication, not just with the computer, but also with other
developers who’ll work with the code. How you write and organize CSS is just as
important as how it renders in the browser. In Part 3, chapters 9 and 10, I’ll show
you how to structure your CSS so that it can be understood and easily main-
tained in the future.

www.EBooksWorld.ir

www.EBooksWorld.ir

Modular CSS
In parts 1 and 2, we looked at the intricacies of CSS and the tools it provides for lay-
ing out elements on the page. We’ve made sense of the box model, margin collaps-
ing, stacking contexts, floats, and flexbox. You’ll need these skills, particularly when
you first set out on a new project. In the world of software development, however,
you’ll spend a great deal of time not only writing new code, but also updating and
adding to existing code. In CSS, this brings with it an entirely new set of difficulties.

 When you make changes to an existing stylesheet, those changes can affect any
number of elements on any number of pages across your site. There’s an old joke:
two CSS properties walk into a bar; a barstool in a different bar falls over. So, how
do you ensure your change applies to all the places you want updated? And, how do
you know your change won’t affect elements you don’t want changed?

 In part 3, we’ll discuss these problems. We’ll look at the architecture of CSS,
focusing less on the declarations in your stylesheet and more on the selectors you

This chapter covers
 Emerging problems as a project grows

 Organizing CSS into modules

 Preventing escalating selector specificity

 Surveying popular CSS methodologies
233

www.EBooksWorld.ir

234 CHAPTER 9 Modular CSS
choose and the HTML you pair those with. How you structure your code determines
whether you can safely make changes in the future without unwanted side effects. This
begins with an understanding of modular CSS, which will be the focus of this chapter.

 Modular CSS means breaking the page up into its component parts. These parts
should be reusable in multiple contexts, and they shouldn’t directly depend upon one
another. The end goal is that changes to one part of your CSS will not produce unex-
pected effects in another.

 This is akin to the use of modular furniture, such as an IKEA kitchen. Instead of
building one giant kitchen cabinet unit, you can select multiple individual pieces that
are designed to look similar so they fit together visually. But, you’re free to put each
piece wherever you want amid the full arrangement. With modular CSS, instead of
building one giant web page, you build each part of the page in a way that stands
alone, then you put them together in the arrangement you want.

 The idea of writing modular code is not new in computer science, but developers
have only begun to apply it to CSS in the past several years. As modern websites and
web applications have gotten larger and more complicated, we’ve had to find ways to
manage the growing complexity in our stylesheets.

 Instead of a stylesheet where any selector can do anything anywhere on the page,
modular styles allow you to impose order. Each part of your stylesheet—which we’ll call
a module—will be responsible for its own styles, and no module should interfere with the
styles of another. This is the software principle of encapsulation applied to CSS.

CSS doesn’t have the concepts of data or traditional functions, but it does have selec-
tors and the elements those selectors target. For the purposes of encapsulation, these
will be the parts that make up our module, and each module will be responsible for
styling a small number of DOM elements.

 With encapsulation in mind, you’ll define a module for each discrete component
on the page: your navigational menus, your dialog boxes, your progress bars, and your
thumbnail images. Each module will be identified by a unique class name applied to a
DOM element. And, each module will have its own particular pattern of child ele-
ments to construct the module on the page. You’ll nest modules inside other mod-
ules, altogether constructing a complete page.

9.1 Base styles: laying the groundwork
Before you dive into writing modular styles, you’ll need to set up the environment.
Every stylesheet begins with a set of generic rules that apply to the whole page; this is
still necessary with modular CSS. These rules are often called base rules because they

encapsulation—The grouping together of related functions and data to com-
prise an object. It’s used to hide the state or values of a structured object so
that outside parties cannot operate on them.

www.EBooksWorld.ir

235A simple module
lay the foundation upon which the rest of your styles will be built. This portion of the
stylesheet won’t be modular, per se, but it’ll lay the groundwork for the modular styles
that follow.

 Create a new page and stylesheet, and apply the base styles in the following listing to
the CSS. The styles here are merely an example of some base styles you could use.

:root {
 box-sizing: border-box;
}

*,
*::before,
*::after {
 box-sizing: inherit;
}

body {
 font-family: Helvetica, Arial, sans-serif;
}

Other base styles typically include link colors, heading styles, and margins. By default,
the <body> has a small margin, which you may want to “zero” out. Depending on the
project, you’ll potentially also want to apply styles for form fields, tables, and lists.

TIP I recommend a library called normalize.css. This is a small stylesheet that
helps even out discrepancies among the user agent stylesheets of various
browsers. You can download it from https://necolas.github.io/normalize.css/.
Add this before your stylesheet as part of your base styles.

Your base styles should be fairly generic. Only add styles here that you want applied to
most or all of the page. There should be no class names or IDs in your selectors, so
you only target elements by their tag type and the occasional pseudo-class. The idea is
that these styles provide the global look you want, but are easy to override later when
you need to.

 Once your project’s base styles are set, they’ll rarely change. They provide a stable
foundation upon which you can build your modular CSS. After your base styles, the
rest of your stylesheet will consist mainly of modules.

9.2 A simple module
Let’s create a simple module for brief notification messages. Because each module
needs a unique name, you’ll call this one “message.” You’ll give it a bit of color and a
border to capture the user’s attention (figure 9.1).

Listing 9.1 Adding base styles

Box sizing reset
(chapter 3)

Default font size
for the page

Figure 9.1 The Message module

www.EBooksWorld.ir

https://necolas.github.io/normalize.css/

236 CHAPTER 9 Modular CSS
The markup for this module is a single div with a message class. Add it to your page.

<div class="message">
 Save successful
</div>

The CSS for this is one ruleset. It targets the module by its class name. Then it defines
padding, border, border-radius, and the colors. To apply these styles to the Message
module, add this listing to your stylesheet, following the base styles.

.message {
 padding: 0.8em 1.2em;
 border-radius: 0.2em;
 border: 1px solid #265559;
 color: #265559;
 background-color: #e0f0f2;
}

You should be familiar with all of these properties, so this may seem like nothing spe-
cial at this point. It looks much like other CSS you’ve seen throughout the book. In
fact, much of the CSS you’ve written follows principles of modular CSS, I just haven’t
drawn attention to it before now. Let’s evaluate what makes this CSS modular.

 It’s important that the selector for this module consists only of the single class
name. Nothing else in the selector restricts these styles to a certain place on the page.
In contrast, using a selector like #sidebar .message would mean this module could
only be used inside a #sidebar element. Without this restriction, the module is reus-
able in any context.

 By adding this class to an element, you can now reuse these styles to give user feed-
back on form input, provide noticeable help text, or draw attention to a legal dis-
claimer to name just a few examples. By reusing the same module, you produce a
consistent UI. Everywhere you use it will look the same. You won’t have a slightly dif-
ferent teal color in some places or a slightly larger padding in others.

 I’ve worked on projects where the CSS wasn’t modular. In one, a series of similar
buttons appeared throughout the application. There was a .save-form button and a
.login-form button and a .toolbar .options button. The same code was repeated
multiple times in the stylesheet, though these were imperfect copies of one another.
The intent was to have a consistent experience, but slow evolution over time intro-
duced changes that never propagated to every instance of a particular button. So,
some buttons had a slightly different padding or a brighter color of red.

 The solution was to refactor it into a single reusable module that worked regardless
of its location on the page. By creating a module, it ensured not only simpler code (less

Listing 9.2 Markup for a Message module

Listing 9.3 Implementing the Message module

Targets the Message
module by its class name

www.EBooksWorld.ir

237A simple module
repetition), but also visual consistency. It looked more professional and less quickly
thrown together. At a subconscious level, this helps users trust your application.

9.2.1 Variations of a module

Consistency is good, but sometimes you’ll want to intentionally deviate from it. Our
Message module is nice, but we might need it to look different under certain circum-
stances. For instance, if you need to display an error message, perhaps it should be
colored red rather than teal. Or, perhaps you want to distinguish between messages
that are purely informational and those that indicate a successful action, such as sav-
ing. You do this by defining modifiers.

 You create a modifier by defining a new class name that begins with the module’s
name. For instance, an error modifier for the Message module might be message
-error. By including the module name, you clearly indicate that this class belongs
with the Message module.

NOTE A popular convention is to use two hyphens to indicate a modifier:
message--error, for example.

Let’s create three modifiers for your module—success, warning, and error. Add this to
your stylesheet.

.message {
 padding: 0.8em 1.2em;
 border-radius: 0.2em;
 border: 1px solid #265559;
 color: #265559;
 background-color: #e0f0f2;
}

.message--success {
 color: #2f5926;
 border-color: #2f5926;
 background-color: #cfe8c9;
}

.message--warning {
 color: #594826;
 border-color: #594826;
 background-color: #e8dec9;
}

.message--error {
 color: #59262f;
 border-color: #59262f;
 background-color: #e8c9cf;
}

Listing 9.4 Message module with modifier classes

Base Message
module

Success modifier changes
message to green.

Warning modifier changes
message to yellow.

Error modifier changes
message to red.

www.EBooksWorld.ir

238 CHAPTER 9 Modular CSS
The modifier styles don’t need to redefine the entire module. They only need to over-
ride the parts they change. In this case, this means changing the color of the text, bor-
der, and background.

 To use a modifier, add both the main module class and the modifier class to an ele-
ment as shown next. This applies the module’s default styles and then allows the mod-
ifier to selectively override them where needed.

<div class="message message--error">
 Invalid password
</div>

Likewise, add the success or warning modifier when you need to use those versions.
These modifiers change the colors of the module, but others could change the size or
even the layout of a module.

BUTTON MODULE VARIANTS

Let’s create another module with some variants. You’ll make a Button module with
variants for large and small sizes, as well as color options (figure 9.2). This way, you
can use color to add visual meaning to the buttons. Green will indicate a positive
action, such as saving or submitting a form. Red will indicate a warning to help pre-
vent the user from accidentally clicking a cancel button.

The styles for these buttons are given in the next listing. It includes the main Button
module, as well as four modifier classes: two size modifiers and two color modifiers.
Add these to your stylesheet.

.button {
 padding: 0.5em 0.8em;
 border: 1px solid #265559;
 border-radius: 0.2em;
 background-color: transparent;
 font-size: 1rem;
}

.button--success {
 border-color: #cfe8c9;
 color: #fff;
 background-color: #2f5926;
}

Listing 9.5 An instance of the Message module with the error modifier applied

Listing 9.6 Button module and modifiers

Adds both classes
to the element

Figure 9.2 Buttons with various sizes
and color modifiers applied

Basic button
styles

Green success
color variant

www.EBooksWorld.ir

239A simple module
.button--danger {
 border-color: #e8c9c9;
 color: #fff;
 background-color: #a92323;
}

.button--small {
 font-size: 0.8rem;
}

.button--large {
 font-size: 1.2rem;
}

The size modifiers work by setting a smaller or larger font size. You used this tech-
nique in chapter 2. Changing the font size adjusts the element’s em size, which, in
turn, changes the padding and border radius without having to override their
declared values.

TIP Always keep all the code for a module together in the same place. Then
your stylesheet will consist of a series of modules, one after another.

With these modifiers in place, the author of the HTML has options to choose from.
They can add modifier classes to change the size of the button based on its impor-
tance. They can also choose a color to suggest contextual meaning to the user.

 This listing shows some HTML, mixing and matching the modifiers to create vari-
ous buttons. Add this anywhere in your page to see the results at work.

<button class="button button--large">Read more</button>
<button class="button button--success">Save</button>
<button class="button button--danger button—small">Cancel</button>

The first button here is large. The second has the green success coloring. The third
has two modifiers: one for color (danger) and one for size (small), like the buttons in
figure 9.2.

 The double-hyphen syntax may seem a little odd. The benefit becomes more appar-
ent when you start creating modules with longer names, such as nav-menu or pull-
quote. Adding a modifier to these produces class names like nav-menu--horizontal
or pull-quote--dark.

 The double-hyphen syntax shows at a glance which part of the class is the module
name and which part is the modifier; nav-menu--horizontal indicates something

Listing 9.7 Using modifiers to create various types of buttons

Red danger
color variant

Small
variant

Large
variant

Button module
with large modifier Button module

with success
modifier

Button module with
danger and small modifier

www.EBooksWorld.ir

240 CHAPTER 9 Modular CSS
different than nav--menu-horizontal. This adds clarity in projects with a lot of mod-
ules that have similar names.

NOTE This double-hyphen notation has been popularized by a methodology
called BEM. I’ll introduce you to BEM and some other similar methodologies
near the end of the chapter.

DON’T WRITE CONTEXT-DEPENDENT SELECTORS

Imagine you’re maintaining a website that has light-colored dropdown menus. One
day your boss tells you that the dropdown menu in the page header needs to be
inverted so it’s dark with white text.

 Without modular CSS, your first inclination is going to be to target that particular
dropdown with a selector that looks something like this: .page-header .dropdown.
Using that selector, you’d then override the default colors applied by the dropdown
class. With modular CSS, this selector is strictly forbidden. Although using a descen-
dant selector may work now, this approach leads to many problems down the road.
Let’s consider the ramifications.

 First, you must decide where this code belongs. Should it go with the styles for the
page header or those for the dropdown? After adding enough single-purpose rules
like this, the stylesheet will turn into a haphazard list of unrelated styles. And, if you
need to modify these styles later, will you remember where you placed them?

 Second, this approach has incrementally increased the selector specificity. When
situations arise where you want to make further changes, you’ll need to meet or
exceed this specificity.

 Third, you might later find you need this dark dropdown in another context. The
one you created is bound to the page-header. If you want another dark dropdown in a
sidebar, you’ll need to add new selectors to the ruleset to make it match both scenar-
ios or duplicate the styles entirely.

 Finally, continued use of this practice produces longer and longer selectors that
bind the CSS to a particular HTML structure. For example, if you’ve a selector like
#products-page .sidebar .social-media div:first-child h3, that ruleset is tightly
coupled to a specific place on a specific page.

 These issues are at the root of many frustrations developers have concerning CSS.
The longer a stylesheet is used and maintained, the worse they become. Selector spec-
ificity continually ratchets higher as new styles are needed to override old ones. Before
you know it, you’ll find yourself writing a selector with two IDs and five classes just to
target a checkbox.

 Rules become hard to find as individual elements are targeted by pieces of code in
multiple disparate parts of the stylesheet. It becomes more and more difficult to
understand the organization of the stylesheet and how it’s doing what it does to the
page. Hard-to-understand code means bugs become more common. Even the tiniest
changes to the page can break a huge portion of its styling. Deleting old code
becomes unsafe because nobody knows what it does and whether it’s still important.

www.EBooksWorld.ir

241A simple module
The stylesheet grows in length, and the problems only compound. These are the
problems that modular CSS seeks to prevent.

 When you need a module to look or behave differently, create a modifier class that
can be applied directly to the specific element. Instead of writing .page-header
.dropdown, for example, write .dropdown--dark. This way, the module, and only the
module, is in charge of its own appearance. Other modules can’t reach into it to make
changes. The dark dropdown is not bound to any deeply nested structure in the
HTML, so you can place it anywhere in the page you need it.

 Never use descendant selectors to alter a module based on its location in the page.
Following this one rule is the best thing you can do to prevent your stylesheet from
ever descending into the madness of unmaintainable code.

9.2.2 Modules with multiple elements

The two modules you’ve built so far—message and button—are nice and simple; they
consist of only one element. But many modules you’ll build will need more elements.
You can’t build a dropdown menu or a modal with only one element.

 Let’s build a more complex module. This will be a media object (figure 9.3), like
the one you made in chapter 4 (section 4.5.1).

This module consists of four elements: it has a div container that includes an image
and a body, and inside the body is the title. As with other modules, you’ll give the main
container the class name media to match the name of the module. For the image and
the body, you’ll use the class names media__image and media__body. These begin with
the module name, followed by a double-underscore, then the name of the sub-element.
(This is another convention from BEM methodology.) As with double-hyphen modifi-
ers, the class name tells you at a glance what role the element plays and what module
it belongs to.

 The rules for the Media module are shown here. Add these to your stylesheet.

.media {
 padding: 1.5em;
 background-color: #eee;
 border-radius: 0.5em;
}

Listing 9.8 Media module with sub-elements

Figure 9.3 Media module made with four elements

Main
container

www.EBooksWorld.ir

242 CHAPTER 9 Modular CSS
.media::after {
 content: "";
 display: block;
 clear: both;
}

.media__image {
 float: left;
 margin-right: 1.5em;
}

.media__body {
 overflow: auto;
 margin-top: 0;
}

.media__body > h4 {
 margin-top: 0;
}

You’ll notice you didn’t have to use many descendant selectors. The image is a child
element of the Media module, so you could use the selector .media > .media__image,
but that’s not necessary. Because the name of the module is already in the media__image
class; it’s guaranteed to be unique.

 I did use a direct descendant combinator for the title. I could use the class
media__title (or even media__body__title to fully indicate its position in the hier-
archy), but I find this isn’t always necessary. In this case, I decided the <h4> tag is
descriptive enough to indicate the title of the Media module. This precludes us from
using different headings (<h3> or <h5>) for a media title. If, in your modules, you
don’t like a restriction like that, use a class name to target the element instead.

 Add the markup for this module to your page.

<div class="media">

 <div class="media__body">
 <h4>Strength</h4>
 <p>
 Strength training is an important part of
 injury prevention. Focus on your core—
 especially your abs and glutes.
 </p>
 </div>
</div>

This is a versatile module. It works inside containers of multiple sizes, growing natu-
rally to fill their width. You can put multiple paragraphs inside the body. You can use it
with larger or smaller images (though you might want to consider adding a max-width
to the image so it doesn’t crowd out the body).

Listing 9.9 Markup for the Media module

Clearfix

The image
and body
sub-elements

The title within
the body

Image
sub-element

Body sub-element

Title sub-element

www.EBooksWorld.ir

243Modules composed into larger structures
USE VARIANTS AND SUB-ELEMENTS TOGETHER

You can also create variations of the module. Now, it’s trivial to make a version where
the image floats right instead of left (figure 9.4).

A media--right variant will do this work. You can add the variant class to the mod-
ule’s main div (making it <div class="media media--right">). Then you can use
that class to target the image and float it to the right.

 Add the modifier class to the element in your HTML. Append the following listing
to your stylesheet to see this version.

.media--right > .media__image {
 float: right;
}

This rule overrides the media image’s original float: left. Because of the way floats
work, you don’t need to re-order the elements in the HTML.

AVOID GENERIC TAG NAMES IN MODULE SELECTORS

In the Media module, I used the selector .media__body > h4 to target the title ele-
ment. I was able to do this because <h4> is an element that should only represent a
minor heading. I also use this technique for modules with lists; I find it simpler to tar-
get menu items with .menu > li than it is to add a menu__item class to each and every
item in a list, though opinions vary on this issue.

 You should avoid targeting based on generic tag types, such as div and span. A
selector like .page-header > span is too broad. When you initially build the module,
you might only be using a span in that module for one thing, but nothing says you
won’t come back later and need to add a second span for a different purpose. Adding
a class to the spans later is difficult because it’ll involve hunting down every use of that
module in your markup and making the change there.

9.3 Modules composed into larger structures
In his book, Clean Code, Robert C. Martin says, “The first rule of classes is that they
should be small. The second rule of classes is that they should be smaller than that.”

Listing 9.10 Defining a right variant for the Media module

Figure 9.4 Media module with right variant

Targets image sub-element, but
only when right modifier is present

www.EBooksWorld.ir

244 CHAPTER 9 Modular CSS
He was speaking of classes in object-oriented programming at the time, but the same
principle applies just as well to modules in CSS.

 Your modules should each be responsible for one thing. Our Message module is
responsible for making a message noticeable. Our Media module is responsible for
positioning an image beside some text. You should be able to concisely summarize
its purpose. Some modules will be for layout, others will be for stylistic purposes.
When a module tries to do more than one thing, you should consider breaking it
into smaller modules.

 To demonstrate, let’s build a dropdown menu
(figure 9.5). This will appear like the one you built
in chapter 7 (section 7.3.1).

 When you start a module, ask yourself, “At a
high level, what’s the module’s responsibility?” In
this case, your first answer might be, “A button that
visually toggles a dropdown menu and presents
menu items stacked atop one another.”

 It’s an apt description of what you need for this
scenario, but I’ve a rule of thumb: “If I have to use the word and in describing the
module’s responsibility, then I might be describing multiple responsibilities.” Does it
toggle a menu, or does it present stacked menu items?

 When you need to use the word and to describe a module’s responsibility, consider
whether you’re potentially describing two (or more) responsibilities. You might not
be—this is not a hard-and-fast rule. But, if you are, you should define separate mod-
ules for each responsibility. This is an important principle of encapsulation, which is
called the Single Responsibility Principle. When possible, distribute multiple responsibili-
ties to multiple modules. This will keep each module small, focused, and easier to
understand.

9.3.1 Dividing multiple responsibilities among modules

Let’s build the dropdown menu with two different modules. The first, which I’ll call
dropdown, will have a button responsible for controlling the visibility of a container.
You could further break this down and say it’s responsible for revealing the container
and hiding the container. You could also describe the button’s appearance and the
small triangle that indicates the action. Describing the module in this detail requires
the use of and, but these points are all subordinate to the primary responsibility, so I
think we’re in good shape.

 The second module, which I’ll call menu, will be the list of stacked links. You’ll
then compose the full interface by placing an instance of the menu module inside the
container of a Dropdown module.

 To get started, place the markup from the next listing into your page. This consists
of a Dropdown module, which contains a menu module. It also contains a minimal bit
of JavaScript to add open and close functionality when the toggle is clicked.

Figure 9.5
Dropdown menu

www.EBooksWorld.ir

245Modules composed into larger structures
<div class="dropdown">
 <button class="dropdown__toggle">Main Menu</button>
 <div class="dropdown__drawer">
 <ul class="menu">
 Home
 Coffees
 Brewers
 Specials
 About us

 </div>
</div>

<script type="text/javascript">
(function () {
 var toggle =
 document.querySelector('.dropdown__toggle');
 toggle.addEventListener('click', function (event) {
 event.preventDefault();
 var dropdown = event.target.parentNode;
 dropdown.classList.toggle('is-open');
 }
);
}());
</script>

I’ve used the double-underscore notation here to indicate that toggle and drawer are
sub-elements of the Dropdown module. Clicking the toggle will reveal or hide the
drawer. The JavaScript does this by adding or removing the is-open class on the drop-
down’s main element.

 The styles for the dropdown are shown in the next listing. Add this to your
stylesheet. These styles are similar to those shown in chapter 7. I’ve updated the class
names to match the double-underscore notation. This gives you a functioning drop-
down, though the menu inside it remains unstyled.

.dropdown {
 display: inline-block;
 position: relative;
}

.dropdown__toggle {
 padding: 0.5em 2em 0.5em 1.5em;
 border: 1px solid #ccc;
 font-size: 1rem;
 background-color: #eee;
}

.dropdown__toggle::after {
 content: "";

Listing 9.11 Constructing a dropdown menu from two modules

Listing 9.12 Defining a Dropdown module

Toggle button for
the dropdown

A drawer sub-element
serves as the menu
container

A Menu module placed
inside the drawer

Toggles the is-open
class when the
toggle button
is clicked

Establishes containing
block for the absolutely
positioned drawer

www.EBooksWorld.ir

246 CHAPTER 9 Modular CSS
 position: absolute;
 right: 1em;
 top: 1em;
 border: 0.3em solid;
 border-color: black transparent transparent;
}

.dropdown__drawer {
 display: none;
 position: absolute;
 left: 0;
 top: 2.1em;
 min-width: 100%;
 background-color: #eee;
}

.dropdown.is-open .dropdown__toggle::after {
 top: 0.7em;
 border-color: transparent transparent black;
}
.dropdown.is-open .dropdown__drawer {
 display: block;
}

This listing uses relative positioning on the main element to establish the containing
block for the drawer, which is, in turn, absolutely positioned within. It provides
some styles for the toggle button, including the triangle in the ::after pseudo-
element. Lastly, it reveals the drawer and inverts the triangle when the is-open class
is present.

 This is about 35 lines of code. A handful of things is going on here, but it’s not so
much you can’t keep it all in your head while you work on this module. When, down
the road, you have to come back and make changes to a module, you’ll want it to be
small enough so that you can figure it out reasonably quickly.

POSITIONING IN A MODULE

This module is the first one you’ve built that uses positioning. Notice that it estab-
lishes its own containing block (position: relative on the main element). The abso-
lutely positioned elements (the drawer and the ::after pseudo-element) are based
on positions that are defined within the same module.

 When possible, I try to keep positioned elements that are related to one another
within the same module. This way, the module won’t behave strangely if I place it
inside another positioned container.

STATE CLASSES

The is-open class has a special purpose in the Dropdown module. It’s intended to be
added to or removed from the module dynamically using JavaScript. It’s also an exam-
ple of a state class because it indicates something about the current state of the module.

Draws the triangle
using borders
(chapter 7)

Hides the drawer
initially, then displays
it when the is-open
class is present

Inverts the triangle while
the dropdown is open

www.EBooksWorld.ir

247Modules composed into larger structures
 It’s a common convention to design all state classes so they begin with is- or has-.
That way, their purpose is readily apparent; they indicate something about the mod-
ule’s current state and are expected to change. Other examples of state classes could
be is-expanded, is-loading, or has-error. The precise nature of what these do would
depend on the module where they’re used.

IMPORTANT Group the code for state classes along with the rest of the code
for the module. Then, any time you need to use JavaScript to dynamically
change the appearance of a module, use the state class to trigger the change.

THE MENU MODULE

With the Dropdown module working, you can now focus your attention on the Menu
module. You don’t need to worry any longer about the opening and closing of the
dropdown, as that’s already taken care of by the Dropdown module. The Menu mod-
ule will apply the look and feel you need to the list of links.

 The styles for this are shown here. Add these to your stylesheet.

Preprocessors and modular CSS
A feature that all preprocessors like Sass or LESS provide is the ability to merge sep-
arate CSS files into one. This lets you organize your styles into multiple files and
directories, but serve them all to the browser as one file. It reduces the number of
network requests necessary from the browser, allowing you to break up your code into
manageable sizes. In my opinion, this is one of the most valuable features prepro-
cessors provide.

If you happen to use a processor, I strongly encourage you to place each module of
your CSS in its own appropriately named file. Organize these into directories as
needed. Then create a master stylesheet that imports all your modules. This way, you
won’t have to hunt through one long stylesheet for each module when you want to
make a change. You’ll know exactly where you need to look.

You could create a main.scss that contains only @import statements. It would look
something like this:

@import 'base';
@import 'message';
@import 'button';
@import 'media';
@import 'dropdown';

The preprocessor would then bring in your base styles from base.scss and your mod-
ule styles each from its own file, outputting a single stylesheet that contains all these
styles. That way, each module has its own file, which makes for easier editing.

See appendix B for more information on preprocessors, or consult your preproces-
sor’s documentation for more on using its import directive.

www.EBooksWorld.ir

248 CHAPTER 9 Modular CSS
.menu {
 margin: 0;
 padding-left: 0;
 list-style-type: none;
 border: 1px solid #999;
}

.menu > li + li {
 border-top: 1px solid #999;
}

.menu > li > a {
 display: block;
 padding: 0.5em 1.5em;
 background-color: #eee;
 color: #369;
 text-decoration: none;
}

.menu > li > a:hover {
 background-color: #fff;
}

These are the same declarations you used in your dropdown in chapter 7. Each is
a sub-element of the module, so I didn’t feel the need to add a double-underscore to
each and every one. The direct descendant selector .menu > li is specific enough.

 This module is completely standalone. It has no dependency upon the Dropdown
module. This keeps the code simpler because you don’t have to understand one to
make sense of the other. It also enables a more flexible reuse of these modules.

 You could create a different style of menu—whether a variant or a completely sep-
arate module—and use it inside of a dropdown should the need arise. You can also
use this menu elsewhere, outside of the dropdown. You can’t often predict what your
pages might need in the future, but with reusable modules, you leave the door open
to mix and match new possibilities with a familiar, consistent look and feel.

9.3.2 Naming modules

Choosing appropriate module names takes thought. You can throw in a temporary
name as you develop the module, but before you consider it complete, make sure you
have given some attention to its name. Doing this well is possibly the most difficult
part of writing modular CSS.

 Consider the Media module from earlier in the chapter. You used it to display an
image of a runner and running tip as shown in figure 9.6.

 Imagine you haven’t yet named the module, but you know a page needs it. You
could name it running-tip. This is accurate and, initially, it seems fitting. But consider
other things you might want to do with the styles in this module. What if you wanted
to use the same UI element for something else? Following the theme of a running

Listing 9.13 Menu module styles

Overrides user
agent styles to
remove list bullets

Adds a border
between each link

Styles large
clickable links

Adds highlight
on hover

www.EBooksWorld.ir

249Modules composed into larger structures
website, you might want to use a series of these to list upcoming races. If you do that,
the name running-tip is suddenly out of place.

 You need to give the module a name that’s meaningful no matter what context you
might want to use it. You should also avoid names that simply describe the visual
appearance. Calling this a “gray-box-with-image” seems more versatile, but what if you
decide later the background color should be light blue? Or, you perform a complete
redesign of the site? This name would no longer be applicable, and you would have to
rename it and update the name everywhere it appears in the HTML.

 Instead, you need to ask yourself what this module represents conceptually. This
isn’t always an easy task. The name media works well on this level; it supports some
sort of image and text. It gives a strong impression, without tying the module to any
one particular use or visual implementation.

 A module should be versatile. Its name will ideally be simple and memorable. As
you design more pages for your site, you can reuse a module for any number of
things. You and other members of your team can adopt it into the language you use
when speaking about the site: “Let's use a media here,” or, “These tiles are too close
together.”

 So far, you’ve created a Message, a Media, a Dropdown, and a Menu module. Some
other examples of good module names include panel, alert, collapsible-section, and
form-control. It helps if you’ve a general sense of the overall design of the site from
the beginning. You might know, for example, that there’ll be two unrelated UI ele-
ments that could be rightly called tiles; in which case, you should take care to name
them more precisely (perhaps media-tile and headline-tile).

 Some people enforce the use of two words in the name of every module so that noth-
ing is too generic; you never know when the need for a completely new tile module
might arise. If your existing tile module is more precisely named, it can leave you a little
more freedom in how you can name the new one without the two becoming conflated.

 When naming variant classes for your module, you should apply similar principles.
For instance, if you’ve a Button module, don't subclass red and blue variants with but-
ton--red and button--blue. The design of your site is likely to change in the future,
and you don't know whether these colors will change as well. Try to find more mean-
ingful names like button--danger and button--success instead.

 Modifiers with a more relative meaning like large or small are not perfect, but they
can be acceptable. Nothing says you can’t change the size of a button--large during

Figure 9.6 Media module with an image and a running tip

www.EBooksWorld.ir

250 CHAPTER 9 Modular CSS
a redesign, as long as it remains larger than a regular button. But certainly avoid
overly precise modifiers like button--20px.

9.4 Utility classes
Sometimes you’ll need a class to do one simple, very specific thing to an element. This
could mean centering text, floating it left, or adding a clearfix, for example. These
classes are called utility classes.

 In some ways, utility classes are like small modules. A utility class, however, should
be laser-focused. Rarely will it be more than one declaration. I like to keep these
classes all near the end of my stylesheet, below all my modules.

 The next listing shows four utility classes. Each perform a specific action: center
text, float left, clearfix (contain floats), and hide an element.

.text-center {
 text-align: center !important;
}

.float-left {
 float: left;
}

.clearfix::before,

.clearfix::after {
 content: " ";
 display: table;
}
.clearfix::after {
 clear: both;
}

.hidden {
 display: none !important;
}

Yes, I used !important. Twice. Utility classes are the only place you should use the
important annotation. In fact, it might even be preferred. No matter where you apply
the utility class, it will work. I guarantee you, any time you add the class text-center
to an element, it’s because you want its text centered and you don’t want any other
styles to override this. Using the important annotation ensures this.

 To see these classes in action, add them to an element on your page. A <div
class="text-center"> centers any text within. Add float-right to an to float
it, and clearfix to its container to make it contain the float.

 Utility classes are meant to be quick helpers. You don’t need a full module when
you need to do one simple thing on the page. When this is the case, use a utility class.
Don’t get carried away, though. On most sites, you probably won’t need more than a
dozen or so of these classes.

Listing 9.14 Examples of utility classes

Centers text within
a container

Floats an
element left

Clearfix

Hides an element
on the page

www.EBooksWorld.ir

251CSS methodologies
9.5 CSS methodologies
The concept of modular CSS began to emerge several years ago. Developers who
had experienced the problems of scaling up CSS for large projects began to create
prescribed methodologies to enable code reuse and reduce bugs. In the years since,
new methodologies have built upon these ideas. These don’t come with any sort of
library or technology, but they do provide a set of guidelines to help organize
your CSS.

 I owe a lot of the wisdom in this chapter to the people that have gone before me. If
you follow the advice laid out in this chapter, you’ll be a long way toward following
most of these methodologies.

 These practices have become transformative in the CSS world. It’s worth knowing
about a few of the big ones. Some of these are simple, offering only a few guidelines.
Others are more rigid, providing a strict organization for your styles. Each has its own
terminology and naming conventions, but fundamentally they all come back to a
modular approach to CSS:

 OOCSS—Object-oriented CSS, created by Nicole Sullivan:
https://github.com/stubbornella/oocss/wiki

 SMACSS—Scalable and Modular Architecture for CSS, created by Jonathan Snook:
https://smacss.com/

 BEM—Block, Element, Modifier, developed at Yandex:
https://en.bem.info/methodology/

 ITCSS—Inverted Triangle CSS, created by Harry Roberts:
www.creativebloq.com/web-design/manage-large-css-projects-itcss-101517528

The order of this list is more or less chronological. It also corresponds with an increas-
ing amount of structure. OOCSS is based on a few guiding principles, whereas ITCSS
has specific rules of naming classes and categorizing styles; SMACSS and BEM fall in
between.

 In this chapter, I’ve taught you the three main sections of your stylesheet: base
rules, module rules, and utility classes. SMACSS adds a section for layout rules, which
deals with laying out major regions of the page (sidebar, footer, and maybe a grid sys-
tem). ITCSS divides the categories further into seven sections.

 If these methodologies interest you, I encourage you to read up on them further.
They have differing terminology, but in many ways, they complement one another.
Choose one that’s your favorite or tailor your approach to modular CSS to your liking.
If you work with a team, find something that all of you can agree on. If you don’t like
the BEM naming syntax I’ve shown you, find another or come up with a new one that
meets your needs.

www.EBooksWorld.ir

https://github.com/stubbornella/oocss/wiki
https://smacss.com/
https://en.bem.info/methodology/
http://www.creativebloq.com/web-design/manage-large-css-projects-itcss-101517528

252 CHAPTER 9 Modular CSS
Summary
 Break your CSS up into small, reusable modules.
 Never write styles that reach into another module and change its appearance.
 Use variant classes to provide multiple versions of the same module.
 Divide large constructs into smaller modules; build your pages by piecing

together a number of modules.
 Group all rules for a module together in your stylesheet.
 Use a naming convention such as double-hyphens and double-underscores to

make your modules’ structure easier to understand at a glance.

Alternate approaches in JavaScript
With large teams, writing modular styles requires a certain amount of rigor to ensure
everyone is following the same conventions. It also requires taking steps to ensure
nobody creates module names that conflict with one another. To solve these prob-
lems, some web development communities began experimenting with alternative
approaches to modular CSS. In search of a solution, they turned to JavaScript.
They’ve devised an approach known as inline styles or CSS in JS.

Instead of relying on class-naming conventions, this approach requires using Java-
Script to either manufacture class names that are guaranteed unique or to apply all
styles to the page using the HTML style attribute. A number of JavaScript libraries
have emerged to do this work, the most popular of which are Aphrodite, Styled Com-
ponents, and one called (confusingly) CSS Modules. Most of these are tied to a par-
ticular JavaScript framework or tool set, such as WebPack.

This approach is still experimental (and a bit controversial), but it’s worth being aware
of, especially if you develop single page applications (SPAs). It only works for appli-
cations that are rendered completely by a JavaScript framework like ReactJS. Going
down this road involves some trade-offs, and it locks you in to a particular tool set.
It’s not a perfect solution, but has proven successful for some.

www.EBooksWorld.ir

Pattern libraries
After you start writing your CSS in a modular way, it’ll begin to shift the way you
approach the task of authoring web pages and web applications. At first, the pages
you build may not seem different. But at some point, you’ll go to put together a
particular page, and you’ll find that you have already created many of the modules
it requires. For example, if you need a media object, or a dropdown or a navigation
menu, and you’ve already created one, you already have the styles ready for it.
You’ll need only to add the correct class names to a few elements structured in the
correct manner.

 Because the modules are reusable, you’ll be able to build those portions of the
page without adding any new CSS to your stylesheet. Instead of writing an HTML

This chapter covers
 Building a pattern library to document your

modules

 Incorporating a pattern library into your
development process

 Applying a CSS First approach to writing styles

 Safely editing and deleting CSS

 Utilizing CSS frameworks such as Bootstrap
253

www.EBooksWorld.ir

254 CHAPTER 10 Pattern libraries
page then applying styles, you’ll find yourself taking modules that already exist, and
using them to piece together a new page. The further you progress into the project,
the less you’ll need to write new CSS. Instead of new styles, what you’ll need is an
inventory of all the modules already available in your stylesheet.

 It’s becoming standard practice on large projects to put together a set of documen-
tation that provides this inventory. This set of documentation is called a pattern library
or a style guide. It’s not part of your website or application; instead, it’s a separate set of
HTML pages, showcasing each CSS module. This is a development tool that you and
your team will use when building the site.

 In this chapter, I’ll show you how to build a pattern library. Countless tools are
available to help with this (though it can be done entirely without tools, if you’re
enterprising enough). I’ll show you one such tool, called KSS, though my focus will
extend beyond this to include principles that apply regardless of the tool you use.

 After you get your pattern library started, I’ll highlight the key benefits that it pro-
vides and how it can improve your development process, especially for large projects.
This chapter is a continuation of chapter 9, so if you skipped ahead to this point, I
encourage you to go back and read that chapter first.

10.1 Introduction to KSS
I’ve made a point throughout the book not to talk much about tooling. The most
important principles of CSS apply regardless of your toolset, and I’ve wanted the focus
to be on those principles, not on which preprocessor or build tool you use.

 Building a pattern library, although possible without any particular tooling, is
much easier with some help from tools. A number of such libraries are available to
help with this—run a web search for “style guide generator” and you’ll find plenty. No
one clear industry leader exists, but one that remains consistently near the top of the
list is KSS. This stands for Knyle Style Sheets (“Knyle” being a reference to Kyle Neath,
the author).

Pattern library vs. style guide
Some pattern libraries are often called a style guide (or “living style guide”). In fact,
style guide is probably the more common—there’s a distinction, however.

The name style guide implies not only technical instruction on how to use the mod-
ules, but also opinionated direction about when and why you should or should not
use them. This direction is typically for guiding a developer through requirements of
the product’s branding.

If branding instruction is relevant on your project, feel free to add it to your pattern
library. But that gets into the realm of marketing rather than development. Because
this chapter focuses on the technical documentation aspect, I’ll use the name pat-
tern library instead.

www.EBooksWorld.ir

255Introduction to KSS
 I’ll show you how to get KSS set up and running. Once it’s configured, it scans your
stylesheet for comment blocks that have a certain Styleguide annotation. You’ll use
each of these comment blocks to describe the purpose and use of each module; KSS
uses this to build the HTML documentation. The comment can also include a snippet
of HTML, illustrating the markup required to render the module. KSS uses this to
render a live demo of the module in the documentation, similar to the screenshot in
figure 10.1.

In this screenshot, you can see a menu on the left, listing the sections of the pattern
library. On the right is the documentation for the Dropdown module (like the one
you built in chapter 9). This includes a rendered version of a dropdown menu, plus
the HTML used to build it. With this as a guide, anyone versed in HTML can then rep-
licate this markup on a page, and your stylesheet would apply this appearance.

10.1.1 Setting up KSS

KSS was originally written as a Ruby application. But, because you’re in the realm of
front-end development, chances are you’re more familiar with JavaScript, so I’ll walk
you through installing a Node.js implementation of KSS.

 If you don’t have Node.js installed, you can find it for free at https://nodejs.org.
Download and install it according to the directions given there. Node comes with a
package manager (called npm), which you’ll use to install KSS. I’ll show you the com-
mands needed for this, but if you want to learn more about npm or need help trouble-
shooting anything, visit https://docs.npmjs.com/getting-started/.

Figure 10.1 Rendered KSS documentation of a Dropdown module

www.EBooksWorld.ir

https://nodejs.org/
https://docs.npmjs.com/getting-started/
\h

256 CHAPTER 10 Pattern libraries

V
n

INITIALIZE YOUR PROJECT

Once Node and npm are installed, create a directory for your project wherever you
prefer on your file system. Navigate to it in the terminal. Run npm init -y to initialize
a new project. The -y flag automatically sets the defaults for the project name, license,
and other values. (If you omit the -y flag, npm prompts you to input these values.)

 Upon initializing your project, npm creates a file called package.json. This file
holds the npm metadata for your project in JSON format.

{
 "name": "pattern-library",
 "version": "1.0.0",
 "description": "",
 "main": "index.js",
 "scripts": {
 "test": "echo \"Error: no test specified\" && exit 1"
 },
 "keywords": [],
 "author": "Keith J. Grant",
 "license": "ISC"
}

With your package initialized, you can install KSS as a dependency. Enter npm install
--save-dev kss in the terminal. This does two things: It creates a node_modules
directory in your project, where KSS and its dependencies are installed, and it adds “kss”
into a list of development dependencies (devDependencies) in the package.json file.

ADD THE KSS CONFIGURATION

KSS will need a configuration file. This file gives KSS the paths to some directories
and files that it’ll use to build the pattern library. Create a file in your project directory
called kss-config.json. Copy the following listing into this file.

{
 "title": "My pattern library",
 "source": [
 "./css"
],
 "destination": "docs/",
 "css": [
 "../css/styles.css"
],
 "js": [
 "../js/docs.js"
]
}

Listing 10.1 Generated package.json file

Listing 10.2 KSS configuration file (kss-config.json)

Brief name of your
npm project

ersion
umber Longer description of the

project can be filled in here.

Path to CSS source files
directory (which KSS will scan)

Path to where the generated
pattern library will be written

Path to stylesheet (relative
to destination directory)

Path to any javascript (relative
to destination directory)

www.EBooksWorld.ir

257Introduction to KSS
The source path tells KSS where to find your CSS source files, which it scans for docu-
mentation comments. It then uses the comments to produce pages of the pattern
library in the destination directory.

 The files listed in the css and js keys will each be added to the pages of the pat-
tern library. I’ve configured these each for a css and js directory, respectively. Go ahead
and create these directories and source files therein (css/styles.css and js/docs.js). Leave
the files empty for now; you’ll add to them shortly.

NOTE In our case, the stylesheet listed in the css key is in the same directory
as the source directory. When you use a preprocessor, such as SASS or Less,
the source directory should point to your SASS or Less files, but the css key
should reference the compiled CSS stylesheet.

As a last bit of configuration, you’ll add a command to the package.json file that tells
KSS to build the pattern library. Add a new item to the scripts section of your pack-
age.json file so it matches the following listing.

"scripts": {
 "build": "kss --config kss-config.json",
 "test": "echo \"Error: no test specified\" && exit 1"
},

This adds a build command to your package. Now, running npm run build in the ter-
minal will tell NPM to run KSS (from the node_modules directory), passing it the
path to the KSS configuration file you created. Run npm run build now and you’ll see
an error: “Error: No KSS documentation discovered in source files.” KSS is looking for
some documentation. Let’s give it some.

10.1.2 Writing KSS documentation

You’ll add some modules from chapter 9 to your pattern library. The first of these
will be the media object, as shown in figure 10.2. When KSS builds this page, it’ll
add Media to the table of contents on the left and will render the documentation on
the right.

 KSS looks for comments in your stylesheet that follow a particular pattern. This
includes a title (usually the name of the module), some descriptive text, some exam-
ple HTML, and a Styleguide annotation indicating where the module belongs in the
table of contents. A blank line must separate each of these items for KSS to distinguish
them. Strictly speaking, the final Styleguide annotation is the only piece KSS requires,
but you should typically include the rest as well.

Listing 10.3 Adding a build script to package.json

Defines a build
command

www.EBooksWorld.ir

258 CHAPTER 10 Pattern libraries
Add the code shown in the next listing to your stylesheet at css/styles.css. This
includes some base styles and the Media module. Above the module styles is the CSS
comment block for KSS.

:root {
 box-sizing: border-box;
}

*,
*::before,
*::after {
 box-sizing: inherit;
}

body {
 font-family: Helvetica, Arial, sans-serif;
}

Listing 10.4 Media object with KSS documentation comment

Figure 10.2 Documentation for the Media module

www.EBooksWorld.ir

259Introduction to KSS
/*
Media

Displays an image on the left and body content
on the right.

Markup:
<div class="media">
 <img class="media__image"
 src="http://placehold.it/150x150" />
 <div class="media__body">
 <h4>Strength</h4>
 <p>
 Strength training is an important part of
 injury prevention. Focus on your core—
 especially your abs and glutes.
 </p>
 </div>
</div>

Styleguide Media
*/
.media {
 padding: 1.5em;
 background-color: #eee;
 border-radius: 0.5em;
}
.media::after {
 content: "";
 display: block;
 clear: both;
}

.media__image {
 float: left;
 margin-right: 1.5em;
}

.media__body {
 overflow: auto;
 margin-top: 0;
}

.media__body > h4 {
 margin-top: 0;
}

Now, run npm run build in your terminal. KSS generates a docs directory that includes
a section-media.html file. Open this page in your browser to see the pattern library.
KSS also logs a warning: “No homepage content found in homepage.md.” I’ll show

Title (name of
the module)

Description of the
module and its use

HTML example
illustrating use
of the module

Styleguide annotation,
adding this to the table
of contents as Media

www.EBooksWorld.ir

260 CHAPTER 10 Pattern libraries
you how to fix this in a bit. For now, let’s take a closer look at the parts of the docu-
mentation comment. The first few lines look like this:

/*
Media

Displays an image on the left and body content
on the right.

The first line of the comment defines the title (Media) for this section of the docu-
mentation, and then some text describing the purpose of the module. This descrip-
tion may be written in markdown format, so you can add formatting to it as you wish.
The description can be multiple paragraphs.

When you create a module, use the description to convey to other developers any-
thing they’ll need to know about using it. Sometimes, a simple sentence is enough.
Sometimes, you’ll need to indicate that the module requires JavaScript or is intended
to be used in conjunction with another module. This is your documentation on the
use of your stylesheet.

 After the description is a Markup: annotation. This is followed by a block of HTML
code that illustrates the use of the module. KSS renders this HTML into the pattern
library so the reader can preview it. Then, it displays the HTML in readable format so
the reader can copy it:

Markup:
<div class="media">
 <img class="media__image"
 src="http://placehold.it/150x150" />
 <div class="media__body">
 <h4>Strength</h4>
 <p>
 Strength training is an important part of
 injury prevention. Focus on your core—
 especially your abs and glutes.
 </p>
 </div>
</div>

The exact text and images used in the example are not important, as long as they
illustrate to the developer how the module works. In this case, I’ve used a generic

markdown—A common text format that supports annotations for basic format-
ting. Surround text in asterisks to make it italic; surround text with back-ticks
(`) to format it as code. See https://github.com/adam-p/markdown-here/
wiki/Markdown-Cheatsheet for a complete reference.

www.EBooksWorld.ir

https://github.com/adam-p/markdown-here/wiki/Markdown-Cheatsheet
https://github.com/adam-p/markdown-here/wiki/Markdown-Cheatsheet
https://github.com/adam-p/markdown-here/wiki/Markdown-Cheatsheet

261Introduction to KSS
placeholder image from the website http://placehold.it. When the developer uses this
module, they can add the content they need.

WARNING It’s important, however, that there are no empty lines in the mid-
dle of the HTML as this indicates to KSS that the markup section is complete.

The final line of the KSS comment must include the Styleguide annotation, which is
followed by the label for the table of contents (in this case, Media):

Styleguide Media
*/

This must be the last line of the comment. Without it, KSS will ignore the entire com-
ment block.

 When you update a stylesheet, update the documentation to match. Having the
documentation right there in the source code makes this easy to do. When you add a
new module, add a documentation block with it. After you have made changes, run
npm run build again to generate a fresh copy of the pattern library.

WARNING KSS doesn’t delete old pages when generating new ones. If you
rename or move a part of the documentation in your source code, the cor-
responding file in the docs directory will remain in place, alongside the
new one. When you refresh your browser, be sure you’re not reloading the
old file.

Because the pattern library “lives” with the styles it documents, any developer with
access to the stylesheet will have access to its documentation. You may also want to
host the pattern library somewhere online, where your development team can
access it.

10.1.3 Documenting module variants

Let’s document another module (listing 10.5). You’ll bring in the Button module
from the last chapter. This module offered several variants: two alternate colors and
two alternate sizes. KSS provides a way for you to indicate multiple variants, rendering
each one in the pattern library. This will look like figure 10.3.

 The documentation comment for this module will be similar to the last, but you’ll
add a new section after the markup to indicate each of the modifiers (listing 10.5).
This will be a list of the modifier classes, each followed by a hyphen and their descrip-
tion. You’ll also add the annotation {{modifier_class}} to the markup example,
indicating where the modifier classes belong.

www.EBooksWorld.ir

http://placehold.it/

262 CHAPTER 10 Pattern libraries
/*
Buttons

Buttons are available in a number of sizes and
colors. You may mix and match any size with any
color.

Markup:
<button class="button {{modifier_class}}">
 click here
</button>

.button--success - A green success button

.button--danger - A red danger button

.button--small - A small button

.button--large - A large button

Listing 10.5 Button module and documentation

Figure 10.3 Button module with variants

Indicates where
the modifier
classes are used

Lists available
modifier classes

www.EBooksWorld.ir

263Introduction to KSS
Styleguide Buttons
*/
.button {
 padding: 1em 1.25em;
 border: 1px solid #265559;
 border-radius: 0.2em;
 background-color: transparent;
 font-size: 0.8rem;
 color: #333;
 font-weight: bold;
}

.button--success {
 border-color: #cfe8c9;
 color: #fff;
 background-color: #2f5926;
}

.button--danger {
 border-color: #e8c9c9;
 color: #fff;
 background-color: #a92323;
}

.button--small {
 font-size: 0.8rem;
}

.button--large {
 font-size: 1.2rem;
}

KSS scans the list of modifier classes you’ve defined, rendering each one into the pat-
tern library. The {{modifier_class}} tells it where to place the classes. (If you’re
familiar with handlebars templates, this syntax probably looks familiar. This is what
KSS uses behind the scenes to render the module.) Run npm run build to re-build
your pattern library and view the documentation in your browser.

TIP Re-running KSS every time you make a change can get tedious. If you’re
using a task runner such as Gulp for your projects, I suggest configuring a task
that watches for changes and automatically re-runs KSS for you. Most task
runners have a plugin or other mechanism to do this.

You should now have three items in your pattern library’s table of contents (docs/
index.html): Overview, Buttons, and Media. The latter two each link to the parts of
documentation you’ve written. The Overview link is broken as you haven’t created a
home page yet. This is the cause of the “No homepage content” warning.

www.EBooksWorld.ir

264 CHAPTER 10 Pattern libraries
10.1.4 Creating an overview page

Let’s add a home page to the pattern library. Inside the css directory, create a new file
at css/homepage.md. This will be a file in markdown that serves as an introduction to
the pattern library. Copy this listing into the file.

Pattern library

This is a collection of all the modules in our
stylesheet. You may use any of these modules when
constructing a page.

Now run npm run build and the warning about home page content should be gone. If
you open docs/index.html in your browser, you’ll see this content rendered.

 In your projects, use this page to serve as an introduction to your pattern library.
You can provide instruction on how to include the stylesheet or stylesheets on the
page, how to include the correct web fonts (see chapter 13), or anything else to help
developers get familiar with using your stylesheets.

 Because you’re opening the pattern library files directly from disc, you may notice
the Overview link in the table of contents still doesn’t work. This is because KSS links
it to the url ./ rather than to index.html. To make this work, you’ll need to serve the
pattern library via an HTTP server so the ./ url will resolve to index.html in the
browser. I’ll leave this for you to do, depending on the toolset you’re most familiar
with. If you’re unsure where to start, try the npm package http-server (https://www
.npmjs.com/package/http-server).

10.1.5 Documenting modules that require JavaScript

Some modules are designed to work with the help of JavaScript. In these cases, it’s
often helpful to add a bit of bare bones JavaScript to the page to demonstrate the
module’s behavior. You don’t necessarily need to add a full functioning JavaScript
library to the pattern library in order to do this. Most of the time, you’ll only need
enough to toggle the various state classes. You’ve already added the configuration to
your kss-config.json file that adds a JavaScript file to the page:

"js": [
 "../js/docs.js"
]

KSS will add the scripts listed in this js array to the page for you. You can add code to
these scripts that provides minimal functionality to the modules. To demonstrate this,
you’ll add the Dropdown module (chapter 9) to your stylesheet, along with some doc-
umentation (listing 10.7). You’ll also add some JavaScript so that clicking the Toggle
button opens and closes the dropdown. Then the module will work inside the pattern
library to demonstrate the module’s intended functionality (figure 10.4).

Listing 10.6 Home page markdown

Page heading

www.EBooksWorld.ir

https://www.npmjs.com/package/http-server
https://www.npmjs.com/package/http-server
https://www.npmjs.com/package/http-server

265Introduction to KSS
Begin by adding the styles and documentation in listing 10.7 to your stylesheet. It’s
also important to give some direction about how the JavaScript will need to work.
Developers will be using this to build the website or web application. They’ll need
enough information to be able to do it correctly. Add this code to your CSS.

/*
Dropdown

A dropdown menu. Clicking the toggle button opens
and closes the drawer.

Use JavaScript to toggle the `is-open` class in
order to open and close the dropdown.

Markup:
<div class="dropdown">
 <button class="dropdown__toggle">Open menu</button>
 <div class="dropdown__drawer">
 Drawer contents
 </div>
</div>

Styleguide Dropdown
*/
.dropdown {
 display: inline-block;
 position: relative;
}

.dropdown__toggle {
 padding: 0.5em 2em 0.5em 1.5em;
 border: 1px solid #ccc;
 font-size: 1rem;
 background-color: #eee;
}

.dropdown__toggle::after {
 content: "";
 position: absolute;
 right: 1em;
 top: 1em;
 border: 0.3em solid;

Listing 10.7 Dropdown module and documentation

Figure 10.4 Working dropdown menu inside the pattern
library. (Note the Drawer contents are unstyled because we
expect a separate module to style the menu.)

Provides instructions
indicating how the developer
will need to use JavaScript
for this module

Markup
example

Dropdown module
rules (copied from
chapter 9)

www.EBooksWorld.ir

266 CHAPTER 10 Pattern libraries

 border-color: black transparent transparent;
}

.dropdown__drawer {
 display: none;
 position: absolute;
 left: 0;
 top: 2.1em;
 min-width: 100%;
 background-color: #eee;
}

.dropdown.is-open .dropdown__toggle::after {
 top: 0.7em;
 border-color: transparent transparent black;
}
.dropdown.is-open .dropdown__drawer {
 display: block;
}

Running npm run build builds this documentation, but at this point, it’s static. Let’s
add JavaScript to js/docs.js to bring it to life. Add this listing to that file.

(function () {
 var dropdowns = document.querySelectorAll('.dropdown__toggle');
 Array.prototype.forEach.call(dropdowns, function(dropdown) {
 dropdown.addEventListener('click', function (event) {
 event.target.parentNode.classList.toggle('is-open');
 });
 });
}());

This script toggles the is-open class on the dropdown any time the Toggle button is
clicked. A full implementation on your website will need more code to deal with any
timing delays or for closing the menu if one clicks elsewhere on the page. Again, in
the pattern library, the code can be minimal; but, you’ll need to get the open and
closed states styled correctly. Once that’s done, you (or another developer) can focus
on the problem of getting the finer points of the JavaScript exactly right, outside the
pattern library.

10.1.6 Organizing the pattern library into sections

You can continue to add the modules from chapter 9 into your stylesheet, entering
documentation as necessary. I won’t walk you through each and every one as you now
have a basic understanding of the process.

Listing 10.8 Minimal JavaScript to demonstrate the module

Gets all instances of the
dropdown__toggle button

Adds a click
event listener
to each
instanceToggles the is-open class

on the dropdown element

www.EBooksWorld.ir

267Introduction to KSS
 The one final thing you’ll need to be able to do
is to organize your pattern library. The menu in fig-
ure 10.4 is fine for now, with only a few items in it.
But as your projects begin to grow in size, it’ll make
sense to categorize your modules so they are easier
to navigate.

 Let’s add documentation for the utility classes.
Each one will need to be explained and demon-
strated individually, so it makes sense to group them
together. In listing 10.9, you’ll create a new section
called Utilities, adding the utility classes each into a
subsection within that to render the sections shown
in figure 10.5.

 To create subsections, use a period in the style-
guide annotation. You’ll use annotations such as
this: Styleguide Utilities.clearfix. This puts
the block of documentation into a clearfix subsec-
tion within a Utilities section.

NOTE KSS supports sections up to three levels deep (for example, Utili-
ties.alignment.text-center).

Add the following listing to your stylesheet. This includes three utility classes (text
-center, float-left, and clearfix) and their documentation comments. I’ve also
included a Weight annotation, which controls the order of the sections.

/*
Text center

Center text within a block by applying `text-center`

Markup:
<p class="text-center">Centered text</p>

Weight: 1

Styleguide Utilities.text-center
*/
.text-center {
 text-align: center !important;
}

/*
Float left

Float an element to the left with `float-left`

Weight: 3

Listing 10.9 Grouping documentation in the same category

Figure 10.5 Three subsections
within the Utilities section

Uses the Weight
annotation to
control the order
of sections

Uses a dot notation
to place each
documentation
block into the
same group

www.EBooksWorld.ir

268 CHAPTER 10 Pattern libraries
Styleguide Utilities.float-left
*/
.float-left {
 float: left;
}

/*
Clearfix

Add the class `clearfix` to an element to force it to
contain its floated contents

Markup:
<div class="clearfix">
 floated
</div>

Weight: 2

Styleguide Utilities.clearfix
*/
.clearfix::before,
.clearfix::after {
 content: " ";
 display: table;
}

.clearfix::after {
 clear: both;
}

By categorizing each of these utility classes into the same main category, they’ll all
be grouped together. Now when you rebuild the pattern library, there will be an
item in the table of contents called Utilities. Click it to view a page with all the sub-
sections listed.

WARNING The Styleguide annotation is case-sensitive. When placing multi-
ple items within the same section, be sure to capitalize those consistently or
KSS will create separate sections (for example, one called “Utilities” and
another “utilities”).

By default, sections of a KSS pattern library are ordered alphabetically, as are subsec-
tions within a section. You can change this by using the Weight annotation. KSS
orders sections according to their weight, with higher weights closer to the bottom.
You can indicate weights on a top-level section to control its position among other
top-level sections, or (as in the example) to control the order of subsections within
their section.

 You’re now familiar with all the essential features of KSS. If you want to dive deeper
on your own, you can learn to take a little more control over the look and feel of the
pattern library itself. You can customize its internal stylesheet or the template it uses to

Uses a dot
notation to
place each
documentation
block into the
same group

Uses the Weight
annotation to control
the order of sections

www.EBooksWorld.ir

269Shifting the way you build CSS
build the pattern library pages. For more information, see the documentation at
https://github.com/kss-node/kss-node.

10.2 Shifting the way you build CSS
Pattern libraries aren’t necessary for small projects, but with large projects, they’ll
prove invaluable. If you develop for a website with hundreds or thousands of pages,
you cannot possibly style them all one at a time. But by building reusable modules and
documenting them in a single place, you can provide a toolkit with which thousands
of pages can be constructed.

 If you work on a large web application with a dozen other developers, you cannot
possibly each style your own components without running into class name conflicts
and a lot of duplicated implementations of the same UIs. But with a pattern library,
developers can find each other’s styles, reuse them, and systematically name the mod-
ules so the class names don’t conflict.

 Content editors and developers who use your pattern library don’t even need to
know CSS—they only need to have a basic understanding of HTML. They can copy
the patterns you document and place them in their page wherever they want. Modular
CSS is the key to scaling your CSS, and a pattern library is a means of keeping those
modules organized.

10.2.1 Using a CSS First workflow

Using a pattern library is a paradigm shift from the typical approach to CSS. Instead of
taking an HTML page and then styling it, you build modular styles and then piece
together a web page using those modules. This is an approach I call CSS First develop-
ment. Instead of writing your HTML first, you begin with the CSS. You can, and
should, develop your CSS within the confines of the pattern library before putting
those styles to use in your project, so your development process will look something
like this:

1 When building a page, have a sketch or mockup or some general idea what that
page should look like.

2 Go to the pattern library. Look for existing modules that provide what you need
for your page, and use them. Start from the outside (main page layout and con-
tainers) and work your way in. If you can construct your entire page using exist-
ing modules, do it. You won’t need to write any new CSS.

3 Occasionally, you’ll find you need something the pattern library doesn’t pro-
vide. This will happen a lot early in the life of the project, but much less later
on. You’ll need to build a new module or modules, or a new variant for an exist-
ing module. Set aside the page you’re working on, and build it within the pat-
tern library. Document it and make sure it looks and behaves like you expect.

4 Go back to your page and, using the new stylesheet, add the new module(s) to
your page.

www.EBooksWorld.ir

https://github.com/kss-node/kss-node

270 CHAPTER 10 Pattern libraries
This approach has several benefits. First, it helps provide a more consistent inter-
face for your site. It encourages you to reuse existing styles rather than rolling out
new ones. For example, instead of ten different pages on your site with ten different
list styles, you’ll tend toward reusing the same few types of lists. It forces you to stop
and think each time whether you need a new style or whether one you already have
is sufficient.

 Second, when you develop a module within the confines of the pattern library,
you’ll be able to focus on that problem in isolation. You can remove yourself from the
bigger picture of the particular web page and focus on the singular task of styling a
module. Instead of solving one single problem on one single page, it’ll be easier to
think about where else the new module might be used. You’ll create a more general,
more reusable solution.

 Third, this approach will also allow a few members of your team to specialize in
CSS. A developer who is less adept at it can hand off a piece of work to one who is
more experienced. Once that CSS-minded developer finishes the module, they can
send a link to the other developer, pointing to the module in the pattern library.

 Finally, this approach will ensure your documentation is up-to-date. The pages of
your pattern library are where you test changes to the CSS, which means they always
demonstrate the current, correct behavior. When you edit the CSS, the documenta-
tion is right there in a comment block. This makes it trivial to keep the documenta-
tion current as you make changes. (I’ll talk more about editing existing modules in
a bit.)

 Developers often ask how they can write HTML that is easy to style. I believe this is
the wrong question. Instead, we should ask how we can write styles that can be reused
in any number of pages. We should write CSS first; well-structured HTML will follow.

10.2.2 Using a pattern library as an API

When you use a pattern library, you’re documenting an API for interfacing with your
CSS. Each module comes with some class names and a small bit of DOM structure. As
long as the relevant portion of HTML follows this structure, the stylesheet will style it
correctly (figure 10.6).

Figure 10.6 The class names and HTML structure are an API

www.EBooksWorld.ir

271Shifting the way you build CSS
The markup example in each module illustrates a sort of contract your CSS makes
with the HTML. It shows how the HTML should interface with the CSS.

 When you build your modules, this API is the most important part because it’s the
hardest thing to change later. The HTML is free to change: it can change the contents
within each element. In some cases, it can add, remove, or even re-arrange the order
of the DOM elements within the module (be sure to indicate clearly in your documen-
tation if elements are optional or if things can be re-arranged). And, the HTML can
stop using a module entirely, changing instead to a different module.

 Likewise, the CSS can change as long as it still honors this API. You can make small
edits, such as increasing padding or adjusting a color or fixing any bugs that arise. Or,
you can make large edits, such as reworking a media object to use flexbox instead of
floats, or redesigning a module to stack vertically instead of horizontally. As long as
the key pieces of the API (class names and DOM structure) remain unaltered, you are
free to edit the CSS however you want.

 Be aware that making these edits can affect many parts of your website. But as long
as the HTML follows the API instructions, these changes will be according to plan. If
you want to change the look of all dropdown menus throughout your site, you can.
Because all dropdown menus on your site use the same module (and the same API),
the changes will be consistent.

EDITING AN EXISTING MODULE

To illustrate, let’s assume a hypothetical scenario where you want to make a change to
the way the Media module works. Instead of one image, you find you need it to sup-
port two images, one on either side of the content, as in figure 10.7.

API—Application Programming Interface. A set of subroutine definitions
that describe how to use or interact with a system. Traditionally, this
includes method names and parameters (in the case of a programming lan-
guage) or URLs and query parameters (in the case of an HTTP API). I use
the phrase in regards to modular CSS to illustrate that the class names and
HTML elements are the way the HTML interfaces with the styles.

Figure 10.7 A hypothetical media object with two images

www.EBooksWorld.ir

272 CHAPTER 10 Pattern libraries
This requires some changes to the CSS. As long as you make sure your changes still
honor the API (that is, existing media objects on your site continue to work as
expected with only one image), you’re free to change the styles. You’ll do this by
reworking the module to use flexbox. Let’s make these changes.

 First, you’ll need to add to the example markup in the comment block. Keep the
old example there, so you can test that it remains unchanged after you make your
edits. But you’ll add a second example to the markup to test the new behavior as well.
Update the documentation comment to match the next listing.

/*
Media

Displays images and/or body content beside one
another.

Markup:
<div class="media">
 <img class="media__image"
 src="http://placehold.it/150x150" />
 <div class="media__body">
 <h4>Strength</h4>
 <p>
 Strength training is an important part of
 injury prevention. Focus on your core—
 especially your abs and glutes.
 </p>
 </div>
</div>
<div class="media">
 <img class="media__image"
 src="http://placehold.it/150x150" />
 <div class="media__body">
 <h4>Strength</h4>
 <p>
 Strength training is an important part of
 injury prevention. Focus on your core—
 especially your abs and glutes.
 </p>
 </div>
 <img class="media__image"
 src="http://placehold.it/150x150" />
</div>

Styleguide Media
*/

This listing gives you two instances of the module in your pattern library. Rebuild the
pattern library to see it render. Before you make changes to the CSS, you can see that
one works and the other doesn’t. You can then make changes (listing 10.11) until they
both work. Afterward, you’ll have the result shown in figure 10.8.

Listing 10.10 Adding a new media example to the documentation

Updates description
to allow for multiple
images

Keeps original markup
example in place

Adds new example
with two images

www.EBooksWorld.ir

273Shifting the way you build CSS
The pattern library now serves as a backstop. It tells you if your changes would break
the existing media objects on your site and acts as a test for the validity of the code.

 You can now refactor the CSS to account for the new scenario. Make these changes
to your stylesheet so the second example works, ensuring the first example doesn’t
break in the process.

.media {
 display: flex;
 align-items: flex-start;
 padding: 1.5em;
 background-color: #eee;
 border-radius: 0.5em;
}

.media > * + * {
 margin-left: 1.5em;
}

.media__body {
 margin-top: 0;
}

.media__body > h4 {
 margin-top: 0;
}

Listing 10.11 Media module reworked to use flexbox

Figure 10.8 Both types of media objects illustrated in the pattern library.

Changes the container to a flex
container; media__image and
media__body will become flex items

Aligns items on the top rather
than stretching to fill and
prevents image distortion

Removes the image’s right
margin and replaces it with
a general margin between
all flex items

www.EBooksWorld.ir

274 CHAPTER 10 Pattern libraries
Run npm run build and open the page in the pattern library. You’ll see that your
changes were successful. The media object is now a bit more versatile. And, because
you still honor the original API of the module, you can be confident your changes
didn’t break things on the website.

 Without modular styles and a pattern library, editing CSS can wreak havoc on a
website; you have no idea exactly how the HTML might be structured everywhere and
whether the selectors will still target the correct elements. But with a stable, docu-
mented API, edits can be painless, even satisfying.

USING SEMVER AND REFACTORING CODE

Sometimes, you won’t be able to make the changes you want without modifying the
API. This is okay. It’ll mean a little more work, but it’s doable. You could make the
changes you want, then go through your entire site or application and update every
instance of the HTML to match the new API. But often I find the best course of action
is to deprecate the module (indicating so in the documentation), and create an
entirely new module for the new functionality I need. This way, the old module con-
tinues working where it’s used, but I can start migrating to the new module while both
are supported.

 To help facilitate this, I find it’s highly beneficial to version my CSS using a three-
numbered semver. When the version number changes, it communicates to developers
the nature of those changes.

When I make small adjustments, such as bug fixes, I increment the patch version num-
ber (from 1.4.2 to 1.4.3, for example). When I add a new module or new functionality
that does not break the API, or when I mark a module as deprecated, I increment the
minor version number, resetting the patch version to 0 (for example, 1.4.2 to 1.5.0).
Then, on rare occasions, I go through the stylesheet and delete deprecated modules,
bumping to the next major version (for example, 1.4.2 to 2.0.0). I also create a major
version release when I make substantial design changes (such as a site redesign), even
if the API remains intact.

 Practically speaking, there are a number of ways you could go about this version-
ing. This depends on the nature of the project where you use the styles. If you package
the CSS in a NodeJS module or Ruby Gem, for instance, use the versioning built into
these systems. Or, if you’re hosting your CSS statically on a server, include the version
number in the URL (http://example.com/css/1.4.2/styles.css) and host multiple ver-
sions simultaneously.

semver—Short for Semantic Versioning, a system for versioning software
packages using three numbers, each separated by a period (for example,
1.4.2). The three numbers stand for the major, minor, and patch versions,
respectively. See http://semver.org/ for more information.

www.EBooksWorld.ir

http://semver.org/

275Shifting the way you build CSS
 This way, the project can be configured to use whichever version of the CSS it
needs. You can release a version 3.0.0 with breaking changes, but the web application
can continue using the old version until developers are able to go through and update
the HTML wherever it uses deprecated modules. Changes you make to your CSS
won’t break the application until the application deliberately upgrades to a new ver-
sion of the stylesheet.

 Your pattern library documents the use of the stylesheet, but the authors of the
HTML are in control of whether they use the styles and which version they use. The
HTML and CSS are decoupled. The CSS must be developed first before it can be used
by the HTML, but the HTML is in control when it comes to upgrading to a new
stylesheet. This is the benefit of CSS First development.

 These decisions can’t happen in a vacuum. You’ll need to communicate with other
developers on your team when you want to deprecate or delete modules. You’ll need
their input in regards to which modules are still valuable and which are no longer
needed.

Bootstrap, Foundation, and other frameworks
You may be familiar with one or more CSS frameworks that provide a pre-packaged
set of styles. These usually include styles for buttons, forms, menus, and a grid sys-
tem of some sort. Popular frameworks include Bootstrap (http://getbootstrap.com/),
Foundation (http://foundation.zurb.com/), and Pure (http://purecss.io/). There are
countless others as well. Some of these are robust libraries with dozens of modules;
others are minimal and provide only bare essentials.

As you go about building your pattern library, you may start to feel like you’re building
your own framework along the same lines. That’s exactly what you’re doing! This is
why these frameworks are successful—each one is a pattern library. They consist of
CSS built with attention given to making styles reusable in many contexts. Some fol-
low the principles of modular CSS better than others, but they all follow them to some
degree. And, they’re always versioned.

The difference between these frameworks and your own pattern library is that frame-
works are general-purpose. In your pattern library, you’re able to make modules tai-
lored specifically to your project, and you’re able to precisely match a brand-specific
look and feel. You can create two different types of a Tile module if you need to, and
you can adapt more quickly when you need to.

Developers often ask me whether I think they should use a framework like Bootstrap.
My answer is both yes and no.

Frameworks are helpful for getting a project off the ground quickly. With almost no
work, you can have styled buttons, tiles, and dropdown menus. But, in my experience,
they never provide all the modules you’ll need. Except for small projects, you’ll always
have to add more modules of your own. They also provide a lot of modules you prob-
ably won’t need.

www.EBooksWorld.ir

http://getbootstrap.com/
http://foundation.zurb.com/
http://purecss.io/

276 CHAPTER 10 Pattern libraries
Often, CSS is an “additive-only” language. Developers are afraid to edit or delete any
existing styles because they have no way of knowing all the ramifications of those
changes. They only modify CSS, adding more to the end of the stylesheet, overriding
earlier rules and ever increasing selector specificity until the stylesheet is an unmain-
tainable tangle of code.

 By taking care to organize your CSS in a way that is modular and maintaining a pat-
tern library for it, you don’t have to fall into this trap. You always know where the styles
for a module reside. Each module is responsible for one thing. And the pattern
library helps developers keep tabs on everything going on within the stylesheet.

Summary
 Use a tool such as KSS to document and inventory your modules.
 Use a pattern library to document markup examples, module variants, and

JavaScript for your modules.
 Develop your modules “CSS First.”
 Consider the API your CSS defines, taking care to never break it unpredictably.
 Version your CSS using semver.
 Don’t blindly add a CSS framework to your page; selectively take only the pieces

you need.

(continued)

If you want to use a framework you’re familiar with, my suggestion is to take only
the pieces of it you need and leave the rest. Don’t just stick a bootstrap.css file
onto your page. Instead, copy only the modules you want into your own stylesheet
(assuming the framework’s license allows this). Take those pieces of CSS and
make them your own.

When you add a framework to the page before your own stylesheet, you’ll find yourself
writing a bunch of styles to override and augment the framework. If you instead bring
the framework’s styles into your stylesheet, you’ll be able to modify them directly.
This will keep the page’s CSS leaner and easier to keep track of.

Instead of blindly using a framework, take on the mindset of a framework. Imagine
your pattern library is a general-purpose library for use by unknown third parties. This
will help you keep your styles reusable and provide a means for making changes in
the future with fewer breakages on the page.

www.EBooksWorld.ir

Part 4

Advanced topics

A polished UI is important. Users tend to trust a professional-looking
application, and they may be inclined to spend more time using a site if it’s aes-
thetically pleasing. In the final six chapters, we’ll look at important consider-
ations for design. These are small details that can have a big impact on the look
and feel of your site.

www.EBooksWorld.ir

www.EBooksWorld.ir

Backgrounds, shadows,
and blend modes
We’ve covered a lot of ground by this point. You’ve deepened your understanding
of the fundamental workings of CSS. You’ve learned multiple aspects of layout.
And, you’ve taken time to make sure your code is organized and maintainable.
We’ve covered the essentials needed to build a site from the ground up. You could
take this knowledge, apply it to your projects, and be in fairly good shape. But don’t
stop there.

 The difference between a site that looks good and one that looks great is
attention to detail. After you lay out and style a component of your page, train
yourself to slow down and look at it with a critical eye. Does it look better if you
increase, or decrease, paddings? Adjust the colors a bit—do they look better a lit-
tle darker or little lighter, or a little less vivid? If you’re working from a detailed
mockup by the designer, does your implementation match everything as closely

This chapter covers
 Linear and radial gradients

 Box shadows and text shadows

 Sizing and positioning background images

 Using blend modes to combine backgrounds and
content
279

www.EBooksWorld.ir

280 CHAPTER 11 Backgrounds, shadows, and blend modes
as possible? Your designer spent a lot of time on those details. Make sure you’re
doing the design justice.

 These details are where the artistic portion of CSS comes into play. If you’re like
many developers, you may not consider yourself a designer or an artist. But if you’re
working with CSS, you’ll need to play the role of one from time to time. These con-
cerns will be the main focus in part 4 of this book.

 These final chapters are about the details—things you can do to add a special
something to the page. I’ll teach you some design tips, but don’t worry; it won’t be all
subjective art. I’ll focus on concrete rules. I’ll show you how to make use of color,
space, typography, and animation. If you’ve wondered how to make your page look
not only functional but also visually appealing, these chapters will give you the tools to
do so.

 In this chapter, I’ll show you techniques for adding visual interest to the page. Con-
sider the button shown in figure 11.1 for example. This uses two effects that give it the
illusion of depth: a background gradient and a drop shadow. The background color
transitions from a medium blue at the top (color #57b) to a darker one at the bottom
(#148). You might not even consciously notice it, but this, in combination with the
shadow along the bottom and right edges, adds an illusion of depth to the button.

This chapter covers how gradients and drop shadows work and looks at some practical
uses for them. Then we’ll take a look at a fun effect called blend modes that you can use
to blend multiple background images or colors together in various ways.

 You’ll not often need to add all these things to your page at the same time, so
rather than build one large page, we’ll be constructing multiple smaller examples.
This will give you a number of tools you can choose from in your various projects.

11.1 Gradients
As you’ve been following along, we’ve used solid color backgrounds and a few back-
ground images in previous chapters. But there’s a lot more to explore when it comes
to the background property; it’s, in fact, a shorthand for eight properties:

 background-image—Specifies an image from a file or a generated color gradient.
 background-position—Sets the initial position of the background image.
 background-size—Specifies how large to render the background image within

the element.
 background-repeat—Determines whether to tile the image if necessary to fill

the entire element.

Figure 11.1 A button with a gradient
background and a shadow effect

www.EBooksWorld.ir

281Gradients
 background-origin—Determines whether background positioning is relative
to the element’s border-box, padding-box (initial value), or content-box.

 background-clip—Specifies whether the background should fill the element’s
border-box (initial value), padding-box, or content-box.

 background-attachment—Specifies whether the background image will scroll
up and down along with the element (the initial value), or if the image will be
fixed in place in the viewport. Note that using the value fixed can have nega-
tive performance implications on the page.

 background-color—Specifies a solid background color. This will render behind
any background image.

We’ll explore many of these properties throughout the chapter. For now, keep in
mind that using the shorthand property (background) will set the values you specify
while also resetting all the others to their initial value. For this reason, I tend to prefer
using individual properties when I’m doing anything that requires more than a few
of them.

 The background-image property is particularly interesting. You’ve seen that this
accepts a path to an image URL (background-image: url(coffee-beans.jpg) in
chapter 8), but it can also accept a gradient function. For example, you can define a
gradient that blends from white to blue, as in figure 11.2.

Gradients are a useful effect. Let’s examine how they work before we get to some prac-
tical examples. To try out gradients, create a new page and stylesheet. Add the CSS
shown in the following listing, which uses the linear-gradient() function to define
the gradient.

.fade {
 height: 200px;

Listing 11.1 A basic linear gradient

Figure 11.2 A white-to-blue linear gradient

www.EBooksWorld.ir

282 CHAPTER 11 Backgrounds, shadows, and blend modes
 width: 400px;
 background-image: linear-gradient(to right, white, blue);
}

The gradient is a background image, which by itself won’t do anything to affect the
size of the element. For the purposes of this example, I’ve set an explicit height and
width on the element. The element is empty, so you’ll need to force it to have some
height in order to see the gradient.

 The linear-gradient function has three parameters defining its behavior: angle,
starting color, and ending color. The angle here is to right, meaning the gradient
starts on the left edge of the element (where it’s white) and blends evenly to the right
edge (where it’s blue). You can also use other color syntaxes, such as hex (#0000ff),
RGB (rgb(0, 0, 255)), or the transparent keyword. Add the element from this list-
ing to see the gradient on the page.

<div class="fade"></div>

You can specify the angle of the gradient in several ways. In this example, you used to
right, but you can also use to top or to bottom. You can even specify a corner such as
to bottom right; in which case, the gradient will begin at the top-left corner of the
element and blend to the bottom-right corner.

 For more precise control of the angle, you can use more specific units, such as
degrees. The value 0deg points straight up (equivalent to to top); higher values move
clockwise around the circle, so 90deg points to the right, 180deg points down, 360deg
points up again. Thus, this is equivalent to the previous example.

.fade {
 height: 200px;
 width: 400px;
 background-image: linear-gradient(90deg, white, blue);
}

Degrees are the most common unit, but there are a few others that you can use to
indicate angle:

 rad—Indicates radians. One full circle is 2, or roughly 6.2832 radians.
 turn—Indicates the number of full turns around the circle. One turn equals

360 degrees (360deg). Use decimal values to represent less than one full turn:
0.25turn, for example, is equal to 90deg.

 grad—Indicates gradians. One full circle is 400 gradians (400grad) and 100grad
equals 90deg.

Go ahead and experiment with various values in the gradient to see how they affect it.

Listing 11.2 Element with a background gradient

Listing 11.3 Gradient using degree (deg) units

Fades to the
right from
white to blue

90deg value is
equivalent to the
value to right

www.EBooksWorld.ir

283Gradients
11.1.1 Using multiple color stops

Most of the time, your gradients will have two colors, transitioning from one color to
the other. But, you can define a gradient with multiple colors, which are each called a
color stop. Figure 11.3 shows a gradient with three color stops (red, white, then blue).

You can insert more color stops by adding more colors to the linear-gradient()
function. To see this gradient in your page, update your stylesheet to match the next
listing.

.fade {
 height: 200px;
 width: 400px;
 background-image: linear-gradient(90deg, red, white, blue);
}

A gradient can accept any number of color stops, each separated by a comma. It will
automatically spread them out evenly. In this example, the gradient fades from red on
the left edge (0%) to white in the center (50%) to blue on the right edge (100%). You
can also explicitly set the position of these color stops in the gradient function. The
gradient in listing 11.4 is equivalent to this one:

linear-gradient(90deg, red 0%, white 50%, blue 100%)

As you might imagine from this example, you can adjust the position of the color
stops however you want; they don’t need to be evenly spaced. They also don’t need to
be measured in percentages. Pixels, ems, and other length units are perfectly valid.

STRIPES

If you place two color stops at the same position, the gradient’s color will instantly
switch from one to the other, rather than a smooth transition. Figure 11.4 shows a

Listing 11.4 Linear gradient with multiple color stops

Figure 11.3 Gradient with three color stops (red to white to blue)

Specifies
multiple
color stops

www.EBooksWorld.ir

284 CHAPTER 11 Backgrounds, shadows, and blend modes
gradient that begins red, switches immediately to white, then switches immediately to
blue. This creates the appearance of stripes.

The code for the gradient is shown here. Notice that this gradient has four color
stops, two of which are white.

.fade {
 height: 200px;
 width: 400px;
 background-image: linear-gradient(90deg,
 red 40%, white 40%,
 white 60%, blue 60%);
}

The first color stop is red at 40%, so the gradient is solid red from the left edge all the
way to 40%. The next color stop is white, also at 40%, so the gradient makes a hard
switch to white. This is followed by another white color stop at 60%, so the gradient is
pure white from 40% to 60%. Then the final color stop, also at 60%, is blue. This
makes a hard switch to blue, then remains blue all the way to the right edge.

REPEATING GRADIENTS

Even though the previous example is a bit contrived, the technique can be used for
some interesting effects. In particular, it can be used with a slightly different gradient
function, repeating-linear-gradient(). This works like the regular linear-gradi-
ent function, except the pattern repeats. This can be used to produce stripes similar
to a barber pole, which looks nice on progress bars (figure 11.5).

Listing 11.5 Placing two color stops on the same points to create stripes

Figure 11.4 Gradient used to create stripes by placing two color stops
at the same points

Color stops on
the same points

Figure 11.5 A repeating linear gradient for a striped bar

www.EBooksWorld.ir

285Gradients
With repeating gradients, it’s better to use a specific length rather than a percentage,
because specified values determine the size of the pattern to repeat. The code for the
striped bar is shown next. Update your stylesheet to match.

.fade {
 height: 1em;
 width: 400px;
 background-image: repeating-linear-gradient(-45deg,
 #57b, #57b 10px, #148 10px, #148 20px);
 border-radius: 0.3em;
}

Rather than coding up a whole gradient from scratch, I sometimes find it easier to
start with a working example and modify it to meet my needs. You can find more
examples at https://css-tricks.com/stripes-css/.

11.1.2 Using radial gradients

Another type of gradient is a radial gradient. Instead of starting at one end of the
element and proceeding to the other end in a linear direction, radial gradients start
at a single point and proceed outward in all directions. A basic example is shown in
figure 11.6.

Edit your stylesheet to match the radial gradient code in this listing.

.fade {
 height: 200px;
 width: 400px;
 background-image: radial-gradient(white, blue);
}

Listing 11.6 Creating a diagonally striped bar

Listing 11.7 A basic radial gradient

Stripes alternating
between light and
dark blue

Figure 11.6 A radial gradient from white to blue

Blends from a
white center
to blue edges

www.EBooksWorld.ir

https://css-tricks.com/stripes-css/

286 CHAPTER 11 Backgrounds, shadows, and blend modes
By default, the gradient is centered in the element, transitioning evenly to its corners.
It’s elliptical in shape, matching the proportions of the element (that is, wider for
wide elements, taller for tall elements).

 Radial gradients support color stops, the same as linear gradients. You can provide
multiple stops or explicitly define their position within the gradient using percentages
or length units. You can also make the radial gradient a circle rather than an ellipse,
or you can specify where the gradient should be centered. A repeating-radial-
gradient() function repeats the pattern in concentric rings.

 Most of these features are best explained by example, so I’ve included several with
the corresponding code in figure 11.7. I encourage you to try these in your page, or to
experiment with making your own.

In the real world, I find I rarely need to do anything complex with a radial gradient as
the most basic form tends to meet my needs. If you want to dive deeper into how this
works, visit the MDN documentation at https://developer.mozilla.org/en-US/docs/
Web/CSS/radial-gradient.

radial-gradient(white, midnightblue)

radial-gradient(circle, white, midnightblue)

radial-gradient(3em at 25% 25%, white, midnightblue)

radial-gradient(circle, midnightblue 0%, white 75%, red 100%)

repeating-radial-gradient(circle, midnightblue 0,

midnightblue 1em, white 1em, white 2em)

ResultValue

Basic gradient (ellipse)

Circle gradient

Sized 3 em, centered 25% from the left and top edges

Radial gradient with explicit color stop positions

Repeating gradient with stripes

Figure 11.7 Examples of radial gradients

www.EBooksWorld.ir

https://developer.mozilla.org/en-US/docs/Web/CSS/radial-gradient
https://developer.mozilla.org/en-US/docs/Web/CSS/radial-gradient
https://developer.mozilla.org/en-US/docs/Web/CSS/radial-gradient

287Shadows
 Most of the examples thus far use starkly contrasting colors. I’ve done this to
emphasize the effect of gradients so their behavior is clear. But in real projects, you’ll
generally be better off using colors with much less contrast.

 Instead of fading from white to black, fade from white to light gray. Or, fade between
two similar shades of blue. This will be much less jarring to the user. In some cases, they
may not even notice the gradient, but it’ll still apply a subtle depth to the page. I’ll show
you a real-world example of this in a moment, but first, let’s look at shadows.

11.2 Shadows
Another effect that can add a perceived depth to the page is a shadow. Two properties
that create shadows are box-shadow, which creates a shadow of an element’s box
shape, and text-shadow, which creates a shadow of rendered text. We’ve used box-
shadow once or twice in earlier chapters, but let’s take a closer look at how it works.

 The declaration box-shadow: 1em 1em black produces a shadow like that shown in
figure 11.8. The 1em values are the offsets: how far the shadow will be shifted from
the element’s position (horizontal, then vertical). If these have a value of 0, then the
shadow will be directly behind the element. The value black specifies the color of
the shadow.

The shadow is by default the exact size and dimensions of the element. It also has
rounded corners, matching any border-radius the element has applied. The values:
horizontal offset (x), vertical offset (y), and color should always be specified for the
shadow. Two other values can optionally be added: a blur radius and a spread radius.
The full syntax is shown in figure 11.9.

The blur radius controls how much the edges of the shadow are to be blurred. This
will give it a softer, slightly transparent edge. The spread radius controls the size of the
shadow. A positive spread radius makes the shadow larger in all directions; a negative
value makes the shadow smaller.

Figure 11.8 A simple box shadow

box-shadow: 2px 2px 2px 1px black;

blur radius color

Spread radiusOffset () and offset ()x y Figure 11.9 Box shadow syntax

www.EBooksWorld.ir

288 CHAPTER 11 Backgrounds, shadows, and blend modes
11.2.1 Defining depth with gradients and shadows

Let’s use gradients and shadows to build a button as shown in figure 11.10. A top-to-
bottom gradient gives it a curved, 3-D appearance. The shadow enhances this effect.
In this example, you’ll also use the :active pseudo-class to create an alternate type of
shading when the button is depressed.

The gradient here is subtle. You might not notice it immediately, but it gives the button
a slight rounded appearance. The shadow has some blur, making it appear more natu-
ral. When the button is clicked, the shadow is removed and, instead, an inset shadow
appears inside the borders of the button. This gives it the illusion of being depressed, as
if the user physically pressed it on the page. Upon releasing the mouse button, the but-
ton returns to its original state. This is done using the button’s :active state.

 Start a new page and a new stylesheet for this button. Add the button markup.

<button class="button">Sign up now</button>

Next, add the styles from the following listing. These override user agent styles for
font size and border, as well as apply some basic sizing and a gradient background
with a box shadow.

.button {
 padding: 1em;
 border: 0;
 font-size: 0.8rem;
 color: white;
 border-radius: 0.5em;
 background-image: linear-gradient(to bottom, #57b, #148);
 box-shadow: 0.1em 0.1em 0.5em #124;
}

.button:active {
 box-shadow: inset 0 0 0.5em #124,
 inset 0 0.5em 1em rgba(0,0,0,0.4);
}

The background-image is a gradient between two similar colors of blue. The box
shadow is not offset far, just 0.1 em right and down, with a moderate blur of 0.5 em.
The larger a shadow’s offset, the further it “lifts” the image from the page, making the
image seem deeper. In the active state, the box shadow changes.

Listing 11.8 Button markup

Listing 11.9 Button styles with a gradient and shadow

Figure 11.10 A button with gradient
and shadow. Active (clicked) styling is
shown on the right.

Gradient from
light blue to
medium blue

Dark blue shadow
with a 0.5 em blur

Two inset box
shadows

www.EBooksWorld.ir

289Shadows
 I’ve done two new things here. Instead of a normal box shadow, I’ve added the
inset keyword. This makes the shadow appear inside the border of the element,
rather than outside. I’ve also added more than one shadow definition, separating
them with a comma. Multiple shadows can be added in this way.

 The first inset shadow (inset 0 0 0.5em #124) has offsets of zero and a slight
blur. This adds a ring of shade inside the edges of the element. The second (inset 0
0.5em 1em rgba(0,0,0,0.4)) has a bit of vertical offset, making the shadow more
prevalent along the top of the button. The RGBA color definition defines a semi-
transparent black. I encourage you to experiment with these values to see how they
affect the final rendering.

NOTE In Chrome, you’ll notice a light blue glow around the button when
you click it. This is an outline applied by the user agent in the :focus state.
You can remove this with .button:focus { outline: none; }. I suggest any
time you remove it that you replace it with something else, so the focused
state is still visible to a user navigating via a keyboard.

This sort of design was used extensively for several years: onscreen elements made to
resemble real-world counterparts (an approach known as skeuomorphism). In the real
world, objects don’t have perfectly flat colors. Even on smooth surfaces, light reflects
off the object in various ways, producing highlights and shadows.

 By giving a button a rounded appearance and a box shadow, it looks more like a
physical object. Other skeuomorphic elements include stitched borders and leather-
like textured images. Between 2010 and 2013, this sort of design gave way to a new
trend called flat design.

11.2.2 Creating elements with a flat design

Where skeuomorphic design seeks to emulate the physical world, flat design embraces
the modern world’s digital nature. It emphasizes vivid, uniform colors and a simpler
appearance. This means fewer gradients, shadows, and rounded corners. Ironically,
this trend emerged only after these long-awaited effects arrived in CSS. (Before then,
shadows and gradients had to be created using images.)

 Flat design doesn’t necessarily mean none of these effects are used, however.
Instead, they’re used subtly. Instead of a gradient from light blue to medium blue, for
instance, there may be a gradient from one blue to another, which is nearly indistin-
guishable. Or, perhaps an element has only a faint shadow. It might not have both at
the same time.

 Let’s convert our button to one with a flat design. This new button is shown in fig-
ure 11.11. It doesn’t look like something from the physical world, though it does have
a slight shadow beneath it.

Figure 11.11 Button with a flat appearance

www.EBooksWorld.ir

290 CHAPTER 11 Backgrounds, shadows, and blend modes
The styles for this are shown next, along with hover and active states. Change your
CSS to match.

.button {
 padding: 1em;
 border: 0;
 color: white;
 background-color: #57b;
 font-size: 1rem;
 padding: 0.8em;
 box-shadow: 0 0.2em 0.2em rgba(0, 0, 0, 0.15);
}
.button:hover {
 background-color: #456ab6;
}
.button:active {
 background-color: #148;
}

The box shadow here has a few changes. It only has a vertical offset, so the shadow is
straight down rather than a more natural-looking angle. I also used an RGBA color
with red, green, and blue values of zero (producing black) and an alpha value of
0.15 (almost completely transparent). The hover and active states are also flat in
appearance. These states change the background color to slightly darker shades of
blue. I also increased the font size, which is another trend that emerged along with
flat design.

11.2.3 Creating buttons with a more modern look

Flat design is still popular, but it’s evolving. One common approach is to come back
toward the middle between flat design and skeuomorphism. Let’s remake our button
one last time to match figure 11.12. This design will use elements of both design styles.

This is still a minimal design, but it has a thick border along the bottom, giving it an
appearance much like the front side of a 3-D cube-like object. This dark line is in fact
not a border at all, but rather a box-shadow with no blur, which allows for the curved
edges mirroring the border radius.

 In the active state, the button is shifted down by a few pixels. This produces the
illusion of it moving into the page as it’s pressed. Update your stylesheet to match
the styles for this version.

Listing 11.10 A flat button with hover and active states

Solid background
color (no gradient)

Very subtle
shadow

Slightly darker
hover and active
states

Figure 11.12 A different type of flat button
(active state shown on the right)

www.EBooksWorld.ir

291Blend modes
.button {
 padding: 0.8em;
 border: 0;
 font-size: 1rem;
 color: white;
 border-radius: 0.5em;
 background-color: #57b;
 box-shadow: 0 0.4em #148;
 text-shadow: 1px 1px #148;
}
.button:active {
 background-color: #456ab5;
 transform: translateY(0.1em);
 box-shadow: 0 0.3em #148;
}

This button uses box-shadow in a different way. Rather than adding a blur and repli-
cating a shadow, I’ve kept the edges of the shadow crisp. This produces an effect simi-
lar to a thick bottom border. It’s slightly different from a border, however, because it
has curved corners matching the border-radius of the element.

 I’ve also added a text shadow. This behaves much like a box shadow, except it casts
a shadow of the rendered text rather than the element box. Its syntax is nearly identi-
cal: x-offset, y-offset, blur radius (optional), and a color. But it doesn’t support the
inset keyword or a spread-radius value. Here I’ve cast a dark blue shadow of the text,
offset by only 1 px in each direction.

 In the active state, I’ve done something else that’s new. I used the transform
property with a translateY() function. This shifts the element down 0.1 em on the
screen. (I’ll unpack this a bit further when we take an in-depth look at transforms in
chapter 15.) I then reduced the vertical offset of the box shadow by the same amount
(0.3 em instead of 0.4 em). When you press the button, the button moves, but the box
shadow doesn’t. Click the button to watch this effect.

 Gradients and shadows can be used in all sorts of ways. As time goes on, new design
trends will arise. Down the road, when you see a new look on a website, take a few min-
utes to inspect it in your browser and learn how it’s implemented. And, don’t be afraid
to experiment.

11.3 Blend modes
The majority of the time, an element will have only one background image, whether
an actual image or a gradient. But there are instances where you might want two or
more backgrounds. CSS allows for this.

 The background image property accepts any number of values, each separated by
a comma:

background-image: url(bear.jpg), linear-gradient(to bottom, #57b, #148);

Listing 11.11 Modern button styles

Adds back the
rounded corners

Puts a solid shadow
beneath the button
(no blur)

Adds a subtle
text shadow

Shifts the button
down when clicked

Reduces the size of the shadow
to offset the transform

www.EBooksWorld.ir

292 CHAPTER 11 Backgrounds, shadows, and blend modes
When you apply multiple background images, those listed first render in front of
those listed afterward. In this example, bear.jpg will cover the linear gradient. The gra-
dient won’t be visible. But if you’ve added two images, you’ll likely want the second
image to show through. You can do this by using a blend mode.

 If you’re familiar with photo-editing software, you may have seen blend modes.
They control the way stacked images blend together. They have enigmatic names like
screen, color-burn, and hard-light. As an example, figure 11.13 shows two back-
grounds combined with the multiply blend mode. Both backgrounds use the same
image, positioned differently.

This produces an interesting effect, where both copies of the image are still clearly vis-
ible, even if they overlap. Yet it doesn’t wash out or fade the color like simple transpar-
ency does.

NOTE If a background image has some transparency, other backgrounds
behind it will show through the transparent areas, even without the use of
blend modes. You can achieve this with a transparent png or gif, or with a gra-
dient that uses the transparent keyword as one of its colors.

Figure 11.13 Two backgrounds combined with the multiply blend mode

www.EBooksWorld.ir

293Blend modes
Let’s create an element with two backgrounds and blend them to match figure 11.3.
On a new page, add the element shown next. You’ll re-use this markup for the next
several examples.

<div class="blend"></div>

You’ll use an empty element for now to illustrate the effect. Next, add the code from
the next listing to a stylesheet and link it to the page.

.blend {
 min-height: 400px;
 background-image: url(images/bear.jpg), url(images/bear.jpg);
 background-size: cover;
 background-repeat: no-repeat;
 background-position: -30vw, 30vw;
 background-blend-mode: multiply;
}

Most of these background properties can accept multiple values, separated by a
comma. The background position has two such values. The first will apply to the first
image, the second to the second image. The background-size and background-
repeat properties also accept multiple values, but by specifying only one, that value is
applied to both background images. The min-height property is included to ensure
that the element doesn’t collapse to a height of zero (because it’s empty).

 The background-size property accepts two special keyword values, cover and
contain. Using cover resizes the background image so it fills the entire element; this
can result in edges of the image being clipped. Using contain ensures the entire
image is visible, though this may result in some of the element not being covered by
the background (a “letterboxing” effect). This property also accepts length values to
explicitly set the height and width of the element.

 Try changing the blend mode to other values like color-burn or difference to
see the types of effect they can have. This can be amusing to play with, but you might
be wondering what the practical applications are. Here are a few uses:

 Tint an image with a single color or gradient
 Apply texture to an image, such as a scratched or grainy film reel look
 Lighten, darken, or reduce the contrast of an image so the text in front of it is

more readable
 Overlay a text banner while still allowing the image to show through

Listing 11.12 A div for blending backgrounds

Listing 11.13 Blending two background images

A comma separates two
background images.

Specifies one value to apply
to both background images

Applies different
background positions
to each image

Applies the
blend mode

www.EBooksWorld.ir

294 CHAPTER 11 Backgrounds, shadows, and blend modes
Let’s look at some examples of these. Afterward, I’ll give you a brief breakdown of all
the blend modes available.

11.3.1 Tinting an image

You can use a blend mode to take a full-color image and tint it with a single hue. To
illustrate, you’ll take the bear image and color it blue, as in figure 11.14. (Note that if
you’re reading this in the print edition, the figure isn’t printed in color. See the ebook
or follow the example in your browser to see the full effect.)

A background-blend-mode merges not only multiple background images, but also the
background-color. These stacked layers are then combined by the blend mode, so
you can set a background color to the desired hue, and blend it into the image. To do
this, update your CSS to match this listing.

.blend {
 min-height: 400px;
 background-image: url("images/bear.jpg");
 background-color: #148;
 background-size: cover;
 background-repeat: no-repeat;
 background-position: center;
 background-blend-mode: luminosity;
}

Listing 11.14 Blending a background image with the background color’s hue

Figure 11.14 Image colored with a uniform blue hue

Blue background
color

Uses luminosity
blend mode

www.EBooksWorld.ir

295Blend modes
The luminosity blend mode takes the luminosity from the front layer (the bear
image) and blends it with the hue and saturation from the back layer (the blue back-
ground color). In other words, the blended result has all the color of the background
color, but the brightness and contrast of the image.

 It’s important to know that this blend mode (and several others) behave differ-
ently, depending on which image is in front of the other. In these cases, the back-
ground color is the furthest layer back with the image(s) stacked in front of it.

 If, for instance, you were to place a blue layer in front of the bear image rather
than behind (using a gradient instead of a background color), the result would be
different. In that case, the color blend mode would be needed to achieve the same
result—the color blend mode is effectively an inverse of luminosity, taking the hue
and saturation from the front layer, while luminosity is taken from the back.

11.3.2 Understanding types of blend mode

CSS supports 15 blend modes. Each uses a different mathematical formula to con-
trol how images are blended. For every pixel, the color of one layer is combined
with the corresponding color in the other, resulting in a new pixel color for the
composite image.

 The blend modes are shown in table 11.1. They each fall into one of five types:
darkening, lightening, contrasting, compositing, or comparing. Some are more
practically useful than others. Choosing the right one often involves a bit of trial
and error.

Table 11.1 Blend modes in five basic categories

Type of effect Blend modes Description

Darken multiply The lighter the front color, the more the base color will
show through.

darken Selects darker of the two colors.

color-burn Darkens the base color, increasing contrast.

Lighten screen The darker the front color, the more the base color will
show through.

lighten Selects the lighter of the colors.

color-dodge Lightens base color, decreasing contrast.

Contrast overlay Increases contrast by applying multiply to dark colors
and screen to light colors, at half strength.

hard-light Greatly increases contrast. Like overlay, but applies
multiply or screen at full strength.

soft-light Similar to hard-light, but uses burn/dodge instead
of multiply/screen.

www.EBooksWorld.ir

296 CHAPTER 11 Backgrounds, shadows, and blend modes
At the time of writing, most blend modes are supported in most major browsers, with
the exception of IE and Edge. The composite blend modes are also not supported in
Safari. Use feature queries and provide fallback behaviors when necessary (see chap-
ter 6, section 6.5). Check http://caniuse.com/#feat=css-backgroundblendmode for
up-to-date support details.

11.3.3 Adding texture to an image

Another application of blend modes is to add texture to an image. You may have a
clear, modern image, but sometimes you want it to appear differently for stylistic rea-
sons. You can use a grayscale image to artificially add film grain or some other texture
to the image.

 Consider the image shown in figure 11.15. This is the same bear image from ear-
lier, but it has been blended with a textured image to give it the appearance of a
rough-hewn canvas. This sort of effect can be achieved with one of the contrast blend
modes: overlay, hard-light, or soft-light. In this case, I didn’t want to alter the
hue of the image, so I used a grayscale image to supply the texture. This way the color-
ing of the original still shows through.

 The code for this textured overlay is shown in the next listing. The texture image is
tiled for a repeating pattern and layered over the top of the bear image. Change your
stylesheet to match this listing to see this effect in your browser.

.blend {
 min-height: 400px;
 background-image: url("images/scratches.png"), url("images/bear.jpg");
 background-size: 200px, cover;
 background-repeat: repeat, no-repeat;
 background-position: center center;
 background-blend-mode: soft-light;
}

Composite hue Applies hue from the top color onto the bottom color.

saturation Applies saturation from the top color onto the bottom
color.

luminosity Applies luminosity from the top color onto the bottom
color.

color Applies hue and saturation from the top color onto the
bottom color.

Comparative difference Subtracts the darker color from the lighter one.

exclusion Similar to difference, with less contrast.

Listing 11.15 Using hard-light to add texture to the image

Table 11.1 Blend modes in five basic categories (continued)

Type of effect Blend modes Description

Layers the texture in front
of the primary image

Tiles the texture
image every 200 px

Blends with soft-light

www.EBooksWorld.ir

http://caniuse.com/#feat=css-backgroundblendmode

297Blend modes
The background size of the texture image (figure 11.16) is set to 200 px, with back-
ground repeat enabled. This tiles the image repeatedly to fill the entire element.
Meanwhile, the second image has a background size of cover and repeat is disabled,
so it’s not tiled.

I’ve found that soft-light tends to work better with darker texture images, while
hard-light and overlay are better suited for lighter texture images. (This tendency

Figure 11.15 Image with texture blended in

Figure 11.16 Grayscale canvas texture image

www.EBooksWorld.ir

298 CHAPTER 11 Backgrounds, shadows, and blend modes
is reversed when the texture is behind the primary image.) Your results may vary,
though, depending on your design’s need and darkness of the base image.

11.3.4 Using mix blend modes

Although the background-blend-mode property lets you blend multiple images, it’s
limited to the background colors or images of one element. Another property, mix-
blend-mode, lets you blend multiple elements. This allows you to do more than blend
images: text and borders of one element can be blended with the background image
of its container. Using a mix blend mode, you can display a heading in front of an
image and still allow part of the image to show through, as in figure 11.17.

This produces an interesting effect where the text looks transparent, as if it’s cut out
of the red banner. This works because I used the hard-light blend mode and a
medium gray text color. The contrast blend modes have more effect with either very
light or very dark colors, but a medium gray (#808080) allows the background layer to
show through unchanged.

 To see this in your browser, first you’ll need to add the heading to the markup as a
child of the container. Update your HTML to match this.

<div class="blend">
 <h1>Ursa Major</h1>
</div>

You’ll style this <h1> into a red banner with a solid background color, thick light
gray borders along the top and bottom, and gray text. Then, you’ll apply a mix

Listing 11.16 Adding a heading inside the container

Figure 11.17 A heading blended with the image behind it

www.EBooksWorld.ir

299Summary
blend mode. This will treat the entire element as a layer, blended with the back-
ground image of the container that’s behind it. Change your stylesheet to match
this code.

.blend {
 background-image: url("images/bear.jpg");
 background-size: cover;
 background-position: center;
 padding: 5em 0 10em;
}

.blend > h1 {
 margin: 0;
 font-family: Helvetica, Arial, sans-serif;
 font-size: 6rem;
 text-align: center;
 mix-blend-mode: hard-light;
 background-color: #c33;
 color: #808080;
 border: 0.1em solid #ccc;
 border-width: 0.1em 0;
}

The heading text doesn’t have a high contrast here, so you’ll have to be careful. I’ve
made it large and bold to help with legibility. It’ll also work better over a low contrast
background image. In this example, I’ve placed the heading over the darker part of
the image, which is of a lower contrast.

 Blend modes can be a lot of fun in a design. Use these in conjunction with gradi-
ents and shadows to add a lot of visual interest to the page. But be judicious—these
effects are usually best when used in moderation.

Summary
 Use gradients and shadows to add the appearance of depth to the page.
 Even basic flat designs can benefit from some subtle shadows or gradients.
 Use gradients with explicit color stops to add stripes to an element.
 A subtle background gradient rather than a flat color provides a little more

complexity to the design.
 Use blend modes to colorize or texture an image.

Listing 11.17 Using mix blend mode to blend multiple elements

Uses hard-light
blend mode

Sets text and background
color for the foreground
element

www.EBooksWorld.ir

Contrast, color,
and spacing
An important part of web development involves taking a mockup from a designer
and bringing it to life with CSS. When you do this, you’re effectively translating art
into code. Sometimes that translation is straightforward. Other times, you may have
to work with the designer to make compromises. Where the designer has fine-tuned
every piece of the mockup, you’ll need to consider how to organize the CSS for easy
re-use. Your CSS will be more general-purpose than their single-page mockup.

 After the translational work is done, it’ll fall to you, the developer, to continue
adding to the site, building upon the vision laid out by the designer. It’s import-
ant that you at least have a general sense of the designer’s concerns about things
like spacing, colors, and typography. You’ll need to know how to ensure your

This chapter covers
 Converting a designer mockup into HTML

and CSS

 Using contrast to draw attention to the right
parts of a page

 Selecting colors

 Leveraging white space

 Working with line height
300

www.EBooksWorld.ir

301
implementation is accurate. If you respect the designer’s goals, it’ll make this pro-
cess less frustrating.

 I also recognize you’ll not always work with a designer. If you’re at a small startup
or working on a personal project, you may be on your own. In which case, it’s bene-
ficial to have a basic understanding of design principles so you can implement them
yourself.

 In this chapter, we’ll consider a page mockup as a designer might provide, and
convert it into code. I’ll focus primarily on the aspects of spacing and color. I’ll also
highlight some considerations a designer may have made in regard to those. My goal
is that, in understanding these concerns, you’ll be able to apply them to some degree
as you maintain the design or even as you work on projects that have no designer. For
that purpose, you’ll build the page shown in figure 12.1.

This screenshot shows the finished page. If you receive a design from a designer, it’ll
probably have a lot more information along with it. You’ll see that in a bit, but first I
want to point out a few things about the design.

Figure 12.1 The page design for Ink collaboration software

www.EBooksWorld.ir

302 CHAPTER 12 Contrast, color, and spacing
12.1 Contrast is king
When you look at the screenshot in figure 12.1, notice where your eyes go. They
should be drawn, primarily, to the slogan “Team collaboration done right” and to the
Get started button below it. You’ll also see a number of other things on the page—
company name on the top left, navigation on the top right, the three columns
below—but the content in the middle of the image has the strongest pull. The reason
for this is contrast.

 Contrast in design is a means of drawing attention to something by making it stand
out. Our eyes and our minds naturally find patterns. When something breaks a pat-
tern, our attention goes right to it.

 For contrast to work, the page must establish patterns; you cannot have an excep-
tion to the rule unless you first have a rule. In figure 12.1, the spacing between the
Read more navigational buttons is consistent, as is the size and spacing of the three
columns. Additionally, all three Read more buttons are identical. You can also see a
few different splashes of color on the page, but they’re all the same hue of green,
with only varying darkness. This is one reason why modular CSS and pattern librar-
ies are so important (chapters 9 and 10)—instead of using nested selectors to build
a “button-in-a-tile,” build a button that can be used anywhere.

 When you promote reuse of styles, you ensure identical patterns will appear on
your site. One of a professional designer’s key concerns is to establish patterns and
then to break those patterns to highlight the most important parts of the page.

 Some key ways you can establish contrast is by using color, spacing, or size. If sev-
eral items are light, but one is dark, you’ll notice the dark item first. When one item
is surrounded by a lot of unused space (called white space), that item stands out.
And, large elements stand out amid a series of smaller ones. For stronger contrast
you can combine one or more of these effects, as I have with the Team collabora-
tion done right slogan on this page: it has larger text, loads of white space, and a
striking, dark button.

 The slogan isn’t the only contrast evident on the page, though. You’ll find a hierar-
chy of information importance, communicated via contrast. Apart from the slogan
and the Get started button, there’s also contrast evident in the navigation menu (fig-
ure 12.2) and within each of the text columns at the bottom of the page (figure 12.3).
These elements are not as strong as the slogan, but they attract attention within their
respective regions. The footer, being the least important content on the page, is
smaller and of lesser contrast.

Figure 12.2 The lighter login button draws
more attention than the three darker green
buttons

www.EBooksWorld.ir

303Contrast is king
Every web page should have a purpose. It may be to convey a story, collect informa-
tion, or allow the user to complete some sort of task. In addition to a main purpose,
there may be navigation elements, ads, paragraphs of text, and a footer full of copy-
right information and links to various pages. The designer’s job is to make the most
important thing stand out. Your job is to not mess that up.

12.1.1 Establishing patterns

To establish patterns, your designer may be meticulous about things that seem unim-
portant to you: precise spacing between certain elements, using the same border
radius or same box shadow throughout multiple different components, and even a lot
of care for the spacing between letters and lines of text.

 An example mockup is shown in figure 12.4, highlighting the precise spacing, in
pixels, of various items. It can be tedious (and sometimes even difficult) to keep this
precision intact when you convert a design to code.

 This mockup uses pink boxes to indicate which spaces are being measured. For
example, 10 px between buttons in the navigational menu; 40 px between the bottom
of the hero image and the top of the three white columns; 30 px between each col-
umn’s heading and the following paragraph of text; and so on. Certain measurements
on the page will appear commonly throughout, helping establish a visual pattern. For
instance, 10 px and 25 px spaces are common on this page.

 Let’s take a closer look at two aspects of a cohesive design: color choice and con-
trolling space. (Typography is also an important part of this, which we’ll focus on in
the next chapter.) I’ll show you how to accurately implement the design shown in fig-
ure 12.4. It’s also important to realize that a website evolves over time. Implementing a
mockup is part of the work, but you’ll also need to be able to add new features or con-
tent down the road, while still remaining true to the designer’s vision. For this reason,
we’ll look at some considerations for this work as well.

Figure 12.3 The button with colored
text and border stands out amid plain
black-and-white text

www.EBooksWorld.ir

304 CHAPTER 12 Contrast, color, and spacing
12.1.2 Implementing the design

Create a new page and link it to a new stylesheet. Then copy in the markup shown in
the following listing. I’ve broken up the page design into various modules, which
you’ll style throughout the rest of the chapter.

<head>
 <link rel="stylesheet" href="styles.css">
</head>
<body>
 <nav class="nav-container">
 <div class="nav-container__inner">
 Ink
 <ul class="top-nav">
 Features
 Pricing
 Support
 <li class="top-nav__featured">Login

Listing 12.1 Page markup

10px 10px

95px

16px

40px

25px

25px

30px

25px

25px

1080px

Figure 12.4 A mockup of the page design with annotated measurements

Top navbar
container

www.EBooksWorld.ir

305Contrast is king

 </div>
 </nav>

 <div class="hero">
 <div class="hero__inner">
 <h2>Team collaboration done right</h2>
 Get started
 </div>
 </div>

 <div class="container">
 <div class="tile-row">
 <div class="tile">
 <h4>Work together, even if you're apart</h4>
 <p>Organize your team conversations into threads. Collaborate

together on documents in real-time. Use face-to-face video calls when typing just won't
do.</p>

 Read more
 </div>

 <div class="tile">
 <h4>Take it with you</h4>
 <p>Ink is available on a wide array of devices, so you can work from

anywhere:</p>
 <ul class="tag-list">
 Web
 iOS
 Android
 Windows Phone

 Read more
 </div>

 <div class="tile">
 <h4>Priced right</h4>
 <p>Whether you work on a team of three or a three hundred, you'll

find our tiered pricing reasonable at every level.</p>
 Read more
 </div>
 </div>
 </div>

 <footer class="page-footer">
 <div class="page-footer__inner">
 Copyright © 2017 Ink, Inc.
 </div>
 </footer>
</body>

I’ve used BEM-style notation for some of these class names to make it clear which ele-
ments belong to which modules: double-underscores indicate sub-elements of a mod-
ule, such as hero__inner, and double-hyphens indicate variants of a module, such as

Large hero
image

Three-column
tile row

www.EBooksWorld.ir

306 CHAPTER 12 Contrast, color, and spacing
button--cta (chapter 9). We’ll work our way through these modules. Our first stop is
to take a closer look at the colors they use.

12.2 Color
When a designer delivers a design, typically you’ll get a large PDF document with sev-
eral sections. A large portion of the PDF will likely consist of full-page mockups similar
to that shown in figure 12.4. But before that, a designer will establish some basics. The
PDF may include a page or two of typography examples for various headings and body
copy. The document will probably have a detailed breakdown of a few common UI
elements, like links and buttons, including their various states, like hover and active.
And it’ll include a color palette for the site.

 The color palette will typically look something like that shown in figure 12.5. It
shows color swatches for all the colors used on the site and the associated hex color
values. The designer will often give a name to each color, which will be used through-
out the rest of the specifications.

A palette will typically have one primary color that everything else is based on. It’s
often derived from the corporate branding or logo. In our page, this is the brand
green color (top, left in the figure). Other colors in the palette will often be varying
shades of the same hue, or complementary colors to it. Most palettes also have a black,
a white (though they may not be pure #000000 or #ffffff), and a handful of grays.

 Because these colors will appear repeatedly throughout the CSS, you can save
yourself a lot of time by assigning them to variables. Otherwise, you’ll be typing the
hex values countless times and will, almost certainly, make mistakes.

 Let’s put together some base styles for the page. This includes assigning each of the
palette colors to a variable so you can reuse them. The page as shown in figure 12.6
won’t look like much yet, but the colors will start to look closer to the mockup.

 Add these base styles to your stylesheet.

#076448 Brand green

#099268 Dark green

#20c997 Medium green

#868e96 Gray

#f1f3f5 Light gray

#f8f9fa Extra-light gray

#212529 Text color #ffffff White

Figure 12.5 The color palette for the site

www.EBooksWorld.ir

307Color
html {
 --brand-green: #076448;
 --dark-green: #099268;
 --medium-green: #20c997;
 --text-color: #212529;
 --gray: #868e96;
 --light-gray: #f1f3f5;
 --extra-light-gray: #f8f9fa;
 --white: #fff;

 box-sizing: border-box;
 color: var(--text-color);
}
*,
*::before,
*::after {
 box-sizing: inherit;
}

body {
 margin: 0;
 font-family: Helvetica, Arial, sans-serif;
 line-height: 1.4;
 background-color: var(--extra-light-gray);
}

h1, h2, h3, h4 {
 font-family: Georgia, serif;
}

a {
 color: var(--medium-green);
}
a:visited {
 color: var(--brand-green);
}

Listing 12.2 Base styles including color variables

Figure 12.6 Page with base styles and some colors in place

Assigns each
color to a
variable

Uses variables
to assign color
where needed

Sets
heading
fonts

www.EBooksWorld.ir

308 CHAPTER 12 Contrast, color, and spacing
a:hover {
 color: var(--brand-green);
}
a:active {
}

I’ve used custom properties for these colors (see chapter 2, section 2.6 if you need a
refresher). By using variables you might save yourself some work down the road
should any of these values change. I once worked on a project where the designer
decided to make an adjustment to the brand color late in the process. It was trivial to
update the variable in one place, but it would have meant updating a hundred or
more spots in the code without it.

NOTE I’ve used CSS custom properties in this example for simplicity; you
won’t need any special tooling to follow along. In your projects, if you need to
support IE or other older browsers, you should favor the use of preprocessor
variables instead. See appendix B for an introduction to preprocessors.

I’ve also left a placeholder here for active links. We’ll come back and fill in a color there
shortly. Before we do that, let’s get the page roughly laid out. You’ll get all the main sec-
tions of the page in the correct position in relation to each other and then apply some
colors and font settings (figure 12.7). We won’t fuss much with the spacing yet.

Uses variables to assign
color where needed

Placeholder for active links. You’ll
need a red color for this later on.

Figure 12.7 Page elements roughly positioned and the initial styles applied.

www.EBooksWorld.ir

309Color
You’ll start at the top and work your way down in three steps: the header, the hero
image, and the main section with three columns. For the most part, I’ll be reusing
techniques covered in earlier chapters. Then we’ll circle back and take a closer look at
fine-tuning the page.

 First up is the header and the navigational bar within. This section consists of three
modules: nav-container, home-link, and top-nav, shown in the following listing.
Add these to your stylesheet.

.nav-container {
 background-color: var(--medium-green);
}
.nav-container__inner {
 display: flex;
 justify-content: space-between;
 max-width: 1080px;
 margin: 0 auto;
}

.home-link {
 color: var(--text-color);
 font-size: 1.6rem;
 font-family: Georgia, serif;
 font-weight: bold;
 text-decoration: none;
}

.top-nav {
 display: flex;
 list-style-type: none;
}
.top-nav a {
 display: block;
 padding: 0.3em 1.25em;
 color: var(--white);
 background: var(--brand-green);
 text-decoration: none;
 border-radius: 3px;
}
.top-nav a:hover {
 background-color: var(--dark-green);
}
.top-nav__featured > a {
 color: var(--brand-green);
 background-color: var(--white);
}
.top-nav__featured > a:hover {
 color: var(--medium-green);
 background-color: var(--white);
}

Listing 12.3 Header styles

Centers the contents
and restricts their
width to 1,080 px

Uses flexbox
to display nav
items in a row

Adds color and
padding to each
nav item link

www.EBooksWorld.ir

310 CHAPTER 12 Contrast, color, and spacing
The whole header is wrapped in a nav-container. I’ve used the double-container pat-
tern here to center the inner element (see chapter 4 for a review of this technique).
This allows the background color to bleed to the edges of the page, while the width of
the main contents is constrained. This element is a flexbox container with justify-
content: space-between pushing its content to the two edges: home-link on the left
and top-nav on the right. The top-nav module is another flexbox, so the links all
appear in a row, and all colors are assigned using custom properties.

 Next, let’s add styles for the hero image area. This will involve two more modules,
one for the hero image and another for the button. Add the styles to your stylesheet.

.hero {
 background: url(collaboration.jpg) no-repeat;
 background-size: cover;
 margin-bottom: 2.5rem;
}
.hero__inner {
 max-width: 1080px;
 margin: 0 auto;
 padding: 50px 0 200px;
 text-align: right;
}
.hero h2 {
 font-size: 1.95rem;
}

.button {
 display: inline-block;
 padding: 0.4em 1em;
 color: var(--brand-green);
 border: 2px solid var(--brand-green);
 border-radius: 0.2em;
 text-decoration: none;
 font-size: 1rem;
}
.button:hover {
 background-color: var(--dark-green);
 color: var(--white);
}
.button--cta {
 padding: 0.6em 1em;
 background-color: var(--brand-green);
 color: var(--white);
 border: none;
}

The Hero module uses the double-container pattern, much like the heading. It also
has some padding added to the inner element. The padding values are rough esti-
mates at this point. Once everything is in about the right place, I’ll circle back and
point out key concerns as we more precisely conform to the designer’s mockup.

Listing 12.4 Hero image and button styles

Double-container
pattern

Uses padding to
roughly position the
slogan and button

Standard
button styles

CTA button
variant

www.EBooksWorld.ir

311Color
 I’ve also defined a Button module. The default appearance is a white button with a
green border and green text. This is the style of the buttons at the bottom of the main
section of the page. I then defined a CTA variant for this button, with a solid green
background and white text. (As explained earlier, CTA, or Call to Action, is a market-
ing term for the key element you want the user to interact with; in this case, the prom-
inent Get started button.) Finally, we’ll add the styles for the main portion of the page
with the three columns as shown in figure 12.8.

The main portion of the page consists of a container to constrain the width, a tile-
row to shape the three columns and a tile for the white box in each column. Add the
next listing to your stylesheet, which also adds styles for the footer. You’ve already
added styles for the button, so you don’t need to add anything for those.

.container {
 margin: 0 auto;
 max-width: 1080px;
}

.tile-row {
 display: flex;
}
.tile-row > * {
 flex: 1;
}

.tile {
 background-color: var(--white);
 border-radius: 0.3em;
}

Listing 12.5 Three columns and tiles

Figure 12.8 Rough styles for the main portion of the page

Same 1,080 px constrained
width as with other page
sections

Makes each
column equal
width

www.EBooksWorld.ir

312 CHAPTER 12 Contrast, color, and spacing
.page-footer {
 margin-top: 3em;
 padding: 1em 0;
 background-color: var(--light-gray);
 color: var(--gray);
}
.page-footer__inner {
 margin: 0 auto;
 max-width: 1080px;
 text-align: center;
 font-size: 0.8rem;
}

Again, this listing uses the double-container pattern, restricting the width to 1,080 px.
You also set a white background and a border radius for the tiles.

 The footer is an example of contrast being used to remove focus, rather than to
draw attention. It has a smaller font and gray text on a light gray background. This is
the least important part of the page, so it doesn’t need to stand out. Instead, it blends
in and subconsciously tells the user, “This section of the page is probably not what
you’re looking for.”

12.2.1 Understanding color notations

The colors in our palette are specified using hex notation. This is a concise notation,
and one that web developers have been using since the early days of the web. But it’s
not always the easiest to work with. CSS now has support for other notations as well,
using the rgb() and hsl() functions.

 The rgb() function is a way to represent the red, green, and blue values of a color
using decimal rather than hexadecimal notation. Instead of 00 though FF, it uses 0
through 255: rgb(0, 0, 0) is pure black (equal to #000) and rgb(136, 0, 0) is brick
red (equal to #800).

 Both RGB and hex colors are a bit cryptic. It’s hard to see a color like #2097c9, or
its RGB equivalent, and know how it will render on the page. To break the color value
down, its red value (20) is fairly low, its green value (97) is middle of the road, and its
blue value (c9) is higher. It’s predominantly blue and green, but how dark or how
vivid is it? The truth is, RGB colors aren’t intuitive. They were designed to be read by a
computer, not by a person.

 HSL is a type of notation intended to be more human-readable. It stands for Hue,
Saturation, and Lightness (or Luminosity). The syntax looks like hsl(198, 73%, 46%),
which is equivalent to the hex color #2097c9.

 The hsl() function takes three values. The first value, representing hue, is an inte-
ger between 0 and 359. This indicates the 360 degrees around the color circle, transi-
tioning evenly through red (0), yellow (60), green (120), cyan (180), blue (240),
magenta (300), and back to red. The second value, representing saturation, is a per-
centage defining the intensity of the color: 100% makes the color vivid, and 0% means
no color is present, resulting in a shade of gray. The third value, representing lightness,

Same 1,080 px constrained
width as with other page
sections

www.EBooksWorld.ir

313Color
is a percentage defining how light (or dark) the color is. A lightness of 50% provides
for the most vivid colors—setting it higher makes the color lighter, with 100% result-
ing in pure white; setting it lower makes the color darker, with 0% resulting in black.
For example, the value hsl(198, 73%, 46%) has a cyan-blue hue, reasonably high
saturation (73%) and a lightness near 50%, so it’ll produce a rich blue, a little darker
than sky blue.

 Table 12.1 shows a side-by-side comparison of several colors and their various rep-
resentations in hex, RGB, HSL, and named colors. (There are about 150 such named
colors that are valid CSS values.)

The best way to get familiar with HSL is to play around with it. Again, I encourage you
to visit http://hslpicker.com/. It provides an interactive color picker with three sliders
for the three values, as well as a fourth for transparency. Watch how each slider affects
the rendered color as you move it.

NOTE RGB and HSL notations each have a corresponding notation with an
added alpha channel: rgba() and hsla(). These accept a fourth value, a
number between 0 and 1, representing transparency. Additionally, some
browsers are also beginning to support an eight-character hex notation where
the last two characters specify an alpha channel.

CONVERTING COLORS IN THE BROWSER

Let’s convert the hex colors to HSL. Many online resources such as hslpicker.com will
give you a color in all three notations. But the easiest place to do conversion is often in
your Chrome or Firefox DevTools, because you always have them on hand. I’ll show
you how to do this in Chrome.

 With the page loaded, open the browser’s DevTools (Cmd+Option+I on Mac;
Ctrl+Shift+I on Windows). In the Elements panel, click the <html> tag to select it. Its
associated styles are shown in the Styles panel, including your custom properties (fig-
ure 12.9).

Table 12.1 Comparison of color systems and values

Name Hex RGB HSL

blue #0000ff rgb(0, 0, 255) hsl(240, 100%, 50%)

lavender #e6e6fa rgb(230, 230, 250) hsl(240, 67%, 94%)

coral #ff7f50 rgb(255, 127, 80) hsl(16, 100%, 66%)

gold #ffd700 rgb(255, 215, 0) hsl(51, 100%, 50%)

green #008000 rgb(0, 128, 0) hsl(120, 100%, 25%)

tan #d2b48c rgb(210, 180, 140) hsl(34, 44%, 69%)

www.EBooksWorld.ir

http://hslpicker.com/

314 CHAPTER 12 Contrast, color, and spacing
Beside each color is a small square displaying an example of the color. If you press and
hold Shift and then click your mouse on this square, it changes the hex value to an
RGB value. Clicking again changes the RGB to an HSL value. Clicking a third time
returns to the hex notation.

NOTE This method for cycling between color notations also works in the
Firefox DevTools. Unfortunately, it only works for regular properties and not
for colors assigned to custom properties as in our example.

If you want to dig deeper, clicking the square opens a full color picker dialog (fig-
ure 12.10). This allows you to fine tune colors, select from a palette, or cycle between
hex, RGB, and HSL notations. It also includes an eye-dropper to extract colors from
the page. Firefox offers a similar color picker, although it isn’t as full-featured.

SWITCHING THE STYLESHEET TO HSL
Often, a hex color is all you need. But converting to HSL can help with fine-tuning
colors or finding new colors to add to your site. Let’s convert our colors to HSL and
then make some observations about the site’s colors.

 Copy the HSL values from your DevTools into your stylesheet. This portion of your
CSS should match this listing.

Figure 12.9 The applied colors are shown in the DevTools Styles panel. Shift-click
the small square beside a color to cycle between hex, RGB, and HSL color notations.

www.EBooksWorld.ir

315Color
html {
 --brand-green: hsl(162, 87%, 21%);
 --dark-green: hsl(162, 88%, 30%);
 --medium-green: hsl(162, 73%, 46%);
 --text-color: hsl(210, 11%, 15%);
 --gray: hsl(210, 7%, 56%);
 --light-gray: hsl(210, 17%, 95%);
 --extra-light-gray: hsl(210, 17%, 98%);
 --white: hsl(0, 0%, 100%);

 box-sizing: border-box;
 color: var(--text-color);
}

A couple things become apparent when the colors are in HSL notation. First, you can
now see that all three green colors have the exact same hue. You may not know off-
hand that 162 is a teal green until you look in the browser, but you can see there’s a
symmetry between the three colors. This is impossible to discern from the hex values,
but in HSL it’s obvious. With this knowledge, it’s easy to add another green color to
the palette. If the need arises for a lighter shade of the same color, I’d try something

Listing 12.6 Converting hex colors to HSL

Figure 12.10 Use the color picker dialog to fine tune colors.

Green colors all
have the same hue.

The text and gray
colors aren’t
pure gray.

www.EBooksWorld.ir

316 CHAPTER 12 Contrast, color, and spacing
like hsl(162, 50%, 80%), then fine-tune the saturation and luminescence in the
browser’s DevTools until it looked appropriate.

 You can also observe that the gray colors aren’t a pure gray: they’ve a small bit of
saturation, each with the same hue. It’s not likely you could tell this by looking at the
colors, but it’s a small detail that can help the page look richer. True colorless grays
almost never happen in the real world, and our eyes expect to see some color, even if
it’s subtle.

NOTE A designer will typically include several shades of gray in the palette.
It’s my experience, however, that you’ll always need another gray. Whether
it’s an even lighter color than the extra light gray or something between
gray and light gray, the need will eventually arise. This makes naming the
variables problematic. For this reason, consider using names with numeric
values like --gray-50 or --gray-80, where the number roughly corresponds
to luminescence. This way you can insert another value between two exist-
ing ones when needed.

Again, you don’t necessarily need to convert every color to HSL in a real-world proj-
ect. But when the need arises, go for it. Often this makes working off the color easier.

12.2.2 Adding new colors to a palette

Occasionally, you’ll find you’ll need a color that your designer didn’t plan for. Maybe
you need a red error message or a blue informational box. Experienced designers
usually account for common instances like this, but you may still find yourself in a sit-
uation where you need to add to the palette.

 Our stylesheet has a placeholder for an active link color. Traditionally, active links
are red, which is in the provided by the user agent stylesheet. But, it’s a bright, car-
toony red that looks out of place on this page. Let’s find a less vivid color that works
with the green.

 The simplest way to find to a color that works well with another is to find its comple-
ment. This is the color on the opposite side of the color wheel: the complement of
blue is yellow; the complement of green is magenta (or purple); and the complement
of red is cyan.

 With HSL color values, finding the complementary color is easy: add or subtract
180 to the hue value. Our primary brand green has a hue of 162. Adding 180 to this
gets us a hue of 342, which is red with a touch of magenta. You can also subtract 180 to
find its complement, which results in a hue of -18. This is equivalent to hue 342, so
hsl(-18, 87%, 21%) will render the same as hsl(342, 87%, 21%). But I prefer to keep
my values between 0 and 360 so they are in more familiar territory.

 Now that we have a hue, we need a saturation and lightness. The page’s regular
link color is medium green—hsl(162, 73%, 46%)—so let’s start there. Because green
is our primary brand color, we don’t want secondary colors to steal the show too

www.EBooksWorld.ir

317Color
much, so we’ll drop the saturation down a little—let’s say 10%. This gives us a color of
hsl(342, 63%, 46%). Figure 12.11 shows an active link with this red color.

Let’s add this color to the stylesheet. Edit your code to match this listing. This includes
assigning the color to a custom property --red, and then using it for active links.

html {
 --brand-green: hsl(162, 87%, 21%);
 --dark-green: hsl(162, 88%, 30%);
 --medium-green: hsl(162, 73%, 46%);
 --text-color: hsl(210, 11%, 15%);
 --gray: hsl(210, 7%, 56%);
 --light-gray: hsl(210, 17%, 95%);
 --extra-light-gray: hsl(210, 17%, 98%);
 --white: hsl(0, 0%, 100%);
 --red: hsl(342, 63%, 46%);

 box-sizing: border-box;
 color: var(--text-color);
}
…
a:active {
 color: var(--red);
}

With this in place, load the page and see it in action. Unfortunately, this is a little
tricky because a link’s active state isn’t shown by default. You can trigger it by clicking
and holding on a link, but it’ll return to green as soon as you let go. To make this eas-
ier, you can use the DevTools to force an active state.

 Right-click a link and choose Inspect or Inspect element from the context menu.
This opens DevTools. In the Elements pane, right-click the <a> tag and select :active
(or active in Firefox) from the context menu (figure 12.12). This will force the
browser to display the element’s active styles.

 With the element forced to an active state, you can see how the red color looks.
When needed, you can edit styles live in the DevTools and see how it affects this
active element.

 Choosing colors that look good is never an exact science, but working in HSL
can help make it easier. Try colors that are complementary to colors already on your

Listing 12.7 Adding the red color to the palette

Figure 12.11 A red active link

Assigns a
red variable

Uses the variable
for active links

www.EBooksWorld.ir

318 CHAPTER 12 Contrast, color, and spacing
page. Play with the saturation and luminescence in DevTools to find something that
looks nice.

 If you want to dive deeper into color selection, look online for articles on Color
Theory. One great article, created by Natalya Shelburne, to get you started is available
at http://tallys.github.io/color-theory/.

12.2.3 Considering contrast for font colors

You probably noticed our font color is a dark gray and not a true black (#000). In HSL
notation, it has a luminescence value of 15%, not 0%. The use of gray rather than true
black is a common practice. On a backlit computer screen, true black text on a pure
white background (#fff) produces too much contrast. This can produce eye fatigue
when reading, especially for larger blocks of text. The same is true for white text on a
black background. In these instances, you should either use a dark gray in place of
black or a light gray instead of white, or both. To your eye, it still appears as black and
white, but it’ll be more comfortable to read.

 While you don’t want too much contrast for your text, you also don’t want too lit-
tle. Gray text on a light gray background can be hard to read for users with impaired
vision. It can also be hard to read on a smartphone in bright sunlight. So, how do you
know when you have enough contrast?

 To help guide this decision, the W3C’s Web Content Accessibility Guidelines
(WCAG) provide a minimum recommended contrast ratio (called level AA), as well as
a stricter, enhanced contrast ratio (called level AAA). And because larger text is easier
to read, both levels include a less strict contrast ratio for large text. The recom-
mended contrast ratios are shown in table 12.2.

Figure 12.12 DevTools lets you force an element into an active, hover,
focus, or visited state so you can preview how the styles will appear.

www.EBooksWorld.ir

http://tallys.github.io/color-theory/

319Color
The WCAG defines large text as 18 pt (24 px) or larger for a regular font weight, or
14 pt (18.667 px) for bold fonts. In short, this generally means your body fonts should
meet or exceed the regular text recommendation, and your headings should meet or
exceed the large text recommendation.

 The WCAG provides a formula for computing this contrast ratio, but I never
bother with the math. It’s much easier to use a tool. Several tools are available online:
search for CSS color contrast checker.

 Each has its own strengths and weaknesses. One of my favorites is available at
http://leaverou.github.io/contrast-ratio. This checker supports any valid CSS color
format. Paste in your background color and your text color, and it shows you the com-
puted contrast ratio (figure 12.13). Hover over this number to see whether this passes
WCAG level AA or AAA, and for which font sizes.

With many designs, it’s not practical for every bit of text to meet level AAA contrast
levels. The WCAG recommendations acknowledge this. It’s a good idea for your main
body text to meet level AAA, but you can be a little more relaxed and aim for level AA
with colored labels or other decorative text.

 Also, keep in mind that the mathematical analysis isn’t the full story. Some type-
faces are easier to read than others. This is especially true if your design uses thin
fonts. Figure 12.14 shows two copies of the same paragraph. Even though the colors
are the same in each, the perceived contrast is different.

 The paragraphs in figure 12.14 are both set using the Helvetica Neue typeface.
The one on the left has a font weight of 300 (often called light or book); the one on

Table 12.2 WCAG text contrast recommendations

Level AA Level AAA

Regular text 4.5:1 7:1

Large text 3:1 4.5:1

Figure 12.13 The background and text colors have a contrast ratio of 15.1:1.

www.EBooksWorld.ir

http://leaverou.github.io/contrast-ratio

320 CHAPTER 12 Contrast, color, and spacing
the right has a font weight of 100 (thin). A contrast ratio of 7:1 may be excellent with
the font on the left, but the font on the right might need one that’s a bit stronger.

TIP Only some fonts provide thin weights, but when you use them, make
sure you have a strong color contrast so they’re readable.

12.3 Spacing
With colors squared away, we can turn our attention to the precise spacing the
designer provided in the mockup. This can be a tedious part of the development pro-
cess, and it may involve some back and forth with your designer when reviewing your
work, pointing out inconsistencies that you’ll need to fix.

 A lot of this work simply comes down to setting the correct margins on elements.
Doing this is generally the easiest place to start, though you may need to make a few
adjustments from there. Let’s look at two things you’ll need to consider: whether or
not to work with relative units and how line heights can impact your vertical spacing.

12.3.1 Using ems vs. px

One important decision you’ll have to make is whether you want to use ems or pixels.
Designers typically provide measurements in pixels, so these are the easiest to use. But
there are benefits to converting to a relative unit, whether ems or rems.

 Consider the measurements specified around the navigational menu (figure 12.15).
The design calls for 10 px between each item, as well as 10 px between their bottom
edges and the bottom edge of the navbar.

Throughout chapter 2, I discussed the benefits of using relative units. In particular,
they let you define a responsive font size (font-size: calc(0.5em + 1vw)), then allow
your design to scale proportionally with the font. On a larger screen, the font size will
be larger, as well as the em- and rem-based margins. This benefit also applies if the
user customizes their browser’s default font size.

Figure 12.14 A thin font face results in less visual contrast, even with the same color.

10px 10px

Figure 12.15 The specification calls for 10 px around and between each
nav item.

www.EBooksWorld.ir

321Spacing
 This technique of using responsive font sizes is, however, relatively new, so most
designers aren’t used to working with relative units. If you want to use this technique,
you should probably discuss it with the designer. You’ll also have to do the unit conver-
sions yourself.

 If you decide to use pixels, you make the work easier on yourself in the short term,
but it means a less flexible design going forward. This could potentially mean more
work later, but it’s impossible to know for sure. If you decide to use relative units,
you’ll have a little more work up front, but your design will be more robust.

 Because using pixels is the more straightforward option (for example, set 10 px
margins or paddings where needed), I’ll walk you through the more involved process
building the navigational menu with ems.

 In the design specification, the spacing measurements in the navbar call for 10 px
around the menu items (figure 12.15). Because the base font size is 16 px, you can do
the math, dividing the desired length by the base font size: 10 divided by 16 is 0.625,
so our distances here will be 0.625 em. Now you’re ready to add the declarations indi-
cated here to your stylesheet.

.nav-container {
 background-color: var(--medium-green);
}
.nav-container__inner {
 display: flex;
 justify-content: space-between;
 max-width: 1080px;
 margin: 0 auto;
 padding: 0.625em 0;
}

/* ... */

.top-nav {
 display: flex;
 list-style-type: none;
 margin: 0;
}
.top-nav > li + li {
 margin-left: 0.625em;
}

When working with space, it’s important to consider when you should use padding
and when you should use margins. In this case, it makes sense to use padding for the
vertical spacing on the nav-container__inner so it’ll also apply to the whole con-
tainer, padding the page title on the far left as well as the top-nav list. Then I used mar-
gins for the horizontal spacing between nav items because I wanted each item to have
the space between them.

Listing 12.8 Using padding and margin to set nav spacing

Adds 10 px top and
bottom padding to
the whole navbar

Removes the list margin
applied from the user
agent stylesheet

Adds a 10 px horizontal
margin between each
nav item

www.EBooksWorld.ir

322 CHAPTER 12 Contrast, color, and spacing
 The space below the hero image and between each of the three columns is also
straightforward (figure 12.16). Because these gaps both need to be applied to the out-
side of elements with a background image or background color, you’ll use margins to
set this space.

Again, divide these pixel values by the base font size to convert the lengths to ems.
The 40 px beneath the hero image is equal to 2.5 em (40 / 16 = 2.5—this margin is
already in place) and the 25 px between each column is equal to 1.5625 em (25 / 16).
Add these margins as shown in the next listing.

.hero {
 background: url(collaboration.jpg) no-repeat;
 background-size: cover;
 margin-bottom: 2.5rem;
}

/* ... */

.tile-row {
 display: flex;
}
.tile-row > * {
 flex: 1;
}
.tile-row > * + * {
 margin-left: 1.5625em;
}

Spacing between containers like this (with background images or background colors)
is generally straightforward. It can be a little more finicky when you need to adjust the
space between lines of text, such as with paragraphs or headings.

Listing 12.9 Adding margins below the hero image and between the columns

40px

25px

Figure 12.16 The page margins below the hero image (40 px) and
between the columns (25 px)

Ensures 40 px space
beneath the hero image

Adds 25 px
between each
column

www.EBooksWorld.ir

323Spacing
12.3.2 Factoring in line height

Our mockup also defines spaces around text. Figure 12.17 shows the measurements
specified for this. (It may be difficult to see here, but this is a white tile on an extra
light gray background. The 25 px measurements on the top and left are from the
edges of this white tile.)

Applying the 25 px space around the text edges is a matter of adding padding to the
tiles: 25 / 16 = 1.5625 em. The 30 px between the heading and the paragraph isn’t
quite as simple, however. If you were to apply a 30 px margin between the two ele-
ments, the space between the two lines of text would be closer to 36 px. To under-
stand why this is, let’s look at how the element’s height is determined.

 In the box model, the element’s content box is surrounded by padding, then bor-
der, then margin. But with elements like paragraphs and headings, there’s more to
the content box than the printed text: the element’s line height contributes to the
overall height, beyond the top and bottom of the characters. This is illustrated in fig-
ure 12.18. The text is 1 em high, but the line height extends a little further above and
below the edge of the text.

 On your page, you have a line height of 1.4. This is applied to the <body> element
and inherited down from there. Thus, an element with one line of text has a content

25px

30px

25px

25px

Figure 12.17 Desired spacing in the
tile and around the text

Margin

Line height1 em

Perceived space

Figure 12.18 The line height
defines the height of the content box.

www.EBooksWorld.ir

324 CHAPTER 12 Contrast, color, and spacing
box 1.4 em high, and the text is vertically centered within. With a font size of 16 px,
this makes the total height of the content box 22.4 px. The extra 6.4 px are split
evenly above and below the text.

 So, if you give the heading a bottom margin equal to 30 px, there will visually be an
extra 3.2 px between the text and the top of the margin. There will also be an extra
3.2 px in the content box of the paragraph beneath. (The spacing is the same because
both heading and paragraph have the same line height and font size.) This produces
a perceived space between the two of 36.4 px.

NOTE Designers are accustomed to working with leading, which is a measure
of the space between lines of text. In CSS, this space is controlled by line
height, which is not directly analogous to leading. We’ll look closer at fine-
tuning this spacing in the next chapter.

A designer won’t usually fuss over a one- or two-pixel discrepancy, but an extra six-and-
a-half pixels might bother them. It’ll be even larger if you have a bigger line height or
one of the elements has a larger font size.

 The way to fix this discrepancy is to account for the extra space and subtract it
from the margin. Instead of a 30 px margin, subtract the extra 6 pixels and aim for 24
px. Divide by 16, and this gets us an em value of 1.5. Add these spacings from the fol-
lowing listing to your stylesheet.

p {
 margin-top: 1.5em;
 margin-bottom: 1.5em;
}

/* ... */

.tile {
 background-color: var(--white);
 border-radius: 0.3em;
 padding: 1.5625em;
}
.tile > h4 {
 margin-bottom: 1.5em;
}

You’ve applied the 1.5 em margins to the base styles, so all paragraphs will have the same
spacing throughout the page. You repeated this measurement again below the tile title
(.tile > h4), so the space beneath the heading is always the same, even if it’s not fol-
lowed immediately by a paragraph. Because of margin collapsing, the two margins will
overlap, producing the 30 px of space between the header and the paragraph.

 One final set of measurements in the mockup remains: the spacing in the hero
image around the slogan. This portion of the mockup is shown in figure 12.19.

Listing 12.10 Setting the tile and paragraph spacing

Adds margins to
paragraphs in
your base styles

Adds padding
inside the tiles

Adds the margin
beneath the tile
headings

www.EBooksWorld.ir

325Spacing
The line height of the slogan will play into these spacings as well because it has such
a large font size. The font size is 1.95 rem, which, multiplied by the 16 px base font
size, produces a 31.2 px font. This multiplied by a line height of 1.4 produces a com-
puted line height of 43.68 px, or about an additional 6 px above and 6 px below
the text.

 Because the line height contributes 6 px of space above the text, you only need to
add 89 px of additional space to achieve the desired 95 px. Likewise, beneath the slo-
gan, you only need to add an additional 10 px to achieve the 16 px gap shown in the
mockup. This is a lot of arithmetic, and sometimes the easiest approach is to sit down
with the designer and edit values live in the browser until the designer approves.

 Now that you know you need to add 89 px above and 10 px below the slogan, you
can convert these values to relative units and add them to the stylesheet: 89/16 equals
5.5625 em and 10/16 = 0.625 em. Update the portion of the stylesheet shown in the
next listing, adding annotated declarations to position the slogan.

.hero {
 background: url(collaboration.jpg) no-repeat;
 background-size: cover;
 margin-bottom: 2.5rem;
}
.hero__inner {
 max-width: 1080px;
 margin: 0 auto;
 padding: 5.5625em 12.5em 12.5em 0;
 text-align: right;
}
.hero h2 {
 font-size: 1.95rem;
 margin-top: 0;
 margin-bottom: 0.625rem;
}

The top padding of the hero__inner provides the spacing above the slogan. I’ve added
padding to the right and bottom edges, though specific values weren’t specified in the

Listing 12.11 Positioning the slogan and button within the hero image

10px
10px

95px

16px
Figure 12.19 The design calls
for 95 px above the slogan and
16 px beneath it (between it and
the button).

Replaces the rough
estimate with the newly
calculated spacing

Removes the top margin as the
hero__inner padding provides
all the space needed

Defines the space
between the slogan
and the button

www.EBooksWorld.ir

326 CHAPTER 12 Contrast, color, and spacing
mockup. I then set the slogan’s top margin to zero, so it won’t add more space inside
the hero__inner’s padding. I also used rems rather than ems for the slogan’s bottom
margin because the slogan doesn’t have the default 16 px font size.

12.3.3 Spacing inline elements

One final detail to put into place in the page design remains. The center column has
a list of operating systems where the Ink application is available for use (figure 12.20).
I’ve left this as a regular unordered list until now. Let’s get these laid out inline as they
appear it the mockup.

This sort of mini-layout is common for things like listing tags on blog posts or catego-
ries for merchandise. I have included it here because it can come with a few quirks
that you should be familiar with.

 A few options are available for this type of layout. Two that jump to mind are flex-
box or inline elements. We’ve looked at a number of flexbox layouts throughout the
book, so I want to take a look at the concerns when using inline elements.

 A number of styles here are straightforward. Each item will need display: inline,
as well as a small bit of padding, background color, and a border radius. At first, this
will look like enough, but a problem will emerge if the content line wraps. The result
is shown in figure 12.21, which could occur at certain viewport widths or if the content
changes down the road.

The gray background of items in one row will overlap with that of items in another
row. The reason for this is the line height. As you saw earlier in the chapter, the height

Figure 12.20 The list items need
to be styled and made inline.

Figure 12.21 The list items overlap
when they line wrap.

www.EBooksWorld.ir

327Spacing
of the line of text is determined by the font size times the line height. If you add
padding to an inline element, the element itself will get taller, but it will not increase
the height of the line of text. That’s determined exclusively by the line height.

 To fix this, you’ll need to increase the line height of each item. Add the code
shown in the next listing to style these tags on your page. Go ahead and edit the line
height to different values to see the affect it has.

.tag-list {
 list-style: none;
 padding-left: 0;
}
.tag-list > li {
 display: inline;
 padding: 0.3rem 0.5rem;
 font-size: 0.8rem;
 border-radius: 0.2rem;
 background-color: var(--light-gray);
 line-height: 2.6;
}

This behavior is unique to inline elements. If an element is a flex item (or inline-
block), the line will grow if necessary to accommodate it. But you’ll also need to add
both horizontal and vertical margins to maintain spacing between items. By using
inline items, you can allow the natural white space between elements to provide the
spacing for you.

NOTE Notice the text Windows Phone within the inline element is allowed to
line wrap. In a flexbox or inline block, this is not permitted, and the entire
element will wrap to the next line. If this is a concern either way, choose
whichever approach provides the solution that makes the most sense in your
context.

This completes the page design. Your page should now match the full mockup as
shown in figure 12.22.

 We spent a lot of time focusing on very particular details. Many developers won’t
put this much attention to detail when implementing a design, but for those that do,
it pays off. These details are the difference between a good design and a great one.

 As you work in CSS, I encourage you to take the time to fine tune the design. Even
if you don’t have a professional designer behind your design, trust your eye. Try a little
more space here or a little less there and see what feels right. Take time to tweak val-
ues. Don’t over-use color, but selectively put it in the places you want to draw atten-
tion. Establish consistent patterns, then break those patterns to draw the users eye to
the most important things on the page.

Listing 12.12 Styling the tags

Overrides user
agent list styles

Sets a large line height
to add vertical space
when line wrapping

www.EBooksWorld.ir

328 CHAPTER 12 Contrast, color, and spacing
Summary
 Use contrast selectively to draw attention to important parts of the page.
 Use HSL color to make working with colors easier and more understandable at

a glance.
 Trust your designer when they get picky about nitty gritty details.
 Take the time to fine-tune spacing.
 Remember that line height can impact your vertical spacing.

Figure 12.22 Completed page design

www.EBooksWorld.ir

Typography
You can make or break a page design with its fonts. For years, web developers had
to choose from a limited set of typefaces, referred to as web safe fonts. These are font
families like Arial, Helvetica, and Georgia that are commonly installed on most
users’ systems. Browsers could render the page using only these system fonts, so
that’s what we had to work with. We could specify a more exotic font, such as Helve-
tia Neue, but it would only show up for those users who happened to have it
installed; other users would see a more generic fallback.

 This all changed with the rise of web fonts. Web fonts use the @font-face at-rule
to tell the browser where it can find and download custom fonts for use on a page;
applying a custom typeface can transform an otherwise dull page. This opens a whole
new world of possibilities. It also involves a lot more decisions than we used to make.

This chapter covers
 How web fonts can give your page a unique feel

 Using the Google Fonts API

 Tuning font spacing (tracking and leading)

 Web font performance concerns and
optimizations

 Dealing with FOUT and FOIT
329

www.EBooksWorld.ir

330 CHAPTER 13 Typography
 You can use fonts that make a page feel playful or serious, trustworthy or informal.
Look at the font examples in figure 13.1. The same text is set with three different pairs
of fonts. The example on the top left uses News Cycle for the heading and EB Gara-
mond for the body. It looks quite formal, like it might appear on a newspaper’s web-
site. The top right uses Forum and Open Sans and looks more informal. These might
be fonts you’d use on a personal blog or for a small tech company. The bottom left
column uses Anton and Pangolin. Its appearance is playful, or even cartoonish, which
would be fitting on a children’s site. By doing nothing more than changing the type-
face, you can completely change the tone of the page.

In this chapter, we’ll take a look at web fonts. I’ll show you how they work and intro-
duce you to some online services that provide a large selection of fonts to choose
from. We’ll also look at the CSS properties that control the layout, spacing, and size of

Figure 13.1 The fonts you use can have a marked impact on the feel of your site.

www.EBooksWorld.ir

331Web fonts
fonts. Understanding these properties will allow you to improve the readability of your
site or more closely match designs as provided by a designer.

 Typography is an art form as old as the printing press. This makes it the only topic
in this book with hundreds of years of history behind it. As such, I won’t claim to
exhaust the subject here, but I’ll show you some of the essentials and how to bring
them to bear on the modern web.

13.1 Web fonts
The easiest and most common way to use web fonts is through an online service. Com-
mon ones are:

 Typekit (www.typekit.com/)
 Webtype (www.webtype.com)
 Google Fonts (https://fonts.google.com/)

Whether paid or free, these services take care of many concerns for you, including
both technical (hosting) and legal (licensing) issues. They each offer a large library of
typefaces to choose from. Though sometimes, if you need a particular typeface, it
might only be available with a particular service.

 Because Google Fonts has a lot of high-quality, open source fonts—and it’s free—
I’ll walk you through using this service to add web fonts to a page. Google does a lot of
the work for you, so it’s mostly a straightforward process. After that, we’ll look under
the hood to get a closer look at how it all works.

 You’ll take the page you built in the previous chapter and add web fonts to
improve the design. Afterward, the page will render as shown in figure 13.2. The
Roboto font is the main body font used on most of the page, and Sansita is the font
used in the headings.

It’s common to use two different fonts like this: one for headings and another for
body text. Often, one font will be a serif font and the other will be sans-serif, though, in
this case, both are sans-serif. You may also see designs that use different weights of the
same typeface for headings and body text.

Figure 13.2 A portion of the page with Sansita
and Roboto web fonts applied

www.EBooksWorld.ir

https://meowni.ca/font-style-matcher/
http://www.webtype.com/
https://fonts.google.com/

332 CHAPTER 13 Typography
If you’ve followed along in the last chapter, you should already have this page built,
minus the web fonts. (The HTML for this page is shown in listing 12.1, and the CSS
was built up in listings throughout the rest of chapter 12, so your page should already
match these listings from the previous chapter.) Next, let’s add web fonts.

13.2 Google fonts
To see the directory of fonts available from Google Fonts, go to https://fonts.google
.com/. The page shows typefaces in a grid of tiles (figure 13.3). You can select fonts
from this screen, or you can search for a particular font by clicking the magnifying
glass on the top right corner.

For any font you want to use, click the red + icon, and Google adds it to your selected
fonts, which show in a drawer near the bottom right (figure 13.4). Click the red minus
(–) icon to remove a font.

 Because you know the fonts you want, you can search for them by name. In the
search menu, type Sansita. All other font tiles are filtered out of the main view. Click
the + icon to add it to your selected fonts. Then delete Sansita from the search box

serif—A small line or “foot” at the end of a stroke in a letter. A typeface with
serifs is known as a serif typeface (Times New Roman, for example). One
without serifs is known as a sans-serif typeface (Helvetica, for example).

Figure 13.3 Font selection interface for Google Fonts

www.EBooksWorld.ir

https://fonts.google.com/
https://fonts.google.com/
https://fonts.google.com/

333Google fonts
and type Roboto. Google will pull up several related typefaces, including Roboto,
Roboto Condensed, and Roboto Slab. Add Roboto to your selected fonts.

 If you open the selected font families drawer, it shows you Sansita and Roboto
along with code snippets in HTML (to embed the fonts in your page) and CSS (to use
the fonts in your styles). Before you use these snippets, however, you’ll need to make a
change to the fonts to select the font weights needed for the page. Click the Custom-
ize tab to see the options (figure 13.5).

 You’re probably familiar with working with regular and bold font weights, but
some typefaces are designed for several different weights. For example, Roboto comes
in six different weights, ranging from thin to black, as well as an italic variant of each.
Check the boxes beside the fonts you want to download to your page.

Figure 13.4 Currently selected fonts appear in a drawer, along with sample code
snippets.

www.EBooksWorld.ir

334 CHAPTER 13 Typography
NOTE The terms typeface and font are often conflated. Traditionally, typeface
refers to an entire family of fonts (Roboto), usually created by the same
designer. Within a typeface there may be multiple variants or weights (light,
bold, italic, condensed, and so on). Each of these variants is a font.

In an ideal world, you could select all the font variants, giving you plenty of options to
choose from for your page design. If you start checking boxes, however, you’ll notice
the Load Time indicator (upper right) change from Fast to Moderate to Slow. The
more fonts you select, the more the browser will have to download. And web fonts,
after images, are one of the biggest offenders in slowing down loading time. You’ll
need to be judicious, selecting only the fonts you need.

 Under Roboto, select Light 300 and under Sansita, select Extra-bold 800. These
are the weights you’ll be using for this example. (You’ll often need the italic version of
the main body font as well, but it’s not a bad idea to hold off until you know for sure
it’s needed on your site.) Click the Embed tab to return to the code snippets, and
you’ll see they’ve been updated to specify the font weights you selected.

Figure 13.5 Select which font weights and styles to include on your page

www.EBooksWorld.ir

335Google fonts
 Copy the <link> tag and add it to your page’s <head> as shown in the following list-
ing. This adds the stylesheet containing the font definitions to your page. Your page
will now have two stylesheets: yours and the font stylesheet.

<link href="https://fonts.googleapis.com/css?family=Roboto:300|Sansita:800"
rel="stylesheet">

With this stylesheet, Google has taken care of everything needed to set up the web
fonts for your page. With this in place, you can now use the fonts throughout your
styles. You’ll add these to the page, resulting in the page shown in figure 13.6.

To use the fonts, you’ll need to specify Roboto and Sansita using the font-family
property. Let’s update the CSS to do this. You’ll set Roboto as the main font on the
<body> element, where it’s inherited by the entire page. Then you’ll set Sansita for
headings and the Ink homepage link in the top left corner. Change the correspond-
ing portions of the code to match the next listing.

Listing 13.1 Stylesheet <link> tag for Google Fonts

Figure 13.6 The page with Roboto and Sansita fonts applied

www.EBooksWorld.ir

336 CHAPTER 13 Typography
body {
 margin: 0;
 font-family: Roboto, sans-serif;
 line-height: 1.4;
 background-color: var(--extra-light-gray);
}

h1, h2, h3, h4 {
 font-family: Sansita, serif;
}

/* ... */

.home-link {
 color: var(--text-color);
 font-size: 1.6rem;
 font-family: Sansita, serif;
 font-weight: bold;
 text-decoration: none;
}

With the Google Fonts stylesheet on the page, the browser now understands that these
font families refer to the downloaded web fonts, and it’ll apply them to the page. If
you use another web font service, such as Typekit, the process will be similar. The ser-
vice will either provide the URL to the CSS you need or a snippet of JavaScript that
will add it to the page for you.

 I’ll show you how to tweak the spacing of fonts and share some considerations for
loading performance. But first, let’s see what Google Fonts is doing for us.

13.3 How @font-face works
Font providers make the process of adding fonts to your page nice and easy, but it’s
worth knowing how they work. Let’s look at that CSS file Google provided. Open the
URL https://fonts.googleapis.com/css?family=Roboto:300|Sansita:800 in your browser
to see Google’s CSS. I’ve copied a portion of it into the following listing.

/* latin */
@font-face {
 font-family: 'Roboto';
 font-style: normal;
 font-weight: 300;
 src: local('Roboto Light'), local('Roboto-Light'),

url(https://fonts.gstatic.com/s/roboto/v15/Hgo13k-
tfSpn0qi1SFdUfZBw1xU1rKptJj_0jans920.woff2) format('woff2');

Listing 13.2 Using the web fonts

Listing 13.3 Google’s font definition stylesheet

Applies Roboto
globally to the page

Sets headings to
the Sansita font

Sets the homepage
link to Sansita

The @font-face ruleset, defining
a single font for use elsewhere in

your page’s CSS

Declares the
name for
this font

Defines which font style
and font weight this
@font-face applies to

Location(s)
where the font

file can be found

www.EBooksWorld.ir

https://fonts.googleapis.com/css?family=Roboto:300|Sansita:800

337How @font-face works
 unicode-range: U+0000-00FF, U+0131, U+0152-0153, U+02C6, U+02DA, U+02DC,
U+2000-206F, U+2074, U+20AC, U+2212, U+2215;

}

/* latin */
@font-face {
 font-family: 'Sansita';
 font-style: normal;
 font-weight: 800;
 src: local('Sansita ExtraBold'), local('Sansita-ExtraBold'),

url(https://fonts.gstatic.com/s/sansita/v1/M0VOVsEPZWhxh-
yeRPQtpQzyDMXhdD8sAj6OAJTFsBI.woff2) format('woff2');

 unicode-range: U+0000-00FF, U+0131, U+0152-0153, U+02C6, U+02DA, U+02DC,
U+2000-206F, U+2074, U+20AC, U+2212, U+2215;

}

The @font-face ruleset defines the fonts for the browser to use in your page’s CSS.
The first ruleset here effectively says, “If the page needs to render Latin characters
with a Roboto font-family using a normal font style (not italic) and a weight of 300,
use this font file.” The second is similar, defining a bold version (weight 800) of the
Sansita font.

 The font-family defines the name you’ll use to reference this font elsewhere in
your stylesheet. The src: provides a comma-separated list of locations where the
browser will look, beginning with local(Roboto Light) and local(Roboto-Light): If
the users operating system happens to have an installed font called either Roboto
Light or Roboto-Light, then that font will be used. Otherwise, the woff2 font file will
be downloaded from the given url() and used.

NOTE The file, as hosted by Google, includes similar portions of code
repeated for other character sets, such as Cyrillic, Greek, and Vietnamese.
These characters are kept in separate font files, so your browser doesn’t have
to download them unless needed. The principles are the same, so I’ve left
them out for simplicity.

13.3.1 Font formats and fallbacks

Google’s stylesheet is making the assumption that my browser supports WOFF2 font
files. It’s able to do this because Google checked my browser’s user agent string and
determined that my browser (Chrome) supports these font files. If I were to load this
same URL in IE10, however, it’ll serve a slightly different stylesheet that references a
WOFF font.

 WOFF stands for Web Open Font Format. It’s a compressed format designed spe-
cifically for use over a network. All modern browsers support WOFF, but some don’t
yet support WOFF2 (which has better compression and, therefore, smaller files). You
probably don’t want to have to sniff user agent strings like Google is doing. Instead, a
robust solution should provide URLs for both WOFF and WOFF2 font files as shown
in the next listing. (I’m using shorter URLs than Google’s to make it more readable.)

The unicode
character ranges
this @font-face
applies to

www.EBooksWorld.ir

338 CHAPTER 13 Typography
@font-face {
 font-family: "Roboto";
 font-style: normal;
 font-weight: 300;
 src: local("Roboto Light"), local("Roboto-Light"),
 url(https://example.com/roboto.woff2) format('woff2'),
 url(https://example.com/roboto.woff) format('woff');
}

When web fonts were just getting started, developers had to include as many as four
or five different font formats because browsers each supported different ones. WOFF
is now almost fully supported, though WOFF2 loads faster, so provide both URLs,
if possible.

13.3.2 Multiple variants of the same typeface

If you need multiple fonts from the same typeface, each needs its own @font-face
rule. If, in the Google Fonts interface, you selected both light and bold versions of
Roboto, Google will give you a stylesheet URL that looks something like this: https://
fonts.googleapis.com/css?family=Roboto:300,700. Open this URL in your browser to
see the code. I have copied a portion of it into the following listing.

/* latin */
@font-face {
 font-family: 'Roboto';
 font-style: normal;
 font-weight: 300;
 src: local('Roboto Light'), local('Roboto-Light'),
 url(https://fonts.gstatic.com/s/roboto/v15/Hgo13k-

tfSpn0qi1SFdUfZBw1xU1rKptJj_0jans920.woff2) format('woff2');
 unicode-range: U+0000-00FF, U+0131, U+0152-0153, U+02C6, U+02DA, U+02DC,

U+2000-206F, U+2074, U+20AC, U+2212, U+2215;
}
…
/* latin */
@font-face {
 font-family: 'Roboto';
 font-style: normal;
 font-weight: 700;
 src: local('Roboto Bold'), local('Roboto-Bold'),
 url(https://fonts.gstatic.com/s/roboto/v15/d-

6IYplOFocCacKzxwXSOJBw1xU1rKptJj_0jans920.woff2) format('woff2');
 unicode-range: U+0000-00FF, U+0131, U+0152-0153, U+02C6, U+02DA, U+02DC,

U+2000-206F, U+2074, U+20AC, U+2212, U+2215;
}

Listing 13.4 A WOFF2 web font declaration with fallback to WOFF

Listing 13.5 Defining two different weights for the same typeface

The first
supported
format listed
will be used.

Fallback to WOFF for browsers
that don’t support WOFF2.

Roboto light

Roboto bold

www.EBooksWorld.ir

https://fonts.googleapis.com/css?family=Roboto:300,700
https://fonts.googleapis.com/css?family=Roboto:300,700
https://fonts.googleapis.com/css?family=Roboto:300,700

339Adjusting space for readability
This listing shows two different definitions for a Roboto font. If the page needs to ren-
der Roboto with a weight of 300, it’ll use the first definition. If it needs to render
Roboto with a weight of 700, it’ll use the second.

 If the page’s styles call for some other version (for example, font-weight: 500 or
font-style: italic), the browser approximates as best it can from the two weights
provided. Typically, this means the browser will choose whichever of the two is closer
to the needed font. But, depending on the browser, it may occasionally italicize or
make bold one of the provided fonts artificially to approximate the desired effect. It
does this by transforming the letter shapes geometrically. This never looks as good as
using a properly designed font, so I don’t recommend relying on it.

 When you use Google Fonts or another font provider, you can use their interface
and they’ll give you all the code you need. Sometimes, you may want to use a font
that’s not available from a provider. In this case, you’ll need to host your own font,
using @font-face rules to define them as needed for the browser.

13.4 Adjusting space for readability
Let’s return to our page. Now that your web fonts are loaded, let’s tune them to your
design. This involves two properties: line-height and letter-spacing. These prop-
erties control the space between lines of text (vertically) and the distance between
individual characters (horizontally).

 These are two properties that many developers tend to overlook. If you take time
to adjust them in your designs, it makes a significant improvement on the look of your
site. Furthermore, it can make reading more comfortable for your user, increasing
engagement on the page.

 If the text spacing is too compact, it can take more effort to read anything more
than a few sentences or even words. The same is true if the spacing is too great. See
figure 13.7 for examples of text with various spacing.

 If you try to read the compressed text in the top left, you’ll find that it takes greater
concentration. You might find your eye skipping a line, or reading the same line twice.
You’ll want to stop reading sooner. It also makes the page feel cramped and busy. The
text on the bottom left is a little too spread out. It draws too much attention to each
and every letter, taking a little more effort to form the words in your mind. Mean-
while, the text in the top right is comfortable. It looks “right,” and it’s the easiest of
the three to read.

www.EBooksWorld.ir

340 CHAPTER 13 Typography
13.4.1 Body copy spacing

Finding values for both line-height and letter-spacing is subjective. The best
approach is generally to try several values; find one that’s too tight and another that’s
too loose, then settle on a value in between. Fortunately, there are some rules of
thumb to help guide you.

 The initial value for the line-height property is the keyword normal, which is
equal to about 1.2 (the exact value is encoded in the font file, as is the font’s em
value). In many cases, however, this is too small. For body copy, a value between 1.4
and 1.6 is usually closer to ideal.

 On your page, you already have a line height of 1.4 applied to the <body>, which
you added in the previous chapter. This value is inherited down to the rest of the
page. But consider if that were missing. Figure 13.8 shows one of the tiles. The one on

Figure 13.7 The spacing of the text can have a marked impact on readability.

www.EBooksWorld.ir

341Adjusting space for readability
the left has the initial values for both line-height and letter-spacing; the one on
the right has been adjusted. (You’ll make your page match the spacing of the tile on
the right.)

Change the value for the line-height to 1.3 or 1.5 to see how they look. See if you
like these more or less than the value of 1.4 I’ve provided.

TIP Longer lines of text should have a larger line height. This makes it easier
for the reader’s eye to scan to the next line without losing their place. Ideally,
you should aim for line lengths that hold between 45 and 75 characters per
line, as this is generally considered the most easily readable.

Next, we can look at letter-spacing. This property takes a length, measuring the
amount of space to add between each character. Even a spacing of 1 px can be drastic,
so this should typically be a small value. When I’m looking for a value, I generally
change this in increments of 1/100ths of an em (for example, letter-spacing:
0.01em). Add letter spacing to your CSS as shown here.

body {
 margin: 0;
 font-family: Roboto, sans-serif;
 line-height: 1.4;
 letter-spacing: 0.01em;
 background-color: var(--extra-light-gray);
}

Increment the letter spacing to 0.02 em or 0.03 em to see how it looks. You may not
have the eye of a designer to know which is best, but that’s okay. Go with your gut.
When in doubt, don’t overdo it. The point isn’t to draw attention to the spacing; in
fact, it’s quite the opposite. On Ink’s page, I find both 0.01 em and 0.02 em reason-
able, so let’s keep the more conservative 0.01 em.

Listing 13.6 Setting letter spacing on the body element

Figure 13.8 A tile from Ink’s page with initial spacing values (left) and purposely chosen
values (right)

Line height and letter
spacing will be inherited by
everything on the page.

Adds 0.01 em of extra
space between characters

www.EBooksWorld.ir

342 CHAPTER 13 Typography
13.4.2 Headings, small elements, and spacing

The spacing for headings won’t always be the same as that for the body copy. After you
have spacing set for the body copy, check the headings and see if they need any adjusting.

 Headings are normally short, often only a few words. But, occasionally, a long one
will pop up. A common mistake during design is to test only short headings. Now that
your line height is set on the page, temporarily add extra text to various headings to
force them to line wrap (figure 13.9).

Converting leading and tracking to CSS
In the design world, the spacing between lines of text is called leading (rhymes with
bedding). This originates from strips of lead that were added between rows in a let-
terpress. Spacing between characters is called tracking. If you work with a designer,
they may specify leading and tracking for the design, but these values might look
nothing like the line-height and letter-spacing CSS properties.

Leading is often expressed in points, such as 18 pt, measuring a line of text plus the
space between it and the next line of text. This is effectively the same as the CSS
line-height, but it’s not expressed as a unitless number. You must first convert it
to pixels so it’s the same as your font, then to a unitless number.

To convert from pt to px, multiply the point value by 1.333 (that’s 96 px per inch and
72 pt per inch, so 96/72 = 1.333): 18 pt * 1.333 = 24 px. Then divide this by your
font size to find the unitless line height: 24 px / 16 px = 1.5.

Tracking is usually given as a number, such as 100. This number represents thou-
sandths of an em, so to convert it to ems, divide by a 1000: 100 / 1000 = 0.1 em.

Figure 13.9 Force headings to line wrap to make sure their line height is appropriate.

www.EBooksWorld.ir

343Adjusting space for readability
In this case, I think the vertical spacing looks fine, so I won’t change it. But it’s always
worth checking. Depending on the typeface, a line height of 1.4 can appear too far
apart, especially in large font sizes. I’ve had to bring the line height on headings down
as low as 1.0 on some sites.

 The letter spacing, on the other hand, could stand to be a little further apart. Add
the declaration shown in the next listing to your stylesheet. This is a subtle change in
the letter spacing.

h1, h2, h3, h4 {
 font-family: Sansita, serif;
 letter-spacing: 0.03em;
}

/* ... */

.home-link {
 color: var(--text-color);
 font-size: 1.6rem;
 font-family: Sansita, serif;
 font-weight: bold;
 letter-spacing: 0.03em;
 text-decoration: none;
}

For the body copy, spacing was focused on maximizing readability. But this matters
less for headings and other elements with little content, such as buttons. In these
cases, you can get more creative. You can get away with broader spacing. You can also
use negative letter spacing to compress the characters. Figure 13.10 shows the slogan
with a letter-spacing: -0.02em applied.

This spacing is dramatic. Several paragraphs of text like this would be hard to read,
but it can work for short pieces of text (only a few words). Let’s apply this to the slogan
text. Add the next listing to your stylesheet.

Listing 13.7 Increasing the letter spacing for headings

Increases the
letter spacing
for headings

Figure 13.10 Tight letter spacing is one option for short, stylistic
parts of the page.

www.EBooksWorld.ir

344 CHAPTER 13 Typography
.hero h2 {
 font-size: 1.95rem;
 letter-spacing: -0.02em;
 margin-top: 0;
 margin-bottom: 0.625rem;
}

You can also evaluate the spacing and text of small elements on the page, like the but-
tons. I think they look a little large right now, especially the navigational buttons in
the header bar. Let’s adjust those. Figure 13.11 shows how they look now (top) and
how they’ll look after making the changes (bottom).

I’ve made a few changes here: I’ve reduced the font size, capitalized the text using
text-transform, and increased the letter spacing.

TIP Text set in all caps generally looks better with a larger letter spacing.

Add the declarations shown next to your stylesheet. This also includes a reduced font
size for other buttons on the page, making them slightly smaller. But, in this listing,
you’ll only change the capitalization and letter spacing for the navigational links.

.nav-container__inner {
 display: flex;
 justify-content: space-between;
 align-items: flex-end;
 max-width: 1080px;
 margin: 0 auto;
 padding: 0.625em 0;
}

/* ... */

.top-nav a {
 display: block;
 font-size: 0.8rem;
 padding: 0.3rem 1.25rem;

Listing 13.8 Tightening up the spacing of the slogan

Listing 13.9 Adjusting size and spacing of nav menu items

Uses a negative letter
spacing to compress text

Figure 13.11 Changing the text properties can improve the look
of the nav buttons (bottom).

Aligns items in the
nav container to
the bottom

Decreases font
size of nav links
and buttons

Changes padding values
from em to rem

www.EBooksWorld.ir

345Adjusting space for readability
 color: var(--white);
 background: var(--brand-green);
 text-decoration: none;
 border-radius: 3px;
 text-transform: uppercase;
 letter-spacing: 0.03em;
}
…
.button {
 display: inline-block;
 padding: 0.4em 1em;
 color: hsl(162, 87%, 21%);
 border: 2px solid hsl(162, 87%, 21%);
 border-radius: 0.2em;
 text-decoration: none;
 font-size: 0.8rem;
}

Because you’ve reduced the size of the navigational links, they’ll no longer fill the
height of the nav-container’s content box. By default, they’ll align to the top, leaving
more space beneath them. Aligning the nav-container’s flex items to the bottom
(flex-end) fixes this.

 Because the font size of the navigational items has changed, their padding (previ-
ously specified in ems) would change as well. To prevent this, I’ve changed the units
to rems. We could do the math to find the corresponding values with the new em size,
but there’s no compelling reason to do so.

 The text-transform property might be new to you. This changes the text to all
uppercase, regardless of how it is authored in the HTML. I strongly encourage you to
use this rather than capitalizing text in the HTML. That way, if the design changes in
the future, you can change one line of CSS without having to edit multiple places
throughout all your HTML pages. But, if something should be capitalized according
to the rules of grammar (such as an acronym), capitalize it in the HTML. If it’s purely
a design decision, do it in the CSS.

 Another value for text-transform is lowercase, which makes every character low-
ercase. You can also set it to capitalize, which capitalizes the first letter of each word,
but leaves all other characters as authored in the HTML.

Going the extra mile: vertical rhythm
In chapter 12, I discussed the importance of establishing consistent patterns in a
design, including consistent spacing of elements on the screen. Vertical rhythm is the
practice of applying this principle to lines of text throughout the page. This is done by
defining a baseline grid, a repeating measure between lines of text. Most or all text
on the page should align with this baseline grid.

Capitalizes nav links and
increases letter spacing

Decreases font size of
nav links and buttons

www.EBooksWorld.ir

346 CHAPTER 13 Typography
13.5 The dreaded FOUT and FOIT
Before we’re done with fonts, we need to consider performance. Font files are big. I’ve
already mentioned that you should minimize the number of font files you use on the
page, but even then, there can be problems. In the browser, there’s usually a moment
when the content and layout of the page are ready to render, but the fonts are still
downloading. It’s important to consider what’ll happen for that brief moment.

 Originally, most browser vendors decided to render the page as soon as possible,
using available system fonts. Then, a moment later, the web font would finish loading,
and the page would re-render with the web fonts. This is illustrated in figure 13.12.

 Your web fonts will likely take up a different amount of space on screen than the
system fonts. When the second render occurs, the page layout shifts and the text sud-
denly jumps around on the page. If it happens quickly enough after the first render,
the user may not notice. But if there’s a delay in font loading (or the fonts are too
big), it can take as long as a few seconds to render the page. When this happens, it can
be annoying to some users. The user may have already started reading content on the
page, only to see it suddenly shift, making them lose their place. This became known
as FOUT, or Flash of Unstyled Text.

(continued)

A baseline grid is illustrated in this figure with equally spaced horizontal lines. Notice
how the heading, the main text, and the button text all align to this grid:

Applying this principle to your site can take some work, but it can also pay off by the
subtle consistency it produces. If you have an eye for detail and want to try this your-
self, I recommend the article at https://zellwk.com/blog/why-vertical-rhythms/.

A word of warning: building a vertical rhythm typically requires using units in your
line-height declarations. Because this changes the way the values are inherited
(see chapter 2), you’ll have to be sure to explicitly define an appropriate line height
anywhere on the page where the font size changes.

Elements with various text sizes and
margins conform to a repeating vertical
rhythm—the baseline grid.

www.EBooksWorld.ir

https://zellwk.com/blog/why-vertical-rhythms/

347The dreaded FOUT and FOIT
Developers didn’t like this, so most browser vendors changed the behavior of their
browsers. Instead of rendering the fallback font, they rendered everything on the
page except the text. More precisely, they rendered the text as invisible, so it still takes
up space on the page. This way, the page’s containers are put in place so the user can
see the page is loading. This resulted in a new acronym: FOIT, for Flash of Invisible
Text (figure 13.13). Background colors and borders show up, but the text only
appears during the second render, when web fonts are ready.

This approach solves one problem, but it creates another: What happens if the web
fonts take a long time to load? Or fail to load altogether? In this case, the page
remains blank, a shell of colored boxes that are entirely useless to the user. When this
happens, it leaves you wanting the system font you see during FOUT.

240 ms: fallback fonts rendered 4 0 ms: web fonts rendered1

Figure 13.12 FOUT—Flash of Unstyled Text

240 ms: invisible text rendered 4 0 ms: web fonts rendered1

Figure 13.13 FOIT—Flash of Invisible Text

www.EBooksWorld.ir

348 CHAPTER 13 Typography
 Developers have come up with a number of approaches to address these problems.
It seems every year or so, a “better” method emerges. But the simple fact of the matter
is this: Both FOUT and FOIT are undesirable. And, in the world of web fonts, they’re
never completely avoidable. All we can hope to do is to mitigate the problem as best
we can.

 Thankfully, the dust is starting to settle on this issue, so I won’t need to walk you
through a half dozen different techniques. I’ll show you what I consider to be the
most reasonable approach. It uses a little JavaScript to provide some control over font
loading. I’ll also show you an upcoming CSS property that will eventually provide this
control without the need for JavaScript. You can use either one or both of them
together.

13.5.1 Using Font Face Observer

Using JavaScript, you can monitor font-loading events. This lets you take better con-
trol over the FOUT versus FOIT experience. You can use a library to take care of a lot
of this for you. One I like is called Font Face Observer (https://fontfaceobserver
.com/). This library lets you wait for the web fonts to load, then responds accordingly.
What I like to do is to add a fonts-loaded class to the <html> element using Java-
Script as soon as fonts are ready. You can then use this class to style the page differ-
ently, both with and without web fonts.

 Download a copy of fontfaceobserver.js and save it into the same directory as your
page. Then add the following to the end of your page, prior to the closing </body> tag.

<script type="text/javascript">
 var html = document.documentElement;
 var script = document.createElement("script");
 script.src = "fontfaceobserver.js";
 script.async = true;

 script.onload = function () {
 var roboto = new FontFaceObserver("Roboto");
 var sansita = new FontFaceObserver("Sansita");
 var timeout = 2000;

 Promise.all([
 roboto.load(null, timeout),
 sansita.load(null, timeout)
]).then(function () {
 html.classList.add("fonts-loaded");
 }).catch(function (e) {
 html.classList.add("fonts-failed");
 });
 };
 document.head.appendChild(script);
</script>

Listing 13.10 Using Font Face Observer to detect font loading

Dynamically creates a
<script> tag to add the Font
Face Observer to the page

Creates observers
for both Roboto and
Sansita fonts

When both fonts are loaded,
adds the fonts-loaded class to
the <html> element

When font loading fails,
adds the fonts-failed class
to the <html> element

www.EBooksWorld.ir

https://fontfaceobserver.com/
https://fontfaceobserver.com/
https://fontfaceobserver.com/

349The dreaded FOUT and FOIT
This script creates two observers, one for each of the fonts Roboto and Sansita. The
method Promise.all() waits for both fonts to complete loading, then the script adds
the fonts-loaded class to the page. If loading fails, or if loading times out (after two
seconds), the catch callback is called, which instead adds the fonts-failed class.
Now, when the page loads, this script will add either the fonts-loaded or fonts-
failed class to the page.

NOTE Both this code and Font Face Observer use a feature of JavaScript called
promises, which aren’t supported in IE. Thankfully, Font Face Observer
includes a polyfill to add support. If you already use a polyfill of your own, use
the standalone version of Font Face Observer available on their site.

Next, I’ll show you how to use the fonts-loaded and fonts-failed classes to control
how the fonts behave during loading.

13.5.2 Falling back to system fonts

You can take two basic approaches to font loading. First, you can apply the fallback
fonts in your CSS, then using .fonts-loaded in a selector, change them to your
desired web fonts. This’ll change your browser’s FOIT (invisible text) into a FOUT
(unstyled text).

Throttling your network to test font-loading behavior
If you’re developing over a fast network connection, it can be difficult to test your
site’s font-loading behavior. One solution is to artificially slow down your download
speeds in Chrome or Firefox DevTools.

In the Chrome Network tab, there’s a dropdown menu in the top bar that provides
several preset network speeds. You can use this to artificially slow your connection
down to slower speeds by selecting the Regular 3G option in the select box as
shown here:

I suggest you also check the box beside Disable Cache. This way, every time you load
the page, all resources will be downloaded anew. This more closely mimics the initial
page load of your site as a user on a slower connection would see it.

These settings only apply while you leave DevTools open. Be sure to restore these
settings to normal when you’re finished, so they don’t catch you by surprise the next
time you open DevTools.

www.EBooksWorld.ir

350 CHAPTER 13 Typography
 Second, you can apply the web fonts in your CSS, then using .fonts-failed in a
selector, change the fonts to the fallback fonts. This’ll still produce a FOIT, but it’ll
time out and revert to system fonts, so the page doesn’t get stuck with invisible text
when loading fails.

 Between the two options, I generally prefer the second. But this is purely my opin-
ion, and the “right” answer may be different depending on your preferences or even
the particulars of the project you’re working on. Even the exact timeout length you
choose is a matter of taste.

 Let’s implement the second approach. The next code adds the fallback styles using
the .fonts-failed class. Add these styles to your CSS.

body {
 margin: 0;
 font-family: Roboto, sans-serif;
 line-height: 1.4;
 letter-spacing: 0.01em;
 background-color: var(--extra-light-gray);
}
.fonts-failed body {
 font-family: Helvetica, Arial, sans-serif;
}

h1, h2, h3, h4 {
 font-family: Sansita, serif;
 letter-spacing: 0.03em;
}
.fonts-failed h1,
.fonts-failed h2,
.fonts-failed h3,
.fonts-failed h4 {
 font-family: Georgia, serif;
}
…
.home-link {
 color: var(--text-color);
 font-size: 1.6rem;
 font-family: Sansita, serif;
 font-weight: bold;
 letter-spacing: 0.03em;
 text-decoration: none;
}
.fonts-failed .home-link {
 font-family: Georgia, serif;
}

When the fonts fail to load (or the loading times out), the fonts-failed class is
added to the page, and these fallback styles will be applied to the page. On a fast con-
nection, there’ll be a brief FOIT before the web fonts appear. On a slow connection,
there’ll be a FOIT for up to two seconds, then the fallback fonts will appear.

Listing 13.11 Defining fallback styles so text stuck in FOIT reappears

If web fonts
fail to load,
falls back to
system fonts

www.EBooksWorld.ir

351The dreaded FOUT and FOIT
TIP We spent time adjusting letter spacing for our web fonts. You may want
to go through the same process again with the fallback system fonts, as their
spacing will likely be different. Add these spacing adjustments within the
.fonts-failed rulesets so they only apply if the web fonts fail to load. If you
want to go the extra mile, tune the fallback font so its spacing is nearly identi-
cal to the web font, so a FOUT is less noticeable. The tool at https://meowni
.ca/font-style-matcher/ can help with this.

There’s no one right answer to handling font loading. If you have analytics of your
site’s loading times, use that to help you when deciding on an approach. A FOIT gen-
erally looks better on a fast connection, but a FOUT is preferable on a slow connec-
tion. Use your best judgment to decide between the two.

13.5.3 Getting ready for font-display

A new CSS property, font-display, is in the works to provide better control over font
loading without the help of JavaScript. At the time of writing, it’s only available in
Chrome and Opera and is soon to appear in Firefox. I’ll show you briefly how this
works so you can be on the lookout for it in the future.

 This property goes inside a @font-face rule. It specifies how the browser should
treat web font loading. An example is shown in the next listing.

@font-face {
 font-family: "Roboto";
 font-style: normal;
 font-weight: 300;
 src: local("Roboto Light"), local("Roboto-Light"),
 url(https://example.com/roboto.woff2) format('woff2'),
 url(https://example.com/roboto.woff) format('woff');
 font-display: swap;
}

This tells the browser to display the fallback font immediately, then swap in the web
font when available. In short, a FOUT.

 This property also supports a few other values:

 auto—The default behavior (a FOIT in most browsers).
 swap—Displays the fallback font, then swaps in the web font when it’s ready (a

FOUT).
 fallback—A compromise between auto and swap. For a brief time (100 ms),

the text will be invisible. If the web font isn’t available at this point, the fallback
font is displayed. Then, once the web font is loaded, it’ll be displayed.

 optional—Similar to fallback, but allows the browser to decide whether to
display the web font based on the connection speed. Typically, this means the
web font may not appear at all on slower connections.

Listing 13.12 An example of the font-display property

Uses the swap behavior
when loading fonts: a FOUT

www.EBooksWorld.ir

https://meowni.ca/font-style-matcher/
https://meowni.ca/font-style-matcher/
https://meowni.ca/font-style-matcher/

352 CHAPTER 13 Typography
These options provide more control than a few lines of JavaScript can. For fast con-
nections, fallback works best, providing a brief FOIT, but it’ll produce a FOUT if the
web font takes longer than 100 ms to load. For slow connections, swap is a bit better,
rendering the fallback font immediately. Use optional in cases where the web font is
a less vital part of your design.

 Controlling the performance of web fonts can be complicated. For a deeper dive
into the subject, check out Web Performance in Action by Jeremy L. Wagner (Manning,
2016). It features an entire chapter focused on web font performance, as well as chap-
ters on other issues relevant to CSS.

Summary
 Use a font provider such as Google Fonts for easy web font integration.
 Strictly limit the number of web fonts you add to the page to keep page size

under control.
 Use @font-face rules when hosting your own fonts.
 Take the time to adjust line-height and letter-spacing to set your page apart.
 Use Font Face Observer or other JavaScript to help control loading behavior

and prevent invisible text problems.
 Keep an eye out for font-display support in the future.

www.EBooksWorld.ir

Transitions
In traditional print media, things are static. Text cannot move around on paper;
colors cannot shift. But the web is a living medium, where we can do so much
more. Elements can fade out. Menus can slide in. Colors can shift from one value
to another, and the easiest way to do any of these is with transitions.

 With a CSS transition, you can tell the browser to “ease” one value into
another when the value changes. For example, if you’ve blue links with a red
hover state, a transition will cause the link to blend from blue through purple to
red when the user mouses over—and back again when the user moves the mouse
away. Used correctly, transitions can enhance the interactive feel of the page and,
because our eyes are drawn to motion, can bring the user’s attention to a change
as it occurs.

 Often, transitions can be added to the page with little effort. In this chapter,
we’ll look at how that’s done, along with some of the decisions you’ll have to make

This chapter covers
 Bringing motion to the page with transitions

 Understanding timing functions and choosing
the right one

 Coordinating with JavaScript
353

www.EBooksWorld.ir

354 CHAPTER 14 Transitions
in the process. Because there’re some use cases where things can get a bit more com-
plicated, we’ll also take a look at how to address those issues.

14.1 From here to there
Transitions are done with the transition-* family of properties. If these are applied
to an element while one of its property values changes, then that property will transi-
tion instead of changing immediately to the new value.

 Let’s build a basic example using a button, then examine how it works. It’ll be a teal
button with square corners that, when hovered over, transitions to a red button with
rounded corners. These two states are shown in figure 14.1, along with the in-transition
intermediate state.

Add a button to a new page and link it to a stylesheet. The markup for the button is
shown here.

<button>Hover over me</button>

Next, add the styles to the stylesheet. These styles define both the normal and hover
states. The two transition properties instruct the browser to transition fluidly between
the two.

button {
 background-color: hsl(180, 50%, 50%);
 border: 0;
 color: white;
 font-size: 1rem;
 padding: .3em 1em;
 transition-property: all;
 transition-duration: 0.5s;
}
button:hover {
 background-color: hsl(0, 50%, 50%);
 border-radius: 1em;
}

The transition-property property specifies which properties to transition. In this
case, the special keyword all means to transition any properties that change. The
transition-duration property indicates how long the transition will take before
reaching the final value. In this case, 0.5s is given, meaning 0.5 seconds.

Listing 14.1 Adding a simple button to the page

Listing 14.2 Button styles with a transition

Figure 14.1 The element before, during, and after transition

Teal button

Transitions all
property changes

Transitions for
0.5 seconds

Hover state red button
with border radius

www.EBooksWorld.ir

355From here to there
 Load the page and watch the transition take place as you mouse over the button.
Notice that the border-radius property transitions fluidly from 0 to 1 em, even though
you didn’t explicitly set a border radius of zero in the non-hover state. The button has
an initial value of zero automatically, and the transition works from there. Try changing
other properties within the hover state, such as the font-size or border.

 A transition takes place any time a property on this element is changed. This can
occur on a state change like :hover or if JavaScript changes something, such as add-
ing or removing a class that affects the element’s styles.

 Note that you didn’t apply the transition properties in the :hover ruleset; you
applied them with a selector that targets the element at all times, even though you’re
doing so with the hover rule in mind. You want to transition both while in the hover
state (transitioning in) and after the hover state (transitioning out). While other values
are changing, you typically don’t want the transition properties themselves to change.

 You can also use the shorthand property, transition. The syntax for this is shown
in figure 14.2. The shorthand accepts up to four values for the four transition proper-
ties: transition-property, transition-duration, transition-timing-function,
and transition-delay.

The first value specifies which properties to transition. The initial value is the keyword
all, which affects all properties, but if you need the transition to only apply to one
property, specify that property here. For example, transition-property: color
would apply only to the element’s color, leaving other properties to change instanta-
neously. Or, you can apply multiple values: transition-property: color, font-size,
for example.

 The second value is the duration. This is a time value expressed in either seconds
(0.3s, for example) or milliseconds (300ms).

WARNING Unlike length values, 0 isn’t a valid time. You must include a unit
for time values (0s or 0ms) or the declaration will be invalid and ignored by
the browser.

The third value is the timing function. This controls how the intermediate values of
the property are computed, effectively controlling how the rate of change accelerates
or decelerates throughout the transition effect. This is either a keyword value, such as
linear or ease-in, or a custom function. This is an important part of the transition
that we’ll look at shortly.

transition: background-color 0.3s linear 0.5s;

Affected property Timing function

DelayDuration
Figure 14.2 The transition
shorthand property syntax

www.EBooksWorld.ir

356 CHAPTER 14 Transitions
 The final value, the delay, allows you to specify a waiting period before the transi-
tion begins to take effect after the property value changes. If you hover over a button
with a 0.5 s transition delay, you’ll not see the change begin until half a second after
your mouse cursor enters the element.

 If you need to apply two different transitions to two different properties, you can
do that by adding multiple transition rules, each separated by a comma:

transition: border-radius 0.3s linear, background-color 0.6s ease;

Alternately, use the long-hand properties. The following is equivalent:

transition-property: border-radius, background-color;
transition-duration: 0.3s, 0.6s;
transition-timing-function: linear, ease;

You’ll look at an example using multiple transitions later in this chapter.

14.2 Timing functions
The timing function is an important part of the transition. The transition makes a
property value “move” from one value to another; the timing function says how it
moves. Does it move at a steady speed? Does it start slowly and accelerate?

 You can use several keyword values, such as linear, ease-in, and ease-out, to define
this movement. With a linear transition, the value changes at a constant rate. With
ease-in, the rate of change starts out slow, but accelerates until the end of the transi-
tion. Ease-out decelerates, starting with a rapid change and ending slowly. Figure 14.3
illustrates how a box would move from left to right with the various timing functions.

This may be a little difficult to visualize from a static image, so let’s build an example
to see it live in the browser. Create a new HTML page and add this code.

<div class="container">
 <div class="box"></div>
</div>

Listing 14.3 A simple timing function demo

linear

ease-in

ease-out

Figure 14.3 A linear transition moves at a steady rate, while ease-in accelerates and
ease-out decelerates.

You’ll transition this box across
the screen from left to right.

www.EBooksWorld.ir

357Timing functions
Next, you’ll style the box with a little color and some sizing. Then you’ll absolutely
position it and use a transition to move its position on hover. Add a new stylesheet to
the page and copy this listing into it.

.container {
 position: relative;
 height: 30px;
}
.box {
 position: absolute;
 left: 0;
 height: 30px;
 width: 30px;
 background-color: hsl(130, 50%, 50%);
 transition: all 1s linear;
}
.container:hover .box {
 left: 400px;
}

This demo should render a small green box in the top, left corner of the page. When
you hover over the container, the box transitions to the right. Notice that it moves at a
constant, steady speed.

WARNING This demo illustrates an element moving across the screen by
absolutely positioning it and transitioning the left property. There are, how-
ever, performance reasons to avoid transitioning certain properties, includ-
ing left. I’ll cover these issues in the following chapter, along with a better
alternative using transforms.

Now edit the transition property to see how different timing functions behave. Try
ease-in (transition: all 1s ease-in) and ease-out (transition: all 1s ease-out).
These keywords get the job done, but sometimes you’ll want more control. You can do
this by defining your own timing functions. Let’s look at how to do this.

14.2.1 Understanding Bézier curves

Timing functions are based on mathematically defined Bézier curves. The browser
uses these curves to calculate a property’s value as a function of change over time. The
Bézier curves for several timing functions are shown in figure 14.4, as well as all the
keyword values that can be used as a timing function.

 These curves begin at the bottom left and proceed to the top right. Time will prog-
ress to the right, and the curve represents how the value changes during that progres-
sion before arriving at the final value. The linear timing function is a steady progression
throughout the duration of the transition—a straight line. The other values curve,
representing acceleration and deceleration.

Listing 14.4 Transitioning the box from left to right

Starts positioned
to the left

Applies a
transition

Moves 400 px to
the right on hover

www.EBooksWorld.ir

358 CHAPTER 14 Transitions
You’re not limited to these five keyword values, however. You can define your own
cubic Bézier curve for more gentle or more drastic transitions. You can even add a bit
of a “bounce” effect. Let’s explore this.

 In the page you just created, open your DevTools and inspect the green box ele-
ment. You should see a small symbol beside the timing function in the Styles pane
(Chrome) or Rules pane (Firefox). Click that symbol and a small popup opens, allow-
ing you to modify the timing function’s curve (figure 14.5).

linear ease ease-in ease-out ease-in-out

Time

V
al

ue

Figure 14.4 The Bézier curves of timing functions illustrate how the value changes over time.

Figure 14.5 Editing a Bézier curve
in the Chrome DevTools

www.EBooksWorld.ir

359Timing functions
On the left of the popup, this interface provides a series of pre-made curves to choose
from. (Firefox offers far more than Chrome.) You can click a curve to select it. On the
right, the selected Bézier curve is shown.

 At each end of the curve is a short, straight line with circles on the end (handles).
These are the control points. Click and drag one of these circles to manipulate the
shape of the curve. Notice how the length and direction of the handle “pulls” the
curve.

 Click outside of this popup to close it, and you’ll see that the timing function has
been updated. Instead of a keyword like ease-out, it’ll now be something like cubic-
bezier(0.45, 0.05, 0.55, 0.95). This cubic-bezier() function and the four values
within define the custom timing function.

Let’s take a closer look at how cubic-bezier() works. Another example curve is
shown in figure 14.6.

 This figure shows a custom Bézier curve. This curve accelerates at the beginning,
proceeds the fastest in the middle (the steepest part of the curve), then decelerates at
the end. The curve exists on a Cartesian grid. It begins at point (0, 0) and ends at
point (1, 1).

 With the end points set, the position of the two handles is all you need to define the
curve. In CSS, this curve can be defined as cubic-bezier(0.45, 0.05, 0.55, 0.95).
The four values represent the x- and y-coordinates of the two handles’ control points.

Selecting a timing function
Whether you use keyword timing functions or custom Bézier curves, it’s helpful to
know when to use which. Each site or application should have a decelerating curve
(ease-out), an accelerating curve (ease-in), as well as the linear keyword. It’s best
to re-use the same few curves to provide a more consistent user experience.

You can use each of the three functions in the following scenarios:

 Linear—Color changes and fade in/out effects.
 Decelerating—User-initiated changes. When the user clicks a button or hov-

ers over an element, use ease-out or something similar. This way, the user
will see a fast, instant response to their input, easing out as the element
comes to a stop.

 Accelerating—System-initiated changes. When content finishes loading or a
timeout event triggers, use ease-in or something similar. This way, the ele-
ment will ease in at first to draw the user’s attention before the element
speeds up and completes its motion.

These are soft rules. They provide a good starting place, but don’t be afraid to break
them if something doesn’t “feel” right. Occasionally, you’ll also want a fourth curve
for larger or more playful motions: use either an ease-in-out (accelerate then deceler-
ate) or a bounce effect (see chapter 15 for an example of a bounce).

www.EBooksWorld.ir

360 CHAPTER 14 Transitions
Curves are hard to visualize from these numbers alone. Editing them via a GUI is
much more intuitive, so I like to edit and test a transition in the browser before copy-
ing the resulting cubic Bézier to my stylesheet. I prefer the DevTools for this, but you
can also use an online resource such as http://cubic-bezier.com/.

14.2.2 Steps

One last type of timing function uses the steps() function. Instead of providing a
fluid, Bézier-based transition from one value to the next, this moves it in a number of
discrete, instant “steps.”

 The function takes two parameters: the number of steps and a keyword (either
start or end), indicating whether each change should take place at the start or end of
each step. Some step functions are illustrated in figure 14.7.

Note that end is the default value for the second parameter, so steps(3) can be used
in place of steps(3, end). To see steps in action, edit your stylesheet to match this
listing.

Time

V
lu

e
a

(0, 0)

(1, 1)

(0.45, 0.05)

(0.55, 0.95)

Figure 14.6 A Bézier curve representing
a timing function

step(2, end) steps(2, start) steps(5, end) steps(5, start)

Time

V
a
lu

e

Figure 14.7 The step() function changes the value incrementally.

www.EBooksWorld.ir

http://cubic-bezier.com/

361Non-animatable properties
.box {
 position: absolute;
 left: 0;
 height: 30px;
 width: 30px;
 background-color: hsl(130, 50%, 50%);
 transition: all 1s steps(3);
}

Now, instead of moving fluidly from left to right for one second (the transition dura-
tion), the time is divided into thirds, or three steps. For each step, the box appears at
the starting position, the one-third position, then the two-thirds position, before mov-
ing to the final position at the 1-second mark.

NOTE By default, the property’s value changes at the end of each step, so the
transition doesn’t begin immediately. You can change this behavior so the
changes take place at the beginning of each step rather than at the end by
adding the start keyword: steps(3, start).

Practical uses for step() are uncommon, but there’s a clever list of ideas at https://css-
tricks.com/clever-uses-step-easing/.

14.3 Non-animatable properties
Many transitions are straightforward. For example, you can apply transition: color
200ms linear to links so they fade from one color to another when hovered over or
clicked. Or, you can transition the background color of a clickable tile or the padding
of a button.

 If JavaScript changes something on the page, you might want to consider whether
adding a transition is appropriate. In some cases, this is as simple as adding a transi-
tion property to that element. In other cases it can require a little more orchestration.
For the rest of this chapter, you’ll build a dropdown menu and apply transitions so it
opens seamlessly rather than snapping into view.

 First, you’ll make it fade in, transitioning its opacity value. After that, you’ll
change the dropdown to use a different effect, transitioning its height. Both of these
effects introduce particular problems that require a little more thought.

 The menu will look like figure 14.8. You’ll start by getting the menu opening and
closing. After that, you’ll add in the transition effects. I’ve included a link beneath the

Listing 14.5 Using steps() to increment the value

Transitions in three
discrete steps

Figure 14.8 The dropdown menu in its
closed (left) and open (right) states

www.EBooksWorld.ir

https://css-tricks.com/clever-uses-step-easing/
https://css-tricks.com/clever-uses-step-easing/

362 CHAPTER 14 Transitions
menu. Notice how the menu’s drawer appears in front of this link when it’s open;
this’ll be important.

 Create a new page for the dropdown, adding the markup shown next. This is simi-
lar to the dropdown menus you’ve built in previous chapters and includes some Java-
Script to toggle the menu’s open and closed states.

<div class="dropdown" aria-haspopup="true">
 <button class="dropdown__toggle">Menu</button>
 <div class="dropdown__drawer">
 <ul class="menu" role="menu">
 <li role="menuitem">
 Features

 <li role="menuitem">
 Pricing

 <li role="menuitem">
 Support

 <li role="menuitem">
 About

 </div>
</div>
<p>Read more</p>

<script type="text/javascript">
 (function () {
 var toggle = document.getElementsByClassName('dropdown__toggle')[0];
 var dropdown = toggle.parentElement;
 toggle.addEventListener('click', function (e) {
 e.preventDefault();
 dropdown.classList.toggle('is-open');
 });
 }());
</script>

The styles before adding the fade-in effect are shown in the next listing. Add these to
a stylesheet and link it to the page. I’ve added a few transitional effects so colors tran-
sition smoothly on hover. Other than that, there’s not a lot new here yet, but this gets
the page set up so you can focus on creating the fade-in effect.

body {
 font-family: Helvetica, Arial, sans-serif;
}

.dropdown__toggle {
 display: block;

Listing 14.6 Transitional dropdown menu

Listing 14.7 Transitional dropdown menu styles

The drawer that will
appear and disappear
to reveal the menu

A link that will
appear below
the dropdown

Toggles the is-open class
on the container when
the button is clicked

www.EBooksWorld.ir

363Non-animatable properties
 padding: 0.5em 1em;
 border: 1px solid hsl(280, 10%, 80%);
 color: hsl(280, 30%, 60%);
 background-color: white;
 font: inherit;
 text-decoration: none;
 transition: background-color 0.2s linear;
}
.dropdown__toggle:hover {
 background-color: background-color: hsl(280, 15%, 95%);
}
.dropdown__drawer {
 position: absolute;
 display: none;
 background-color: white;
 width: 10em;
}
.dropdown.is-open .dropdown__drawer {
 display: block;
}

.menu {
 padding-left: 0;
 margin: 0;
 list-style: none;
}
.menu > li + li > a {
 border-top: 0;
}
.menu > li > a {
 display: block;
 padding: 0.5em 1em;
 color: hsl(280, 40%, 60%);
 background-color: white;
 text-decoration: none;
 transition: all .2s linear;
 border: 1px solid hsl(280, 10%, 80%);
}
.menu > li > a:hover {
 background-color: hsl(280, 15%, 95%);
 color: hsl(280, 25%, 10%);
}

Open this page in your browser and try it out. You should be able to open and close
the menu by clicking on the toggle button. Notice how both the button and the menu
links transition their colors smoothly when you hover your mouse over them, and
again when you move the mouse away.

 I used a transition duration of 0.2 seconds for these hover effects. As a rule of
thumb, most of your transitions should be somewhere between 200 and 500 ms. Any
longer, and users will perceive your page as slow and feel as if they are waiting unnec-
essarily for the page to respond. This is doubly true for effects the user will see often
and repeatedly.

Transitions the
background color
when it changes

Changes the
background
color on hover

Transitions
background
and text colors

Changes the
colors on hover

www.EBooksWorld.ir

364 CHAPTER 14 Transitions
TIP Use quick transition speeds for hover effects, fades, and small scaling
effects. Keep these below 300 ms; you may even want to go as low as 100 ms in
some instances. For transitions that involve large moves or complex timing
functions, such as bounces (see chapter 15), use slightly longer transitions
between 300 and 500 ms.

When I’m working on a transition, I sometimes slow it down to two or three full sec-
onds. This way I can watch carefully what it’s doing and ensure that it behaves the way
I want. If you do this, be sure to set it back to a nice short speed after you’re done.

14.3.1 Properties that cannot be animated

Not all properties can be animated. The display property is one of these. You can
only toggle it between display: none and display: block; you can’t transition
between values, so any transition properties applied to display are ignored.

 If you look up a property in a reference guide such as MDN (https://devel-
oper.mozilla.org/en-US/), it’ll typically tell you whether you can animate a property
and what type of value (for example, length, color, percent) can be interpolated. The
details for the background-color property from https://developer.mozilla.org/en-
US/docs/Web/CSS/background-color are shown in figure 14.9.

The background-color property, as shown in the figure, can be animated only as a
color value, meaning from one color to another (which makes sense, as this property
must be set as a color). A property’s Animation Type applies both to transitions as well
as animations, which you’ll use in chapter 16. The documentation also lists other use-
ful information about the property, such as its initial value, what sort of elements it

Figure 14.9 MDN documentation provides a technical summary box for each property.

www.EBooksWorld.ir

https://developer.mozilla.org/en-US/
https://developer.mozilla.org/en-US/
https://developer.mozilla.org/en-US/docs/Web/CSS/background-color
https://developer.mozilla.org/en-US/docs/Web/CSS/background-color

365Non-animatable properties
can be applied to, and whether it’s inherited. If you need a good technical summary
of how a property can be used, find the property in the MDN documentation and
look at its properties box.

NOTE Most properties that accept a length, number, color, or the function
calc() can be animated. Most properties that take a keyword or other dis-
crete values, like url(), can’t.

If you were to look up the display property, you’d see that its animation type is
discrete, meaning it can only be changed between discrete values, and it can’t be
interpolated in an animation or transition. If you want to fade an element in or out,
you can’t transition the display property; but, you can use the opacity property.

14.3.2 Fading in and out

Next, let’s use an opacity transition to give our menu a fade in and fade out effect as it
opens and closes. The result will be like that shown in figure 14.10.

The opacity property can be any value between 0 (fully invisible) and 1 (fully opaque).
The next listing shows the basic idea. This alone won’t work, however, for reasons you’ll
soon see. Go ahead and edit your stylesheet to match.

.dropdown__drawer {
 position: absolute;
 background-color: white;
 width: 10em;
 opacity: 0;
 transition: opacity 0.2s linear;
}
.dropdown.is-open .dropdown__drawer {
 opacity: 1;
}

Now the menu fades in and out as you open and close it. Unfortunately, the menu
isn’t gone when it’s closed—it’s fully transparent, but it’s still present on the page.

Listing 14.8 Adding opacity and transition rules

Figure 14.10 Menu fading in

Replaces display:
none with opacity: 0

Transitions
the opacity

Replaces display:
block with opacity 1

www.EBooksWorld.ir

366 CHAPTER 14 Transitions
And, if you try to click the Read more link, it won’t work. Instead, you’ll click the
transparent menu item in front of it, taking you to the Features page.

 You need to transition the opacity, but also fully remove the menu drawer when it’s
not visible. You can do this with the help of another property, visibility.

 The visibility property lets you remove an element from the page, similar to the
display property. You can give it the values visible or hidden. Unlike display,
visibility is animatable. Transitioning it doesn’t make it fade, but it’ll obey a
transition-delay, where the display property won’t.

NOTE Applying visibility: hidden to an element removes it from the visi-
ble page, but it doesn’t remove it from the document flow; meaning it’ll still
take up space. Other elements will continue to flow around its position, leav-
ing an empty area on the page. In our case, this doesn’t affect the menu
because we’ve also applied absolute positioning.

You’ll take advantage of visibility’s ability to animate with a little trick. Change
your CSS to match the code in this listing, then I’ll walk you through how it works.

.dropdown__drawer {
 position: absolute;
 background-color: white;
 width: 10em;
 opacity: 0;
 visibility: hidden;
 transition: opacity 0.2s linear,
 visibility 0s linear 0.2s;
}
.dropdown.is-open .dropdown__drawer {
 opacity: 1;
 visibility: visible;
 transition-delay: 0s;
}

Here, you’ve split the transition into two sets of values. This defines the fade-out
behavior. The first set of values transitions the opacity for 0.2 seconds. The second set
transitions the visibility for 0 seconds (an instant) after 0.2 seconds of delay. This
means the opacity transitions first and when it ends, the visibility transitions. This
enables the menu to fade out slowly, then, when it’s fully transparent, the visibility
switches to hidden. The user can then click the Read more link without the menu
interfering.

 When the menu fades in, you’ll need the order to be different: visibility needs to
toggle on immediately, followed by an opacity transition. This is why, in the second
ruleset, you changed the transition delay to 0s. This way, visibility is hidden while the
menu is closed, but visible throughout both the fade-in and fade-out transitions.

Listing 14.9 Using a transition delay to manipulate when visibility changes

Hidden and transparent
when closed

Delays the visibility
transition 0.2s

Visible and fully
opaque when opened

Removes the transition
delay while the is-open
class is applied

www.EBooksWorld.ir

367Transitioning to auto height
TIP You can use the JavaScript transitionend event to perform an action
after a transition completes.

This fading effect can also be achieved with some JavaScript instead of the transition-
delay, but I find this takes more code and can be prone to error. Sometimes, however,
JavaScript will be necessary to achieve a desired effect (which you’ll see in a moment),
but if a transition or animation can be accomplished through CSS alone, that’s almost
always preferable.

14.4 Transitioning to auto height
Let’s repurpose the dropdown menu to use a different effect that’s also common: slid-
ing open and closed with a transitioned height. This effect is illustrated in figure 14.11.

When the menu opens, it transitions from a height of zero to its natural height
(auto). When it closes, it transitions back to zero. The general idea is shown in the fol-
lowing listing. Unfortunately, it doesn’t work. Change this portion of your CSS to
match these rules, then we’ll look at what the problem is and how you can address it.

.dropdown__drawer {
 position: absolute;
 background-color: white;
 width: 10em;
 height: 0;
 overflow: hidden;
 transition: height 0.3s ease-out;
}
.dropdown.is-open .dropdown__drawer {
 height: auto;
}

Overflow is hidden to cut off the contents of the drawer when it’s closed or transition-
ing. But this doesn’t work because a value cannot transition from a length (0) to auto.

Listing 14.10 Transitioning the height value

Figure 14.11 Slide open the element by transitioning its height.

Closed drawer has no
height and overflow
is hidden.

Transitions
the height

Height of the open drawer is
determined by its contents.

www.EBooksWorld.ir

368 CHAPTER 14 Transitions
 You can set a height explicitly, instead, to something like 120 px, but the problem
is you don’t know exactly what the height should be. That’s only known once the con-
tents are set and rendered in the browser, so you’ll have to use JavaScript to determine
the height.

 After the page loads, you’ll access the DOM element’s scrollHeight property.
This’ll give you the appropriate value for its height. You’ll then change the code
slightly to set the element’s height to this value. Edit the script on your page to match
the next listing.

(function () {
 var toggle = document.getElementsByClassName('dropdown__toggle')[0];
 var dropdown = toggle.parentElement;
 var drawer = document.getElementsByClassName('dropdown__drawer')[0];
 var height = drawer.scrollHeight;

 toggle.addEventListener('click', function (e) {
 e.preventDefault();
 dropdown.classList.toggle('is-open');
 if (dropdown.classList.contains('is-open')) {
 drawer.style.setProperty('height', height + 'px');
 } else {
 drawer.style.setProperty('height', '0');
 }
 });
}());

Now, in addition to toggling the is-open class, you also explicitly specified a height in
pixels so the element transitions to the correct height. You then set the height back to
zero upon closing so the menu can transition back.

WARNING An element’s scrollHeight property is equal to 0 if the element is
hidden using display: none. If this is ever the case for you, you can set the
display to block (el.style.display = 'block'), access the scrollHeight,
then restore the display value (el.style.display = 'none').

Transitions sometimes require coordination between the CSS and the JavaScript. It may
be tempting in some cases to move the logic entirely into JavaScript. For instance, you
could reproduce the height transition by repeatedly setting a new height in JavaScript
alone. But you should generally let CSS do as much of the heavy lifting as possible. It’s
better optimized in the browser (and, therefore, more performant) and provides some
features like easing that can take a lot of code to mimic by hand.

 You aren’t done with transitions just yet. They’ll be useful in conjunction with
transforms in the next chapter.

Listing 14.11 Setting the height explicitly so the transition works

Gets the computed auto
height of the drawer

Sets the height
explicitly to open

Restores the height
to zero to close

www.EBooksWorld.ir

369Summary
Summary
 You can use transitions to smooth sudden changes in the page.
 To catch the user’s attention, use an accelerating motion.
 To show the user that their action has taken effect, use a decelerating motion.
 You can use JavaScript to coordinate transitions with class name changes when

CSS alone cannot do what you need.

www.EBooksWorld.ir

Transforms
In this chapter, we’ll explore the transform property, which you can use to change
or distort the shape or position of an element on the page. This can involve rotat-
ing, scaling, or skewing the element in two or three dimensions. Transforms are
most commonly used in conjunction with transitions or animations, which is why
I’ve sandwiched this chapter between those two topics. In these last two chapters,
you’ll build a page that makes heavy use of transitions, transforms, and animations.

 First, I’ll walk you through applying transforms to a static element. This’ll give
you a grasp on how they work in isolation before we add them into some transi-
tions. Then you’ll build a small but complex menu with multiple transforms and
transition effects. Finally, we’ll take a look at working in 3D and utilizing perspec-
tive. This will carry over into the next chapter, where we’ll use 3D transforms in
conjunction with animation.

This chapter covers
 Manipulating elements using transforms for

performant transitions and animations

 Adding a “bounce” effect to a transition

 The browser’s rendering pipeline

 Looking at 3D transforms and perspective
370

www.EBooksWorld.ir

371Rotate, translate, scale, and skew
15.1 Rotate, translate, scale, and skew
A basic transform rule looks something like this:

transform: rotate(90deg);

This rule, when applied to an element, rotates it 90 degrees to the right (clockwise).
The transform function rotate() specifies how the element is to be transformed.
You’ll find several other transform functions, but they generally all fall into one of
four categories (illustrated in figure 15.1).

 Rotate—Spins the element a certain number of degrees around an axis
 Translate—Moves the element left, right, up, or down (similar to relative posi-

tioning)
 Scale—Shrinks or expands the element
 Skew—Distorts the shape of the element, sliding its top edge in one direction

and its bottom edge in the opposite direction

Each transform is applied using the corresponding function as a value of the trans-
form property. Let’s create a simple example to try these out in your browser. This’ll
be a card with an image and text (figure 15.2), which you can apply transforms to.

 Create a new page and stylesheet and link them. Add the HTML shown here.

<div class="card">

 <h4>Mrs. Featherstone</h4>
 <p> She may be a bit frumpy, but Mrs Featherstone gets the job done. She

lays her largish cream-colored eggs on a daily basis. She is gregarious
to a fault.</p>

 <p>This Austra White is our most prolific producer.</p>
</div>

Listing 15.1 Creating a simple card

Rotate

rotate(30deg);
Translate

translate(40px, 20px);
Scale

scale(0.8);
Skew

skew(15deg);

Figure 15.1 The four basic types of transform (a dashed line represents the initial elements' positions)

www.EBooksWorld.ir

372 CHAPTER 15 Transforms
Next, in the stylesheet, add the CSS in the following listing. This includes a few base
styles, colors, and a card with a rotation transform applied.

body {
 background-color: hsl(210, 80%, 20%);
 font-family: Helvetica, Arial, sans-serif;
}

img {
 max-width: 100%;
}

.card {
 padding: 0.5em;
 margin: 0 auto;
 background-color: white;
 max-width: 300px;
 transform: rotate(15deg);
}

Load this into your browser and you’ll see the card rotated. Experiment with this a bit
to get a feel for how the rotate() function behaves. Use a negative angle to rotate the
card left (for example, try rotate(-30deg)).

Listing 15.2 Styling a card and applying a transform

Figure 15.2 A basic card with a rotate
transform applied

Centers the card

Rotates the card 15
degrees to the right

www.EBooksWorld.ir

373Rotate, translate, scale, and skew
 Next, try changing the transform to some of the other functions. Use the following
values and observe how they each behave:

 skew(20deg)—Skews the card 20 degrees. Try a negative angle to skew in the
other direction.

 scale(0.5)—Shrinks the card to half of its initial size. The scale() function
takes a unitless number. Values less than 1 shrink the element; values greater
than 1 expand it.

 translate(20px, 40px)—Shifts the element 20 pixels right and 40 pixels down.
Again, you can use negative values to transform in the opposite direction.

One thing to note when using transforms is that, while the element may be moving to
a new position on the page, it doesn’t shift the document flow. You can translate an
element all the way across the screen, but its original location remains unoccupied by
other elements. Also, when rotating an element, a corner of it may shift off the edge
of the screen. Similarly, it could potentially cover up portions of another element
beside it (figure 15.3).

In some cases, I find it’s helpful to set plenty of margin for one or both of the ele-
ments to prevent unwanted overlapping.

Figure 15.3 Transforming one element doesn’t cause other elements to move, so
they might overlap.

www.EBooksWorld.ir

374 CHAPTER 15 Transforms
WARNING Transforms cannot be applied to inline elements like or
<a>. To transform such an element, you must either change the display
property to something other than inline (such as inline-block) or change
the element to a flex or grid item (apply display: flex or display: grid to
the parent element).

15.1.1 Changing the transform origin

A transform is made around a point of origin. This point serves as the axis of rotation,
or the spot where scaling or skewing begins. This means the origin point of the ele-
ment remains locked in place, while the rest of the element transforms around it
(though this doesn’t apply to translate() as the whole element moves during a
translation).

 By default, the point of origin is the center of the element, but you can change this
with the transform-origin property. Figure 15.4 shows some elements transformed
around different points of origin.

For the element on the left, the rotation pivots about the origin, which is set using
transform-origin: right bottom. The element in the middle scales toward the ori-
gin (right top). And the element on the right skews in such a way that its origin
(left top) remains in place while the rest of the element stretches away.

 The origin can also be specified in percentages, measured from the top left of the
element. The following two declarations are equivalent:

transform-origin: right center;
transform-origin: 100% 50%;

NOTE You can also use a length to specify the origin in pixels, ems, or another
unit. Though, in my experience, the keywords top, right, bottom, left, and
center are all you’ll need in most instances.

Rotate around

bottom right

Scale around

top right

Skew around

top left

Figure 15.4 Rotate, scale, and skew made with the transform origin at
various corners of the element.

www.EBooksWorld.ir

375Transforms in motion
15.1.2 Applying multiple transforms

You can specify multiple values for the transform property, each separated by a space.
Each transform value is applied in succession from right to left. If you apply trans-
form: rotate(15deg) translate(15px, 0), the element is translated 15 px to the right,
then rotated 15 degrees clockwise. Edit your stylesheet to work with this a bit.

.card {
 padding: 0.5em;
 margin: 0 auto;
 background-color: white;
 max-width: 300px;
 transform: rotate(15deg) translate(20px, 0);
}

It’s probably easiest to see this effect if you open your browser’s DevTools and
manipulate the values live to see how they affect the element. Notice that changing
the values for translate() seems to move the element along a diagonal axis, rather
than the normal cardinal directions; this is because the rotation takes place after the
translation.

 This can be a little tricky to work with. I generally find it’s easier to do translate()
manipulations last chronologically (first in source order for transform), so I can work
with the normal left/right, up/down coordinates. To see this, reverse the order to
transform: translate(20px, 0) rotate(15deg).

15.2 Transforms in motion
Transforms by themselves aren’t all that practical. A box with a skew() applied may
look interesting, but it’s not exactly easy to read. But when used in conjunction with
motion, transforms become much more useful.

 Let’s build a page that makes use of this concept. A screenshot of the page you’ll
make is shown in figure 15.5. You’ll be adding a lot of motion to this page.

 In this section, you’ll build the navigational (nav) menu on the left. Initially, it
appears as just four icons stacked vertically, but, upon hover, the text for the menu
appears. This example will include several transitions and a couple transforms. Let’s
get the page set up, then we’ll take a closer look at the nav menu. (In the next chap-
ter, you’ll build the main cards section in the center and add more transforms and
some animation to it.)

 Create a new page and a new stylesheet named style.css and add the following
markup. This markup includes a link to two web fonts (Alfa Slab One and Raleway)
from the Google Fonts API. It also has the markup for the page header and the
nav menu.

Listing 15.3 Applying multiple transforms

Translates 20 px
right, then rotates
15 degrees clockwise

www.EBooksWorld.ir

376 CHAPTER 15 Transforms
<!doctype html>
<html lang="en">
 <head>
 <title>The Yolk Factory</title>
 <link

href="https://fonts.googleapis.com/css?family=Alfa+Slab+One|Raleway"
rel="stylesheet">

 <link rel="stylesheet" href="style.css">
 </head>

 <body>
 <header>
 <h1 class="page-header">The Yolk Factory</h1>
 </header>
 <nav class="main-nav">
 <ul class="nav-links">

Listing 15.4 Page markup for transforms in motion

Figure 15.5 The menu icons on the left will feature several transforms and transitions.

Adds Alfa Slab One
and Raleway fonts
to the page

www.EBooksWorld.ir

377Transforms in motion

 Home

 Events

 Members

 About

 </nav>
 </body>
</html>

The nav element contains the largest part of this markup. It includes an unordered
list () of links. Each link consists of an icon image and a text label. Notice that the
icon images here are in SVG format. This’ll become important later on. You’ll add
more content to the page when you’re ready to style it in the next chapter.

Next, you’ll add some base styles, including a background gradient and padding
around the main heading. You’ll also apply the web fonts to the page. Copy or add the
following listing into your stylesheet. These are just the base styles and page-header;
you’ll work on laying out the menu next.

html {
 box-sizing: border-box;
}
*,
*::before,

SVG —Short for Scalable Vector Graphics. This is an XML-based image for-
mat that defines an image using vectors. Because the image is mathemati-
cally defined, it can scale up and down to any size. SVG is broadly supported
in all browsers.

Listing 15.5 Base styles and heading

Nav links
each contain

an image
and a label.

www.EBooksWorld.ir

378 CHAPTER 15 Transforms
*::after {
 box-sizing: inherit;
}

body {
 background-color: background-color: hsl(200, 80%, 30%);
 background-image: radial-gradient(hsl(200, 80%, 30%),
 hsl(210, 80%, 20%));
 color: white;
 font-family: Raleway, Helvetica, Arial, sans-serif;
 line-height: 1.4;
 margin: 0;
 min-height: 100vh;
}

h1, h2, h3 {
 font-family: Alfa Slab One, serif;
 font-weight: 400;
}

main {
 display: block;
}

img {
 max-width: 100%;
}

.page-header {
 margin: 0;
 padding: 1rem;
}
@media (min-width: 30em) {
 .page-header {
 padding: 2rem 2rem 3rem;
 }
}

This example uses a number of concepts from earlier chapters. I’ve used a radial
gradient for the body background. This adds a nice bit of depth to the page. (The
background-color provides a fallback value for Opera Mini, which doesn’t support
radial gradients.) The web font Alfa Slab One is applied to the headings and Raleway
to the body copy. I’ve also provided responsive styles for the page header using a
media query, adding a larger padding when the screen size can afford it.

 We’ll take the menu in several stages. First, let’s get the menu laid out and then
provide some responsive behavior. You’ll do this with a mobile first approach (chap-
ter 8), so let’s start with the small viewport. The heading and menu should look like
figure 15.6.

 Because you want to lay out the navigational links horizontally for smaller view-
ports, an approach using a flexbox makes sense. You can evenly space the navigational

Deep blue background
gradient

Ensures that the body
fills the viewport so the
gradient fills the screen

Smaller padding
for the header on
mobile viewports

Larger padding
for the header
on larger
screens

www.EBooksWorld.ir

379Transforms in motion
items across the width of the page by applying align-content: space-between to the
flex container. Next, you’ll set font colors and align the icons. Add the following list-
ing to your stylesheet.

.nav-links {
 display: flex;
 justify-content: space-between;
 margin-top: 0;
 margin-bottom: 1rem;
 padding: 0 1rem;
 list-style: none;
}
.nav-links > li + li {
 margin-left: 0.8em;
}
.nav-links > li > a {
 display: block;
 padding: 0.8em 0;
 color: white;
 font-size: 0.8rem;
 text-decoration: none;
 text-transform: uppercase;
 letter-spacing: 0.06em;
}
.nav-links__icon {
 height: 1.5em;
 width: 1.5em;
 vertical-align: -0.2em;
}
.nav-links > li > a:hover {
 color: hsl(40, 100%, 70%);
}

You’ll keep the menu like this on smaller viewports. But on larger screens, you can
layer on more effects. For the desktop layout, you’ll dock it to the left-hand side of the
screen using fixed positioning. This’ll look like figure 15.7.

 This menu is built from two modules: I’ve named the outer element main-nav and
the inner structure nav-links. The main-nav serves as the container, which you’ll
position to the left. The main-nav also provides the dark background. Let’s get this
into place.

Listing 15.6 Mobile styles for the nav menu links

Figure 15.6 Mobile design
for the nav menu

Uses a flexbox to spread
the nav items across the
screen horizontally

Styles the
link text

Moves icons down
slightly to center them
with the text labels

www.EBooksWorld.ir

380 CHAPTER 15 Transforms
Add the next listing to your stylesheet; make sure the second media query and its con-
tents are placed after the existing main-nav styles so they can override the mobile
styles where necessary.

@media (min-width: 30em) {
 .main-nav {
 position: fixed;
 top: 8.25rem;
 left: 0;
 z-index: 10;
 background-color: transparent;
 transition: background-color .5s linear;
 border-top-right-radius: 0.5em;
 border-bottom-right-radius: 0.5em;
 }

 .main-nav:hover {
 background-color: rgba(0, 0, 0, 0.6);
 }
}

/* ... */

@media (min-width: 30em) {
 .nav-links {
 display: block;
 padding: 1em;
 margin-bottom: 0;
 }
 .nav-links > li + li {
 margin-left: 0;
 }
 .nav-links__label {
 margin-left: 1em;
 }
}

Listing 15.7 Positioning the menu for large viewports

Figure 15.7 The nav menu docked on the left
side of the screen for large viewports.

Applies styles only to
medium and larger screens

Ensures the nav shows in front of other
content added to the page later

Initially leaves the background
color transparent

Adds a transition effect
to the background

Applies a dark
semi-transparent
background
on hover

Overrides the flexbox from
mobile styles to make links
stack vertically

www.EBooksWorld.ir

381Transforms in motion
The position: fixed declaration puts the menu into place and keeps it there, even as
the page scrolls. The display: block rule overrides the display: flex from the
mobile styles, causing the menu items to stack atop one another.

 Now let’s start layering in some transition and transform effects. For that, you’ll do
three things:

1 Scale up the icon size while a link is hovered.
2 Hide the link labels, then make them all appear with a fade-in transition when

the user hovers over the menu.
3 Use a translate to add a “fly in” effect to the link label in conjunction with the

fade-in.

Let’s take these in each in turn.

15.2.1 Scaling up the icon

Look at the structure of the navigational links. Each list item contains a link (<a>),
which in turn contains an icon and a label:

 Home

NOTE The list items, in conjunction with the parent , is a much larger,
more deeply nested module than I prefer to make. I’d typically look for a way
to split it up into smaller modules, but we’ll need to keep it all together in
order to achieve some of these effects.

First, let’s scale up the icon on hover. You’ll do this with a scale transform, then apply
a transition to it so the change happens seamlessly. In figure 15.8, the Events menu
item is moused over, and its calendar icon is scaled up slightly.

The Events image has a set height and width, so you could make it larger by increasing
these properties. But, this would cause some other elements to move around as the
document flow would get recalculated.

Figure 15.8 Default icon size (left). Hovering over
a link causes its icon to scale up (right).

www.EBooksWorld.ir

382 CHAPTER 15 Transforms
 By using a transform instead, the elements around it aren’t affected, and the
Events label doesn’t shift to the right. Update your CSS to add this effect when the ele-
ment is either hovered or focused.

@media (min-width: 30em) {

 .nav-links {
 display: block;
 padding: 1em;
 margin-bottom: 0;
 }
 .nav-links > li + li {
 margin-left: 0;
 }
 .nav-links__label {
 margin-left: 1em;
 }

 .nav-links__icon {
 transition: transform 0.2s ease-out;
 }

 .nav-links a:hover > .nav-links__icon,
 .nav-links a:focus > .nav-links__icon {
 transform: scale(1.3);
 }
}

Now, as you swipe your mouse across the menu items, you’ll see the icons grow a bit to
help indicate which item you’re hovering over. I intentionally chose to use SVG image
assets here, so there’s no pixelation or other odd distortions when the image size
changes. The scale() transform is a perfect way to do this.

Listing 15.8 Scaling up the icon when its link is hovered or focused

SVG: a better approach to icons
Icons are an important part of some designs. The techniques used for icons have
evolved and, for a long time, the best practice was to put all your icons into a single
image file, called a sprite sheet. Then—using a CSS background image and some
careful sizing and background positioning—display one icon from the sprite sheet in
an element.

Next, icon fonts became popular. Instead of embedding sprites in an image, this
approach involves embedding each icon as a character in a custom-made font file.
Using web fonts, a single character would render as an icon. Services like Font-
Awesome (http://fontawesome.io/) provide hundreds of general-use icons to make
this easy.

Transitions the
transform property

Scales up the
icon size

www.EBooksWorld.ir

http://fontawesome.io/

383Transforms in motion
Now that the icons are looking great, let’s turn our attention to the labels beside them.

15.2.2 Creating “fly in” labels

The menu labels don’t necessarily need to be visible at all times. You can hide them by
default, leaving the icons in place to indicate to the user that the menu is there. Then,
when the user moves their mouse over the menu or tabs to a menu item, you can fade
in the labels. This way, when the user mouses near the icons, the entire menu appears,
using a number of effects all at once: the background and the labels will fade in, with
the labels starting a little to the left of their final position (figure 15.9).

 This effect requires two separate transitions on the labels at the same time: one
for opacity and another for a translate() transform. Update this portion of your
stylesheet, making the changes indicated in the following listing.

These techniques still work, but I encourage you to make the switch to SVG icons.
SVG is much more versatile and more performant. You can use an SVG as an
source, as you’ve done in this chapter, but SVG provides other options as well. You
can create an SVG sprite sheet, or because SVG is an XML-based file format, you can
inline it directly in your HTML. For example:

 <svg class="nav-links__icon" width="20" height="20" viewBox="0 0 20

20">
 <path fill="#ffffff" d="M19.871 12.165l-8.829-9.758c-0.274-0.303-

0.644-0.47-1.042-0.47-0 0 0 0 0 0-0.397 0-0.767 0.167-1.042
0.47l-8.829 9.758c-0.185 0.205-0.169 0.521 0.035 0.706 0.096
0.087 0.216 0.129 0.335 0.129 0.136 0 0.272-0.055 0.371-
0.165l2.129-2.353v8.018c0 0.827 0.673 1.5 1.5 1.5h11c0.827 0 1.5-
0.673 1.5-1.5v-8.018l2.129 2.353c0.185 0.205 0.501 0.221 0.706
0.035s0.221-0.501 0.035-0.706zM12 19h-4v-4.5c0-0.276 0.224-0.5
0.5-0.5h3c0.276 0 0.5 0.224 0.5 0.5v4.5zM16 18.5c0 0.276-0.224
0.5-0.5 0.5h-2.5v-4.5c0-0.827-0.673-1.5-1.5-1.5h-3c-0.827 0-1.5
0.673-1.5 1.5v4.5h-2.5c-0.276 0-0.5-0.224-0.5-0.5v-9.123l5.7-
6.3c0.082-0.091 0.189-0.141 0.3-0.141s0.218 0.050 0.3 0.141l5.7
6.3v9.123z"></path>

 </svg>
 Home

This allows you to target parts of the SVG directly from CSS if you want; you can
dynamically change the colors—or even the size and position—of various parts of an
SVG, using regular CSS. Yet the file sizes are smaller, and the images don’t pixelate
like GIF, PNG, or other raster-based image formats.

If you’re not familiar with SVG, see https://css-tricks.com/using-svg/ for a good
primer on the various ways you can use SVG in your web pages.

www.EBooksWorld.ir

https://css-tricks.com/using-svg/

384 CHAPTER 15 Transforms

s

e

@media (min-width: 30em) {
 .nav-links {
 display: block;
 padding: 1em;
 margin-bottom: 0;
 }
 .nav-links > li + li {
 margin-left: 0;
 }

 .nav-links__label {
 display: inline-block;
 margin-left: 1em;
 padding-right: 1em;
 opacity: 0;
 transform: translate(-1em);
 transition: transform 0.4s cubic-bezier(0.2, 0.9, 0.3, 1.3),
 opacity 0.4s linear;
 }
 .nav-links:hover .nav-links__label,
 .nav-links a:focus > .nav-links__label {
 opacity: 1;
 transform: translate(0);
 }

 .nav-links__icon {
 transition: transform 0.2s ease-out;
 }
 .nav-links a:hover > .nav-links__icon,
 .nav-links a:focus > .nav-links__icon {
 transform: scale(1.3);
 }
}

This menu occupies a small portion of the screen’s real estate, but there’s a lot going
on. Some of these selectors are fairly long and complicated.

 Notice how the :hover pseudo-class you just added is on the top-level nav-links
element, while the :focus pseudo-class is on the <a> within. (Focus generally can only

Listing 15.9 Transitioning in the nav-item labels

Figure 15.9 Upon hover, the
menu fades in, while the labels
fade in and slide from the left.

Makes the label an inline-
block so transforms can
be applied to it

Hides the
label initially

Shifts the label
1 em to the left

Adds transition
to the values
that will chang

On hover or focus, makes the
label visible and shifts it back
to its correct position

www.EBooksWorld.ir

385Transforms in motion
apply to certain elements like links and buttons.) This way, the labels all appear as
soon as the menu is moused over. Additionally, an individual label also appears if the
user focuses it using the Tab key on the keyboard.

 When hidden, the label is shifted 1 em to the left using translate(). Then, as it
fades in, it transitions back to its actual position. I’ve omitted the second parameter to
the translate() function here and specified only the x value, which controls hori-
zontal translation. Because you don’t need to translate the element up and down,
this is fine.

 The custom cubic-bezier() function is worth looking at as well. This produces a
bounce effect: the label moves right beyond the ending location before settling back
where it stops. This curve is illustrated in figure 15.10.

Notice that the curve extends outside the top of the box, meaning the value exceeds
the value at the end of the transition. In transition from a translate(-1em) to trans-
late(0), the label’s transform will momentarily reach a value about 0.15 em beyond
the final position before easing back. You can also similarly create a bounce at the
beginning of the timing function by moving the first control handle below the bottom
of the box. You cannot, however, extend outside the left and right edges as this would
produce an illogical transition curve.

 Load the page in your browser and watch how this transition behaves. The
bounce is subtle, so you may need to slow down the transition time to consciously
see it, but it adds a bit of weight and momentum to the label, making the motion
feel a little more natural.

Time

V
lu

e
a

(0.3, 1.3)

(0.2, 0.9)

Figure 15.10 A Bézier curve with
a bounce at the end

www.EBooksWorld.ir

386 CHAPTER 15 Transforms
15.2.3 Staggering the transitions

The menu looks pretty good at this point. Let’s make one last
tweak to make it feel polished. You’ll use the transition-delay
property to set a slightly different delay for each menu item.
This’ll stagger the animations so they fly in a rolling “wave”
rather than all at once (figure 15.11).

 To accomplish this, you’ll use the :nth-child() pseudo-class
selector to target each menu item based on its position in the list,
and then apply a successively longer transition delay to each one.
Add the next bit of code to your stylesheet after the rest of the
nav-links styles.

.nav-links:hover .nav-links__label,

.nav-links a:focus > .nav-links__label {
 opacity: 1;
 transform: translate(0);
}
.nav-links > li:nth-child(2) .nav-links__label {
 transition-delay: 0.1s;
}
.nav-links > li:nth-child(3) .nav-links__label {
 transition-delay: 0.2s;
}
.nav-links > li:nth-child(4) .nav-links__label {
 transition-delay: 0.3s;
}
.nav-links > li:nth-child(5) .nav-links__label {
 transition-delay: 0.4s;
}

The :nth-child(2) selector targets the second item in the list, to which you applied a
slight delay. The third item (:nth-child(3)) gets a slightly longer delay. The fourth
and fifth, each longer still. You don’t need to target the first item because you want its
transition to begin immediately; it needs no transition delay.

 Load this in your browser and hover over the menu to see the effect. It feels fluid
and alive. Mouse off to see the items fade out with the same staggered timing.

 You’ll find one downside to this sort of approach: the menu can only be as long as
the number of these selectors you write. I added a rule to target a fifth menu item,
even though our menu currently only has four items. This is a safeguard in case
another menu item is added in the future. You could even add a sixth just to be safe.
But be aware that as there’s a chance the menu could exceed this count at some point,
you’ll then need to add more rules to the CSS.

TIP Repeating a block of code like this can be made easier with a preproces-
sor. See appendix B for an example.

Listing 15.10 Adding a staggered transition delay to the menu items

Figure 15.11 The
top menu items will
fly in just before the
lower ones.

Targets the second
menu item label

Delays its transition by
one tenth of a second

Targets the third
menu item label

Delays its transition by
two tenths of a second

Repeat as many
times as needed

www.EBooksWorld.ir

387Animation performance
Now that the menu is built, you can add more to this page. You’ll do so in the next
chapter, so keep this page handy to add to. But before that, there’re a couple more
things to know about transforms.

15.3 Animation performance
The existence of certain transforms might seem redundant. The result of a translate
can often be accomplished using relative positioning, and, in the case of images or
SVG, the result of a scale transform can be accomplished by explicitly setting a height
and/or width.

 Transforms are far more performant in the browser. If you animate the position of
an element (transitioning the left property, for example) you can experience notice-
ably slower performance. This is particularly the case when animating a large complex
element or a large number of elements on the page at once. This performance behav-
ior applies to both transitions (covered in chapter 14) and animations (which I’ll
cover in the next chapter).

 If you’re doing any sort of transition or animation, you should always favor a trans-
form over positioning or explicit sizing if you can. To understand why this is, we need
to look closer at how the page is rendered in the browser.

15.3.1 Looking at the rendering pipeline

After the browser computes which styles apply to which elements on the page, it needs
to translate those styles into pixels on the screen. This is the process of rendering,
which can be broken down into three stages: layout, paint, and composite.

LAYOUT

In the first stage, layout, the browser calculates how much space each element is going
to take on the screen. Because of the way the document flow works, the size and posi-
tion of one element can influence the size and position of countless other elements
on the page. This stage sorts that all out.

 Any time you change the width or height of an element, or adjust its position prop-
erties (like top or left), the element’s layout must be recomputed. This is also done
if an element is inserted into or removed from the DOM by JavaScript. When a layout
change occurs, the browser then must reflow the page, recomputing the layout of all
other elements that are moved or resized as a result of the change.

Layout Paint Composite

Figure 15.12 The three stages of the rendering pipeline

www.EBooksWorld.ir

388 CHAPTER 15 Transforms
PAINT

After layout comes painting. This is the process of filling in pixels: text is drawn;
images and borders and shadows are all colored. This is not physically displayed on
the screen, but rather drawn into memory. Portions of the page are painted into layers.

 If you change the background color of an element, for instance, it must be re-
painted. But, because the background color has no impact on the position or sizing of
any elements on the page, layout doesn’t need to be recalculated to account for this
change. Changing a background color is less computationally intensive than changing
the size of an element.

 Under the right conditions, an element on the page can be promoted into its own
layer. When this happens, it’s painted separately from the other layer(s) on the page.
Browsers can take this layer and send it to the computer’s GPU (graphics processing
unit) for rendering, rather than painting it on the main CPU like the main layer. This
is beneficial because the GPU is highly optimized to do this sort of computation.

 This is often referred to as hardware acceleration because it relies on a piece of the
computer’s hardware to give a boost to the rendering speed. Having more layers means
more memory use; but, in return, it can speed up the processing time of rendering.

COMPOSITE

In the composite stage, the browser takes all of the layers that have been painted and
draws them into the final image that’ll be displayed onscreen. These are drawn in a
certain order so that the correct layers appear in front of other layers, in cases where
they overlap.

 Two properties, opacity and transform, when changed, result in a much faster
rendering time. When you change one of these on an element, the browser can pro-
mote that element to its own paint layer and use GPU acceleration. Because the ele-
ment is in its own layer, the main layer won’t change during the animation and won’t
require repeated re-painting.

 When making a one-time change to the page, this optimization generally doesn’t
make a noticeable difference. But when the change is part of an animation, the
screen needs to be updated dozens of times a second; in which case, speed matters.
Most screens refresh 60 times per second. Ideally, changes during animation should
be recomputed at least this fast to produce the most fluid motion possible onscreen.
The more work the browser has to do for each recalculation, the harder this speed is
to achieve.

Controlling paint layers with will-change
Browsers have come a long way with optimizing the rendering process, segmenting ele-
ments into layers as best they can. If you animate the transform or opacity property
on an element, modern browsers, in order to make the animation smooth, generally
make good decisions based on a number of factors, including system resources. But,
occasionally, you might encounter choppy or flickering animations.

www.EBooksWorld.ir

389Three-dimensional (3D) transforms
When transitioning or animating, which we’ll look at in the next chapter, try to make
changes only to transform and opacity. Then, if needed, you can change properties
that result in a paint but not a re-layout. Only change properties that affect layout
when it’s your only option and look to them first if you ever notice performance prob-
lems with your animations. For a complete breakdown of which properties result in
layout, paint, and/or composite, check https://csstriggers.com/.

15.4 Three-dimensional (3D) transforms
So far the transforms you’ve used are all 2D. These are the easiest to work with (and
the most common) as the page itself is 2D. But you’re not confined to this limitation.
Rotation and translation can be performed in all three dimensions: X, Y, and Z.

 You can use the translate() function, as you’ve seen, to translate horizontally and
vertically (X and Y dimensions). This can also be done with the functions translateX()
and translateY(). The following two declarations produce the same result:

transform: translate(15px, 50px);
transform: translateX(15px) translateY(50px);

You can also translate on the Z dimension using translateZ(), which moves an ele-
ment conceptually closer to or further from the user. Similarly, you can rotate an
element around axes in all three dimensions. But, unlike translate, rotateZ() is the
version you’re already familiar with; that is, rotate() is also aliased as rotateZ()
because it rotates around the Z axis. The functions rotateX() and rotateY() rotate
around the horizontal X axis (pitching an element forward and back) and around the
vertical Y axis (turning—or yawing—the element left or right), respectively. See fig-
ure 15.13 for an illustration of these functions.

If you experience this, you can use a property called will-change to exert control
over the render layers. This property indicates to the browser, ahead of time, that it
should expect a certain property on the element to change. This usually means the
element will be promoted to its own paint layer. For example, applying will-change:
transform indicates you expect to change the transform property for that element.

Don’t, however, apply this blindly to the page until you’re seeing performance
issues as it’ll tend to use more system resources. Be sure to test before and after,
only leaving will-change in the stylesheet if you experience better performance.
For a deeper dive into how this property works and when you should or shouldn’t
use it, see the excellent article from Sara Soueidan at https://dev.opera.com/articles/
css-will-change-property/.

I should note that one thing has changed since this article was written: it states that
only 3D transforms promote an element to its own layer. This is no longer the case;
the latest browsers now use GPU acceleration for 2D transforms as well.

www.EBooksWorld.ir

https://dev.opera.com/articles/css-will-change-property/
https://dev.opera.com/articles/css-will-change-property/
https://dev.opera.com/articles/css-will-change-property/
https://csstriggers.com/

390 CHAPTER 15 Transforms
15.4.1 Controlling perspective

Before you add 3D transforms to the page, however, you need to specify one more
thing—perspective. The transformed elements together form a 3D scene. The browser
then computes a 2D image of this 3D scene and renders it onto the screen. You can
think of perspective as the distance between the “camera” and the scene. Moving the
camera around changes the way the scene appears in the final image.

 If the camera is close (that is, the perspective is small), then the 3D effects are
much stronger. If the camera is far away (that is, the perspective is large), then the 3D
effects are much more subtle. Some different perspectives are shown in figure 15.14.

The rotated element on the left, without a perspective applied, doesn’t look 3D. It
appears squashed horizontally; there’s no real feel of depth. 3D transforms without
perspective appear flat like this; parts of the element that are “further away” don’t
appear any smaller. On the other hand, the box in the middle has a 400 px perspec-
tive applied. Its right edge—the edge that’s further from the viewer—appears a little
smaller, and the edge that’s nearer appears larger. The perspective applied to the
right box is much shorter, at 100 px. This exaggerates the effect so the edge of the ele-
ment further away shrinks dramatically into the distance.

rotateX(30deg) rotateY(30deg) rotateZ(30deg)

Figure 15.13 Rotation on each of the three axes with a 300 px
perspective applied (a dashed line represents the initial element
position)

rotateY(30deg) perspective(400px)
rotateY(30deg)

perspective(100px)
rotateY(30deg)

Figure 15.14 The same rotation applied at different perspectives.

www.EBooksWorld.ir

391Three-dimensional (3D) transforms
 You can specify this perspective distance in two ways: using a perspective() trans-
form or using the perspective property. Each behaves a little differently. Let’s put
together a basic example to illustrate. This example will be minimal, just to show the
effects of perspective.

 First, you’ll rotate four elements, tilting them back using rotateX() (figure 15.15).
Each element is rotated the same and has the same perspective() transform applied;
thus, all four elements appear the same.

Create a new page for this demo and copy in the HTML shown here.

<div class="row">
 <div class="box">One</div>
 <div class="box">Two</div>
 <div class="box">Three</div>
 <div class="box">Four</div>
</div>

Next, you’ll apply a 3D transform and a perspective transform to each of the boxes.
You’ll also add color and padding to fill out the size a bit and to help make the effect
more apparent. Add a stylesheet to the page with the code shown in this listing.

.row {
 display: flex;
 justify-content: center;
}

.box {
 box-sizing: border-box;
 width: 150px;
 margin: 0 2em;
 padding: 60px 0;
 text-align: center;
 background-color: hsl(150, 50%, 40%);
 transform: perspective(200px) rotateX(30deg);
}

Listing 15.11 Four boxes to help illustrate 3D transforms and perspective

Listing 15.12 Applying 3D transforms to the boxes

Figure 15.15 Four elements rotated about the X axis, each with a perspective(200px) transform
applied

Rotates the box back
30 degrees and applies
a perspective

www.EBooksWorld.ir

392 CHAPTER 15 Transforms
In this example, each box looks the same. Each has its own perspective, applied using
the perspective() function. This method applies a perspective to a single element;
in this example, you’ve applied it directly to each box. It’s as if four separate pictures
were taken of each element, each from the same position.

 Sometimes you’ll want multiple elements to share a common perspective, as if they
all exist within the same 3D space. Figure 15.16 shows an illustration of this. These are
the same four elements, but they all reach into the distance toward a common vanish-
ing point. It’s as if one picture was taken of all four elements together. To achieve this
effect, you’ll use the perspective property on their parent element.

To see this effect, remove the perspective() function from the boxes and instead add
it to the container using the perspective property. These changes are shown here.

.row {
 display: flex;
 justify-content: center;
 perspective: 200px;
}

.box {
 box-sizing: border-box;
 width: 150px;
 margin: 0 2em;
 padding: 60px 0;
 text-align: center;
 background-color: hsl(150, 50%, 40%);
 transform: rotateX(30deg);
}

By applying one common perspective to the parent (or other ancestor) container, all
the elements within the parent that have 3D transforms applied will share that per-
spective.

 Adding a perspective is an important part of 3D transforms. Without it, elements
further from the viewer won’t appear smaller, and those closer won’t appear larger.
This example is rather minimal. In the next chapter, you’ll use these techniques in a
more practical example to “fly in” some elements onto the page from the distance.

Listing 15.13 Establishing a common perspective

Figure 15.16 Make the elements share a common perspective by using the perspective property
on a common ancestor element.

Adds the perspective
to the container

Don’t apply a
perspective
transform to
the boxes

www.EBooksWorld.ir

393Three-dimensional (3D) transforms
15.4.2 Implementing advanced 3D transforms

A few other properties can be useful when manipulating elements in 3D. I won’t
spend a lot of time on these as real-world use cases for these are few and far between.
But it’s good to be aware they exist in case you ever need them. I’ll point you to a few
examples online if you want to delve deeper.

PERSPECTIVE-ORIGIN PROPERTY

By default, the perspective is rendered as if the viewer (or camera) is positioned
directly in front of the center of the element. The perspective-origin property
shifts the camera position left or right and up or down. Figure 15.17 shows the previ-
ous example, but with the camera shifted to the bottom left.

To see this in your sample page, add the declaration in this listing.

.row {
 display: flex;
 justify-content: center;
 perspective: 200px;
 perspective-origin: left bottom;
}

This is the same perspective distance as before, but here the perspective is shifted so
all the boxes are to the right of the viewer. You can specify the position using the key-
words top, left, bottom, right, and center. You can also use any percentage or
length values, measured from the element’s top left corner (perspective-origin:
25% 25%, for example).

BACKFACE-VISIBILITY PROPERTY

If you use rotateX() or rotateY() to spin an element more than 90 degrees, some-
thing interesting happens: the “face” of the element is no longer directed toward
you. Instead, it is facing away, and you see the back of the element. The element in
figure 15.18 has been transformed with rotateY(180deg). It looks like a mirror
image of the original.

 This is the backface of the element. By default, the backface is visible, but you can
change this by applying backface-visibility: hidden to the element. With this

Listing 15.14 Using perspective-origin to move the camera position

Figure 15.17 Moving the perspective origin increases the perspective distortion of elements toward
the far edges.

Moves camera position
to the element’s
bottom left

www.EBooksWorld.ir

394 CHAPTER 15 Transforms
declaration applied, the element will only be visible if it’s facing toward the viewer,
and hidden if it’s facing away.

 One possible application of this technique is to place two elements back-to-back,
like two sides of a card. The front of the card will be visible, but the back of the card is
hidden. Then you can rotate their container element to flip both elements around,
making the front hidden and the back visible. For a demo of this card flip effect, see
the article at https://desandro.github.io/3dtransforms/docs/card-flip.html.

TRANSFORM-STYLE (PRESERVE-3D) PROPERTY

The transform-style property becomes important if you go about building complex
scenes with nested elements in 3D. Let’s assume you’ve set a perspective on a con-
tainer, then applied 3D transforms to elements within. That container element, when
rendered, will be a 2D representation of that scene. It’s like a photograph of a 3D
object. This looks fine because that element must be rendered onto your 2D screen.

 If you then apply a 3D rotation on the container itself, it won’t look right. Instead
of rotating the entire scene, it’ll appear as if you’re rotating a 2D photograph of a 3D
scene. The perspective will be all wrong, and the illusion of depth in the scene is shat-
tered. See figure 15.19 for an example illustrating this.

 The scene rendered on the left shows a 3D cube created by transforming its six
sides into place. The middle image shows what happens if you attempt to transform

Figure 15.18 Rotating an element
to see its back side

www.EBooksWorld.ir

https://desandro.github.io/3dtransforms/docs/card-flip.html

395Summary
the entire cube together (that is, the parent element). To correct this, you should apply
transform-style: preserve-3d to the parent element (right).

WARNING The preserve-3d transform style is not supported in any version
of Internet Explorer.

For a more complete explanation of this, as well as working examples, visit the tutorial
from Ana Tudor at https://davidwalsh.name/3d-transforms. Although examples like
this are fun to play with, I’ve never needed to use preserve-3d in a real-world project.
But if you decide to play around with 3D transforms just to see what you can build, you
may find the tutorial useful.

Summary
 Use transforms to scale, rotate, translate, and skew elements in two and three

dimensions.
 Transforms are essential for performant transitions and animations.
 Understand how the rendering pipeline works and keep it in mind when build-

ing animations.
 To use a custom timing function curve to add a bounce effect to transitions.

3D cube looking

straight on

Rotating cube with

transform styleflat
Rotating cube with

preserve-3d

transform style

Figure 15.19 If you perform a 3D transform on the parent of other 3D-transformed
elements, you’ll probably want to apply preserve-3d (right).

www.EBooksWorld.ir

https://davidwalsh.name/3d-transforms

Animations
In the previous two chapters, you built several transitions that moved elements
from one state to another. This brings motion to the page and visual interest to the
user experience. But sometimes a transition isn’t enough.

 Instead of transitioning directly from one place to another, you might want an
element to take a roundabout path along the way. Other times, you might want to
animate an element and have it end up back where it started. These things can’t be
done with a transition. For more explicit control over changes on the page, CSS
offers keyframe animation.

 A keyframe refers to a specific point in an animation. You define some number of
keyframes, and the browser fills in, or interpolates, all the frames in between (fig-
ure 16.1).

This chapter covers
 Adding complex motion to the page with keyframe

animations

 Playing animations when the page loads

 Using a spinner animation to provide feedback

 Drawing attention to a save button to remind the
user to save
396

www.EBooksWorld.ir

397Keyframes
A transition is conceptually similar to a keyframe animation: You define the first frame
(starting point) and the last (ending point), and the browser computes all the inter-
mediate values so the element can transition smoothly between them. With keyframe
animation, however, you’re not limited to defining only two points. You can define as
many as you like. The browser fills in the values from one to the next to the next, until
it reaches the final keyframe, producing a series of seamless transitions.

 In this final chapter, I’ll show you how to build keyframe animations. You’ll add
some to the page you started in the previous chapter, then explore a few other ways
they can be used. Animations aren’t something you add to a page to jazz it up; they
can also convey meaningful feedback to the user.

16.1 Keyframes
Animations in CSS contain two parts:
the @keyframes at-rule, which defines
an animation, and the animation
property, which applies that anima-
tion to an element.

 Let’s build a basic animation to get
familiar with the syntax. This anima-
tion will have three keyframes, shown
in figure 16.2. In the first frame, the
element is red. In the second frame,
it’s light blue and shifted to the right
100 px. In the final frame, it’s light
purple and has returned to its initial
position on the left.

 This animation applies changes to two properties: background-color and trans-
form. The keyframe rule for this is shown in the following listing. Create a new
stylesheet, styles.css, and add this code.

@keyframes over-and-back {
 0% {
 background-color: hsl(0, 50%, 50%);
 transform: translate(0);
 }

Listing 16.1 Defining a keyframe at-rule

Keyframe Keyframe Keyframe

Interpolated frames Interpolated frames

Figure 16.1 You define the keyframes, and the browser interpolates all the
frames in between.

Figure 16.2 Three keyframes,
animating the element’s color
and position

Names the
animation

First keyframe
declarations

www.EBooksWorld.ir

398 CHAPTER 16 Animations
 50% {
 transform: translate(50px);
 }

 100% {
 background-color: hsl(270, 50%, 90%);
 transform: translate(0);
 }
}

A keyframe animation needs a name; this example defines an animation named over-
and-back. It then defines three keyframes using percentages. These percentages indi-
cate when in the animation each keyframe occurs: one at the beginning of the anima-
tion (0%), one in the middle (50%), and one at the end (100%). The declarations inside
each of these blocks define how that keyframe appears.

 This example animates two properties concurrently, but notice that they aren’t
both specified in every keyframe. The transform shifts the element from its initial
position, to the right, then back again. The background color, however, isn’t speci-
fied in the 50% keyframe. This means the element will animate smoothly from red
(at 0%) to light purple (at 100%). At 50%, it’ll be the value directly between these
two colors.

 Let’s add this to a page to see it working. Create a new HTML document and add
this markup.

<!doctype html>
<html lang="en">
 <head>
 <link rel="stylesheet" href="styles.css">
 </head>
 <body>
 <div class="box"></div>
 </body>
</html>

Next, add styles to your stylesheet to style the box and to apply the animation. Copy
those in the following listing.

.box {
 width: 100px;
 height: 100px;
 background-color: green;
 animation: over-and-back 1.5s linear 3;
}

Listing 16.2 Page with a single box element for animation

Listing 16.3 Applying the animation to the box

Second keyframe occurs
halfway through the
animation

Final
keyframe

The element
you’ll animate

Gives the element a height
and width for demo purposes

Applies the animation
to the element

www.EBooksWorld.ir

399Keyframes
Open the page in your browser. You should see the animation repeat three times,
then stop. The animation property is a shorthand for several properties. In this demo,
you’ve specified four of them:

 animation-name (over-and-back)—Indicates the name of the animation as
defined by the @keyframes rule.

 animation-duration (1.5s)—Indicates how long the animation lasts; in this
case, 1.5 seconds.

 animation-timing-function (linear)—Indicates a timing function describ-
ing how the animation accelerates and/or decelerates. This can be a Bézier
curve or a keyword value, like a transition timing function (ease-in, ease-out,
and so on).

 animation-iteration-count (3)—Indicates the number of times the anima-
tion repeats. If omitted, the initial value of 1 is used.

Reload the page to watch the animation play again. Let’s observe a couple things
about the way the animation behaves.

 First, the color transitions smoothly from red at 0% to the light purple at 100%,
but then it snaps back immediately to red as the animation repeats. If you plan to
repeat an animation, you need to ensure the ending values match the beginning val-
ues if you want this change to be smooth.

 Second, after the final iteration, the background color changes to green: the value
specified in the regular ruleset. But notice that for the duration of the animation, this
declaration is overridden by those in the @keyframes. In terms of the cascade, rules
applied by an animation take precedence over other declarations.

 If you recall from chapter 1 (section 1.1.1), the first part of the cascade is the
stylesheet origin. Author styles take precedence over user agent styles because
they’re a higher priority origin. Declarations applied by an animation, however, are
considered an even higher priority origin. While a property is being animated, it
overrides those styles applied elsewhere in the stylesheet, regardless of selector spec-
ificity. This ensures all the declarations in the keyframes animate in concert with
one another, regardless of what other rules might be applied to the element outside
the animation.

WARNING Animations have good browser support, but a few mobile brows-
ers require the use of the -webkit- prefix, both on the animation property
(-webkit-animation) and the keyframes at-rule (@-webkit-keyframes). This
requires duplicating all of this code, both with and without the prefix. Use
Autoprefixer to do this (see the sidebar on “Vendor prefixes” in chapter 5).

www.EBooksWorld.ir

400 CHAPTER 16 Animations
16.2 Animating 3D transforms
Next, you’ll add an animation to the page you began in the previous chapter. After
listing 15.10, you should have a page with a blue background and a navigational menu
on the left-hand side. You’ll fill out the rest of this page with several cards of content.
First, you’ll get the layout built in a general shape of the overall design, then you’ll
add the animation.

16.2.1 Building the layout without animations

In this demo, you’ll add some cards in the main area of the page (figure 16.3). Then
you’ll add an animation to make them fly in using 3D transforms.

The markup for this content is shown next. Add this to your page after the <nav> ele-
ment. (I’ve abridged the text within the cards in this listing to save space. Feel free to
add more content if you want to match the screenshot in figure 16.3 more closely.)

Figure 16.3 Additional cards for the main region of the page

www.EBooksWorld.ir

401Animating 3D transforms
<main class="flyin-grid">
 <div class="flyin-grid__item card">

 <h4>Mrs. Featherstone</h4>
 <p>
 She may be a bit frumpy, but Mrs Featherstone gets
 the job done. She lays her largish cream-colored
 eggs on a daily basis. She is gregarious to a fault.
 </p>
 </div>
 <div class="flyin-grid__item card">

 <h4>Hen Solo</h4>
 <p>
 Though the most recent addition to our flock, Hen
 Solo is a fast favorite among our laying brood.
 </p>
 </div>
 <div class="flyin-grid__item card">

 <h4>Cluck Norris</h4>
 <p>
 Every brood has its brawler. Cluck Norris is our
 feistiest hen, frequently picking fights with other
 hens about laying territory and foraging space.
 </p>
 </div>
 <div class="flyin-grid__item card">

 <h4>Peggy Schuyler</h4>
 <p>
 Peggy was our first and friendliest hen. She is the
 most likely to greet visitors to the yard, and
 frequently to be found nesting in the coop.
 </p>
 </div>
</main>

This portion of the page consists of two modules. The outer module, Flyin-Grid, pro-
vides the layout for the items in a grid, including a 3D fly-in effect that I’ll cover in a
bit. Each grid item is also an instance of the inner module, the Card. The Card mod-
ule provides the styled appearance: white background, padding, and font color.

 This layout is a prime example for a grid layout, so that’s what you’ll use. You
should also consider both the mobile layout and a flexbox-based fallback for older
browsers that don’t support grids. You’ll do the mobile first layout, then layer on flex-
box styles followed by grid-based styles.

 The mobile layout is shown in figure 16.4. On small screens, the cards will fill the
width of the screen, with a little margin added to the left and right sides.

Listing 16.4 Building the flyin-grid and several cards

Grid container

Cards are also
grid items.

www.EBooksWorld.ir

402 CHAPTER 16 Animations
Add these mobile styles to your stylesheet.

.flyin-grid {
 margin: 0 1rem;
}

.card {
 margin-bottom: 1em;
 padding: 0.5em;
 background-color: white;
 color: hsl(210, 15%, 20%);
 box-shadow: 0.2em 0.5em 1em rgba(0, 0, 0, 0.3);
}
.card > img {
 width: 100%;
}

The flyin-grid doesn’t need much attention at this screen size because its items will
stack correctly as normal block elements. The card styles apply the white background
and the general look and feel of each card. You’ll apply the more complex layouts
within a media query momentarily.

Listing 16.5 Mobile styles for the cards

Figure 16.4 In the mobile layout,
cards will fill the screen width,
stacked beneath the menu.

Adds a small left and
right margin around
the container

Applies card
colors and
other details

Specifies the image should
fill the card width

www.EBooksWorld.ir

403Animating 3D transforms
 Next, you’ll layer in the fallback layout using flexbox, applied only to larger break-
points. This’ll get you close to the final design (figure 16.3). Add this CSS to your
stylesheet.

.flyin-grid {
 margin: 0 1rem;
}

@media (min-width: 30em) {
 .flyin-grid {
 display: flex;
 flex-wrap: wrap;
 margin: 0 5rem;
 }

 .flyin-grid__item {
 flex: 1 1 300px;
 margin-left: 0.5em;
 margin-right: 0.5em;
 max-width: 600px;
 }
}

This listing establishes a responsive layout using flexbox. By applying flex-wrap:
wrap, the flex items line wrap when they don’t fit on the same line. The flex basis of
300 px establishes a minimum width, while the max-width establishes a maximum
one; items will line wrap as needed to fit within these constraints. The flex-grow of 1
allows the cards to stretch to fill the remaining space.

 The Card module doesn’t need to change at all beyond the mobile styles you’ve
already added; all colors and stylistic elements appear the same.

 At certain screen sizes, the cards appear exactly like our final layout. But when the
last row of cards has fewer cards than those on line(s) above, the card widths won’t
always be equal. This problem is shown in figure 16.5.

 At this viewport width (around 1000 px), three cards fit into the top row, leaving
only one for the second row. This final item grows to the max-width of 600 px, making
it larger than the rest. When the screen size allows for two rows of two cards each,
they’ll all be the same size, as each row is equivalent. But other screen sizes might
result in this problem. It’ll vary, too, depending on how many cards there are: six
cards would fit neatly into two rows of three, but large screens would see a row of four
followed by a row of two.

 This flexbox layout still works, as everything is usable and understandable, but it
isn’t ideal. You have two options for dealing with this: you could take the time to figure
out several breakpoints and apply more specific control over the widths of the flex
items or you could call this “good enough” as a fallback behavior, and override the
flexbox with a grid layout for browsers that support grid.

Listing 16.6 Appling a flexbox-based fallback layout

Responsive
breakpoint

Establishes the flex
container with wrapping

Increases padding
on sides

Enables flex-grow
and sets a flex-basis
of 300 px

www.EBooksWorld.ir

404 CHAPTER 16 Animations
Let’s do the second option here. After the flexbox layout, you’ll use a feature query to
test for grid support and add overriding styles. Update your stylesheet to match this CSS.

@media (min-width: 30em) {
 .flyin-grid {
 display: flex;
 flex-wrap: wrap;
 margin: 0 5rem;
 }

 .flyin-grid__item {
 flex: 1 1 300px;
 margin-left: 0.5em;
 margin-right: 0.5em;
 max-width: 600px;
 }

 @supports (display: grid) {
 .flyin-grid {
 display: grid;
 grid-template-columns: repeat(auto-fit, minmax(300px, 1fr));
 grid-gap: 2em;
 }

Listing 16.7 Applying a grid layout for browsers that support it

Figure 16.5 Flexbox doesn’t always make the cards in the final row match the width of those above.

Fallback styles
remain unchanged

Queries for grid
support within a
media query block Defines

column widths

www.EBooksWorld.ir

405Animating 3D transforms
 .flyin-grid__item {
 max-width: initial;
 margin: 0;
 }
 }
}

Now the latest browsers will use the ideal layout. Grid columns ensure all grid items
are the same width. Using repeat() and auto-fit allows the grid to determine how
many columns fit at the current viewport width. This solution will gracefully degrade
to the flexbox layout for older browsers, and small viewports will still display the even
simpler mobile layout.

16.2.2 Adding animation to the layout

The page now has the design and layout in place, so let’s work in some animation.
When the page loads, you’ll fly in the cards, as illustrated in figure 16.6. They’ll start
so they appear off in the distance, rotated 90 degrees around a vertical axis. Then the
cards will fly in toward the viewer and, near the end of the animation, rotate to face
the user directly. Figure 16.6 shows the three keyframes that define this animation.

 This animation involves two transforms: translateZ() starts the cards back in the
distance, and rotateY() rotates them. The code for this is shown in listing 16.8. This
sets a perspective on the flyin-grid container, defines the keyframes, and adds the ani-
mation to each flyin-grid item. I’ve also added opacity, so the items fade in along with
the transition effects.

.flyin-grid {
 margin: 0 1rem;
 perspective: 500px;
}

.flyin-grid__item {
 animation: fly-in 600ms ease-in;
}

@keyframes fly-in {
 0% {
 transform: translateZ(-800px) rotateY(90deg);
 opacity: 0;
 }
 56% {
 transform: translateZ(-160px) rotateY(87deg);
 opacity: 1;
 }
 100% {
 transform: translateZ(0) rotateY(0);
 }
}

Listing 16.8 Adding the fly-in animation

Removes margins
applied by the
fallback layout

Sets a shared
perspective on
the container

Applies animation
to each item

Starts in the
distance, rotated

Much closer, but
still mostly rotated

Finishes in normal
position

www.EBooksWorld.ir

406 CHAPTER 16 Animations
Figure 16.6 Use 3D transforms to fly in the cards from off in the distance.

www.EBooksWorld.ir

407Animation delay and fill mode
This CSS sets a perspective on the container, so all the items share the same perspective.
Then it applies the animation to each item. Load the page to watch the animation.

 The animation begins by placing the rotated element back in the distance.
Between the beginning keyframe and the middle keyframe, the element zooms for-
ward most of the way (from 800 px to 160 px), and the opacity fades from transparent
to fully opaque. From the middle keyframe to the end, the last bit of zoom finishes,
while the bulk of the rotation takes place.

16.3 Animation delay and fill mode
Animations can be delayed using the animation-delay property, which behaves much
like the transition-delay property. You can use this to stagger the animations, simi-
lar to the way you staggered the navigational menu transitions in the previous chapter.
By staggering each item’s animation for slightly different amounts of time, you can
make them fly in one after the other as shown in figure 16.7.

The next code applies these delays to the four grid items. But, it won’t quite work like
you want it to. Add the code to your stylesheet, then we’ll take a look at the problem
and how to address it.

.flyin-grid__item {
 animation: fly-in 600ms ease-in;
}

Listing 16.9 Staggering the animation start times

Figure 16.7 Elements flying in with staggered animation

www.EBooksWorld.ir

408 CHAPTER 16 Animations
.flyin-grid__item:nth-child(2) {
 animation-delay: 0.15s;
}
.flyin-grid__item:nth-child(3) {
 animation-delay: 0.3s;
}
.flyin-grid__item:nth-child(4) {
 animation-delay: 0.45s;
}

If you load this page in your browser, you might notice the problem. The animations are
played at the expected time, but some items are visible on the page beforehand. After a
moment they disappear and their animation plays (figure 16.8). This is a bit jarring, and
doesn’t look like the effect we’re going for. Instead, we want the elements to all be invis-
ible initially, and only appear during the course of their respective animations.

This problem occurs because the transform and opacity properties are only applied
during the animation. Before the animation starts, the grid items are visible on the
page, in their normal positions. Then, when the animation begins, they jump to their
values applied in the keyframe at 0%. You need the animation styles to apply backward
in time, as if paused on the first frame until the animation starts. This can be done
with the animation-fill-mode property (figure 16.9).

 The dark boxes here represent the duration of the animation. The initial value of
animation-fill-mode is none, which means the animation styles are not applied to
the element before or after the animation. By applying animation-fill-mode: back-
wards, the browser takes the values from the first frame of the animation and applies

Staggers the start of
each item’s animation
a little longer than the
previous item

Figure 16.8 The later items appear in their final position before their animations play.

www.EBooksWorld.ir

409Conveying meaning through animation
them to the element before the animation is played. Using forwards continues to
apply the last frame values after the animation completes. Using both fills both back-
ward and forward.

 Add a backward fill mode to your page to fix the jump at the beginning of the ani-
mation. Update your stylesheet to match.

.flyin-grid__item {
 animation: fly-in 600ms ease-in;
 animation-fill-mode: backwards;
}

This effectively makes the animation initially pause on the first frame, waiting for the
animation to play. Now, before the animation starts, the grid item is translated back
800 px, rotated 90 degrees, and set to opacity 0, ready for the animation to begin.

 Because the animation ends with the element in its natural position, you don’t
need to fill forward; the card already seamlessly steps from the final frame of anima-
tion to the element’s static position.

16.4 Conveying meaning through animation
A common misconception about animation is that it’s added to the page for fun, and
that it serves no practical purpose. This is sometimes the case (as with our last exam-
ple), but this isn’t always true. The best animations aren’t added on as an after-
thought. Instead, they’re integrated into the experience. They convey specific
meaning to the user about something on the page.

16.4.1 Responding to user interaction

Animation can indicate to the user that a button has been clicked or a message has
been received. If you’ve ever submitted a form, only to find yourself wondering
whether your mouse click registered, you know how important this can be.

Listing 16.10 Applying a backward animation fill mode

Time

none

forwards

backwards

both

a
n
i
m
a
t
i
o
n
-
fi
l
l
-
m
o
d
e

Figure 16.9 Use animation-fill-mode to apply animation styles before
or after the animation plays.

Applies first frame animation
styles before animation begins

www.EBooksWorld.ir

410 CHAPTER 16 Animations
 On a new page, let’s build a small form with a submit button. Then you’ll add a
spinning indicator to let the user know that the form is posting, and the browser is
awaiting a response from the server. The form is pictured in figure 16.10. It consists of
a label, a text area, and a button.

Create a new page and a blank stylesheet for this form. Add the HTML shown here.

<!doctype html>
<html lang="en">
 <head>
 <link rel="stylesheet" href="style.css">
 </head>
 <body>
 <form>
 <label for="trip">Tell us about your first trip to the zoo:</label>
 <textarea id="trip" name="about-my-trip" rows="5"></textarea>
 <button type="submit" id="submit-button">Save</button>
 </form>
 </body>
</html>

First, you’ll add some CSS to get everything laid out and styled appropriately. After
that, you’ll work in a few meaningful animations to enhance the user experience. Add
this to your stylesheet.

body {
 font-family: Helvetica, Arial, sans-serif;
}

form {
 max-width: 500px;
}

label,
textarea {
 display: block;

Listing 16.11 Form with Save button

Listing 16.12 Laying out and styling the form

Figure 16.10 A simple form
with a Save button

Text area

Submit
button

Limits the width
of the form

www.EBooksWorld.ir

411Conveying meaning through animation
 margin-bottom: 1em;
}

textarea {
 width: 100%;
 font-size: inherit;
}

button {
 padding: 0.6em 1em;
 border: 0;
 background-color: hsl(220, 50%, 50%);
 color: white;
 font: inherit;
 transition: background-color 0.3s linear;
}
button:hover {
 background-color: hsl(220, 45%, 40%);
}

Let’s assume this form is part of a larger web application. When the user clicks the
Save button, it’ll send the data to the server and, perhaps, receive a response and then
add some new content to the page. But waiting for the network takes time. While the
user waits for this response, it can be reassuring to them if they see some visual indica-
tion that their content has been submitted and a response will be appearing soon.
Animation is a common way to provide this indication.

 You can modify the Save button, giving it an “is-loading” state. This hides the
Save label, replacing it with a spinning icon (figure 16.11). When the user submits
the form, you’ll use JavaScript to add the is-loading class to the button, enacting
the animation.

You can design a spinner in a number of ways. This is one approach I like: a rotating
crescent shape is minimal in appearance but effective. Adding this spinner takes two
changes to the CSS: creating the crescent shape using a border and border radius,
then applying an animation to make it spin. It’ll also need a little JavaScript to add the
is-loading class in order to apply the styles when the button is clicked.

 The CSS for this is shown next. This markup adds the animation to an absolutely
positioned pseudo-element on the button. Add it to your stylesheet.

Blue button with
white text

Darkens button for
the hover state

Figure 16.11 When the user
clicks Save, a loading spinner
appears in the button.

www.EBooksWorld.ir

412 CHAPTER 16 Animations
button.is-loading {
 position: relative;
 color: transparent;
}
button.is-loading::after {
 position: absolute;
 content: "";
 display: block;
 width: 1.4em;
 height: 1.4em;
 top: 50%;
 left: 50%;
 margin-left: -0.7em;
 margin-top: -0.7em;
 border-top: 2px solid white;
 border-radius: 50%;
 animation: spin 0.5s linear infinite;
}

@keyframes spin {
 0% {
 transform: rotate(0deg);
 }
 100% {
 transform: rotate(360deg);
 }
}

This defines an is-loading state for the button. When applied, the button’s text is
made invisible with color: transparent, and its pseudo-element is placed in the cen-
ter of the button using absolute positioning.

 The positioning here is a little tricky: the top and left properties move the pseudo-
element down by half the button’s height and right by half the button’s width. This
positions the pseudo-element so its top-left corner is at the center of the button. Then,
the negative margins pull the pseudo-element back up and left by 0.7 em, which is
exactly half of its height and width. Together, all four of these properties center the
pseudo element vertically and horizontally within the button. Add the is-loading class
temporarily and play with these values in your browser’s DevTools to get a feel for how
they work together to center the pseudo-element.

 After positioning the pseudo-element, you then apply the animation. This uses a
new keyword for the animation iteration count: infinite. This means the animation
repeats endlessly as long as the is-loading class is applied to the button. The anima-
tion applies a rotation transform, from 0 deg to 360 deg. This rotates the pseudo-
element a full rotation. The end of this animation leaves the element exactly where it
began, visually, so the transition is seamless as the animation repeats.

Listing 16.13 Defining the spin animation and is-loading state

Hides the
button text

Positions pseudo-
element in the center
of the button

Loops spin
animation
repeatedly

Defines one full
rotation per iteration

www.EBooksWorld.ir

413Conveying meaning through animation
 Add the script tag from the next listing to your page. This provides JavaScript func-
tionality to add the is-loading class when the button is clicked. Place this before the
closing </body> tag.

<script type="text/javascript">
 var input = document.getElementById('trip');
 var button = document.getElementById('submit-button');

 button.addEventListener('click', function(event) {
 event.preventDefault();
 button.classList.add('is-loading');
 button.disabled = true;
 input.disabled = true;

 });
</script>

When the Save button is clicked, it stops the normal form submission using prevent-
Default(). This allows the user to stay on the same page without navigating away while
the application submits the form data using JavaScript. In the meantime, the inputs are
disabled, and the is-loading class is added to the button, displaying the spinning
indicator. Load the page and click the button to make the spinner appear.

 You aren’t submitting form data here because there’s no server to submit to in this
demo. But, in a real application, once the server responds, you could then re-enable
the form inputs and remove the is-loading class. For purposes of this demo, you can
refresh the page to reset the form and remove the is-loading class.

16.4.2 Drawing the user’s attention

Animation can also be used to bring the user’s
attention to something. If you expected the user
to write more than a couple of sentences in the
text area, you could encourage them to save their
work frequently as they compose their response.
If you use an animation to shake the button for a
moment, that can serve as a reminder to the user
to save their work (figure 16.12).

 This shake can be accomplished by rapidly transforming the element left and right
several times. You’ll define a keyframe animation that does that and apply the anima-
tion to the button element using a shake class. Add this to your stylesheet.

.shake {
 animation: shake 0.7s linear;
}

Listing 16.14 Adding an is-loading class to the button when clicked

Listing 16.15 Defining the shake animation

Prevents form
submission

Displays loading
spinnerCode here would

submit form data
using JavaScript

Figure 16.12 Move
the button left and right
rapidly to shake it.

www.EBooksWorld.ir

414 CHAPTER 16 Animations
@keyframes shake {
 0%,
 100% {
 transform: translateX(0);
 }
 10%,
 30%,
 50%,
 70% {
 transform: translateX(-0.4em);
 }
 20%,
 40%,
 60% {
 transform: translateX(0.4em);
 }
 80% {
 transform: translateX(0.3em);
 }
 90% {
 transform: translateX(-0.3em);
 }
}

I’ve done something new in this animation: I’ve applied the same keyframe defini-
tions multiple times throughout the animation.

 In the beginning (0%) and ending (100%) keyframes, the element is in its default
position. Because these keyframes both use the same value, you can separate them
with a comma and define their property values once. I’ve done the same with the
10%, 30%, 50%, and 70% keyframes, which all translate the element left. The 20%,
40%, and 60% each translate the element right. The 80% and 90% keyframes trans-
late the element right and left, respectively, but to a lesser degree.

 Together this animation shakes the element side-to-side four times, with the fourth
shake being a little less pronounced to simulate slowing down at the end of the
motion. You can temporarily add the shake class to the button to see the animation
play when the page loads.

NOTE An animation can be used several times throughout the stylesheet, so
its definition doesn’t necessarily need to be located with the code for the
module that uses it. I like to keep all my @keyframe definitions together in
one place, near the end of my stylesheet.

Finally, you can use JavaScript to play the animation when you think the user might
need to save their work. You can use a keyup event listener and a timeout function to
do this: When the user types a character into the text area, you’ll set a one second
timeout function, which will add the shake class to the button. If the user enters
another character before the second elapses, you’ll clear the timeout and set a new
one. Update the script tag in your page to match this listing.

Uses the same keyframe
definition at multiple points
during the animation

Shifts the
element left

Shifts the
element right

Reduces the
movement for
the final shake

www.EBooksWorld.ir

415Conveying meaning through animation
<script type="text/javascript">
 var input = document.getElementById('trip');
 var button = document.getElementById('submit-button');

 var timeout = null;

 button.addEventListener('click', function(event) {
 event.preventDefault();
 clearTimeout(timeout);
 button.classList.add('is-loading');
 button.disabled = true;
 input.disabled = true;
 });

 input.addEventListener('keyup', function() {
 clearTimeout(timeout);
 timeout = setTimeout(function() {
 button.classList.add('shake');
 }, 1000);
 });
 button.addEventListener('animationend', function() {
 button.classList.remove('shake');
 });
</script>

Now load the page and type something into the text area. Wait one second, and the
Save button will shake. As long as you continue typing, the timer will continually reset,
and the shake animation won’t play until the next time you stop for more than 1 sec-
ond. This way the shaking doesn’t constantly distract the user, but only occurs when
they pause.

 You also made use of a JavaScript event, animationend. This event is fired when
the shake animation finishes playing. When this happens, the shake class is removed
from the button so it can be added again the next time the user types then pauses,
replaying the animation a second time.

 Adding and removing classes like this is perhaps the simplest way to interact with
animations using JavaScript. But, if you’re familiar enough with the language, there’s
a complete API to interact with CSS animations, including the ability to pause, cancel,
and reverse them. For more information on this API, check the MDN documentation
at https://developer.mozilla.org/en-US/docs/Web/API/Animation.

 These animations—the loading indicator and the shaking Save button—communi-
cate a lot to the user. They do so without making the user read any explanation. They
indicate their meaning instantly, making for a less obtrusive UI.

 As you continue to build web applications, always consider if an animation, even
a subtle animation, can provide useful feedback to the user. Perhaps when sending
an email, the text area can fly off the side of the screen. Or, when deleting a draft,
animation can cause the draft to shrink and disappear. Animations don’t need to be

Listing 16.16 Adding the shake class after a one-second delay

Defines a variable to
refer to your timeout

Cancels the
pending timeout
(if present)

Adds the shake class
after a 1-second wait

Removes the shake
class after the
animation ends

www.EBooksWorld.ir

https://developer.mozilla.org/en-US/docs/Web/API/Animation

416 CHAPTER 16 Animations
obvious or flamboyant to provide reassurance to users that their actions did what
they intended.

 For a fantastic set of pre-defined keyframes you can use, visit http://animista.net/.
This has a large library of animations to choose from, including bouncing in, rolling
out, and wobbling like jelly.

16.5 One final piece of advice
To many web developers, CSS is an intimidating language. It has one foot planted in
the world of design and another in the world of code. Some parts of the language
aren’t intuitive, especially if you’re self-taught in the subject. I hope that this book has
helped you find your way.

 We’ve taken a deep look at the most fundamental parts of the language, and some
of the more confusing parts of page layout. We’ve covered a lot of ground, from orga-
nizing CSS for easier code maintenance to the newest layout methods. We’ve ventured
into the world of the design and built an interface that’s not only utilitarian, but also
intuitive and enjoyable.

 My last piece of advice for you is to stay curious. I’ve shown you a wide array of
tools in the CSS toolset. But the ways these tools can be mixed and matched are end-
less. When you encounter a web page that wows you, open your browser’s DevTools
and try to figure out how it works. Follow developers and designers online that pro-
vide creative demos or offer interesting tutorials. Try new things. And, keep learning.

Summary
 You can use keyframe animations to define key points in an animation.
 Use backward and forward fill modes to making an animation begin or end

seamlessly.
 Using JavaScript, you can trigger animations at the appropriate time.
 Using animations adds meaning, not just flourish, to user interaction on the

web page.

www.EBooksWorld.ir

http://animista.net/

appendix A
Selectors reference

Selectors target specific elements on the page for styling. CSS provides a wide array
of selector types.

A.1 Basic selectors
■ tagname—Type selector or tag selector. This selector matches the tag name

of the elements to target. Has a specificity of 0,0,1. Examples: p; h1; strong.
■ .class—Class selector. Targets elements that have the specified class name

as part of their class attribute. Has a specificity of 0,1,0. Examples: .media;
.nav-menu.

■ #id—ID selector. Targets the element with the specified ID attribute. Has a
specificity of 1,0,0. Example: #sidebar.

■ *—Universal selector. Targets all elements. Has a specificity of 0,0,0.

A.2 Combinators
Combinators join multiple simple selectors into one complex selector. In the selec-
tor .nav-menu li, for example, the space between the two simple selectors is known
as a descendant combinator. It indicates the targeted is a descendant of an ele-
ment that has the nav-menu class. This is the most common combinator, but there
are a few others, each of which indicates a particular relationship between the ele-
ments indicated:

■ Child combinator (>)—Targets elements that are a direct descendant of another
element. Example: .parent > .child.

■ Adjacent sibling combinator (+)—Targets elements that immediately follow
another. Example: p + h2.

■ General sibling combinator (~)—Targets all sibling elements following a speci-
fied element. Note this doesn’t target siblings that appear before the indi-
cated element. Example: li.active ~ li.
417

www.EBooksWorld.ir

418 APPENDIX A Selectors reference
COMPOUND SELECTORS

Multiple simple selectors can be joined (without spaces or other combinators) to form
a compound selector (for example, h1.page-header). A compound selector targets ele-
ments that match all its simple selectors. For example, .dropdown.is-active targets
<div class="dropdown is-active"> but not <div class="dropdown">.

A.3 Pseudo-class selectors
Pseudo-class selectors are used to target elements when they’re in a certain state. This
state can be due to user interaction or the element’s position in relation to its parent
or sibling elements in the document. Pseudo-class selectors always begin with a colon
(:). These have the same specificity as a class selector (0,1,0).

■ :first-child—Targets elements that are the first element within their parent
element.

■ :last-child—Targets elements that are the last element within their parent
element.

■ :only-child—Targets elements that are the only element within their parent
element (no siblings).

■ :nth-child(an+b)—Targets elements based upon their position among their
siblings. The formula an+b, where a and b are integers, indicates which ele-
ments to target. To know exactly how a formula works, imagine solving it for all
integer values of n, beginning with zero. The results of this equation indicate
which children are targeted. This figure illustrates some examples:

■ :nth-last-child(an+b)—Similar to :nth-child(), but instead of counting
forward from the first element, this selector counts backward from the last ele-
ment. The formula in the parentheses follows the same pattern as in :nth-
child().

■ :first-of-type—Similar in nature to :first-child, except instead of consid-
ering the position among all children, it considers an element’s numerical posi-
tion only among other children with the same tag name.

■ :last-of-type—Targets the last child element of each type.
■ :only-of-type—Targets elements that are the only child of their type.

Selector Elements targeted Result Description

Every element

Even elements

Every third element

Every third element beginning

with element 2

All elements beginning

with element 4

First four elements

0, 1, 2, 3, 4 ...

0, 2, 4, 6, 8 ...

0, 3, 6, 9, 12 ...

2, 5, 8, 11, 14 ...

4, 5, 6, 7, 8 ...

4, 3, 2, 1, 0 ...

:nth-child(n)

:nth-child(2n)

:nth-child(3n)

:nth-child(3n+2)

:nth-child(n+4)

:nth-child(-n+4)

www.EBooksWorld.ir

419Pseudo-element selectors
■ :nth-of-type(an+b)—Targets elements of their type based on their numerical
order and the specified formula; similar to :nth-child.

■ :nth-last-of-type(an+b)—Targets elements of their type based on a speci-
fied formula, counting from the last of those elements backward; similar to
:nth-last-child.

■ :not(<selector>)—Targets elements that don’t match the selector within the
parentheses. The selector inside the parentheses must be simple: it can only
refer to the element itself; you can’t use this selector to exclude ancestors. It
also mustn’t contain another negation selector.

■ :empty—Targets elements that have no children. Beware that this doesn’t tar-
get an element that contains whitespace as the whitespace is represented in the
DOM as a text node child. At the time of writing, the W3C is considering a
:blank pseudo-class that behaves similarly but also selects elements that contain
only whitespace; :blank is not yet supported in any browser.

■ :focus—Targets elements that have received focus, whether from a mouse
click, screen tap, or Tab key navigation.

■ :hover—Targets elements while the mouse cursor hovers over them.
■ :root—Targets the root element of the document. In HTML, this is the <html>

element. But CSS can be applied to other XML or XML-like documents, such as
SVG; in which case, this selector works more generically.

Several other pseudo-classes relate to form fields. Some of these were introduced or
refined with the selectors level 4 specification, so they don’t work in IE10 and some
other browsers. Check caniuse.com for support.

■ :disabled—Targets disabled elements, including inputs, selects, and buttons.
■ :enabled—Targets enabled elements, meaning they can be activated or accept

focus.
■ :checked—Targets selected checkboxes, radio buttons, or select box options.
■ :invalid—Targets elements with invalid input values, as defined by the input

type. For example, an <input type="email">, whose value is not a valid email
address. (Level 4).

■ :valid—Targets elements with valid values (Level 4).
■ :required—Targets elements with a required attribute set (Level 4).
■ :optional—Targets elements that do not have a required attribute set (Level 4).

This list of pseudo-classes isn’t exhaustive. See the MDN documentation at https://
developer.mozilla.org/en-US/docs/Web/CSS/Pseudo-classes for a complete list.

A.4 Pseudo-element selectors
Pseudo-elements are similar to pseudo-classes, but instead of selecting elements with a
special state, they target a certain part of the document that doesn’t directly correspond

www.EBooksWorld.ir

https://caniuse.com/
https://developer.mozilla.org/en-US/docs/Web/CSS/Pseudo-classes
https://developer.mozilla.org/en-US/docs/Web/CSS/Pseudo-classes

420 APPENDIX A Selectors reference
to a particular element in the HTML. They may target only portions of an element or
even inject content into the page where the markup defines none.

 These selectors begin with a double-colon (::), though most browsers also support
a single-colon syntax for backward-compatibility reasons. Pseudo-elements have the
same specificity as a type selector (0,0,1).

■ ::before—Creates a pseudo-element that becomes the first child of the matched
element. This element is inline by default. Can be used to insert text, images, or
other shapes. The content property must be specified to make this element
appear. Example: .menu::before.

■ ::after—Creates a pseudo-element that becomes the last child of the matched
element. This element is inline by default. Can be used to insert text, images, or
other shapes. The content property must be specified to make this element
appear. Example .menu::after.

■ ::first-letter—Lets you specify styles for only the first text character inside
the matched element. Example: h2::first-letter.

■ ::first-line—Lets you specify styles for the first line of text inside the
matched element.

■ ::selection—Lets you specify styles for any text the user has highlighted with
their cursor. This is often used to change the background-color of selected
text. Only a handful of properties can be used; those include color, background
color, cursor, and text decoration.

A.5 Attribute selectors
Attribute selectors can be used to target elements based on their HTML attributes.
These have the same specificity as a class selector (0,1,0).

■ [attr]—Targets elements that have the specified attribute attr, regardless of
its value. Example: input[disabled].

■ [attr="value"]—Targets elements that have the specified attribute attr, and
its value matches the specified string value. Example: input[type="radio"].

■ [attr^="value"]—“Starts with” attribute selector. Targets by attribute and value,
where the value begins with the specified string value. Example: a[href^=
"https"].

■ [attr$="value"]—“Ends with” attribute selector. Targets by attribute and
value, where the value ends with the specified string value. Example: a[href$=
".pdf"].

■ [attr*="value"]—“Contains” attribute selector. Targets by attribute and
value, where the attribute value contains the specified string value. Example:
[class*="sprite-"].

■ [attr~="value"]—“Space-separated list” attribute selector. Targets by attribute
and value, where the attribute value is a space-separated list of values, one of
which matches the specified string value. Example: a[rel="author"].

www.EBooksWorld.ir

421Attribute selectors
■ [attr|="value"]—Targets by attribute and value, where the value either
matches the specified string value, or begins with it and is immediately fol-
lowed by a hyphen (–). Useful for the language attribute, which may or may not
specify a language subcode (for example, Mexican Spanish, es-MX, or Spanish
in general, es). Example: [lang|="es"].

CASE-INSENSITIVE ATTRIBUTE SELECTORS

All of the previous attribute selectors are case-sensitive. The selectors level 4 specifica-
tion introduces a case-insensitive modifier that can be added to any attribute selector.
To do this, add an i before the closing bracket. Example: input[value="search" i].

 Many browsers don’t yet support this. Those that don’t will ignore it. For this rea-
son, if you use case-insensitive modifiers, be sure to add a fallback to a regular case-
sensitive version.

www.EBooksWorld.ir

appendix B
Preprocessors

Using a preprocessor is a vital part of a modern CSS workflow. A preprocessor pro-
vides a number of conveniences to streamline your writing and to help you main-
tain your codebase. For instance, you can write a piece of code once and then re-
use it throughout your stylesheet.

 A preprocessor works by taking a source file, which you write, and translating it
into an output file, which is a regular CSS stylesheet. In most cases, the source file
looks much like regular CSS, but with extra features added. A simple example
using a preprocessor variable looks like this

$brand-blue: #0086b3;

a:link {
 color: $brand-blue;
}

.page-heading {
 font-size: 1.6rem;
 color: $brand-blue;
}

This code snippet defines a variable named $brand-blue, which is used in two sepa-
rate places later in the stylesheet. When run through the Sass preprocessor, the vari-
able is replaced throughout the stylesheet, producing the following CSS as output:

a:link {
 color: #0086b3;
}

.page-heading {
 font-size: 1.6rem;
 color: #0086b3;
}

422

www.EBooksWorld.ir

423Sass
It’s important to note that, because the final output is regular CSS, a preprocessor
adds no new features to the language as far as the browser is concerned. It does, how-
ever, provide useful conveniences to you as a developer.

 In the example, using a variable to represent the color allows you to re-use the
color countless times without having to copy and paste the exact hex code. The pre-
processor does the copying for you when it generates the output file. It also means
that you can edit the value in one place, and have that change propagate throughout
the entire stylesheet.

 The two most popular preprocessors are Sass (http://sass-lang.com/) and Less
(http://lesscss.org/), though there’re several others as well. Sass is the most popular,
so I’ll focus mostly on that in this appendix. But Sass and Less are similar, with mostly
minor syntactic differences distinguishing them from one another. For instance, Sass
uses a $ to denote variables ($brand-blue), whereas Less uses an @-sign (@brand-
blue). Every Sass feature covered in this appendix is also supported in Less; check the
Less documentation for syntax differences.

B.1 Sass
When getting started with Sass, you’ll need to make a few decisions. First is which
implementation to use. Sass is written in Ruby, but this implementation is a little slow
when compiling large stylesheets, so I recommend something called LibSass, which is
a C/C++ port of the Sass compiler.

 If you’re comfortable with JavaScript and the Node environment, you can get Lib-
Sass by installing the node-sass package via the npm package manager. If you don’t
already have Node.js installed, you can find it (it’s free) at https://nodejs.org. Down-
load and install it according the directions given there. I’ll show you the commands
needed for this, but if you want to learn more about npm or need help troubleshoot-
ing anything, visit https://docs.npmjs.com/getting-started/.

B.1.1 Installing Sass

To install Sass, create a new project directory and navigate to it in your terminal. Then
run the following two commands:

■ npm init -y—Initializes a new npm project, creating a package.json file. See
chapter 10 (section 10.1.1) for more on this file.

■ npm install --save-dev node-sass—Installs the node-sass package and adds
it to package.json as a development dependency.

NOTE On Windows, you will also need to install the node-gyp package. See
https://github.com/sass/node-sass#install for more information.

The second decision you’ll need to make is which syntax to use. Sass supports two:
Sass and SCSS. They both offer the same features, but the Sass syntax omits all curly

www.EBooksWorld.ir

http://sass-lang.com/
http://lesscss.org/
https://nodejs.org/
https://docs.npmjs.com/getting-started/
https://github.com/sass/node-sass#install

424 APPENDIX B Preprocessors
braces and semicolons, strictly using indentation to indicate the structure of your
code. For example:

body
 font-family: Helvetica, sans-serif
 color: black

This is akin to whitespace-significant programming languages, such as Ruby and Python.
The SCSS syntax uses braces and semicolons, so it looks more like regular CSS. For
example:

body {
 font-family: Helvetica, sans-serif;
 color: black;
}

SCSS is more commonly used. If you’re unsure, I suggest using SCSS, which is what I’ll
use in this appendix.

NOTE SCSS files use the .scss file extension, whereas Sass files use .sass.

B.1.2 Running Sass

Now that Sass is installed, let’s use it to build a stylesheet. In your project directory,
create two subdirectories called sass and build. You’ll put your source files in the sass
directory, and Sass will use those files to produce a CSS file in the build directory.
Next, edit the package.json file. Change the scripts entry to match this listing.

"scripts": {
 "sass": "sass sass/index.scss build/styles.css"
},

This defines a sass command that, when run, compiles the file at sass/index.scss to a
new file at build/styles.css. The file sass/index.scss doesn’t exist yet in your project. Go
ahead and create it. Your Sass code will go into this file. Running npm run sass exe-
cutes the command, producing (or overwriting) the stylesheet at build/styles.css.

TIP Plugins such as gulp-sass are available for common task runners like
Grunt, Gulp, and Webpack. If you want to use a plugin, look for one that inte-
grates Sass or Less into the workflow you’re most familiar with.

B.1.3 Understanding important Sass features

I’ve shown you one example of a Sass variable ($brand-blue). Add the code in the
next listing to your index.scss file to see Sass compile it for you.

Listing B.1 Adding a sass command to package.json

www.EBooksWorld.ir

425Sass
$brand-blue: #0086b3;

a:link {
 color: $brand-blue;
}

.page-heading {
 font-size: 1.6rem;
 color: $brand-blue;
}

Run npm run sass to compile this into CSS. The output file (build/styles.css) will look
like this:

a:link {
 color: #0086b3; }

.page-heading {
 font-size: 1.6rem;
 color: #0086b3; }

/*# sourceMappingURL=styles.css.map */

The variables have been replaced with the hex value, so now the browser can under-
stand it. Sass also produced a source map file and added a comment to the end of the
stylesheet, giving a path to the source map.

Notice that the compiled code isn’t formatted as cleanly; the closing braces are
brought up onto the previous line and, in some cases, empty lines are removed. This is
okay because whitespace doesn’t matter to the browser. But, for the rest of the exam-
ples in this appendix, I’ll clean up the output formatting so that its meaning is clear.

INLINE COMPUTATION

Sass also supports inline arithmetic using +, -, *, /, and % (for modular division). This
lets you derive multiple values from one source value as shown next.

$padding-left: 3em;

.note-author {
 left-padding: $padding-left;

Listing B.2 A Sass variable

source map —A file that the computer uses to trace each generated line of code
(CSS, in our case) back to the source code that produced it (Sass). This map
file can be used by some debuggers, including the browser’s DevTools.

Listing B.3 Using inline computations

Defines a variable

Uses the variable

Uses the variable

Uses a
variable

www.EBooksWorld.ir

426 APPENDIX B Preprocessors
 font-weight: bold;
}

.note-body {
 left-padding: $padding-left * 2;
}

Use npm run sass to compile this, which produces the output:

.note-author {
 left-padding: 3em;
 font-weight: bold;
}

.note-body {
 left-padding: 6em;
}

This feature is useful when two values are related, but not the same. In this case, a
note-body will always have twice as much left padding as a note-author, regardless of
the value of $padding-left.

NESTED SELECTORS

Sass allows you to nest selectors inside other declaration blocks. You can use nesting to
group related code in the same block as shown here.

.site-nav {
 display: flex;

 > li {
 margin-top: 0;

 &.is-active {
 display: block;
 }
 }
}

Sass merges nested selectors with the selectors of the outer declaration block(s). This
example compiles to:

.site-nav {
 display: flex;
}

.site-nav > li {
 margin-top: 0;
}

.site-nav > li.is-active {
 font-weight: bold;
}

Listing B.4 Nesting selectors

Multiplies variable
by two

Nested
selector

Ampersand indicates
where the outer selector
will be appended.

www.EBooksWorld.ir

427Sass
By default, the outer .site-nav selector is prepended to every selector in the com-
piled code, and a space is added where the selectors are joined. To change this, use an
ampersand (&) to indicate where you want the outer selector to be inserted.

WARNING Nesting increases the specificity of the resulting selectors. Be cau-
tious about nesting and avoid nesting several levels deep.

You can also nest media queries inside a declaration block. This can be used to avoid
repeating the same selector as shown in the next listing.

html {
 font-size: 1rem;

 @media (min-width: 45em) {
 font-size: 1.25rem;
 }
}

This compiles to

html {
 font-size: 1rem;
}

@media (min-width: 45em) {
 html {
 font-size: 1.25rem;
 }
}

This way, if you change a selector, you won’t have to remember to change the corre-
sponding selector in a media query to match.

PARTIALS (@IMPORT)
Partials let you split your styles into multiple separate files, and Sass will concatenate
them all together into one file. Using partials, you can organize your files however
you wish, but only serve one file to the browser, thereby reducing the number of net-
work requests.

 Create a new file in your project as sass/button.scss. Add the styles shown here to
this file.

.button {
 padding: 1em 1.25em;
 background-color: #265559;
 color: #333;
}

Listing B.5 Nesting a media query

Listing B.6 Button partial stylesheet

Media query inside
a declaration block

www.EBooksWorld.ir

428 APPENDIX B Preprocessors
Then, in index.scss, import the partial stylesheet using the @import at-rule as shown
here.

@import "button";

When you run Sass, the partial file will be compiled and inserted where you indicated
with the @import rule.

 In my opinion, this is the most important feature of a preprocessor. As your
stylesheet grows, it becomes unwieldy to scroll through thousands of lines of code to
find the appropriate part of the stylesheet. This feature lets you break up the stylesheet
into small, logical modules, without incurring a performance loss over the network. See
the “Preprocessors and modular CSS” sidebar in chapter 9 for more on this.

MIXINS

A mixin is a small chunk of CSS that you can re-use throughout your stylesheet. This is
useful when you have a particular font style you need to match in multiple places, or for
commonly repeated rules, such as the clearfix (discussed in chapter 4, section 4.2).

 A mixin is defined using an @mixin at-rule and used with an @include at-rule. Here
is an example of a clearfix mixin.

@mixin clearfix {
 &::before {
 display: table;
 content: " ";
 }

 &::after {
 clear: both;
 }
}

.media {
 @include clearfix;
 background-color: #eee;
}

The preprocessor takes the code from the mixin and copies it in place of the
@include rule. The resulting code looks like:

.media {
 background-color: #eee;
}
.media::before {
 display: table;
 content: " ";
}

Listing B.7 Importing a partial

Listing B.8 Clearfix mixin

Path to the partial file

Defines a mixin
named clearfix

Nested
selectors

Applies
the mixin

www.EBooksWorld.ir

429Sass
.media::after {
 clear: both;
}

Notice there’s no mention of clearfix in the resulting code. The mixin’s contents are
only added to the stylesheet in the place(s) where it’s used.

 You can also define mixins that take parameters, much like a function in conven-
tional programming. The next listing shows a mixin that defines an alert box. It takes
two parameters, $color and $bg-color, which are variables defined within the scope
of the mixin.

@mixin alert-variant($color, $bg-color) {
 padding: 0.3em 0.5em;
 border: 1px solid $color;
 color: $color;
 background-color: $bg-color;
}

.alert-info {
 @include alert-variant(blue, lightblue)
}

.alert-danger {
 @include alert-variant(red, pink)
}

Each time the mixin is used, different values are passed in. These values are assigned
to the two variables accordingly. This snippet produces the following CSS output:

.alert-info {
 padding: 0.3em 0.5em;
 border: 1px solid blue;
 color: blue;
 background-color: lightblue;
}

.alert-danger {
 padding: 0.3em 0.5em;
 border: 1px solid red;
 color: red;
 background-color: pink;
}

Again the mixin allows you to re-use the same chunk of code several times, but in this
case, it produced two variations of the same code. These differences are based on the
values you passed in.

WARNING Historically, one common use for mixins has been to mix in vendor-
prefixed versions of a property. For example, a border-radius mixin might
specify the -webkit-border-radius, -moz-border-radius, and border-radius
properties. I encourage you to not use mixins for this; use Autoprefixer instead
(for more about this, see the section “PostCSS” later in this appendix).

Listing B.9 Mixin with parameters

Defines a mixin with
two parameters

Parameter variables
can be used within
the mixin.

Passes values
into the mixin

www.EBooksWorld.ir

430 APPENDIX B Preprocessors
EXTEND

Sass also supports an @extend at-rule. This is similar to a mixin, but the way it com-
piles is different. Instead of copying the same declarations multiple times, Sass groups
selectors together so they’re all in the same ruleset. This is best explained by an exam-
ple. In the next listing, the .message ruleset is extended by the two other rulesets.

.message {
 padding: 0.3em 0.5em;
 border-radius: 0.5em;
}

.message-info {
 @extend .message;
 color: blue;
 background-color: lightblue;
}

.message-danger {
 @extend .message;
 color: red;
 background-color: pink;
}

This produces the following output:

.message,

.message-info,

.message-danger {
 padding: 0.3em 0.5em;
 border-radius: 0.5em;
}

.message-info {
 color: blue;
 background-color: lightblue;
}

.message-danger {
 color: red;
 background-color: pink;
}

Notice that Sass copied the .message-info and .message-danger selectors up onto
the first ruleset. The benefit from this is that your markup only needs to reference one
class instead of two: <div class="message message-info"> becomes <div class=
"message-info"> because the message-info class now also includes all styles for the
message class as well, making the use of the message class redundant.

WARNING Unlike a mixin, @extend moves the selector to an earlier location
in the stylesheet. This means the source order of your declarations might not
match what you expected, which can affect the cascade.

Listing B.10 Extending a base class

Shares styles with
the .message class

www.EBooksWorld.ir

431Sass
The length of the output from @extend is generally shorter than that of a mixin. It’s
easy to see this and think that it’s better because the resulting stylesheet is smaller
(and, therefore, faster over the network). But, it’s important to note that mixins pro-
duce a lot of repeated code—and repetitive code compresses very well when gzipped.
As long as your server is gzipping all network traffic (which it should), these gains are
typically much smaller than you might expect.

 Don’t avoid mixins and exclusively use @extend to provide some sort of perfor-
mance optimization. Consider your code organization and which, mixins or extends,
makes more sense to use on a case-by-case basis. In general, you should probably favor
mixins. Only use @extend when you want to shorten the number of class names
needed in your HTML, as in listing B.10.

COLOR MANIPULATION

Another useful feature of Sass is a series of functions that allow you to manipulate colors.
If you need two related colors (for example, a lighter and darker version of the same
green), you can use the functions in the next listing to produce the colors you need.

$green: #63a35c;

$green-dark: darken($green, 10%);
$green-light: lighten($green, 10%);

$green-vivid: saturate($green, 20%);
$green-dull: desaturate($green, 20%);

$purple: adjust-hue($green, 180deg);
$yellow: adjust-hue($green, -70deg);

$green-transparent: rgba($green, 0.5);

By using these functions, you can edit the value of one variable, but allow the change
to affect other, related, colors. You don’t have to store the value in a variable. You can
edit it directly in the property where you need it:

.page-header {
 color: $green;
 background-color: lighten($green, 50%);
}

If you need to do more advanced manipulations, there’re several more color func-
tions. See http://jackiebalzer.com/color for a comprehensive reference.

LOOPS

Use loops to iterate over a value, producing slight variations. In chapter 15, I used sev-
eral :nth-child() selectors to target consecutive menu items, giving each a slightly
different transition-delay (listing 15.10). This sort of code can be done more suc-
cinctly with a Sass loop, which uses a @for at-rule as shown in the following listing.

Listing B.11 Sass color functions

Darkens by 10%

Lightens by 10%

Adjusts color
saturation

Rotates hue around
the color wheel

Adjusts transparency

www.EBooksWorld.ir

http://jackiebalzer.com/color

432 APPENDIX B Preprocessors
@for $index from 2 to 5 {
 .nav-links > li:nth-child(#{$index}) {
 transition-delay: (0.1s * $index) – 0.1s;
 }
}

This renders the same block of code several times, each time incrementing the $index
variable. Notice I used the variable in the selector, escaping it with the #{} notation.
The resulting code looks like this:

.nav-links > li:nth-child(2) {
 transition-delay: 0.1s;
}

.nav-links > li:nth-child(3) {
 transition-delay: 0.2s;
}

.nav-links > li:nth-child(4) {
 transition-delay: 0.3s;
}

In plain CSS, making changes to this pattern could be tedious. If I decided to incre-
ment the transition-delay by 0.15 seconds, I’d have to manually change each of these
declarations to 0.15 seconds, 0.3 seconds, and 0.45 seconds, successively. Or, if I
wanted to add another iteration, I’d have to manually copy a block and change all the
values. But with the Sass loop, these changes are a matter of editing the math formula
or changing the iteration count.

IT’S ALL CSS
Preprocessors don’t change the fundamentals of CSS. Everything I covered in this
book still applies. I didn’t use Sass throughout the book because I wanted to be clear
that the topics covered are the essentials of the language itself, not of any one prepro-
cessor. You still need to understand CSS in order to use Sass. But Sass (or Less) can
remove much of the busy work when working with CSS. Sass is an extremely useful
tool. I encourage you to become familiar with it.

B.2 PostCSS
PostCSS (http://postcss.org/) is a different sort of preprocessor. Like Sass or Less, it
parses a source file and outputs a processed CSS file. PostCSS, however, is entirely
plugin-based. Without any plugins, the output file would be an unchanged copy of the
source file.

 The functionality you get out of PostCSS is entirely determined by the plugins you
use. You can use multiple plugins that provide all the same functionality as Sass, or you

Listing B.12 Iterating over a series of values

Iterates the $index value
from 2 to 4 Uses the variable

in the selector

Multiplies the variable
by a time value

www.EBooksWorld.ir

http://postcss.org/

433PostCSS
can use one or two plugins and run your code through both Sass and PostCSS. And, if
you want, you can even write your own plugins in JavaScript.

 It’s important to note that PostCSS runs plugins sequentially. If you configure mul-
tiple plugins, the order they execute is sometimes significant, and it might take a little
trial-and-error to get PostCSS working the way you want. See the PostCSS documenta-
tion for help with this configuration.

NOTE PostCSS was initially referred to as a post-processor because it’s gener-
ally run after the preprocessor. PostCSS has moved away from this particular
term, however, as it implies a more limited scope of all the tool can offer.

B.2.1 Using Autoprefixer

Perhaps the most important plugin for PostCSS is Autoprefixer. This plugin adds all
the appropriate vendor prefixes to your CSS. For more on vendor prefixes, see the
“Vendor prefixes” sidebar in chapter 5.

 If your source code looks like this:

.example {
 display: flex;
 transition: all 0.5s;
 background: linear-gradient(to bottom, white, black);
}

Autoprefixer adds additional declarations, providing vendor-prefixed fallbacks to
older browsers, and then outputs:

.example {
 display: -webkit-box;
 display: -ms-flexbox;
 display: flex;
 -webkit-transition: all .5s;
 transition: all .5s;
 background: -webkit-gradient(linear, left top, left bottom, from(white),

to(black));
 background: linear-gradient(to bottom, white, black);
}

If you had to write all these vendor prefixes by hand, it would be tedious and prone to
error. It also adds a lot of clutter to your source code that you probably would rather
not have to think about when working.

 You can configure Autoprefixer with a list of browsers you want to support, and it’ll
add vendor prefixes where necessary to support those browsers. For example, config-
uring it with the array ["ie >= 10", "last 2"] ensures that your code is compatible
(when possible) with IE10 and up, and the latest two versions of all other browsers.
Autoprefixer uses the latest data from the caniuse.com database to determine when
prefixes are needed.

www.EBooksWorld.ir

https://caniuse.com

434 APPENDIX B Preprocessors
 I strongly recommend you use Autoprefixer, even if you don’t use any other
PostCSS plugins. Throughout the book, I don’t include vendor prefixes in my code
examples, on the assumption that you’ll use Autoprefixer to do this for you.

B.2.2 Using cssnext

Another popular PostCSS plugin (or rather, a bundle of plugins) is cssnext (http://
cssnext.io/). These plugins attempt to emulate future CSS syntaxes that aren’t sup-
ported by all browsers yet (and some of which aren’t finalized in the CSS specifica-
tion). This is in many ways like using a polyfill for future CSS features.

 Many of the features for this plugin are similar to those provided by Sass: nesting
selectors, mixin-like behavior using an @apply at-rule, and color-manipulation func-
tions. Autoprefixer is also included in this bundle. See http://cssnext.io/features/ for
a complete list of the plugin features.

 Be aware that a few of these features are still in the early stages of development by
the W3C, and are almost certain to change before being finalized. Use cssnext if you
want to get a feel for some up-and-coming CSS features, but I don’t recommend it as
your only set of preprocessor rules. As browsers add native support for some of the css-
next features, it may be difficult to transition from processing them using PostCSS to
using them natively in the browser; it’s a good idea to keep your preprocessor rules
separate from your polyfilled rules.

B.2.3 Using cssnano

cssnano (http://cssnano.co/) is a PostCSS-based minifier. A minifier strips all extrane-
ous whitespace from your code and makes it as small as possible, while still maintain-
ing the same syntactic meaning.

NOTE Minification isn’t a replacement for gzip compression, which should
be applied by your server. It’s generally a best practice to both minify and gzip
CSS for the network to speed up loading time.

Several CSS minifiers are available, but it might make more sense to do this as part of
your PostCSS build process, rather than in a separate step. cssnano allows you to do this.

B.2.4 Using PreCSS

PreCSS (https://github.com/jonathantneal/precss) is a PostCSS plugin pack that
provides several Sass-like features. This includes $ variables, inline calculation, loops,
and mixins.

 If it feels inefficient to run your code through both a Sass preprocessor and
PostCSS, consider replacing Sass with the PreCSS plugin pack for PostCSS instead. It’s
not perfectly identical to Sass, however, so consult the PreCSS documentation if you
choose to go this route. It’s also a newer tool and may not be quite as stable as Sass.

www.EBooksWorld.ir

http://cssnext.io/
http://cssnext.io/
http://cssnext.io/features/
http://cssnano.co/
https://github.com/jonathantneal/precss

index
Symbols

:: (double-colon) 420
!important annotation 9, 11, 13,

18, 217
* (universal selector) 12, 61, 81
*= comparator 109
@ symbol 7
& (ampersands) 427
-- (hyphens) character 49
+ (adjacent sibling

combinator) 417
> (child combinator) 417

A

<a> elements 123, 317, 374
absolute units 28, 30
absolute value 31
active pseudo-class 288
addition operators 46
adjacent sibling combinator 417
affix element 199
Alfa Slab One font 375
align-content property 137, 139,

175–176
align-items property 137, 139,

175
alignment

with Flexbox 135–142
of grid layouts 175–176

align-self property 138, 140, 175
all keyword 355
ampersands 427
Andrew, Rachel 176
animation property 399

animation-delay property 407
animation-duration

property 399
animation-fill-mode

property 408
animation-iteration-count

property 399
animation-name property 399
animation-timing-function

property 399
anonymous div 91
Aphrodite 252
APIs (application program

interfaces), using pattern
libraries as 270–276

editing existing modules
271–274

refactoring code 274–276
using semver 274–276

Archibald, Jake 143
attribute selectors 109, 420–421
attributes 7
author styles 8
auto value 64, 92, 351
auto-fill keyword 165
auto-fit keyword 166
Autoprefixer post

processor 122, 146,
433–434

B

background-attachment
property 23, 281

background-chip property 23
background-clip property 281

background-color property 23,
281, 364

background-image property 23,
280

background-origin property 23,
281

background-position
property 23, 26, 280

background-repeat property 23,
280

backgrounds 279–299
background-size property 23,

280, 293
back-ticks 260
base rules 234
baseline grid 345
BEM (Block, Element,

Modifier) 251
BFC (block formatting

context) 102–105
establishing 103–104
overview 194
using for media object

layouts 104–105
blend modes 279–291

mix blend modes 298–299
texture 296–298
tinting images 294–295
types of 295–296

Block, Element, Modifier 251
block-level elements 58, 64, 99,

123, 244, 374
blur radius 287
body copy, spacing 340–341
<body> element 18, 24, 33, 80,

178, 196
435

www.EBooksWorld.ir

INDEX436
Bootstrap 275–276
border-box property 60
border-box sizing, universal

61–62
border-collapse property 18
border-color property 23, 190
border-radius property 33, 116,

355
border-spacing property 18, 67
border-style property 23
border-width property 23
box model 55–83

collapsed margins 74–77
between text 74–75
multiple margins 75
outside containers 76–77

element height, difficulties
with 64–72

applying alternatives to per-
centage-based
heights 65–70

controlling overflow
behavior 64–65

max-height 70
min-height 70
vertically centering

content 71–72
element width, difficulties

with 56–63
adjusting box models 59–61
gutters between

columns 62–63
magic numbers,

avoiding 59
universal border-box

sizing 61–62
negative margins 73
spacing elements within

containers 77
changing content 79–80
lobotomized owl

selector 80
box-shadow property 26, 287
box-sizing property 59
brand-color property 49
breakpoints

adding to pages 217–221
overview 204, 215
selecting 222

browsers, converting colors
in 313–314

Button modules, variants
of 238–240

button--cta module 306
buttons, creating 290–291

C

calc() function
for font size 45–46
overview 59, 365

Call to Action (CTA) 140, 142,
311

Cartesian coordinate system 193
Cartesian grids 26
cascade 4–18

animations 399
source order 15–17

cascaded values 17
link styles and 16–17

specificity 10–15
inline styles 10
notation for 12–13
selector specificity 11–12
troubleshooting 13–15

stylesheet origins 8–10, 399
important declarations

9–10
user agent styles 8–9

working with 17–18
cascaded values 17
cascading stylesheets. See CSS
case-insensitive attribute

selectors 421
centering content, vertically

71–72, 412
cf (contain floats) 93, 97, 99,

108, 250, 267
child combinator 417
class attribute 109, 417
classes

specificity 11–13
state classes 246–247
utility classes 250

class-naming conventions 252
clear property 95
clearfix 93–99, 108, 250, 267
code, refactoring 274–276
collapsing

containers 93–99
margins 74–77

between text 74–75
multiple 75
outside containers 76–77

colon syntax 97, 418–420
color 320–328

adding to palettes 316–318
converting in browsers

313–314
for fonts, contrast for

318–320

manipulating 431
notation 312–316
overview 300–306

color functions, Sass 431
color picker dialog box 315
color property 7, 18
color stops, using multiple

283–285
repeating gradients 284–285
stripes 283–284

color-burn blend mode 293
colspan attribute 69
columns

of equal height 65–66, 130
in a grid system 107–109
gutters between 62–63
See also responsive columns,

adding
combinators 12, 417–418
components, resizing 41–43
compound selectors 418
compression tools 227
computed value 31
configuration, of KSS 256–257
contain floats (cf) 93, 97, 99,

108, 250, 267
contain value 293
container queries 222
containers

collapsing 93–99
collapsing margins

outside 76–77
spacing elements within 77

changing content 79–80
lobotomized owl

selector 80
containing block 182
content

changing 79–80
vertically centering 71–72

content attribute 97, 184, 213
context-dependent

selectors 240–241
contrast 300–328

establishing patterns 303
for font colors 318–320
implementing designs

304–306
overview 300–302

contrast blend modes 295–297
contrast ratios 318
control points 359
converting colors, in browsers

313–314
cover value 293

www.EBooksWorld.ir

INDEX 437
CSS (cascading stylesheets)
methodologies 251
table layouts 66–69
variables 48–54

changing dynamically
50–53

changing with
JavaScript 53–54

experimenting with 54
CSS First workflow 269–270
CSS3 language 44
cssnano tool 434
cssnext plugin 434
CTA (Call to Action) 140, 142,

311
cubic-bezier() function 359,

385
cursor property 135
custom properties. See CSS, vari-

ables

D

declaration block 7
declarations, marked as

important 9–10
dense keyword 167
depth, defining with gradients

and shadows 288–289
descendant combinator 417
designs, implementing 304–306

See also responsive design
development dependencies

256
DevTools 20, 103, 314, 358
direct descendant

combinators 40, 121, 417
display property 68–69, 117,

364, 366
div wrapper 69
document flow 64, 87–88, 95,

103, 142, 178, 182, 185, 190,
194

documenting
in KSS, writing 257–261
module variants in KSS

261–263
modules requiring

JavaScript 264–266
DOM (Document Object

Model) 36
dots per inch (dpi) unit 216
double container pattern 92,

310
double-colon syntax 97, 420

double-hyphen notation 239–
240, 305

double-underscore notation
241–243, 305

dpi (dots per inch) unit 216
dropdown menu 186–188,

244–246, 264–266, 361–368

E

ease-in value 356
ease-out value 356
editing existing modules

271–274
element queries 222
elements

creating with flat
designs 289–290

height of 64–72
applying alternatives to per-

centage-based
heights 65–70

controlling overflow
behavior 64–65

max-height 70
min-height 70
vertically centering

content 71–72
modules with multiple

241–243
generic tag names,

avoiding 243
variants with sub-

elements 243
spacing

inline 326–327
overview 342–345

spacing within containers 77
changing content 79–80
lobotomized owl

selector 80
width of 56–63

box models, adjusting
59–61

gutters between
columns 62–63

magic numbers,
avoiding 59

universal border-box
sizing 61–62

Elements pane, DevTools 317
empty string 97
ems 31–37

to define font-size property
32–36

pixels vs. 37–43, 320–322
making panels responsive

40–41
resizing single components

41–43
setting default font

sizes 39–40
encapsulation 234
-end suffixes 159
equal height, columns of 65–66,

130
error modifier 237
evergreen browsers 66
explicit grid 162
@extend rule 430
extends 430–431

F

fallbacks 337–338
feature queries 172–175, 404
Firefox Developer Edition 146
Firefox Nightly 146
first-child selector 418
first-of-type selector 418
Flash of Invisible Text. See

FOIT (Flash of Invisible
Text)

flash of unstyled text. See FOUT
(Flash of Unstyled Text)

flat designs, creating elements
with 289–290

flex container properties
135–139

align-content property 139
align-items property 139
flex-flow property 138
flex-wrap property 138
justify-content property

138–139
flex direction 130–135

changing 132–133
styling login forms 133–135

flex items
properties 139–140

align-self property 140
order property 140

sizes 124–130
flex-basis property 126–127
flex-grow property 127–128
flex-shrink property

128–129
practical uses of 129–130

flex-basis property 126–128,
138

www.EBooksWorld.ir

INDEX438
flexbox 69–70, 116–143
alignment 135–142
cautions when using 142–143

Flexbugs 142
full-page layouts 142–143

flex container properties
135–139

align-content property 139
align-items property 139
flex-flow property 138
flex-wrap property 138
justify-content property

138–139
flex direction 130–135

changing 132–133
styling login forms 133–135

flex item properties 139–140
align-self property 140
order property 140

flex item sizes 124–130
flex-basis property 126–127
flex-grow property 127–128
flex-shrink property

128–129
practical uses of 129–130

Grid Layout and 155–158
menus 120–122
overview 117–124
padding 123–124
spacing 123–124, 135–142

Flexbugs 142
flex-direction property 136
flex-flow property 136, 138
flex-grow property 126–128,

137, 170
flex-shrink property 126,

128–129, 137, 224
flex-wrap property 136, 138
float-left class 267
floats 87–115

clearfix 93–99
container collapsing 93–99
grid systems 105–115

building 107–111
gutters 111–115
overview 106–107

purpose of 88–93
unexpected float catching

99–101
fluid layouts 223–227

overview 202
styles for large viewports

224–225
tables with 226–227

Flyin-Grid module 401

FOIT (Flash of Invisible
Text) 346–352

Font Face Observer 348–349
font-display property 351–352
system fonts 349–351

Font Face Observer 348–349
font property 18
FontAwesome 382
font-display property 351–352
@font-face ruleset 336–339

fallbacks 337–338
font formats 337–338

font-family property 18, 23,
335

fonts
font formats 337–338
sizes of

calc() for 45–46
setting defaults 39–40
shrinking, problems

with 34–36
vw for 45

system fonts 349–351
web fonts 331–332

fonts-failed class 349–350
font-size property

ems to define 32–36
combining with other

ems 33–34
shrinking fonts 34–36

overview 18, 23
rems for 36–37

fonts-loaded class 348–349
font-style property 18, 23
font-variant property 18
font-weight property 18, 23, 46
@for at-rule 431
forward slash 154
Foundation 275–276
FOUT (Flash of Unstyled

Text) 346–352
Font Face Observer 348–349
font-display property

351–352
system fonts 349–351

fraction unit 147
Frost, Brad 222
fuzzy values 38

G

Google Fonts 331–336
GPU (graphics processing

unit) 388
grad unit 282

gradients 280–287
defining depth with 288–289
multiple color stops 283–285

repeating gradients
284–285

stripes 283–284
radial gradients 285–287

graphics processing unit. See
GPU

grid area 148
grid cell 148
grid container 147
Grid Layout module 144–176

alignment in 175–176
alternate syntaxes 158–162

naming grid areas 160–162
naming grid lines 158–160

anatomy of grids 148–158
flexbox 155–158
numbering grid lines

153–154
explicit and implicit grids

162–172
adjusting grid items to fill

grid tracks 169–172
variety, adding to 166–168

feature queries 172–175
overview 145–148

of grid layouts 175–176
grid line 148
grid track 148
grid-auto-columns property

162
grid-auto-flow property 167
grid-auto-rows property 162
grid-gap property 147
grids 105–115, 144, 176

adjusting items to fill
tracks 169–172

alignment in 175
areas, naming 160–162
building 107–111, 146–148
gutters 111–115
lines

naming 158–160
numbering 153–154

overview 106–107
variety, adding to 166–168

grid-template property 160
grid-template-areas property

161
grid-template-columns

property 147, 152
grid-template-rows

property 147, 152

www.EBooksWorld.ir

INDEX 439
gulp-sass plugin 424
gutters, adding

between columns 62–63
overview 111–115

gzip compression 434

H

handles 359
hard-light blend mode

296–297
hardware acceleration 388
has-error class 247
<head> element 80, 335
headings, spacing 342–345
height 64–72

columns of equal height
65–66, 130

controlling overflow
behavior 64–65

max-height 70
min-height 70
vertically centering

content 71–72
See also percentage-based

heights, applying alterna-
tives to

height containers 72
Helvetica Neue typeface 319
Hero module 310
hidden value 64, 366
home-link module 309
horizontal offset value 287
horizontal overflow 65
HSL notation, switching

stylesheet to 314–316
hsl() function 312–313
<html> element 36, 313,

348
hyphens 49

I

icon fonts 382
ID selector 11, 417
images

multiple, for different
viewport sizes
227–228

srcset to serve 228–229
texture, adding to 296–298
tinting 294–295

 element 170
implicit grid 162
@import at-rule 247, 427–428

@include at-rule 428
index.scss file 424
inherit keyword 21–22, 62
inheritance 18–19
inherited font size 32
initial containing block 183
initial keyword 22–23
initializing projects, in

KSS 256
inline computation 425–426
inline elements, spacing

of 326–327
inline styles 252
inline-block property 172
inline-grid value 147
inset keyword 289, 291
installing Sass extension

423–424
Inverted Triangle CSS

(ITCSS) 251
is-expanded class 247
is-loading class 247, 411–412
is-open class 211, 245, 266
ITCSS (Inverted Triangle

CSS) 251

J

JavaScript language, changing
CSS variables with 53–54

js array 264
justify-content property 124,

136, 138–139, 175
justify-items property 175
justify-self property 175

K

keyframe 396
@keyframes at-rule 397
keywords

inherit keyword 21–22
initial keyword 22–23

KSS (Knyle Style Sheets)
254–269

documenting module
variants 261–263

documenting modules
requiring JavaScript
264–266

organizing pattern library into
sections 266–269

overview pages, creating 264
setup 255–257

initializing projects 256

KSS configuration 256–257
KSS documentation,

writing 257–261
kss-config.json file 264

L

landmarks 210
large class 41
last-child selector 418
last-of-type selector 418
late-binding styles 29
layouts, full-page 142–143

See also fluid layouts
leading 324, 342
left property 357
length values 46, 355
Less (leaner style sheets) 48,

196, 247, 423
letter-spacing property 18, 339,

341
 elements 123
libraries. See pattern libraries
LibSass 423
line height, spacing 323–326
line wrapping 155
linear keyword 359
linear-gradient() function

281–283
line-height property 18, 23,

46–48, 339–340
link styles, source order

and 16–17
link, visited, hover, active

(LoVe/HAte) 17
<link> tag 5, 335
liquid layout 223
list-style property 18
list-style-image property 18
list-style-position property 18
list-style-type property 18
lobotomized owl selector 80
login forms, styling 133–135
loops 431–432
LoVe/HAte (link, visited, hover,

active) 17

M

magic numbers, avoiding 59
main element 160
<main> elements 58, 125
main-nav element 379
Marcotte, Ethan 202
margin property 25

www.EBooksWorld.ir

INDEX440
margin-left property 124
margins

collapsing 74–77
between text 74–75
multiple 75
outside containers 76–77

negative 73
markdown 260
Markup annotation 260
Martin, Robert C. 243
max-height property 70
max-width property 70, 92,

216
@media at-rule 40, 202, 214
media boxes 94
media object 102–105, 241–243,

271–273
media queries 214–222

breakpoints, adding to
pages 217–221

overview 40, 202
responsive columns 221–222
types of 215–217

max-width 216
media types 217
min-width 216

media types 217
Menu module 247–248
menus

building in flexbox 120–122
mobile 209–213
See also dropdown menu

menu-toggle property 210
meta tags, adding viewport meta

tags 213–214
min-height property 70, 293
min-height value 181
minmax() function 165
min-width property 70, 216
mix blend modes 298–299
mixins 428–429
mobile first approach 202–214

mobile menus 209–213
viewport meta tags

213–214
mobile styles 218
modal-body element 180, 182
modern browsers 66
modifier_class annotation 261,

263
modifiers 237
modules 233–235, 243–251

base rules 234–235
composed into larger

structures 243–250

dividing responsibilities
among 244–248

Menu module 247–248
state classes 246–247

documenting variants in
KSS 261–263

editing 271–274
methodologies 251
naming 248–250
positioning in 246
requiring JavaScript, docu-

menting in KSS
264–266

utility classes 250
variations of 237–241

Button modules 238–240
context-dependent

selectors 240–241
with multiple elements 241,

243
generic tag names,

avoiding 243
variants with sub-

elements 243
multiply blend mode 292

N

naming
grid areas 160–162
grid lines 158–160
modules 248–250

nav spacing 321
<nav> element 207, 400
nav-container module 309
navigational (nav) menu 375
negative margins 73
nested flexboxes 133
nested lists 35–36
nested selectors 426–427
Node.js 423
node-sass package 423
normal document flow 64
normal keyword 340
normalize.css library 235
not() selector 134, 419
notation

for colors 312–316
for specificity 12–13

npm run build command 257,
264, 274

nth-child selector 101, 109,
418

nth-last-child selector 418
nth-last-of-type selector 419

nth-of-type selector 419
numbering grid lines 153–154

O

object-fit property 170
objects. See media objects
only-child selector 418
only-of-type selector 418
OOCSS (Object-Oriented

CSS) 105, 251
opacity property 361, 365
optional value 351
order property 138, 140
over-and-back animation 398
overflow, behavior 64–65
overflow-x property 65
overflow-y property 65
overlay blend mode 296–297
overview pages, creating in

KSS 264

P

package.json file 256
padding property 25, 33,

59–60
padding, adding in

flexbox 123–124
pages, adding breakpoints

to 217–221
palettes, adding colors to

316–318
panels, responsive 40–41
partials 427–428
pattern libraries

CSS First workflow 269–270
KSS 254–269

documenting module
variants 261–263

documenting modules
requiring JavaScript
264–266

overview pages 264
setup 255–257

organizing into sections
266–269

overview 253–269, 276
using as API 270–276

editing existing
modules 271–274

refactoring code
274–276

semver 274–276
patterns, establishing 303

www.EBooksWorld.ir

INDEX 441
percentage-based heights,
applying alternatives
to 65–70

columns of equal height
65–66

CSS table layouts 66–69
flexboxes 69–70

percentages 46
perspective() function 391–392
picas 30
Pickering, Heydon 80
pixel-perfect designs

end of 29–30
struggle for 29

pixels. See px (pixels), ems vs.
placeholders 308
placement algorithm 154
pointer value 135
points (pt) 30
polyfill 349
position property 178
positioning 177

absolute positioning 182
close buttons 182
pseudo-element 183

fixed 178
controlling size of posi-

tioned elements 182
modal dialogs with 178

relative 185
CSS triangles 188
dropdown menus 186

sticky 197
PostCSS tool 432–434

Autoprefixer 433–434
cssnano 434
cssnext 434
PreCSS 434

PreCSS tool 434
preprocessors 422–434

PostCSS 432–434
Autoprefixer 433–434
cssnano 434
cssnext 434
PreCSS 434

Sass 423–432
color manipulation 431
with CSS 432
extends 430–431
features of 424–432
inline computation

425–426
installing 423–424
loops 431–432
mixins 428–429

nested selectors 426–427
partials (@import) 427–428
running 424

preserve-3d transform style 395
preventDefault() function 413
print media query 217
print styles 217
projects, initializing in KSS 256
Promise.all() method 349
properties. See shorthand prop-

erties
pseudo-elements

overview 36, 96, 98
positioning 183
selectors 419–420

pt (points) 30
Pure 275–276
px (pixels), ems vs. 37–43

making panels responsive
40–41

overview 320–322
resizing single

components 41–43
setting default font sizes

39–40

Q

queries
container 222
element 222
feature 172, 175
See also media queries

R

rad unit 282
radial gradients 285–287
Raleway font 375
ReactJS 252
readability, adjusting spacing

for
body copy 340–341
headings 342–345
overview 339–342
small elements 342–345

refactoring code 274–276
relative positioning 185

CSS triangles 188
dropdown menus 186

relative units
CSS variables 48–54

changing dynamically 50–53
changing with JavaScript

53–54

experimenting with 54
ems 28–31, 37–54

pixels vs. 37–43
to define font-size

property 32–36
line-height property 46–48
power of relative values

29–30
rems 31–37
unitless numbers 46–48
viewport-relative units

43–46
calc() for font size 45–46
vh for font size 45

relative values 29–30
rem-based breakpoints 214
rems

for font-size property 36–37
relative units 28, 31–37

rendering 191
repeat() function 152, 160,

405
repeating gradients 284–285
repeating-linear-gradient()

function 284, 286
resizing components 41–43
responsive columns,

adding 221–222
responsive design 201–229

fluid layouts 223–227
styles for large

viewports 224–225
tables with 226–227

media queries 214–222
breakpoints, adding to

pages 217–221
responsive columns

221–222
types of 215–217

mobile first approach
202–214

mobile menus 209–213
viewport meta tags

213–214
responsive images 227–229

multiple images for differ-
ent viewport sizes
227–228

srcset to serve correct
images 228–229

rgb() function 312–313
Roberts, Harry 251
Roboto font 331
root node 36
rotate() function 371–372

www.EBooksWorld.ir

INDEX442
rotateX() function 389, 393
rotateY() function 389, 393,

405
rotateZ() function 389
row class 207
row-reverse 130
rowspan attribute 69
Rules pane, Firefox 358
rulesets 6–7

S

Safari Technology Preview
146

Sansita font 331
sans-serif font 6, 49, 331
Sass (syntactically awesome

stylesheets) 423–432
color manipulation 431
extends 430–431
features of 424–432
inline computation

425–426
installing 423–424
loops 431–432
mixins 428–429
nested selectors 426–427
overview 48, 196, 247
partials (@import) 427–428
running 424
using with CSS 432

Scalable and Modular Architec-
ture for CSS 251

Scalable Vector Graphics 377,
382

scale() function 373, 382
screen media query 217
<script> tag 53, 178, 414
scroll value 64
scrollHeight property 368
selectors 7, 417–421

attribute selectors 420–421
basic selectors 417
combinators 417–418
context-dependent 240–241
nested 426–427
pseudo-class selectors

418–419
pseudo-element selectors

419–420
specificity 11–12

semver (Semantic Versioning)
274

specification 274–276
serif font 331

shadows 279–287, 291–299
buttons and 290–291
depth with 288–289
elements with flat designs

289–290
shake animation 413
Shelburne, Natalya 318
shorthand properties 23–27

order of values 24–27
horizontal, vertical

26–27
top, right, bottom, left

25–26
overriding other styles

with 23–24
shrinking fonts, problems

with 34–36
sibling combinator 80
single page applications. See

SPAs
Single Responsibility

Principle 244
single-colon syntax 97, 418–419
size attribute 135
sizes

of positioned elements,
controlling 182

of viewports, using multiple
images for 227–228

skeuomorphism 289
skew() function 375
SMACSS (Scalable and Modular

Architecture for CSS) 251
Snook, Jonathan 251
soft-light blend mode 296–297
Soueidan, Sara 389
source map 425
source order 15–17

cascaded values 17
link styles and 16–17
overview 6

space-around value 139, 176
space-between value 139, 176
space-evenly value 176
spacing 300–320, 327–328

adding grid layout 175–176
adding in flexbox 123–124
adjusting for readability

339–345
for body copy 340–341
headings 342–345
small elements 342–345

elements within containers
77

changing content 79–80

lobotomized owl
selector 80

ems vs. pixels 320–322
line height 323–326

 element 374
SPAs (single page

applications) 252
special values 20–23

inherit keyword 21–22
initial keyword 22–23

specificity 10–15
inline styles 10
notation for 12–13
preventing escalation

of 240
selector specificity 11–12
troubleshooting 13–15

sprite sheet 382
srcset attribute, using to serve

images 228–229
stacking contexts 177

overview 194
z-index and 190

manipulating stacking
order with z-index
193

rendering processes 191
stacking order 191

stacking order
manipulating with z-index

193
overview 191

start keyword 361
-start suffixes 159
state classes 246–247
steps() function 360
sticky positioning 197
stripes 283–284
style attribute 10
style guide 254
style inspector 20
<style> tag 10
Styled Components 252
Styleguide annotation 255,

257, 268
Styleguide Utilities.clearfix

annotation 267
styles

for large viewports
224–225

inline 10
linking 16
shorthand properties,

overriding 23–24
Styles pane, Chrome 358

www.EBooksWorld.ir

INDEX 443
stylesheets
origins 8–10

important declarations
9–10

user agent styles 8–9
switching to HSL 314–316

sub-elements, using module
variants with 243

subgrids 168
subtraction operators 46
Sullivan, Nicole 102, 251
@supports rule 172, 174–175
SVG (Scalable Vector

Graphics) 377, 382
swap value 351
syntactically awesome

stylesheets. See Sass
syntaxes 158–162

naming grid areas 160–162
naming grid lines 158–160

system fonts 349–351

T

<table> elements 69
table-caption display type 77
table-cell display type 77
table-inline display type 77
table-row display type 77
tables, with fluid layouts

226–227
tag names, avoiding generic tag

names 243
tag selector 11, 235, 417
tag types 243
<td> element 226
text, collapsing margins

between 74–75
text-align property 18
text-center class 250, 267
text-indent property 18, 184
text-shadow property 26, 209,

287
text-transform property 18, 134,

342, 345
texture, adding to images

296–298
tinting images 294–295
top, right, bottom, left 25
top-nav module 309–310
<tr> element 226
tracking 342
transform property 291
transform-origin property

374

transition-delay property 355,
386, 407

transition-duration
property 354–355

transition-property 354–355
transition-timing-function

property 355
translate() function 374–375,

385
translateX() function 389
translateY() function 291,

389
translateZ() function 389,

405
transparent keyword 282,

292
triangles, CSS 188
TRouBLe (top, right, bottom,

left) 25
troubleshooting specificity

13–15, 240
Tudor, Ana 395
turn unit 282
type selector 11, 235, 417
Typekit 331
typography 329–352

@font-face 336–339
fallbacks 337–338
font formats 337–338

FOUT and FOIT 346–352
Font Face Observer

348–349
font-display property

351–352
system fonts 349–351

Google Fonts 332–336
spacing 339–345

for body copy 340–341
headings 342–345
small elements 342–345

variants of 338–339
web fonts 331–332

U

unclickable elements 73
unicode character 184, 211
unitless numbers 46–48
units. See relative units
universal selector 12, 61, 80
url() function 365
user agent styles 8–9
user stylesheets 8
user-scalable=no option 214
utility classes 250

V

values 20–23
inherit keyword 21–22
initial keyword 22–23
See also relative values

var() function 50
vendor prefixes 146, 433

See also Autoprefixer
vertical centering 72
vertical offset value 287
vertical rhythm 345
vertical-align property 71,

175
viewport size 204
viewport-relative units 43–46

calc() for font size 45–46
vh for font size 45

viewports
meta tags 213–214
multiple images for different

sizes 227–228
styles for 224–225

visibility property 366
visible value 64
vw unit, for font size 45

W

W3C (World Wide Web
Consortium) 44

Wagner, Jeremy L. 352
WCAG (Web Content Accessibil-

ity Guidelines) 318
web fonts 331–332
Web Open Font Format 337
web safe fonts 329
Webkit Nightly Builds

edition 146
-webkit-animation property

399
Webtype 331
Weight annotation 267
Westfall, Brad 92
whitespace 148, 302
white-space property 18
width 56–63

box models, adjusting
59–61

gutters between columns
62–63

magic numbers, avoiding 59
universal border-box

sizing 61–62
width property 135

www.EBooksWorld.ir

INDEX444
will-change property 389
WOFF2 (Web Open Font

Format) 337
word-spacing property 18
World Wide Web Consortium

44
writing KSS documentation

257–261

Y

-y flag 256
Yandex 251
yawing 389

Z

z-index property
manipulating stacking order

with 193
overview 46
stacking contexts and 190

rendering process 191
stacking order 191

www.EBooksWorld.ir

Keith J. Grant

S
ome websites really pop. They look great, they’re visually
consistent, and they feel interactive and responsive. You
can bet their developers knew CSS in depth. CSS specifi es

everything from the structural layout of page elements to their
individual look and feel. True masters know the patterns of
CSS development, the techniques to implement them, and the
subtle touches that result in beautiful typography, fl uid transi-
tions, and balanced graphics. Join them!

CSS in Depth exposes you to a world of CSS techniques that
range from clever to mind-blowing. This instantly useful book
is packed with creative examples and powerful best practices
that will sharpen your technical skills and inspire your sense of
design. You’ll gain new insights into familiar features like fl oats
and units, and experiment with emerging ideas like responsive
design and pattern libraries. Bottom line: this book will make
you a better web designer and your apps will look fantastic!

What’s Inside
● Avoid common CSS pitfalls
● Master misunderstood concepts
● Use fl exbox and grid layout
● Responsive designs for any device
● Code for reuse and maintainability

Written for web developers who know the basics of CSS and
HTML.

Keith J. Grant is a senior web developer who builds and main-
tains web applications and websites, including The New York
Stock Exchange site.

To download their free eBook in PDF, ePub, and Kindle formats, owners
of this book should visit manning.com/books/css-in-depth

$44.99 / Can $59.99 [INCLUDING eBOOK]

CSS IN DEPTH

WEB DEVELOPMENT/HTML

M A N N I N G

“Become better at
writing code that lasts
and is understandable
 and performant.”

—From the Foreword by
Chris Coyier

Cofounder of CodePen

“From zero to hero in CSS!”
—Pierfrancesco D’Orsogna

GamePix

“The bible of the most
 up-to-date CSS.”—Phily Austria

Faraday Future

“A well-written, concise
book. I enjoyed every

 minute of reading it.”
—Tanya Wilke, Sanlam

“A clear and complete
 guide to CSS.”—Giancarlo Massari, Unic

See first page

www.EBooksWorld.ir

	CSS in Depth
	brief contents
	contents
	foreword
	preface
	acknowledgments
	about this book
	Who should read this book
	How this book is organized
	Code conventions and repository
	Browser versions
	Note€to€print€book€readers
	Book forum
	About the author
	About the cover illustration

	Part 1—Reviewing the fundamentals
	1 Cascade, specificity, and inheritance
	1.1 The cascade
	1.1.1 Understanding stylesheet origin
	1.1.2 Understanding specificity
	1.1.3 Understanding source order
	1.1.4 Two rules of thumb

	1.2 Inheritance
	1.3 Special values
	1.3.1 Using the inherit keyword
	1.3.2 Using the initial keyword

	1.4 Shorthand properties
	1.4.1 Beware shorthands silently overriding other styles
	1.4.2 Understanding the order of shorthand values

	Summary

	2 Working with relative units
	2.1 The power of relative values
	2.1.1 The struggle for pixel-perfect design
	2.1.2 The end of the pixel-perfect web

	2.2 Ems and rems
	2.2.1 Using ems to define font-size
	2.2.2 Using rems for font-size

	2.3 Stop thinking in pixels
	2.3.1 Setting a sane default font size
	2.3.2 Making the panel responsive
	2.3.3 Resizing a single component

	2.4 Viewport-relative units
	2.4.1 Using vw for font size
	2.4.2 Using calc() for font size

	2.5 Unitless numbers and line-height
	2.6 Custom properties (aka CSS variables)
	2.6.1 Changing custom properties dynamically
	2.6.2 Changing custom properties with JavaScript
	2.6.3 Experimenting with custom properties

	3 Mastering the box model
	3.1 Difficulties with element width
	3.1.1 Avoiding magic numbers
	3.1.2 Adjusting the box model
	3.1.3 Using universal border-box sizing
	3.1.4 Adding a gutter between columns

	3.2 Difficulties with element height
	3.2.1 Controlling overflow behavior
	3.2.2 Applying alternatives to percentage-based heights
	3.2.3 Using min-height and max-height
	3.2.4 Vertically centering content

	3.3 Negative margins
	3.4 Collapsed margins
	3.4.1 Collapsing between text
	3.4.2 Collapsing multiple margins
	3.4.3 Collapsing outside a container

	3.5 Spacing elements within a container
	3.5.1 Considering changing content
	3.5.2 Creating a more general solution: the lobotomized owl selector

	Summary

	Part 2—Mastering layout
	4 Making sense of floats
	4.1 The purpose of floats
	4.2 Container collapsing and the clearfix
	4.2.1 Understanding container collapsing
	4.2.2 Understanding the clearfix

	4.3 Unexpected “float catching”
	4.4 Media objects and block formatting contexts
	4.4.1 Establishing a block formatting context
	4.4.2 Using a block formatting context for media object layouts

	4.5 Grid systems
	4.5.1 Understanding a grid system
	4.5.2 Building a grid system
	4.5.3 Adding gutters

	Summary

	5 Flexbox
	5.1 Flexbox principles
	5.1.1 Building a basic flexbox menu
	5.1.2 Adding padding and spacing

	5.2 Flex item sizes
	5.2.1 Using the flex-basis property
	5.2.2 Using flex-grow
	5.2.3 Using flex-shrink
	5.2.4 Some practical uses

	5.3 Flex direction
	5.3.1 Changing the flex direction
	5.3.2 Styling the login form

	5.4 Alignment, spacing, and other details
	5.4.1 Understanding flex container properties
	5.4.2 Understanding flex item properties
	5.4.3 Using alignment properties

	5.5 A couple of things to be aware of
	5.5.1 Flexbugs
	5.5.2 Full-page layout

	Summary

	6 Grid layout
	6.1 Web layout is here
	6.1.1 Building a basic grid

	6.2 Anatomy of a grid
	6.2.1 Numbering grid lines
	6.2.2 Working together with flexbox

	6.3 Alternate syntaxes
	6.3.1 Naming grid lines
	6.3.2 Naming grid areas

	6.4 Explicit and implicit grid
	6.4.1 Adding variety
	6.4.2 Adjusting grid items to fill the grid track

	6.5 Feature queries
	6.6 Alignment

	7 Positioning and stacking contexts
	7.1 Fixed positioning
	7.1.1 Creating a modal dialog with fixed positioning
	7.1.2 Controlling the size of positioned elements

	7.2 Absolute positioning
	7.2.1 Absolutely positioning the Close button
	7.2.2 Positioning a pseudo-element

	7.3 Relative positioning
	7.3.1 Creating a dropdown menu
	7.3.2 Creating a CSS triangle

	7.4 Stacking contexts and z-index
	7.4.1 Understanding the rendering process and stacking order
	7.4.2 Manipulating stacking order with z-index
	7.4.3 Understanding stacking contexts

	7.5 Sticky positioning
	Summary

	8 Responsive design
	8.1 Mobile first
	8.1.1 Creating a mobile menu
	8.1.2 Adding the viewport meta tag

	8.2 Media queries
	8.2.1 Understanding types of media query
	8.2.2 Adding breakpoints to the page
	8.2.3 Adding responsive columns

	8.3 Fluid layouts
	8.3.1 Adding styles for a large viewport
	8.3.2 Dealing with tables

	8.4 Responsive images
	8.4.1 Using multiple images for different viewport sizes
	8.4.2 Using srcset to serve the correct image

	Summary

	Part 3—CSS at scale
	9 Modular CSS
	9.1 Base styles: laying the groundwork
	9.2 A simple module
	9.2.1 Variations of a module
	9.2.2 Modules with multiple elements

	9.3 Modules composed into larger structures
	9.3.1 Dividing multiple responsibilities among modules
	9.3.2 Naming modules

	9.4 Utility classes
	9.5 CSS methodologies

	10 Pattern libraries
	10.1 Introduction to KSS
	10.1.1 Setting up KSS
	10.1.2 Writing KSS documentation
	10.1.3 Documenting module variants
	10.1.4 Creating an overview page
	10.1.5 Documenting modules that require JavaScript
	10.1.6 Organizing the pattern library into sections

	10.2 Shifting the way you build CSS
	10.2.1 Using a CSS First workflow
	10.2.2 Using a pattern library as an API

	Part 4—Advanced topics
	11 Backgrounds, shadows, and blend modes
	11.1 Gradients
	11.1.1 Using multiple color stops
	11.1.2 Using radial gradients

	11.2 Shadows
	11.2.1 Defining depth with gradients and shadows
	11.2.2 Creating elements with a flat design
	11.2.3 Creating buttons with a more modern look

	11.3 Blend modes
	11.3.1 Tinting an image
	11.3.2 Understanding types of blend mode
	11.3.3 Adding texture to an image
	11.3.4 Using mix blend modes

	Summary

	12 Contrast, color, and spacing
	12.1 Contrast is king
	12.1.1 Establishing patterns
	12.1.2 Implementing the design

	12.2 Color
	12.2.1 Understanding color notations
	12.2.2 Adding new colors to a palette
	12.2.3 Considering contrast for font colors

	12.3 Spacing
	12.3.1 Using ems vs. px
	12.3.2 Factoring in line height
	12.3.3 Spacing inline elements

	13 Typography
	13.1 Web fonts
	13.2 Google fonts
	13.3 How @font-face works
	13.3.1 Font formats and fallbacks
	13.3.2 Multiple variants of the same typeface

	13.4 Adjusting space for readability
	13.4.1 Body copy spacing
	13.4.2 Headings, small elements, and spacing

	13.5 The dreaded FOUT and FOIT
	13.5.1 Using Font Face Observer
	13.5.2 Falling back to system fonts
	13.5.3 Getting ready for font-display

	14 Transitions
	14.1 From here to there
	14.2 Timing functions
	14.2.1 Understanding Bézier curves
	14.2.2 Steps

	14.3 Non-animatable properties
	14.3.1 Properties that cannot be animated
	14.3.2 Fading in and out

	14.4 Transitioning to auto height
	Summary

	15 Transforms
	15.1 Rotate, translate, scale, and skew
	15.1.1 Changing the transform origin
	15.1.2 Applying multiple transforms

	15.2 Transforms in motion
	15.2.1 Scaling up the icon
	15.2.2 Creating “fly in” labels
	15.2.3 Staggering the transitions

	15.3 Animation performance
	15.3.1 Looking at the rendering pipeline

	15.4 Three-dimensional (3D) transforms
	15.4.1 Controlling perspective
	15.4.2 Implementing advanced 3D transforms

	Summary

	16 Animations
	16.1 Keyframes
	16.2 Animating 3D transforms
	16.2.1 Building the layout without animations
	16.2.2 Adding animation to the layout

	16.3 Animation delay and fill mode
	16.4 Conveying meaning through animation
	16.4.1 Responding to user interaction
	16.4.2 Drawing the user’s attention

	16.5 One final piece of advice

	Appendix A—Selectors reference
	A.1 Basic selectors
	A.2 Combinators
	A.3 Pseudo-class selectors
	A.4 Pseudo-element selectors
	A.5 Attribute selectors

	Appendix B—Preprocessors
	B.1 Sass
	B.1.1 Installing Sass
	B.1.2 Running Sass
	B.1.3 Understanding important Sass features

	B.2 PostCSS
	B.2.1 Using Autoprefixer
	B.2.2 Using cssnext
	B.2.3 Using cssnano
	B.2.4 Using PreCSS

	index
	Symbols
	A
	B
	C
	D
	E
	F
	G
	H
	I
	J
	K
	L
	M
	N
	O
	P
	Q
	R
	S
	T
	U
	V
	W
	Y
	Z

	CSS in Depth—back cover

